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A longstanding question in QCD is the origin of the mass gap in the Yang-Mills sector of QCD, i.e.,
QCD without quarks. In Landau gauge QCD this mass gap, and hence confinement, is encoded in a mass
gap of the gluon propagator, which is found both in lattice simulations and with functional approaches.
While functional methods are well suited to unravel the mechanism behind the generation of the mass gap,
a fully satisfactory answer has not yet been found. In this work we solve the coupled Dyson-Schwinger
equations for the ghost propagator, gluon propagator and three-gluon vertex. We corroborate the findings of
earlier works, namely that the mass gap generation is tied to the longitudinal projection of the gluon self-
energy, which acts as an effective mass term in the equations. Because an explicit mass term is in conflict
with gauge invariance, this leaves two possible scenarios: If it is viewed as an artifact, only the scaling
solution survives; if it is dynamical, gauge invariance can only be preserved if there are longitudinal
massless poles in either of the vertices. We find that there is indeed a massless pole in the ghost-gluon
vertex, however in our approximation with the assumption of complete infrared dominance of the ghost this
pole is only present for the scaling solution. We also put forward a possible mechanism that may reconcile
the scaling solution, with an infrared dominance of the ghost, with the decoupling solutions based on
longitudinal poles in the three-gluon vertex as seen in the PT-BFM scheme.
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I. INTRODUCTION

One of the central open questions in strong interaction
studies is the origin of mass generation in quantum
chromodynamics (QCD). One aspect of the problem is
the fact that the majority of the masses of light hadrons, and
therefore the visible mass in the universe, must be gen-
erated in QCD because light current quarks only carry a
small fraction of the mass of the proton. Mass generation in
the quark sector is relatively well understood by now in
terms of dynamical chiral symmetry breaking and the
corresponding dynamical generation of a large quark mass
at low momenta, which is seen in various nonperturbative
approaches including lattice QCD [1–4] and functional
methods such as Dyson-Schwinger equations (DSEs) [5,6]
and the functional renormalization group (fRG) [7,8].
Another and perhaps more fundamental aspect is the

emergence of a mass gap in pure Yang-Mills theory,

i.e., QCD without quarks. This is tied to the open question
of confinement, and the corresponding problem of mass
generation in the Yang-Mills sector of QCD is much less
understood.
In principle, the origin of mass generation is encoded in

QCD’s elementary n-point correlation functions. For Yang-
Mills theory, these are the two-point functions (the gluon
and ghost propagators), three-point functions (the three-
gluon vertex and ghost-gluon vertex), four-point functions
(e.g., the four-gluon vertex) and higher n-point functions.
In particular, it is well-established by now that the massless
pole in the perturbative gluon propagator cannot survive
in nonperturbative calculations in general covariant gauges
including Landau gauge. Moreover, the respective mass
gap is directly related to confinement as shown in [9,10].
Possible mechanisms for the generation of the mass gap

include the Kugo-Ojima confinement scenario [11], where
the n-point functions scale with infrared (IR) power laws
[12–20] as given in Eq. (4) below, a Schwinger mechanism
for longitudinal correlation functions [21–28], and the
related gluon condensation mechanism [29,30]. In all these
scenarios, irregularities in longitudinal and/or transverse
projections of the Yang-Mills vertices are triggered and
required for the mass gap to be present. While the IR
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scaling of the correlation functions in the Kugo-Ojima
scenario directly induces such irregularities by assuming
the existence of BRST charges, these must be triggered
explicitly in the Schwinger mechanism and gluon con-
densation scenarios.
The gluon propagator is parametrized as

DμνðQÞ ¼ 1

Q2
ðZðQ2ÞTμν

Q þ ξLðQ2ÞLμν
Q Þ; ð1Þ

where

Tμν
Q ¼ δμν −

QμQν

Q2
; Lμν

Q ¼ QμQν

Q2
ð2Þ

are the transverse and longitudinal projection operators
with respect to the four-momentum Qμ, ξ is the gauge
parameter and ξ ¼ 0 corresponds to Landau gauge. In
linear covariant gauges, the longitudinal dressing function
LðQ2Þ ¼ 1 is trivial due to gauge invariance, but for later
purposes we keep it general in what follows. A basic mass
parameter m0 is defined by the value of the transverse part
DðQ2Þ ¼ ZðQ2Þ=Q2 at Q2 → 0,

DðQ2 → 0Þ ∝ 1

m2
0

: ð3Þ

The IR solutions seen in lattice QCD simulations do not
show scaling as required in the Kugo-Ojima confinement
scenario and have been called decoupling or massive
solutions. In this case, the gluon propagator saturates at
low momenta and becomes constant in the IR [31–35] like
in Eq. (3). This solution is also obtained with DSE and fRG
calculations, see e.g., [23,25,36–43]. In addition, functional
studies of correlation functions within approximations have
revealed the existence of a family of these decoupling
solutions, where the maximal decoupling solution is close
to that found on the lattice. There are also indications for
different decoupling solutions on the lattice depending
on the IR details of the gauge-fixing procedure, which
involves the removal of Gribov copies [44]. In the con-
tinuum limit this is a numerically very challenging problem
which has not been overcome yet. It has been speculated
that the emergence of a family of solutions may be due to
an additional gauge fixing parameter in Landau gauge, see
e.g., [45,46].
Correspondingly, for the decoupling solutions the

transverse gluon dressing function ZðQ2Þ vanishes like
ZðQ2Þ ∝ Q2 and 1=ZðQ2Þ ∝ m2

0=Q
2 has a singularity at the

origin inQ2. This is shown in Fig. 1 and clearly differs from
a QED-like behavior where the photon dressing function
and not the propagator saturates at IR momenta. The origin,
details and consequences of this feature are however not yet
fully understood. A possible explanation that has been
studied in the PT-BFM (pinch technique/background-field

method) framework is due to the Schwinger mechanism,
which could generate longitudinally coupled massless
poles in Yang-Mills vertices such as the three-gluon vertex
and thereby induce such a behavior in the transverse part of
the gluon propagator [21,22,24–28].
The other endpoint of the family of decoupling solutions

for m0 → ∞ is the scaling solution [12–20] with the IR
scaling

ZðQ2 → 0Þ ∝ ðQ2Þ2κ; GðQ2 → 0Þ ∝ ðQ2Þ−κ: ð4Þ

Here, GðQ2Þ is the ghost dressing function and the IR
exponent κ is typically of the order κ ∼ 0.6 depending on
the truncation of the system. Such a behavior is consistent
with the Kugo-Ojima confinement scenario based on the
assumption of global BRST symmetry (existence of BRST
charges); see [39,47] for detailed discussions. By contrast,
the decoupling scenario entails

ZðQ2 → 0Þ ∝ Q2; GðQ2 → 0Þ ¼ const: ð5Þ

In any case, the gluon propagator is neither gauge
invariant nor renormalization-group invariant and thus its
value (3) at vanishing momentum hardly defines a mass gap
without further specifications. Instead, a gluon mass gap is
best defined as the (spatial) transverse correlation length of
this correlation function through the screening mass, see
e.g., [48] for the finite temperature version. It can be
extracted from the gluon propagator DμνðQÞ by a Fourier
transform

lim
r→∞

Z
d3Q
ð2πÞ3

ZðQ2Þ
Q2

ei x·Q ∝ e−mgapr ð6Þ

with r ¼ jxj. It is the mass parameter mgap that carries
the information about the (physical) mass gap of QCD.
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FIG. 1. QCD-like behavior of the inverse gluon dressing
function 1=ZðQ2Þ for exemplary scaling (SC) and decoupling
(DC) solutions.
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For example, it leads to the confinement-deconfinement
temperature TcðmE

gap; mM
gapÞ, where mE;M

gap are the chromo-
electric (inverse temporal screening length) and chromo-
magnetic (inverse spatial screening length) mass gaps at
finite temperature. In turn, in particular mE

gap is also
sensitive to the confinement-deconfinement phase transi-
tion, see e.g., [49,50]. In the vanishing temperature limit
both masses reduce to mgap, which is thus directly linked to
confinement, for more details see [9,10,48].
We emphasize that m0 may change significantly with

only minor or no changes inflicted on mgap for m0 ≳mgap,
and thus the value of m0 does not influence observables
such as Tc. This is sketched in Fig. 2 (blue branch) and
suggests that m0 with m0 > mgap labels different IR
solutions of Yang-Mills theory in Landau-type gauges.
In turn, the red branch in Fig. 2 with m0 ≈mgap → ∞
clearly differentiates between physically different theories
labeled by mgap. Evidently, only solutions to functional
equations within the former regime may describe Yang-
Mills theory, while the latter regime may be interpreted as
solutions in massive Yang-Mills theory with physically
different masses. Interestingly, the solution seen on the
lattice is close to (or at) the boundary between these two
regimes; see [42] for more details. Note also that the mass
gap in the Yang-Mills branch is the minimal one that can be
obtained in the system.
We also note that the scaling for the propagators in (4)

can be embedded in an IR hierarchy for all n-point
functions, which admits a 1=Q4 behavior for all diagrams
that contribute to the quark-antiquark (qq̄) four-point
function [51,52]. This leads to a linear rise in the qq̄
potential with the distance r in coordinate space already in a
single gluon exchange picture. If such a behavior could be
shown to be present for r≲ 1=mgap, it would facilitate the
access to observables showing direct signatures of confine-
ment. For the decoupling solutions, on the other hand, no
order of a diagrammatic expansion of the qq̄ four-point
function shows a 1=Q4 behavior. However, for the whole
family of solutions withm0 ≳mgap, confinement appears at
the confinement-deconfinement phase transition with an
m0-independent Tc [9,10]. Moreover, the expectation value
of the Polyakov loop, which is the respective order

parameter, can be obtained within a resummation of
diagrams [53].
The open questions we want to address in this work are

therefore: What is the mechanism that generates the IR
singularities in Fig. 1? What distinguishes the different
decoupling solutions, and is there a preference for one or
the other type of solutions?
To study the problem, we solve the coupled DSEs of

Landau-gauge Yang-Mills theory for the ghost and gluon
propagator and the three-gluon vertex. This builds upon a
long history of investigations starting with the DSEs for the
two-point functions [12–17] and subsequent improvements
regarding the role of three-point functions [35,54–64],
four-point functions [62–69], two-loop contributions
[62,64,70,71], the determination of propagators in the
complex momentum plane [72,73], and applications to
glueballs [74,75]. Simultaneous advances have been made
with fRG calculations [7,8,19,42,76–80] and in lattice
QCD [31–35,44,45,81–83].
In the following we show that the emergence of the IR

singularity in Fig. 1 is tied to the longitudinal projection of
the gluon self-energy, which we call Π̃ðQ2Þ and which for
the decoupling solutions acts as an effective mass term (see
Eq. (13) below). In the present work we offer two possible
interpretations: In Scenario A, we interpret this term as an
artifact of the regularization and/or truncation; in this case
we find that only the scaling solution survives, however
with an ambiguity in the IR exponent κ. In Scenario B, we
consider the term to be dynamical; in this case gauge
invariance can only be preserved if there is a massless
longitudinal pole either in the ghost-gluon, three-gluon or
four-gluon vertex, which drops out from the transverse
equations and only serves to eliminate Π̃ðQ2Þ. Here we use
the assumption of complete IR dominance of the ghost, and
a peculiar finding is the fact that such a pole does appear in
the ghost-gluon vertex, but only for the scaling solution.
The paper is organized as follows. In Sec. II we discuss

the DSEs for the Yang-Mills system in Landau gauge and
the different truncations that we employ. In Sec. III we
explain Scenario A and its consequences. In Sec. IV we
investigate Scenario B and the emergence of massless
longitudinal poles in the ghost-gluon vertex. We conclude
in Sec. V. To keep the paper self-contained, the explicit
diagrams appearing in the DSEs are worked out in detail in
Appendix A. Appendices B, C and D provide further
details on the renormalization, the numerical procedure and
the longitudinal poles in the ghost-gluon vertex. Wework in
Euclidean conventions throughout the paper.

II. YANG-MILLS DSEs

In the present work we aim at a thorough understanding
of the mechanisms at work within the mass generation in
Yang-Mills theory in Landau gauge QCD in a functional
formulation. While quantitatively reliable approximations
have been set up in functional approaches, see e.g., [42,64],

m
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e Y

M
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FIG. 2. Sketch of the relation betweenmgap andm0, withmgap≈
const. for the Yang-Mills-like solutions and m0 ≈mgap for those
in massive Yang-Mills theory.
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we shall employ approximations here that carry all the
dynamics of the system but are still simple enough to access
these dynamics directly.
Accordingly, we solve the coupled DSEs for its lowest

n-point functions shown in Fig. 3: the ghost propagator,
gluon propagator and the three-gluon vertex. The propa-
gator equations are exact since the gluon DSE also includes
the two-loop terms. In the three-gluon vertex DSE we
neglect further two-loop terms and diagrams including
vertices without a tree-level counterpart. To keep the
discussion transparent, we relegate the explicit formulas
to Appendix A and only highlight the most important
aspects in the main text.
Throughout this work we keep the ghost-gluon vertex at

tree level because this is a good approximation in Landau
gauge [13,84]: Here the vertex is finite in the ultraviolet
(UV) and does not need to be renormalized, and explicit
calculations have shown that the deviations from the tree-
level behavior are small [56,64]. The three-gluon vertex,
on the other hand, is almost completely dominated by its
classical tensor structure and has only a mild angular
dependence [60]. Thus, in the following we restrict
ourselves to the leading tensor and the symmetric limit
such that the vertex is represented by a one-dimensional
function F3gðQ2Þ. The quantities we compute are thus the
ghost dressing GðQ2Þ, the gluon dressing ZðQ2Þ and the
three-gluon vertex dressing F3gðQ2Þ.

We consider the following truncations of the coupled
DSEs in Fig. 3:
(i) Setup 1: This is the DSE system solved in [14–16],

where the three-gluon vertex DSE is bypassed and only
the propagator equations are solved, also neglecting the
two-loop terms in the gluon DSE. To avoid introducing
model input for the three-gluon vertex, one can use the
ansatz F3gðQ2Þ ¼ GðQ2Þ=ZðQ2Þ, which ensures the cor-
rect renormalization and perturbative limit of the vertex, or
keep the vertex at tree level with F3gðQ2Þ ¼ const. For our
purposes, Setup 1 will mainly serve as a reference point
since it is well established by now that the three-gluon
vertex is suppressed at small momenta and likely has a zero
crossing [31,33,35,56–58,60,63,83].
(ii) Setup 2: Herewe still neglect the two-loop terms in the

gluon DSE but back-couple the three-gluon vertex DSE into
the system. For the four-gluon vertex, which now appears as
an additional input, we employ its classical tensormultiplied
with GðQ2Þ2=ZðQ2Þ, which again ensures the correct
renormalization of the vertex and its perturbative limit.
Wewill see below that the error induced by this truncation is
at the 10% level. (iii) Setup 3: This corresponds to the full
system in Fig. 3 also including the two-loop terms in the
gluon DSE. As a consequence, the propagator DSEs are
two-loop complete at UV momenta. The remaining inputs
are the ghost-gluon and four-gluon vertex where we use the
anstze discussed above. Below we will see that the error in
this truncation is at the 3%–4% level.
We emphasize that there is no explicit model input in any

of these truncations (except for dropping higher vertices
and tensor structures) and the only parameter in all cases is
the coupling g. Furthermore, the qualitative features found
in this work are independent of the truncations and appear
in all three setups.
The general form of the gluon DSE is given by

ðD−1ÞμνðQÞ ¼ ðD−1
0 ÞμνðQÞ þ ΠμνðQÞ; ð7aÞ

where

ΠμνðQÞ ¼ ΠphysðQ2ÞQ2Tμν
Q ; ð7bÞ

with the transverse projection operator defined in (2).
In (7a), the tree-level propagator Dμν

0 ðQÞ is given by
Eq. (1) with the replacement ZðQ2Þ → 1=ZA, where ZA
is the gluon renormalization constant. The gluon self-
energy ΠμνðQÞ in (7a) is the sum of the ghost loop, gluon
loop, tadpole, squint and sunset diagrams in Fig. 3. The
transversality of the gluon self-energy in (1) and (7) is a
direct consequence of the Slavnov-Taylor identities (STIs)
for general covariant gauges, e.g., [85].
In approximations transversality might be lost. Indeed,

already in perturbation theory the transversality of (7b) is
not present in the single diagrams in Fig. 3, and longi-
tudinal pieces that are related by gauge symmetry cancel

FIG. 3. Dyson-Schwinger equations for the ghost propagator
(top), gluon propagator (middle) and three-gluon vertex (bottom).
The gluon self-energy depends on the ghost loop, gluon loop,
tadpole, squint and sunset diagrams. The three-gluon vertex
contains the ghost triangle, gluon triangle and swordfish dia-
grams, plus further two-loop terms and diagrams with higher
n-point functions (not shown). The ghost-gluon vertex (green)
and four-gluon vertex (orange) satisfy their own equations and are
external inputs in the system.
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between diagrams. This is used in the PT-BFM scheme,
together with dimensional regularization, for a reorganiza-
tion of classes of diagrams according to transversality; see
e.g., [25].
Hence, in order to account for truncation artifacts we

allow for a more general form of the gluon self-energy,

ΠμνðQÞ ¼ ΔTQ2Tμν
Q þ Δ0δ

μν þ ΔLQ2Lμν
Q ; ð8Þ

as already done in (1), where we allowed for a momentum-
dependent longitudinal dressing LðQÞ for the propagator.
Note that Δ0ðQ2Þ and Q2ΔLðQ2Þ decay for large momenta
Q2 ≫ Λ2, see e.g., [8,42,86].
Inserting Eqs. (1) and (8) in (7a) and comparing

coefficients leads to the following equations for the
propagator dressing functions GðQ2Þ, ZðQ2Þ and LðQ2Þ,

GðQ2Þ−1 ¼ Zc þ ΣðQ2Þ;

ZðQ2Þ−1 ¼ ZA þ ΔTðQ2Þ þ Δ0ðQ2Þ
Q2

;

LðQ2Þ−1 ¼ 1þ ξ

�
ΔLðQ2Þ þ Δ0ðQ2Þ

Q2

�
: ð9Þ

These relations hold in all linear covariant gauges. The set
of DSEs in (9) makes it apparent that the tensor basis used
in (8) is overcomplete: one of theΔ’s can be reabsorbed in a
redefinition of the other two. In the absence of approx-
imations, (7b) holds and we arrive at

Πphys ¼ ΔT þ Δ0

Q2
; ΔL ¼ −

Δ0

Q2
: ð10Þ

We introduced the overcomplete basis (9) because there are
two qualitatively different sources for the Δ’s, which is
important for the discussion of the IR behavior:
(i) In numerical applications of functional approaches,

loop integrals are regularized by a momentum cutoff Λ,
where loop momenta k2 > Λ2 are dropped. The respective
renormalization as well as the related Bogolyubov-
Parasiuk-Hepp-Zimmermann (BPHZ) renormalization
requires mass counterterms for guaranteeing the cutoff
independence and transversality of (7b), see also [87].
Potential remnants are proportional to δμν and may lead to
Δ0. Accordingly, a consistent treatment of these artifacts is
of eminent importance for avoiding explicit mass terms in
the IR.
(ii) Any truncation in which tensor structures of vertices

are dropped may lead to artifacts, which can be distributed
between ΔT and ΔL due to the overcompleteness of the
basis. While the ΔT contribution is simply a correction to
Πphys, the generation of ΔL is potentially harmful in the IR.
The generation of ΔL can be elucidated at the relevant

example of the ghost-gluon vertex Γμ
gh. Its complete form

has two tensor structures,

Γμ
ghðp;QÞ ¼ −igfabc½ð1þ AÞpμ þ BQμ�; ð11Þ

where pμ is the outgoing ghost momentum and Qμ the
incoming gluon momentum. In Landau gauge, the ghost
renormalization constant Z̃Γ ¼ 1 so that the dressing
functions Aðp2; p ·Q;Q2Þ and Bðp2; p ·Q;Q2Þ measure
the deviation from the classical vertex. In our present
approximation we set A ¼ 0. Evidently, if we also set
B ¼ 0 we would remove a completely longitudinal part of
the ghost diagram in the gluon self-energy in Fig. 3 adding
to ΔLðQ2Þ. This entails that the cancellation of all longi-
tudinal parts in the sum of diagrams will be absent and the
self-energy will have longitudinal parts. Moreover, as B
drops for large momenta, so will the longitudinal part
inflicted by this approximation. Accordingly, this specific
approximation artifact does not affect multiplicative
renormalization and in particular does not contribute to
the mass counterterm.
In summary, the regularization with a momentum cutoff

as well as truncations may lead to artifacts in the gluon DSE
that may complicate the identification of the transverse
part, in particular in the IR.
In numerical applications of functional approaches, the

overcomplete basis in (8) is usually not used; instead one
absorbs eitherΔ0 orΔL in two other dressing functions. We
denote these by

ΠðQ2Þ ¼ ΔTðQ2Þ þ Δ0ðQ2Þ
Q2

;

ΠðQ2Þ ¼ ΔTðQ2Þ − ΔLðQ2Þ;
Π̃ðQ2Þ
Q2

¼ ΔLðQ2Þ þ Δ0ðQ2Þ
Q2

ð12Þ

with ΠðQ2Þ ¼ ΠðQ2Þ þ Π̃ðQ2Þ=Q2, which lead to the
following self-energy decompositions:
(i) ΠðQ2Þ and Π̃ðQ2Þ correspond to the decomposition

ΠμνðQÞ ¼ ΠðQ2ÞQ2Tμν
Q þ Π̃ðQ2Þδμν; ð13Þ

which we employ for the explicit formulas in Appendix A.
It facilitates the consistent treatment of the UV renormal-
ization by keeping the δμν term explicit, and it is convenient
because ΠðQ2Þ and Π̃ðQ2Þ are free of kinematic
1=Q2 singularities. For the decoupling solutions Δ0ð0Þ
becomes constant and ΔTðQ2 → 0Þ has a logarithmic
divergence stemming from the ghost loop. Note, however,
that within approximations the transverse part Π ¼
ΔT − ΔL also contains the purely longitudinal contribution
ΔL, which can come from missing tensor structures in
vertices such as the longitudinal part B of the ghost-gluon
vertex in (11). A consistent treatment of these terms may be
of importance for the generation of the mass gap.
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(ii) The transverse-longitudinal decomposition

ΠμνðQÞ ¼ ΠðQ2ÞQ2Tμν
Q þ Π̃ðQ2ÞLμν

Q ; ð14Þ

on the other hand, corresponds to the DSEs for ZðQ2Þ and
LðQ2Þ in (9). In this case, the transverse part ΠðQ2Þ
includes potential artifacts of the UV renormalization,
which must be treated consistently to avoid the implicit
introduction of an explicit gluon mass.
As an example, we consider a numerical solution of the

DSEs projected on the transverse part by contracting (13)
or (14) with a transverse projection operator, hence
computing the dressing ΠðQ2Þ ¼ ΔTðQ2Þ þ Δ0ðQ2Þ=Q2.
In Fig. 4 we show exemplary decoupling and scaling
solutions obtained in the present work for ΠðQ2Þ and their
breakdowns into individual diagrams. The ghost loop
contribution is positive, the gluon loop negative and the
two-loop terms only have a small effect.
Interestingly, Δ0=Q2 drops rapidly and already

vanishes for values of Q2 in the mid-momentum region,
which entails that the UV renormalization is done con-
sistently. In turn, Δ0=Q2 contributes to the IR behavior. In
fact, in the decoupling case the 1=Q2 singularity in the
inverse gluon dressing and hence the gluon mass gap is
solely produced by this term, which is tantamount to an
explicit mass. In the scaling case, the term is still present
but has a steeper divergence induced by the ghost loop
which becomes large. As a consequence, both Δ0=Q2 and
ΔT diverge with the same power in the IR, which leads to
the IR ghost dominance with the scaling behavior
1=ZðQ2 → 0Þ ∝ ðQ2Þ−2κ.
Clearly, all these points need to be understood and the

consistent definition of the transverse dressing is of
eminent importance for the correct description of the
generation of the gluon mass gap. Hence, in the following
we shall consider two scenarios:
(i) Scenario A: We assume ΔL ≡ 0, i.e., we drop terms

that are purely longitudinal. Therefore, we must dispose of

Δ0 as well to ensure Π̃ ¼ 0. With this assumption we can
extract the respective transverse dressing by an appropriate
projection. This is discussed in detail in Sec. III.
(ii) Scenario B: We assume ΔL ≠ 0, in which case we

need ΔL ¼ −Δ0=Q2 for consistency, see (10). Then, the
transverse dressing is simply obtained by contracting the
DSE with Tμν

Q . This is discussed in detail in Sec. IV and
entails a dynamical generation of the mass gap.
We shall see that the generation of the gluon mass gap in

Scenario A, in the present approximation, is not dynamical
but rather similar to that in massive Yang-Mills theory. In
turn, the generation of the gluon mass gap in Scenario B is
indeed dynamical. While this entails a clear preference for
Scenario B, the discussion in Sec. III will serve to introduce
the concepts and provide the technical details, which are the
same in both scenarios along with many of the results.
We also note that there are no ambiguities in the practical

extraction of any set of two linearly independent dressing
functions. The only purely longitudinal part proportional to
ΔL that can appear in our approximations arises from the
longitudinal tensor in the ghost-gluonvertex, which we treat
as an “extra” term in Sec. IV. Thus, for the explicit formulas
in Appendix A without this term, which are based on the
decomposition (13), one can identify Π ¼ ΔT and Π̃ ¼ Δ0.

III. GLUON MASS GAP: SCENARIO A

Scenario A, as defined at the end of the last section, is
based on the assumption that purely longitudinal terms are
absent, i.e., ΔLðQ2Þ ¼ 0 in Eq. (8). Then, Π̃ðQ2Þ ¼
Δ0ðQ2Þ has to be an artifact either stemming from the
hard cutoff employed in the DSEs and/or from the
truncation of the equations. Thus, in the full system with
a gauge-invariant regulator or with appropriately defined
counter terms it would vanish identically. In this way,
systematically improving the truncations would improve
the precision on ΠðQ2Þ while eventually sending Π̃ðQ2Þ to
zero, so we might as well drop it right away.
A way to interpolate between the two cases with and

without this term is to contract the self-energy with the
general projection operator

Pμν
Q ¼ Tμν

Q − 3ð1 − λÞLμν
Q

3Q2
ð15Þ

with a parameter λ, where the transverse and longitudinal
projection operators Tμν

Q and Lμν
Q have been defined in (2).

Contracting (13) or (14) with (15) leads to

Pμν
QΠμνðQÞ ¼ ΠðQ2Þ þ λ

Π̃ðQ2Þ
Q2

;

Lμν
QΠμνðQÞ ¼ Π̃ðQ2Þ ð16Þ

where λ ¼ 1 corresponds to the transverse projection and
λ ¼ 0 is the Brown-Pennington projection [88].

as
in

h 
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FIG. 4. Contributions to the total gluon self-energy ΠðQ2Þ for
decoupling and scaling solutions with λ ¼ 1, cf. Eq. (16). For
each contribution we plot asinhΠðQ2Þ since these can change
signs and diverge in the infrared.
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To begin with, for λ ¼ 0 one cannot find QCD-like
decoupling solutions, or even convergent DSE solutions.
This is already apparent in the numerical solution in Fig. 4.
There, the mass gap and m0 solely originate from Π̃. In its
absence, the system would have to exhibit a Coulomb-type
solution which is not present.
In turn, the scaling solution in principle still exists, but

for λ ¼ 0 the analytic IR analysis leads to a 0=0 problem
[14,15,43], which is shown in Fig. 5. For a tree-level ghost-
gluon vertex, the algebraic condition that determines the IR
exponent κ reads

1þ λ
4κ − 3

2ð1 − 2κÞ −
6ð3 − 2κÞ

ð1þ κÞð2þ κÞ ¼! 0: ð17Þ

For a transverse projection (λ ¼ 1) this yields κ ≈ 0.595.
Sending λ → 0 entails κ → 1=2, but for λ ¼ 0 the solution
disappears because λ=ð1 − 2κÞ ¼ 0=0.
The above considerations suggest to regularize the limit

Π̃ → 0: We replace it by an auxiliary mass term, which is
finally sent to zero in a controlled way. Thus, we investigate
the situation with a constant mass term

Π̃ðQ2Þ ¼ g2

4π
G2

0βμ
2: ð18Þ

Here, g is the coupling andG0 ¼ GðQ2 ¼ 0Þ is the value of
the ghost dressing function at the origin. This ensures the
correct renormalization as will become clear below.
Furthermore, β is a dimensionless mass parameter and μ
is the renormalization scale. In this way, the equations
explicitly depend on a mass parameter β which is sent to
zero in the end. Note that this is formally similar to massive
Yang-Mills theory, i.e., the Curci-Ferrari-model which has
been studied in a series of works, e.g., [43,71,89]. However,
in our case the mass parameter β does not arise from the
Lagrangian; it is merely an artifact which must be taken to
zero to recover massless Yang-Mills theory. Note that
Eq. (18) is also a conceptual simplification since there is
no need to deal with quadratic divergences.

A. Renormalization

What can obscure the study of DSEs to some extent
is their dependence on the renormalization constants or,
equivalently, on the renormalized values of the gluon and
ghost dressing functions Zðμ2Þ ¼ Zμ and Gð0Þ ¼ G0.
Hence, before we proceed with the explicit numerical
solutions in Sec. III B, we discuss the renormalization of
the Yang-Mills system in detail. We note that the following
discussion is independent of the two scenarios and equally
applies to Scenario B.
Propagators, vertices and the coupling are related to their

bare counterparts, denoted by the superscript (B), by the
multiplicative renormalization constants,

GðBÞ ¼ ZcG; Γgh ¼ Z̃ΓΓ
ðBÞ
gh ;

ZðBÞ ¼ ZAZ; Γ3g ¼ Z3gΓ
ðBÞ
3g ;

gðBÞ ¼ Zgg; Γ4g ¼ Z4gΓ
ðBÞ
4g ; ð19Þ

where Z̃Γ ¼ ZgZ
1=2
A Zc, Z3g ¼ ZgZ

3=2
A and Z4g ¼ Z2

gZ2
A as a

consequence of the STIs. In the Landau gauge the ghost-
gluon vertex stays unrenormalized, so we can set Z̃Γ ¼ 1.
Therefore, all renormalization constants can be related to
ZA and Zc,

Zg ¼
1

Z1=2
A Zc

; Z3g ¼
ZA

Zc
; Z4g ¼

ZA

Z2
c
: ð20Þ

We can consistently renormalize the ghost and gluon
propagators at different renormalization points: In practice
it is convenient to renormalize the gluon dressing function
atQ2 ¼ μ2 to Zðμ2Þ ¼ Zμ, while the ghost dressing is fixed
at Q2 ¼ 0 to Gð0Þ ¼ G0. This fixes all renormalization
constants and the resulting equations depend on g, Zμ and
G0, see Appendix B for details:

GðQ2Þ−1 ¼ G−1
0 þ ΣðQ2Þ − Σð0Þ;

ZðQ2Þ−1 ¼ Z−1
μ þΠðQ2Þ −Πðμ2Þ;

F3gðQ2Þ ¼ Z3g þMðQ2Þ: ð21Þ

Here, Σ is the ghost self-energy, Π ¼ Πþ Π̃=Q2 the gluon
self-energy in Eq. (14), andM are the vertex diagrams. The
renormalization constants are dynamically determined by

Zc ¼ G−1
0 − Σð0Þ; ZA ¼ Z−1

μ −Πðμ2Þ; ð22Þ

which fixes Z3g and Z4g from Eq. (20) so that no further
renormalization of the vertices is required.
In practical solutions of the Yang-Mills DSEs one keeps g

and Zμ fixed; the valueG0 of the ghost dressing at vanishing
momentum then distinguishes the scaling and decoupling
solutions. Any finite G0 corresponds to a decoupling

FIG. 5. Determination of the infrared exponent κ for a tree-level
ghost-gluon vertex from the condition (17).
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solution and the limit G0 → ∞ to the scaling solution. This
is, however, not completely satisfactory from the viewpoint
of renormalization as sketched in Fig. 6. Zμ and G0 should
only multiplicatively renormalize the propagators, which
would not lead to physically different solutions; in a double-
logarithmic plot, a renormalization only induces vertical
shifts in both functions. Similarly, the value of the coupling g
should only set the scale, and when plotted over a loga-
rithmic momentum scale it would only induce horizontal
shifts in both functions. But how is it then possible to obtain
a family of different decoupling solutions?
To this end, let us redefine the renormalized propagators

by dividing out their values at the respective renormaliza-
tion scales,

GðQ2Þ → GðQ2Þ
G0

; ZðQ2Þ → ZðQ2Þ
Zμ

; ð23Þ

with the same redefinition for all other quantities that
renormalize like G and Z, i.e., the renormalization
constants

Zc → ZcG0; ZA → ZAZμ ð24Þ

and the three- and four gluon vertices

F3g → F3g
Zμ

G0

; F4g → F4g
Zμ

G2
0

: ð25Þ

This is always possible since the dressing functions are
only fixed up to multiplicative renormalization. For the
scaling solution,G0 becomes infinite. However, throughout
this work as well as in most of the literature, the scaling
case is defined as the limit of the decoupling solutions for
G0 → ∞. Then, all redefinitions are well defined.
By inspection of the DSEs, see Appendix B, one finds

that g, Zμ and G0 no longer appear individually in the
equations but only in the combination

α ≔
g2

4π
ZμG2

0: ð26Þ

Henceforth, we call α the coupling parameter, which can
take any positive value. Note that α should not be confused

with the strong coupling g2=ð4πÞ; it has the μ running of the
gluon propagator and will later be related to the mass
parameter. The Eqs. (21)–(22) with redefined quantities
take the form

GðQ2Þ−1 ¼ 1þ α½ΣðQ2Þ − Σð0Þ�;
ZðQ2Þ−1 ¼ 1þ α½ΠðQ2Þ −Πðμ2Þ�;
F3gðQ2Þ ¼ Z3g þ αMðQ2Þ;

Zc ¼ 1 − αΣð0Þ;
ZA ¼ 1 − αΠðμ2Þ: ð27Þ

Here we have extracted the factor α from the redefined self-
energies, which do not explicitly depend on it, apart from
the two-loop terms. Thus, all renormalization constants
have disappeared and only the coupling α remains.
With Eq. (26) it becomes clear that it is technically not

G0 that distinguishes the decoupling solutions but α: If g
and Zμ are kept fixed, changing G0 is equivalent to
changing α, but equivalently we could have kept any other
two variables fixed and changed the third variable. Thus,
any finite α produces a decoupling solution and α → ∞
corresponds to the scaling solution.
It is also convenient to remove the explicit dependence

on the renormalization scale μ. To do so, we introduce a
dimensionless variable x,

x ¼ Q2

βμ2
; ð28Þ

which is always possible since the momentum scale still
carries arbitrary units and only rescales the dressing
functions according to Fig. 6. If we perform the same
operation for the loop momenta inside the integrals, then
the dependence on μ2 drops out from the equations and
moves to the cutoff of the integrals. The mass parameter β
disappears from Π̃ðQ2Þ as well, which in the redefined
system becomes

Π̃ðQ2Þ
Q2

→
1

x
: ð29Þ

In turn, β appears in the subtraction point since Q2 ¼ μ2

entails x ¼ 1=β. To give a concrete example, in the
redefined system the ghost self-energy from Eq. (A19)
in Appendix A reads

ΣðxÞ¼−
Nc

2π2

Z
L

0

duu2
Z

1

−1
dzð1−z2Þ32GðuþÞZðu−Þ

uþu2−
: ð30Þ

Here, u ¼ k2=ðβμ2Þ, u� ¼ uþ x=4� ffiffiffiffiffi
ux

p
z, and the μ2

dependence has moved into the cutoff L.
Finally, we redefine the ghost dressing function, and

every quantity that renormalizes with it, once more by

FIG. 6. Renormalization and scale setting in the Yang-Mills
system: Zμ and G0 renormalize the propagators whereas g sets
the scale.
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GðxÞ → ffiffiffi
α

p
GðxÞ: ð31Þ

As a consequence, the coupling α no longer appears in front
of the self-energies but only in the ghost DSE. Then the
renormalized equations are given by

GðxÞ−1 ¼ 1ffiffiffi
α

p þ ΣðxÞ − Σð0Þ;

ZðxÞ−1 ¼ 1þΠðxÞ −Π
�
1

β

�
;

F3gðxÞ ¼ Z3g þMðxÞ;

Zc ¼
1ffiffiffi
α

p − Σð0Þ;

ZA ¼ 1 −Π
�
1

β

�
ð32Þ

with ΠðxÞ ¼ ΠðxÞ þ 1=x. This is equivalent to the original
equations but now the only explicit parameters are α and β.
The subtraction point is no longer arbitrary but tied to the
mass parameter β. In particular, the massless limit β → 0
corresponds to a subtraction at x → ∞. Here it is also
obvious why α → ∞ corresponds to the scaling solution,
because α only appears in the ghost DSE and nowhere else,
with Gð0Þ ¼ ffiffiffi

α
p

. Note that we could have equally
absorbed the coupling in the gluon dressing by setting
ZðxÞ → αZðxÞ. This would lead to Gð0Þ ¼ 1 and
Zð1=βÞ ¼ α but for 0 < α < ∞ the solutions are always
identical up to multiplicative factors.
At this point, the scale x in all equations above is still

arbitrary and given in internal units. A quantity that is
invariant under renormalization is the running coupling

αðxÞ ¼ ZðxÞGðxÞ2; ð33Þ

which remains finite even for α → ∞. Here the parameter α
is absorbed in the ghost dressing by Eq. (31). In dynamical
QCD, the scale should be fixed to experiment by setting the
value of αðxÞ at some momentum scale, which sets the scale
in GeV units. In Yang-Mills theory, the usual procedure is
to set the scale by comparing with quenched lattice QCD.
At asymptotically large momenta, the three- and four-

gluon vertex dressings satisfy

F3gðxÞ →
GðxÞ
ZðxÞ ; F4gðxÞ →

GðxÞ2
ZðxÞ : ð34Þ

Hence, we can define equivalent “running couplings” by
multiplying αðxÞ with powers of the renormalization-group
invariants ZðxÞF3gðxÞ=GðxÞ and ZðxÞF4gðxÞ=GðxÞ2, e.g.,

α3gðxÞ ¼ ZðxÞ3F3gðxÞ2;
α4gðxÞ ¼ ZðxÞ2F4gðxÞ: ð35Þ

At large momenta these couplings are all identical but in
the IR they can be different. In our calculations we set the
four-gluon vertex to F4gðxÞ ¼ GðxÞ2=ZðxÞ, so the second
relation in (34) is trivially satisfied. The deviation from the
first relation will serve as a measure of the truncation error,
which we discuss below.

B. Discussion of solutions

We proceed with the numerical solution of the DSEs (32)
in the ðα; βÞ plane, where α is the coupling and β the mass
parameter as explained above. The self-energy contribu-
tions for the ghost, gluon and three-gluon vertex DSEs are
worked out in Appendix A. For the gluon DSE in Scenario
A, we only need to keep the terms contributing to ΠðQ2Þ,
whereas those for Π̃ðQ2Þ are replaced by the constant mass
term. This also means that the tadpole diagram drops out
completely since it contributes to Π̃ðQ2Þ only. For the same
reason we also do not need to worry about quadratic
divergences; all self-energy diagrams are only logarithmi-
cally divergent and these divergences are removed by the
subtraction.
Figure 7 shows the results for the running coupling αðxÞ,

the ghost dressing GðxÞ, the gluon dressing ZðxÞ and the
three-gluon vertex dressing F3gðxÞ in Setup 3, i.e., with a
back-coupled three-gluon vertex and including the two-
loop terms in the gluon DSE. The calculations were
performed at a fixed value β ¼ 0.001. The variation with
β will be discussed in Sec. III C. The different curves
correspond to a variation of the coupling parameter α over
its full range. The running coupling is invariant under
renormalization but the propagator and vertex dressing
functions are not, so we plot the bare dressing functions
according to Eq. (19) for better visibility, i.e.,

GðBÞ ¼ ZcG; ZðBÞ ¼ ZAZ; FðBÞ
3g ¼ F3g

Z3g
: ð36Þ

With increasing but finite α, the ghost dressing function
in Fig. 7 rises in the IR and saturates at a finite value.
The gluon dressing behaves like ZðxÞ ∝ x in the IR
and develops a maximum at intermediate momenta. As a
consequence, also the running coupling αðxÞ ¼ ZðxÞGðxÞ2
vanishes like ZðxÞ ∝ x in the IR and develops a maximum,
however at a different value of x. The three-gluon vertex
becomes increasingly smaller in the IR, where it eventually
crosses zero and diverges logarithmically. The orange
bands in Fig. 7 mark the onset of the “QCD-like”
decoupling solutions around α≲ 1, as we discuss below.
For α → ∞, the curves eventually converge to the

scaling solution, where the dressing functions in the IR
behave like

GðxÞ ∝ x−κ; ZðxÞ ∝ x2κ; F3gðxÞ ∝ x−3κ: ð37Þ
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In this way, the scaling solution is the envelope of the
decoupling solutions and produces a finite running
coupling αðxÞ which becomes constant in the IR. Thus,
the emergence of a family of decoupling solutions is
simply a consequence of varying the coupling para-
meter α, and the scaling solution is the limiting value for
α → ∞.
The coupled DSEs provide us with an internal way to

quantify the truncation error. In practice the equations do
not converge unless we modify the renormalization con-
stant Z3g in Eq. (20) by a parameter c,

Z3g ¼ c
ZA

Zc
with 0 < c < 1: ð38Þ

This is equivalent to an additional renormalization of the
three-gluon vertex in Eq. (21) of the form

F3gðQ2Þ ¼ Fμ þMðQ2Þ −Mðμ2Þ;

Z3g ¼ Fμ −Mðμ2Þ ≠ ZA

Zc
: ð39Þ

Note that this additional renormalization would not be
necessary if the STIs were preserved. Since we are working
in different truncations defined by the Setups 1, 2 and 3, the
STIs are no longer satisfied, but the effect can be compen-
sated by introducing the parameter c ≠ 1. Note however
that the STIs constitute a further system of functional
relations, and in nontrivial nonperturbative approximations
such as the present truncations of the vertex expansions it is
impossible to satisfy all sets of functional relations simul-
taneously; see e.g., [7,8,39,42] for respective discussions.
From Eqs. (33)–(35), the parameter c2 translates to the ratio
α3gðxÞ=αðxÞ evaluated in the UV. This reflects the con-
sistency of the running couplings in the UV, which is
known to be important for the quantitative accuracy of the
solutions.
It turns out that for each truncation there is a value cmax

where the anomalous dimensions of the ghost and gluon
propagators reach their physical values. In each iteration
step we employ fits of the form

Gðx → ∞Þ ¼ agh
ðln xÞγgh ; Zðx → ∞Þ ¼ agl

ðln xÞγgl ; ð40Þ

Running coupling Ghost dressing

Gluon dressing Three-gluon vertex
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FIG. 7. Solutions for the running coupling and the ghost, gluon and three-gluon vertex dressing functions in Setup 3 for β ¼ 0.001,
c ¼ 0.95 and 0.003 < α < 1016. We rescaled the curves such that for each α the maximum of the gluon dressing appears at x ¼ 1.
The orange bands indicate the onset of the decoupling solutions for 0.6≲ α≲ 1.
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where the coefficients and exponents are free fit parame-
ters. Thus, they are not forced to reproduce the anomalous
dimensions of Yang-Mills theory given by

γgh ¼
9

44
; γgl ¼

13

22
; 2γgh þ γgl ¼ 1: ð41Þ

Figure 8 shows the resulting UV powers, plotted as a
function of c. The β value is fixed, and we scan the full α
range. For α → 0, the anomalous dimensions vanish and for
α → ∞ they converge to the scaling solution. The largest c
value where we obtain convergent solutions is marked by
the vertical dashed lines. To the right of these lines we
extrapolated each curve by a cubic fit with free fit
parameters. The orange lines denote the physical values
in Eq. (41). One can see that above a certain value of α,
which marks the onset of the decoupling solutions, the
curves show a substantial curvature and extrapolate to
their physical values approximately at the same point
cmax ≈ 0.96…0.97. This suggests to identify cmax with
the physical point in the truncation.
The rightmost plot in Fig. 8 shows the maximum value

of the gluon dressing function Zmax ¼ maxZðBÞðxÞ as a
function of c. Close to cmax, there is a strong curvature
which even appears to tend to infinity for the scaling
solution. The horizontal orange band corresponds to
the region of lattice results for Zmax, see below. The
extrapolated values are compatible with this band, although
the extrapolation induces a large uncertainty.
The results in Setups 1 and 2 are qualitatively similar to

those in Fig. 8, except with a different cmax:
(i) Setup 1: cmax ≈ 0.59…0.61,
(ii) Setup 2: cmax ∼ 0.89…0.90,
(iii) Setup 3: cmax ∼ 0.96…0.97.

Without any truncation one must have c ¼ 1, so the value
of cmax allows us to quantify the truncation error. With a

tree-level three-gluon vertex it is about 40%, which reduces
to ∼10% if the three-gluon vertex is back-coupled and
3%–4% if also the two-loop terms are included. With
further systematic improvements such as a back-coupling
of the ghost-gluon and four-gluon vertices, the error
should thus become even smaller. Indeed, then the respec-
tive c, or rather the ratio of all different couplings,
approaches unity and the deviation is at the subpercent
level, see [42,64].
Close to the respective value cmax, the dressing functions

in Fig. 7 are very similar in all setups. In double-loga-
rithmic plots like those for αðxÞ, GðxÞ and F3gðxÞ (recall
that asinh F grows logarithmically for large jFj) they are
hardly distinguishable, except that in Setup 1 the
three-gluon vertex stays at tree-level. The quantity that is
most sensitive to the truncations is the bump of the gluon
dressing function whose height defines Zmax. In Setup 2 the
bump is slightly larger and narrower than in Setup 3
because the two-loop terms in the gluon self-energy are
positive (cf. Fig. 4) and therefore flatten ZðxÞ.
In any case, these observations imply that the gluon

dressing function may well have only reached a fraction of
its true height. The largest possible value c ¼ 0.95 we can
reach in Setup 3 corresponds to the results in Fig. 7. The
same observation holds true, although less pronounced, for
the ghost dressing at intermediate momenta. This makes it
difficult to compare with lattice results since we should
match the results at c ¼ cmax but the functions can change
substantially in its vicinity. In addition, the lattice data are
only determined up to scale setting (which amounts to
horizontal shifts of the curves on a logarithmic scale) and
multiplicative renormalization. Finally, we must identify
the value of α that should be compared to the lattice-type
decoupling solution.
In practice we construct simple parametrizations for the

lattice data in Ref. [34],
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GlatðxÞ ¼
1

1þ 1.9x0.7 þ 2x2
þ 0.38ð1 − e−xÞ

lnð1þ xÞγgh ;

ZlatðxÞ ¼
6.3x

ð1þ xÞ2.2 þ 6xe−2.1x

þ x2

ð0.3þ xÞð0.6þ xÞ
3.1ð1 − e−3xÞ
lnð1þ xÞγgl : ð42Þ

The fits in (42) implement the one-loop running with γgh,
γgl from Eq. (41), together with Glatð0Þ ¼ 1 and
Zlatðx → 0Þ ∝ x. They are determined up to normalization
and rescaling and must be matched to the UV running of
the DSE results. The behavior of the UV coefficient agh
in Eq. (40) is analogous to Fig. 8. The curves converge
approximately to the same value at cmax independently of
the coupling α, from where we can match the ghost
dressing with the lattice. Because this changes Glatð0Þ
and our GðxÞ satisfies Gð0Þ ¼ ffiffiffi

α
p

, with this we identify
α ∼ 2.5 as the value corresponding to the lattice decoupling
solutions. Matching the UV running of the gluon together
with the condition Zð1=βÞ ¼ 1 then fixes the gluon
dressing function and the scale.
From the resulting curves in Fig. 9 one can see that there

is a substantial gap between the lattice data and the DSE
results obtained with c ¼ 0.95. However, we find a similar
behavior when we apply naive cubic extrapolations like
those in Fig. 8 to GðxÞ and ZðxÞ over the whole range in x:
The extrapolated ghost dressing at c ¼ 0.97 reproduces the
lattice data, and the extrapolated gluon dressing matches
the height of the lattice data but its bump is somewhat
shifted.
To check the self-consistency of our comparison, we also

solved the ghost DSE for GðxÞ in Eq. (32), with ΣðxÞ from

Eq. (30), using a fixed gluon input. In this case the
standalone ghost DSE converges without problems, since
the gluon propagator is just an input function. For that
purpose, we generated a family of curves for ZðxÞ which
interpolate between the DSE and lattice results (shown in
the right panel of Fig. 9). The corresponding results for
GðxÞ from the ghost DSE are shown in the left panel. One
can see that the DSE solution with the lattice gluon input
reproduces the lattice ghost without difficulties. The ghost
DSE only depends on α. Solving it for different values of α,
we find that the quantity

P
x jGðxÞ −GlatðxÞj is minimized

for α ≈ 2.5 in agreement with our findings above. This also
confirms that the only missing ingredient of the ghost DSE,
the dressing of the ghost-gluon vertex, can only have a
minor effect.
The problem of not being able to reach the physical value

cmax in the present truncation appears to be related to the
back-coupling of the three-gluon vertex and, by extension,
to the four-gluon vertex which appears in its respective
DSE. Our results are stable when changing the number of
grid points or using different grids, but achieving con-
vergence close to cmax becomes increasingly difficult even
with relaxation and Newton methods (cf. Appendix C). We
easily obtain large and narrow bumps for ZðxÞ when we
employ model ansätze for F3gðxÞ, but this comes at the
expense of additional parameters and scales. This would
obscure the discussion of the results in view of the gluon
mass gap, and we refrained from doing so. We can also
reduce the gap between the lattice and DSE results for ZðxÞ
by identifying the lattice decoupling solution with DSE
solutions at different values of α, but in those cases we can
no longer simultaneously describe the ghost dressing
function.
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FIG. 9. Comparison of our DSE results for the ghost and gluon dressing functions with lattice data from Ref. [34]. The solid black
curves are the DSE results (for ZðxÞ we plot the range in c ∈ ½0.5; 0.95� for illustration) and the orange dashed curves are the lattice
parametrizations from Eq. (42). The red curves for ZðxÞ interpolate between the lattice data and the best DSE result; the corresponding
curves in the left panel are obtained by solving the ghost DSE using this input.
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Concerning the four-gluon vertex ansatz, we employed
F4gðxÞ ¼ GðxÞ2=ZðxÞ but when we use instead F4gðxÞ ¼
Z4g ¼ const the results are very similar. However, in
the vicinity of cmax the shape of F4gðxÞ especially in the
mid-momentum region appears to play an increasingly
prominent role in (de-)stabilizing the solutions. In Fig. 3
one can see that the four-gluon vertex appears in the
gluon DSE only in the sunset diagram, which turns out
to be negligibly small, so it mainly enters indirectly through
the swordfish diagram in the three-gluon vertex. The
general four-gluon vertex involves many tensors, including
three momentum-independent ones which may lead to
additional effects [64,69]. For functional computations
aiming at quantitative precision in Yang-Mills theory,
which also implement a dynamically back-coupled four-
gluon vertex, we refer to Refs. [42,64]; e.g., in [64] the
deviation from the STI was quantified to be on the
subpercent level.
In summary, our analysis implies that the lattice results

can be matched to the DSE results for a particular value of
the coupling parameter α. In the next section we will see
that this generalizes to a particular line of constant physics
in the ðα; βÞ plane.

C. Lines of constant physics

The results discussed so far were obtained at a fixed
value of the mass parameter β ¼ 0.001. The remaining
question in Scenario A is how the respective results and
findings change with β. For modest changes with larger β,
we find that the plots in Fig. 7 are essentially unchanged
except they may be shifted horizontally in log x. The
overall scale is arbitrary and we are free to rescale the
solutions, and after rescaling they are almost identical.
Thus, in this domain the mass parameter β rescales the
solutions but does not change any physics. This is in
contradistinction to a variation of the coupling parameter α,
which distinguishes physically different solutions.
For quantifying these observations, we show the lines of

constant physics in the ðα; βÞ plane in Fig. 10. For their
determination we extracted the maximum of the running
coupling αðxÞ for each parameter set ðα; βÞ. Then, we
rescaled x such that the maximum always appears at the
same point x ¼ x0. Accordingly, a given line is defined by
the same value αðx0Þ. This amounts to interpolating the
dressing functions at fixed value of β ¼ 0.001 and finding
the value of α for a given αðx0Þ. Along each line, all
functions are identical up to rescalings, which can be seen
in Fig. 11: every curve therein is a superposition of 30
curves along a given line and these curves are practically
indistinguishable.
In Fig. 10 one can see that for sufficiently large β the

lines of constant physics become indeed horizontal. On the
other hand, if they were horizontal for all values of β this
would be incompatible with physical expectations: In the
massless theory with β ¼ 0, the coupling α should not

produce physically different solutions but only rescale the
system. In other words, in the massless limit the line of
constant physics should be the vertical axis in Fig. 10.
These different forms can only be reconciled with each
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FIG. 10. Lines of constant physics in the ðα; βÞ plane. The left
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other if the lines bend toward the origin in the ðα; βÞ plane.
Indeed, this is what we find for very small values of β, as is
visible in Fig. 10.
The behavior in Figs. 10 and 11 is completely analogous

in Setups 1 and 2 and thus appears to be a general fea-
ture. In practice we cannot reach β ¼ 0 for the reasons
discussed in Appendix C. 1=β is the subtraction point in
the gluon DSE, and the shape of the gluon self-energy
defines a calculable window for β. For increasing values of
α or c, the gluon dressing becomes increasingly narrow and
this window shrinks. The smallest value we can reach is
typically β ∼ 10−6. The results in the left panel of Fig. 10
were obtained with c ¼ 0.92; in the right panel one can
see that the effect becomes more pronounced when c is
increased toward its practical limit c ¼ 0.95, i.e., the curves
become steeper. However, for c≳ 0.92 we can no longer
cover the full range in β.
The interpretation of our results is sketched in Fig. 12.

The two parameters ðα; βÞ in the Yang-Mills system form a
combination λ0ðα; βÞ that acts along the lines of constant
physics and only rescales the system without changing any
physics. The second combination λ1ðα; βÞ is orthogonal to
these lines and distinguishes the physically different
solutions, i.e., only λ1 is an active parameter. In other
words, in the presence of a mass term the coupling
parameter α no longer rescales the system but distinguishes
the physically different decoupling solutions, with the
scaling solution as their endpoint.
In the limit β → 0, the shape of the lines implies that

λ0ðα; 0Þ ¼ α, i.e., the coupling α only rescales the solutions
while not changing the physics. However, this means that
the scaling solution obtained at β ≠ 0 and α → ∞ is
identical to the scaling solution at β ¼ 0 with arbitrary
α, and it is the only solution that remains in the massless
limit. This implies that in the present Scenario A the
only physical solution is the scaling solution, as the mass
parameter β is merely an artifact that must be sent to
zero. The scaling solution is therefore a parameter-free,
intrinsic property of the system. Moreover, since the
scaling solution as well as the whole family of decoupling
solutions implement confinement via the gluon mass
gap [9,10], this implies confinement in the Landau
gauge.

While this seems theoretically appealing, there is a
conceptual problem that can be traced back to the deter-
mination of the IR exponent κ discussed around Eq. (17).
We have replaced Π̃ðQ2Þ by a constant mass term of the
form (18), which is “removed” in the end by sending
β → 0. As β only appears in the term β=x, we could absorb
it into the scale and thus sending β → 0 is equivalent to
renormalizing the equations at x ¼ 1=β → ∞. This entails,
however, that the mass term 1=x cannot truly be removed as
shown in Fig. 13, which is the decomposition of the gluon
self-energy ΠðxÞ in Scenario A. We emphasize that its
analogue in Fig. 4 corresponds to Scenario B, which we
discuss below. For fixed β and α → ∞ the ghost loop
becomes large, but even for the scaling solution at α → ∞
the term 1=x is present and dominates the IR behavior. Had
we not absorbed β into the scale, for β → 0 the same would
happen but all curves would be pushed to the left on a
logarithmic scale, so that the rise with 1=x in the IR
eventually drops out of the numerical grid and is shifted to
log x → −∞. Therefore, the effect of the mass term is never
truly switched off.
The same rescaling effect explains the apparent discrep-

ancy between the solutions for ZðxÞ at α → 0 from
Eqs. (27) and (32), where the first set of equations entails
ZðxÞ → 1 and the other ZðxÞ → 1=ð1þ 1=x − βÞ. In the
former case, the structure effects are also pushed to
log x → −∞, so the renormalized theory never becomes
a free massless theory for α → 0.
Because the 1=x term drives the IR properties, in this

case the scaling solution at x → 0 with

GðxÞ ∝ x−κ; ZðxÞ ∝ x2κ; F3gðxÞ ∝ x−3κ ð43Þ

has an IR exponent κ ¼ 1=2. This is also what we found
analytically in Fig. 5 when sending the parameter λ to zero.
The ambiguity for λ ¼ 0 reappears in the numerical
solution in the following way: Since the mass term in
Eq. (18) is arbitrary as long as we send β → 0 in the end, we
are free to replace it with any other ansatz of the form
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FIG. 12. Sketch of the ðα; βÞ plane.
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Π̃ðQ2Þ
Q2

¼ g2

4π
G2

0

�
βμ2

Q2

�
2κ

; ð44Þ

where κ is a free parameter, as long as we remove this term
again in the end by sending β → 0. After the redefinitions
from Sec. III A this becomes

Π̃ðxÞ
x

→
1

x2κ
; ð45Þ

which replaces the 1=x term in the DSEs (32). Its effect is
again negligible in the mid- and large-momentum regions,
so it does not change the behavior of the solutions, but as
long as κ ≥ 1=2 it still dominates the IR and leads to a
scaling solution with IR exponent κ. We checked this
numerically and found that by dialling κ we can indeed
generate any scaling solution we want, where the lines of
constant physics behave qualitatively in the same way as
before.
In other words, in Scenario A the limit β → 0 is not

unique, which is a manifestation of the 0=0 problem in the
analytic IR analysis and leads to a “family of scaling
solutions” depending on the arbitrary value of the IR
exponent κ. Because this ambiguity does not seem very
appealing, in the next section we revisit the initial problem
and discuss a possible alternative scenario.

IV. GLUON MASS GAP: SCENARIO B

The second interpretation, which we call Scenario B, is
thatΔ0ðQ2Þ is not an artifact but indeed a dynamical feature
of the equations. To study it, we return to Eq. (12) with both
Δ0ðQ2Þ and ΔLðQ2Þ in the system. Then the transverse
projection to arrive at ΠðxÞ is achieved with λ ¼ 1 in
Eq. (16). This is the transverse system that is commonly
solved in DSE and fRG studies. However, in view of the
previous discussion, it begs a few questions which we
investigate below: the appearance of quadratic divergences
in Sec. IVA and, after a brief discussion of the solutions,
the issue of gauge consistency in Sec. IV C, i.e., the
vanishing of Π̃.

A. Quadratic divergences

The first and more practical issue is that a dynamical Δ0

term potentially comes with quadratic divergences. While
Δ0 vanishes in perturbation theory using dimensional
regularization, a hard cutoff interferes with gauge invari-
ance so that Δ0 has an intrinsic “artifact” admixture that
must be removed. Once the quadratic divergences are
subtracted in a fully consistent way, the remainder (if it
is nonzero) must be a dynamical, nonperturbative effect.
Different methods have been employed to remove

quadratic divergences in the sum Π ¼ ΔT þ Δ0=Q2, see
[90] for an overview. One is an explicit subtraction at the
level of the integrands; in that case one analyzes their UV

behavior and subtracts the terms producing the quadratic
divergences. This has been employed in what we call Setup
1 [15] but it becomes cumbersome when the three-gluon
vertex is back-coupled dynamically or two-loop terms are
included. Another method is to subtract the quadratic
divergences numerically by fitting Π to 1=Q2 terms
[91]. A consistent combination of both is typically done
in the fRG, where the consistency follows from the (trivial)
RG consistency of the fRG setup [8,42].
Having individual access to ΔT and Δ0, a simpler

method is to subtract Δ0 directly, i.e.,

Δ0ðQ2Þ → Δ0ðQ2Þ − Δ0ðQ2
0Þ þ

g2

4π
G2

0βμ
2: ð46Þ

Since Δ0ðQ2
0Þ is a constant, the arbitrariness in the choice

of Q2
0 is absorbed by adding another arbitrary constant

proportional to βμ2, again with a prefactor that ensures the
correct renormalization. This leads to a similar form of the
equations as in Scenario A, where we added a constant
mass term with mass parameter β. After the redefinitions
leading to Eq. (32), the self-energy becomes

ΠðxÞ ¼ ΔTðxÞ þ
1þ σðxÞ

x
; ð47aÞ

with σðxÞ given by

σðxÞ ¼ Δ0ðxÞ − Δ0ðx0Þ: ð47bÞ

This procedure is equivalent to the one in Ref. [64], where a
term ∝ 1=x is subtracted from the self-energy. In this way,
the only difference between the Scenarios A and B is the
term σðxÞ. Note that we can no longer change the power of
the 1=x term like we did in Eq. (45) in Scenario A, because
the subtraction must be done in its numerator. As a
consequence, the IR exponent κ is no longer arbitrary
but a dynamical result with a definite value depending on
the truncation. Because σðxÞ=x is only active in the IR, x0
should not be too large to ensure numerical stability; in
practice we choose x0 ¼ 1. The arbitrariness of x0 is then
absorbed in the change of β which determines the sub-
traction point x ¼ 1=β.

B. Discussion of solutions

The numerical results in Scenario B do not require a
separate discussion, because the only change in the
equations is the addition of the term σðxÞ in Eq. (47a),
which only affects the IR region. Thus, in the mid- and
high-momentum regions, and also at low momenta as long
as α is not too large, all previous statements remain intact.
The shape of the solutions in Fig. 7, the behavior of the UV
exponents in Fig. 8, and the values of cmax for the different
setups all remain approximately the same in Scenario B.
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The only noticeable difference appears in the IR, where
σðxÞ is active.
Figure 14 shows the gluon self-energy contributions in

this case. These are the same plots as in Fig. 4 except now
we separate the 1=x and σðxÞ=x contributions explicitly.
For the decoupling solutions, σð0Þ is a constant. The
remaining self-energy terms in ΔTðxÞ are either constant
or diverge at best logarithmically in the IR (see
Appendix A), so that ΠðxÞ and thus ZðxÞ−1 are dominated
by the terms ∝ 1=x for x → 0. These terms generate a mass
gap such that the (dimensionless) gluon propagator at the
origin reads

Dð0Þ ¼ ZðxÞ
x

����
x→0

¼ 1

1þ σðxÞ : ð48Þ

After reinstating dimensions through x ¼ Q2=ðβμ2Þ, the
right-hand side (rhs) is divided by the (arbitrary) factor βμ2,
from where one can extract the gluon mass scale according
to Eq. (3).
When approaching the scaling solution for α → ∞,

σðx → 0Þ grows and eventually diverges with a power
x1−2κ stemming from its ghost loop contribution. At the
same time the ghost loop contribution to ΔTðxÞ also
diverges with x−2κ in the scaling limit. Taken together,
both ΔTðxÞ and σðxÞ=x contribute with the same power to
the IR divergence of ΠðxÞ ∝ x−2κ, which for κ > 1=2 beats
the divergence from the mass term 1=x as is visible in the
right panel of Fig. 14.
As a result, the dressing functions in the IR scale with

GðxÞ ∝ x−κ; ZðxÞ ∝ x2κ; F3gðxÞ ∝ x−3κ: ð49Þ

The IR exponent κ can be read off from any of the dressing
functions in the scaling limit. This is shown in the left panel
of Fig. 15 for the ghost dressing, where the line 1=xκ is the
envelope of the decoupling solutions. In practice we
determine κ from the ghost self-energy by fitting it to
ΣðxÞ ¼ aþ bxκ for x → 0, where a, b and κ are free

fit parameters depending on fα; β; cg, i.e., also for the
decoupling solutions. From Eq. (32) we deduce that the
ghost dressing function in the IR is well approximated by

GðxÞ−1 ⟶x→0 1ffiffiffi
α

p þ bxκ; ð50Þ

so that scaling at x → 0 is achieved for α → ∞ whereas for
each decoupling solution Gð0Þ ¼ const. For sufficiently
large α we may read off the scaling exponent κ ≈ 0.58,
which is compatible with contemporary DSE [63] and fRG
results [42]. Note however that the approximate value
undershoots the analytic scaling κ ¼ 0.595 that is obtained
in the present approximation for α → ∞. In the right panel
of Fig. 15 one can see that κ is almost independent of c, i.e.,
the fact that we cannot exhaust the full range up to
cmax ≈ 0.96…0.97 is irrelevant for its determination.
When we solve the DSEs in the ðα; βÞ plane we find the

same behavior as in Scenario A. One can identify lines of
constant physics, which for β → 0 bend toward the origin
as shown in Fig. 16. The interpretation is thus the same:
One combination of α and β rescales the solutions and
another one distinguishes the decoupling solutions, with
the scaling solution as their endpoint.
The crucial difference to Scenario A, however, is the fact

that β is no longer an artificial mass parameter that must be
removed in the end by sending β → 0, because now it arises
from the subtraction of quadratic divergences. Therefore,
any value for β is equally acceptable, which also seems
more appealing considering the conceptual problems with
the limit β ¼ 0 encountered in Scenario A. As a conse-
quence, there is no longer a criterion that discriminates
between the different solutions. Instead of an ambiguity in
the IR exponent κ, one is left with the ambiguity between
the scaling and decoupling solutions, which for β ≠ 0 are
distinguished by the parameter α. This raises the question:
Can one find another criterion that allows for a selection of
solutions?
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C. Longitudinal singularities

The fundamental question in Scenario B is how Π̃ðQ2Þ
can vanish, given that the dynamical term Δ0ðQ2Þ ≠ 0
now contributes to it. As we already mentioned, this
implies a nonvanishing ΔLðQ2Þ for the consistency relation
ΔL ¼ −Δ0=Q2 to hold. To this end, let us reexamine the
assumptions we made. The crucial (implicit) assumption in
our approximation so far is the use of the ghost-gluon
vertex at tree-level. When introducing Scenario B in Sec. II,
we already emphasized that the ghost-gluon vertex has two
tensor structures, cf. Eq. (11):

Γμ
ghðp;QÞ ¼ −igfabc½ð1þ AÞpμ þ BQμ�: ð51Þ

The momentum pμ is the outgoing ghost momentum and
Qμ is the incoming gluon momentum. The corresponding
dressing functions are Aðp2;p ·Q;Q2Þ and Bðp2;p ·Q;Q2Þ.
Accordingly, the tensor structure missing in the present
approximation produces to a solely longitudinal contribu-
tion to the inverse gluon propagator which belongs to the
ΔL part.
The ghost-gluon vertex is UV-finite in Landau gauge and

does not need to be renormalized. The function A is known
to be small [56,64], which is why a tree-level vertex
is a good approximation. However, little is known about
the function B apart from the limit pμ ¼ Qμ where the
incoming ghost momentum vanishes, in which case the
vertex becomes bare [84] and thus one has Bðp2; p2; p2Þ ¼
−Aðp2; p2; p2Þ.
The Lorentz tensor Qμ attached to B is purely longi-

tudinal and vanishes whenever the gluon leg is contracted
with a transverse gluon propagator in Landau gauge, i.e.,
for all internal gluon lines. As such, it does not contribute
to the ghost self-energy in Fig. 3, but it does contribute to
the ghost loop in the gluon DSE. Because the term is

longitudinal, it drops out from the transverse projection
Π ¼ ΔT þ Δ0=Q2 in Eq. (12). Hence, the full transverse
dressing is not affected by the nonclassical dressing B in the
ghost-gluon vertex (modulo small effects from A ≠ 0).
However, the longitudinal projection picks up an extra term
and generalizes to

Π̃ðQ2Þ ¼ Δ0ðQ2Þ þQ2ΔLðQ2Þ; ð52Þ

where Δ0 is the sum of all Π̃-like self-energy contributions
listed in Appendix A (up to A ≠ 0 effects). The longitudinal
dressing ΔL can be worked out in analogy to Eq. (A21):

ΔLðQ2Þ¼−
g2Nc

2

Z
k

Gðk2þÞGðk2−Þ
k2þk2−

Bðk2þ;kþ ·Q;Q2Þ; ð53Þ

where k� ¼ k�Q=2. The resulting DSEs read

ZðQ2Þ−1 ¼ ZA þΠðQ2Þ;

LðQ2Þ−1 ¼ 1þ ξ
Π̃ðQ2Þ
Q2

: ð54Þ

However, Eq. (52) allows us to eliminate the completely
longitudinal term Π̃ðQ2Þ as required by the STIs. For
Π̃ ¼ 0 we must have

ΔLðQ2Þ¼! −
Δ0ðQ2Þ
Q2

: ð55Þ

For decoupling solutions, Δ0ð0Þ is a constant. Thus,
Eq. (55) can only hold for all Q2 if the longitudinal
ghost-gluon dressing B diverges like 1=Q2 for Q2 → 0:
the ghost-gluon vertex must exhibit a longitudinal massless
pole. In this case Π̃ vanishes, and we arrive at the purely
transverse self-energy

ΠμνðQÞ ¼ ΠðQ2ÞðQ2δμν −QμQνÞ ð56Þ

with Π ¼ ΔT þ Δ0=Q2. The equation for ZðQ2Þ is
unchanged and B only serves to eliminate Π̃ðQ2Þ.

1. Complete infrared dominance of the ghost

Note that ΔLðQ2Þ in Eq. (53) only constitutes the part of
the longitudinal dressing that originates in the ghost loop.
However, while other diagrams in principle may also
contribute to ΔLðQ2Þ, the dominant contribution in the
IR limit Q2 → 0 is given by (53). In particular, for the
scaling solution all the other terms rise with lower powers
of 1=Q2. In turn, this complete IR dominance of the ghost
part for the scaling solution is only successively weakened
for the family of decoupling solutions.
For completeness we also consider the subleading

contributions from the gluon loops. In principle, a longi-
tudinal tensor in the ghost-gluon vertex also propagates to
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FIG. 16. Lines of constant physics in the ðα; βÞ plane for
Scenario B and Setup 3, calculated for c ¼ 0.90 (left) and 0.86 ≤
c ≤ 0.90 (right).
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the three-gluon vertex through the ghost triangle. However,
we find that in the symmetric limit for the vertex such
a term only gives a contribution to one out of three possi-
ble tensors. This contribution drops out from the gluon
DSE because in the Landau gauge it is contracted with
internal transverse gluon lines, see the discussion around
Eqs. (A56) and (A70) in the Appendix. Therefore, in the
truncations we consider herein such a longitudinal term can
only affect the ghost loop in the gluon self-energy, i.e., it
can only arise from the ghost-gluon vertex. This argument
also further corroborates the IR dominance of the ghost
contribution in the gluon self-energy for decoupling sol-
utions that are sufficiently close to the scaling limit. Based
on this argument we proceed with the assumption of
complete IR dominance of the ghost contributions.
If there are indeed longitudinal poles in the ghost-gluon

vertex, they should dynamically emerge in its DSE which is
shown in Fig. 17. While we cannot make any statement
about the ghost-gluon four-point function in the last
diagram therein (for a corresponding discussion, see
Ref. [92]), it is clear that the longitudinal tensor must
drop out for the internal vertices since they are contracted
with transverse gluon lines. Thus, the B term can only
survive in the upper vertex in the second diagram (marked
in yellow). This yields an inhomogeneous Bethe-Salpeter
equation (BSE) for B with the structural form (see
Appendix D for details)

B ¼ B0 þKB ⇔ B ¼ ð1 −KÞ−1B0: ð57Þ

Here, KB represents the second (Abelian-like) diagram in
the rhs of Fig. 17 and the inhomogeneous term B0 is the
sum of the remaining loop diagrams; the tree-level term
does not contribute to B.
Equation (57) will produce a singularity in B at some

value Q2 ¼ −m2
i if the kernel satisfies K ¼ 1, i.e., if any of

its eigenvalues satisfy λiðQ2 ¼ −m2
i Þ ¼ 1. In that case, the

numerator defines a Bethe-Salpeter amplitude φ via

Bðp2; p ·Q;Q2Þ⟶Q
2→−m2

i φiðp2; p ·Q;Q2Þ
Q2 þm2

i
: ð58Þ

If one is only interested in the pole locations, one can
equivalently solve the homogeneous BSE Kφi ¼ λiφi,
which does not require knowledge of B0 and depends
on the Abelian-like diagram in Fig. 17 only.

The typical eigenvalue spectrum of a BSE kernel is
sketched in Fig. 18. The eigenvalues λiðQ2Þ decrease with
Q2, which is also true in our case because the ghost
propagators in the loop depend on the external gluon
momentum and fall off at large Q2. For Q2 > 0, the
eigenvalues must be smooth functions of Q2 because the
integrand does not have spacelike singularities. Each
intersection with λiðQ2 ¼ −m2

i Þ ¼ 1 corresponds to a
singularity of B at Q2 ¼ −m2

i , which may appear at
timelike values Q2 < 0. The largest eigenvalue λ0 (the
“ground state”) corresponds to the pole closest to the origin
in Q2. In particular, if λ0 satisfies λ0ðQ2 ¼ 0Þ ¼ 1, then B
must have a massless pole.
We can then solve the homogeneous BSE directly at

Qμ ¼ 0 and calculate λ0ð0Þ. Setting A ¼ 0 in Eq. (51) to be
consistent with our truncation of the DSEs, the resulting
equation becomes very simple,Z

dx0Kðx;x0Þφðx0Þ¼ λ0φðxÞ;

Kðx;x0Þ¼ Nc

ð2πÞ2xGðx
0Þ2

Z
1

−1
dyð1−y2Þ32ZðwÞ

w2
;

ð59Þ

with w ¼ xþ x0 − 2
ffiffiffiffiffiffi
xx0

p
y. Here we employed the same

redefinitions and rescaling that led to Eq. (32) for the
coupled DSEs, i.e., x is the dimensionless variable corre-
sponding to p2. The kernel only depends on the ghost and
gluon dressing functions G and Z.
The left panel of Fig. 19 shows the largest eigenvalue

λ0ðQ2 ¼ 0Þ of K as a function of the coupling parameter α.
For α → 0, it is clear from Eq. (59) that the eigenvalue must
be zero because the product ZG2 contains an intrinsic factor
α. On the other hand, the limiting value is λ0ð0Þ ¼ 1 because
λ0ð0Þ > 1would produce a pole for spacelike valuesQ2 > 0
and thus a tachyonic singularity. One can see in Fig. 19 that
for all decoupling solutions with finite α one has λ0 ≠ 1.
However, as α rises and approaches the scaling solution at
α → ∞, the eigenvalue approaches λ0 → 1. Thus, we find
that the scaling solution indeed has a longitudinal massless
singularity in the ghost-gluon vertex but the decoupling
solutions do not. As a consequence, for the decoupling case

FIG. 17. Ghost-gluon vertex DSE. The vertices where the B
term from Eq. (51) survives are marked in yellow.

1

0

FIG. 18. Typical eigenvalue spectrum of a BSE.
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the condition (55), which ensures Π̃ðQ2Þ ¼ 0 and therefore
gauge invariance, cannot hold. In conclusion, in Scenario B
with the assumption of complete infrared dominance of the
ghost only the scaling solution survives.
The results in Fig. 19 have been obtained within the

Setup 3, but we find the same behavior in Setups 1 and 2.
The result is also independent of the parameter c, which is
consistent with the observation that the scaling properties
are independent of c (cf. Fig. 15). In the analogous plot for
Scenario A, λ0 does not reach the value 1 but this is also not
necessary because the condition (55) does not arise.
We also note that a necessary requirement for a massless

singularity in the ghost-gluon vertex is the fact that the
vertex in the present formulation is not completely ghost-
antighost symmetric; see e.g., [47,90] for more general
discussions. If that were the case, KB could not produce a
massless pole strong enough to ensure Eq. (55) (see
Appendix D for details). Another remark is that the
ghost-gluon vertex DSE in Fig. 17 is the so-called “c
DSE,” where the vertex on the left in each diagram is bare.
An equivalent form is the “A DSE,” where all top vertices
are bare (see e.g., Fig. 2 in [63]). In the latter case one
would not arrive at a BSE for the B term and
the longitudinal poles would need to come from higher
n-point functions such as the four-ghost or two-ghost-two-
gluon vertices in the t channel [92].

2. General case

The results of the last section beg the question whether
the present setup or an (implicit) IR completion of the
Landau gauge only admits the scaling solution. Indeed, the
complete IR dominance of the ghost assumed above is only
valid in the scaling limit for α → ∞. Accordingly, one
should interpret the above result as a corroboration of a
gauge-consistent scaling solution and not as an exclusion
of gauge-consistent decoupling solutions. For the latter

solutions there is no IR suppression of the gluonic con-
tributions with powers of Q2, and one may have to also
include the three-gluon vertex in the analysis.
The coupled BSE system of ghost-gluon and three-gluon

vertex has been studied intensively for lattice-type decou-
pling solutions in the PT-BFM scheme [21,22,24–28]. As
discussed earlier in Sec. III B, in our present setup the
lattice solution roughly corresponds to αLat ¼ 2.5 at
β ¼ 0.001, which is shown by the vertical dashed line in
the left of Fig. 19. In particular, in [27], within the
approximations used there, an almost complete dominance
of the gluonic contributions has been found. This may
entail that for αLat the BSE for the ghost-gluon vertex is
only fully consistent if also including the three-gluon term
in Fig. 17. Then, the BSE in (57) generalizes to

B ¼ ½1 − ðKgh-gl þK3glÞ�−1B0; ð60Þ

where Kgh-gl is the contribution from the first diagram in
Fig. 17 that we considered so far. In turn,K3gl stands for the
second diagram in Fig. 17 with the three-gluon vertex. The
ghost-gluon BSE in (60) has to be augmented with that for
the three-gluon vertex and has to be solved simultaneously
for general α.
While being of eminent importance, a detailed analysis is

deferred to future work. Here we simply put forward a
possible scenario that encompasses the present consistent
scaling solution with complete IR ghost dominance and the
lattice-type decoupling solution in [27] with relative three-
gluon dominance. In combination, the present findings and
that in [27] suggest that the massless singularity is present in
the system for α≳ αLat. Moreover, within a crude linear
analysis the value of λ0ðQ2 ¼ 0Þ for the lattice-type decou-
pling solution with α ≈ αLat, cf. left panel in Fig. 19, gives a
rather small estimate for the contribution of Kgh-gl to the
required full eigenvalue λ0ðQ2 ¼ 0Þ ¼ 1, which suggests

10-4 100 104 108 1012
0.0
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0.8
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1.2

massive 
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lattice
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0
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FIG. 19. Left: largest eigenvalue of the homogeneous BSE (59). For the scaling solution α → ∞, the eigenvalue approaches 1 which
corresponds to a longitudinal massless singularity in the ghost-gluon vertex. Right: sketch of the regimewith a massless singularity (blue
with λ0ðQ2 ¼ 0Þ ¼ 1) and the massive Yang-Mills regime without such a massless singularity (red with λ0ðQ2 ¼ 0Þ < 1).
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the dominance of thegluonic contribution. Such a scenario is
fully compatible with the findings in [27].
In turn, in massive Yang-Mills theory with a large

explicit mass m0 ≈mgap → ∞ we do not expect such a
massless singularity to be present. Moreover, as discussed
earlier, αLat corresponding to the lattice solution is slightly
above the onset of the decoupling solutions around
α0 ∼ 1 highlighted in Figs. 7 and 8 and thus the massive
Yang-Mills regime is defined by α ≲ α0. The same state-
ment within a quantitative approximation has been shown
in [42].
In combination, this makes us speculate about the

exciting possibility to distinguish the possible QCD-type
solutions with α≳ α0 from that in massive Yang-Mills
theory with α≲ α0 by the existence or absence of the
massless pole in the longitudinal sector. This presence of
this singularity is indicated by

λ0ðQ2 ¼ 0Þ ¼ 1; ð61Þ

and the scenario described above is sketched in the right
panel in Fig. 19. Whether it can be validated within more
sophisticated truncations remains to be seen.

3. Other scenarios

It has also been speculated that Π̃ðQ2Þ could be nonzero
because the longitudinal DSE in (54) depends on the
combination ξΠ̃ðQ2Þ=Q2. Since ξ ¼ 0 in Landau gauge,
one would obtain LðQ2Þ ¼ 1 even if Π̃ðQ2Þ ≠ 0. However,
even if Π̃ were non-zero in Landau gauge, L ¼ 1 must still
hold in all other linear covariant gauges and thus Π̃ would
still need to vanish for ξ ≠ 0, in which case it is a
nonanalytic function of the gauge parameter ξ.
This scenario is in direct contradiction with the STI:

While it is seemingly natural in terms of the gluon
propagator, the STI requires the gluon self-energy (13)
to be transverse, and hence Π̃ ¼ 0.

V. SUMMARY AND CONCLUSIONS

In this work we studied the coupled Dyson-Schwinger
equations (DSEs) for the ghost propagator, gluon propa-
gator and three-gluon vertex in the Yang-Mills sector of
QCD in Landau gauge using different truncations. We
addressed several questions related to the origin of mass
generation.
We clarified the role of renormalization and showed that

the parameter that distinguishes the decoupling solutions is
the coupling α, which no longer rescales the system in the
presence of a mass term. Such a dynamical mass term arises
from the longitudinal projection of the gluon self-energy,
which we called Π̃ðQ2Þ and which in principle appears to

break gauge invariance. To this end, we offered two
scenarios to remedy the problem.
In Scenario A, we considered the mass term to be an

artifact of the hard cutoff and/or truncation, so we replaced
it by a constant mass parameter β and studied the limit
β → 0. We investigated the lines of constant physics in the
ðα; βÞ plane and found that one combination of α and β
rescales the solutions while the other distinguishes the
physically different decoupling solutions, with the scaling
solution as their endpoint for β → 0. While the limit β → 0

cannot be reached in practice, we nonetheless conclude that
in this case only the scaling solution survives, however with
an ambiguity in the infrared scaling exponent κ.
In Scenario B, we did not modify the DSEs by hand and

the dynamical mass term remains in the system. As a
consequence, one needs to subtract quadratic divergences
which introduces again an arbitrary mass parameter β.
However, in this case the longitudinal projection of the
gluon self-energy can only vanish if either of the vertices
that enter in the gluon DSE has longitudinal massless poles.
In the three truncations we studied, this leaves the ghost-
gluon vertex as the only candidate. Using the assumption of
complete infrared dominance of the ghost, we found that
the vertex indeed has such a pole, which is only present for
the scaling solution.
Indeed, this solution is the only one which exhibits

complete infrared dominance of the ghost. Interestingly,
the massless pole is not present within this complete ghost
dominance setup for any decoupling solutions. However, for
lattice-like decoupling solutions massless poles have been
found within the PT-BFM scheme. In contradistinction to
the scaling case, they are dominated by the gluonic con-
tributions. The combined observations allowed us to put
forward a scenario that encompasses the present consistent
scaling solution with complete infrared ghost dominance
and the lattice-type decoupling solution with three-gluon
vertex dominance, for more details see Sec. IV C 2. A
detailed numerical study of this scenario will be presented
elsewhere.
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APPENDIX A: EXPLICIT FORM OF THE DSEs

In this Appendix we collect the expressions for the ghost
propagator, gluon propagator and three-gluon vertex DSEs.
The propagator DSEs in Fig. 20 read

D−1
G ðQÞ ¼ D−1

G;0ðQÞ þ ΣGðQÞ; ðA1Þ

ðD−1ÞμνðQÞ ¼ ðD−1
0 ÞμνðQÞ þ ΠμνðQÞ; ðA2Þ

where the full propagators depend on the ghost and gluon
dressing functions GðQ2Þ and ZðQ2Þ:

DGðQÞ ¼ −
GðQ2Þ
Q2

; ðA3Þ

DμνðQÞ ¼ 1

Q2
ðZðQ2ÞTμν

Q þ ξLμν
Q Þ ðA4Þ

Their tree-level expressions (with subscript 0) follow from
the replacements GðQ2Þ → 1=Zc and ZðQ2Þ → 1=ZA,
where Zc and ZA are the ghost and gluon renormalization
constants, respectively. The transverse and longitudinal
projectors are given by Tμν

Q ¼ δμν −QμQν=Q2 and
Lμν
Q ¼ QμQν=Q2 and ξ is the gauge parameter. Writing

the ghost self-energy as ΣGðQÞ ¼ −Q2ΣðQ2Þ and decom-
posing the gluon self-energy as in Eq. (13), the DSEs take
the form

GðQ2Þ−1 ¼ Zc þ ΣðQ2Þ; ðA5Þ

ZðQ2Þ−1 ¼ ZA þ ΠðQ2Þ þ Π̃ðQ2Þ
Q2

; ðA6Þ

where the functions ΠðQ2Þ and Π̃ðQ2Þ are obtained from
Eqs. (15)–(16) using λ ¼ 0. According to the decomposi-
tion (13), we will refer to ΠðQ2Þ as the transverse part and
Π̃ðQ2Þ as the gauge part in what follows. Note however that
for Π̃ðQ2Þ ≠ 0 the transverse part Π differs from the
transverse projection Π ¼ Πþ Π̃=Q2.
Every self-energy diagram contains a tree-level vertex,

whose Feynman rules are collected in Fig. 21 and Table I.
The full three-gluon vertex depends on 14 tensors [93]; here
we restrict ourselves to the classical tensor in Eq. (A12),
which amounts to the replacement

Z3g → F3gðp2
1; p

2
2; p

2
3Þ: ðA7Þ

In addition, we assume that the dressing function only
depends on the symmetric variable:

F3gðp2
1; p

2
2; p

2
3Þ ≈ F3g

�
p2
1 þ p2

2 þ p2
3

3

�
: ðA8Þ

Concerning the four-gluon vertex, it is convenient to
rewrite the tree-level expression (A13) as

Γμνρσ
4g;0 ðp1; p2; p3; p4Þ ¼ −g2Z4g

X2
i¼1

ðτiÞab;cdΓμνρσ
i ; ðA9Þ

where the Lorentz and color tensors are given by

Γμνρσ
1 ¼ 2δμρδνσ − δνρδμσ − δμνδρσ;

Γμνρσ
2 ¼ 2δμνδρσ − δνρδμσ − δμρδνσ;

ðτ1Þab;cd ¼ fabefcde;

ðτ2Þab;cd ¼ facefbde: ðA10Þ

Because ðτ3Þab;cd ¼ fadefcbe is linearly dependent due to
the Jacobi identity (τ3 ¼ τ1 − τ2), Eqs. (A9) and (A13) are
identical.

FIG. 20. Momentum routing in the ghost and gluon DSEs (see Fig. 22 for the two-loop terms).

FIG. 21. Kinematics for the ghost-gluon vertex, three-gluon
vertex and four-gluon vertex.
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The full four-gluon vertex depends on 136 Lorentz
tensors [69] and five color structures. Here we keep again
only the tree-level tensor with a general dressing function
F4g obtained by the replacement

Z4g → F4gðp2
1; p

2
2; p

2
3; p

2
4Þ: ðA14Þ

Also in this case we assume that the dressing function only
depends on the symmetric variable:

F4gðp2
1; p

2
2; p

2
3; p

2
4Þ ≈ F4g

�
p2
1 þ p2

2 þ p2
3 þ p2

4

4

�
: ðA15Þ

1. Ghost and gluon DSEs: Single-loop terms

In the following we work out the self-energy diagrams in
Fig. 20 explicitly. We work in Landau gauge (ξ ¼ 0) where
the ghost-gluon vertex is UV-finite and thus we set Z̃Γ ¼ 1.
In hyperspherical variables, the Lorentz-invariant inte-

gral measure
R
k ¼

R
d4k=ð2πÞ4 takes the form

Z
k
¼ 1

ð2πÞ4
1

2

Z
Λ2

0

dk2k2
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dy

Z
2π

0

dψ

¼ 1

ð4πÞ2
Z

Λ2

0

dk2k2
2

π

Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; ðA16Þ

where Λ is the hard cutoff. Since the only Lorentz
invariants appearing in the single-loop diagrams are Q2,

k2 and ω ¼ k ·Q ¼
ffiffiffiffiffi
k2

p ffiffiffiffiffiffi
Q2

p
z, the integrations over the

variables y and ψ become trivial. This corresponds to the
frame where

Q ¼
ffiffiffiffiffiffi
Q2

p
2
666664
0

0

0

1

3
777775; k ¼

ffiffiffiffiffi
k2

p
2
666664

0

0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p

z

3
777775: ðA17Þ

The internal loop momenta in Fig. 20 are kμ� ¼ kμ �Qμ=2
such that k2� ¼ k2 þQ2=4� ω.

(i) The ghost self-energy becomes

ΣGðQ2Þ ¼ −
Z
k
½−igfadcQμ�½−igfcdbkνþ�

×DGðk2þÞDμνðk−Þ; ðA18Þ
where the sign in front comes from the DSE (the self-
energy appears with a minus sign). With Eqs. (A3)–(A4)
and facdfbcd ¼ Ncδab, the resulting expression is

ΣðQ2Þ ¼ −g2Nc

Z
k

Gðk2þÞ
k2þk4−

Zðk2−Þk2ð1− z2Þ: ðA19Þ

Note that the self-energy is negative, as it should be
according to the DSE (A5): the ghost dressing function
is enhanced compared to the tree-level expression and the
inverse dressing function is suppressed. For Q2 ¼ 0, the
self-energy integral becomes constant both in the scaling
and decoupling case.
(ii) The ghost loop in the gluon DSE is given by

Πμν
gh ¼

Z
k
½−igfdackμ−�

Gðk2þÞ
k2þ

Gðk2−Þ
k2−

½−igfcbdkνþ�

¼ g2Ncδab

Z
k

Gðk2þÞGðk2−Þ
k2þk2−

kμ−kνþ: ðA20Þ

In principle there are two signs in front, one from the minus
of the self-energy and the other from the closed fermion
loop, which cancel out. The sign of −facdfbcd ¼ −Ncδab
finally cancels the sign coming from the vertices. By
applying Eqs. (15)–(16) with λ ¼ 0 we extract the trans-
verse and gauge parts:

ΠghðQ2Þ¼g2Nc

Z
k

Gðk2þÞGðk2−Þ
k2þk2−

�
1

4
þk2ð1−4z2Þ

3Q2

�
;

Π̃ghðQ2Þ¼g2Nc

Z
k

Gðk2þÞGðk2−Þ
k2þk2−

�
k2z2−

Q2

4

�
: ðA21Þ

In principle there are also terms ∼z in the bracket, but these
vanish after integration since the integral over z is
symmetric. Note that the term with ð1 − 4z2Þ does not
produce a quadratic divergence at large k2 or singularities at
small Q2: in that case one has k2� ≈ k2 and the integration
over z yields

TABLE I. Feynman rules for the tree-level ghost-gluon, three-gluon and four-gluon vertex.

Γμ
gh;0ðp;QÞ ¼ −igfabcZ̃Γpμ; ðA11Þ

igfabcΓ
μνρ
3g;0ðp1; p2; p3Þ ¼ igfabcZ3g½ðp1 − p2Þρδμν þ ðp2 − p3Þμδνρ þ ðp3 − p1Þνδρμ�; ðA12Þ

Γμνρσ
4g;0 ðp1; p2; p3; p4Þ ¼ −g2Z4g½fabefcdeðδμρδνσ − δνρδμσÞ þ facefbdeðδμνδρσ − δνρδμσÞ þ fadefcbeðδμρδνσ − δμνδρσÞ�: ðA13Þ
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Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ð1 − 4z2Þ ¼ 0: ðA22Þ

Thus, only the gauge part Π̃gh has a quadratic divergence
whereas the transverse part Πgh is only logarithmically
divergent. Its contribution to the gluon DSE is positive, so it
has the tendency to reduce the gluon dressing function
compared to its tree-level expression.
For Q2 → 0 and the scaling solution, both Πgh and

Π̃gh=Q2 diverge with the same power ðQ2Þ−2κ, whereas for
the decoupling solutions Πgh diverges logarithmically but
Π̃gh remains finite.
(i) The gluon loop in the gluon DSE reads

Πμν
gl ¼ −

1

2

Z
k
½igfcdaZ3gΓ

ρσμ
3g;0ðkþ;−k−;−QÞ�

×Dρρ0 ðkþÞDσσ0 ðk−Þ
× ½igfdcbΓσ0ρ0ν

3g ðk−;−kþ; QÞ�; ðA23Þ

where the minus in front comes from the sign of the self-
energy and the factor 1=2 from the symmetrization. Taking
again the projections and abbreviating Z� ¼ Zðk2�Þ and
F3g ¼ F3gðk2−; k2þ; Q2Þ, we arrive at

ΠglðQ2Þ ¼ −
g2

2
NcZ3g

Z
k

F3gZþZ−

k4þk4−
Kgl;

Π̃glðQ2Þ ¼ −
g2

2
NcZ3g

Z
k

F3gZþZ−

k4þk4−
K̃gl ðA24Þ

with the kernels

Kgl ¼
4k6

Q2
ð1 − 4z2Þ þ 2

3
k4ð16z4 − 20z2 þ 13Þ

þ 3

4
k2Q2ð3 − 4z2Þ;

K̃gl ¼ 12k2z2
�
k2þk2− −

1

3
k2Q2ð1 − z2Þ

�
ðA25Þ

and

k2þk2− ¼
�
k2 þQ2

4

�
2

− k2Q2z2: ðA26Þ

Once again, quadratic divergences only appear in the gauge
part Π̃gl whereas the transverse part Πgl is only logarithmi-
cally divergent due to the factor ð1 − 4z2Þ. It is negative and
has the tendency to increase the gluon dressing function. For
Q2 → 0, Πgl and Π̃gl become constant for both scaling and
decoupling solutions.

(ii) The tadpole diagram is given by

Πμν
tad ¼ −

1

2

Z
k
Γμνρσ
4g;0 D

ρσðkÞ; ðA27Þ

which is very simple to work out since only the tree-level
four-gluon vertex appears:

ΠtadðQ2Þ ¼ g2Z4gNc
1

3Q2

Z
k

Zðk2Þ
k2

ð1 − 4z2Þ ¼ 0;

Π̃tadðQ2Þ ¼ g2Z4gNc
9

4

Z
k

Zðk2Þ
k2

: ðA28Þ

The transverse part vanishes due to the factor ð1 − 4z2Þ,
cf. Eq. (A22), which is not only true in Landau gauge but
also for a general gauge parameter ξ. Thus, the tadpole only
gives a contribution to the gauge part, which is a constant
and quadratically divergent. Because in Scenario A the
gauge part is replaced by a constant, and in Scenario B a
constant is subtracted from the gauge part by Eq. (47), the
tadpole drops out from all equations.

2. Gluon DSE: Two-loop terms

The two-loop terms in the gluon DSE are small com-
pared to the one-loop terms (see Fig. 4). Nevertheless, they
complete the DSE and ensure that the ghost and gluon
propagators are two-loop exact in the UV. In addition to the
loop momentum k from Eq. (A17), we write the second
loop momentum l as

l ¼
ffiffiffiffi
l2

p
2
666664
0 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
y

z0

3
777775: ðA29Þ

The propagator momenta are then given by l� ¼ l� k=2
and k0 ¼ k −Q as shown in Fig. 22. In this case the
innermost integration is trivial, so that there are in total five
integrations instead of two. The integral measure is

Z
k

Z
l
¼ 2

ð2πÞ6
1

4

Z
dk2k2

Z
dl2l2

×
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p Z
1

−1
dy: ðA30Þ

This would lead to a substantially higher computational
demand, but with the simplifications for the three- and four-
gluon vertices explained around Eqs. (A8) and (A15) the
integrands of the two-loop terms simplify substantially. To
this end, we define the variables
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Ωðz; z0; yÞ ¼ k̂ · l̂ ¼ zz0 þ y
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
;

w ¼ z0 − zΩðz; z0; yÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωðz; z0; yÞ2

p ; ðA31Þ

where a hat denotes a normalized momentum, with the
inverse relations

z0ðz;Ω; wÞ ¼ zΩþ w
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p
;

y ¼ Ω − zz0ðz;Ω; wÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z0ðz;Ω; wÞ2

p : ðA32Þ

Then we can rewrite the two innermost integrations asZ
1

−1
dz0

ffiffiffiffiffiffiffiffiffiffiffiffi
1−z02

p Z
1

−1
dy¼

Z
1

−1
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Ω2

p Z
1

−1
dw: ðA33Þ

Below we will see that the integrands only depend onΩ but
not on w, so that the w integration becomes trivial. In
addition, with some rearrangements of the integrals it turns
out that the squint diagram requires the same computational
demand as the one-loop terms and the sunset diagram
involves only one additional integration.
(i) The squint diagram gives the dominant contribution

to the two-loop terms. It reads

Πμν
sq ¼ −

1

2

Z
k

Z
l
½Γ4g;0�μαβγai;jk½Γ3gð−lþ; k; l−Þ�α

0δ0β0
ilj

× ½Γ3gðQ; k0;−kÞ�νγ0δbkl T
αα0
lþ Tββ0

l−
Tγγ0
k0 T

δδ0
k

×
Zðl2þÞ
l2þ

Zðl2−Þ
l2−

Zðk2Þ
k2

Zðk02Þ
k02

ðA34Þ

where the prefactor −1=2 comes from the minus sign in the
DSE and the symmetrization, and the transverse projectors

from the gluon propagators were defined below Eq. (A4).
We absorb all Lorentz-invariant dressing functions into a
quantity Isqðl2; k2; Q2; z;ΩÞ defined by

Isq ¼ F3gðx1ÞF3gðx2Þ
Zðl2þÞ
l4þ

Zðl2−Þ
l4−

Zðk2Þ
k4

Zðk02Þ
k04

;

ðA35Þ

where the three-gluon vertices depend on the symmetric
variables

x1 ¼
Q2 þ k2 þ k02

3
¼ 2

3
ðk2 þQ2 − k ·QÞ;

x2 ¼
l2þ þ l2− þ k2

3
¼ 2l2

3
þ k2

2
: ðA36Þ

The squint diagram then becomes

Πμν
sq ¼ −

1

2
g4Z4g

27

2
δab

Z
k

Z
l
IsqK

μν
sq ; ðA37Þ

where the factor 27=2 is the color trace and the remaining
Lorentz kernel Kμν

sq is just a kinematic expression. With the
decomposition (15)–(16) we can split it into its Lorentz-
invariant components:"
ΠsqðQ2Þ
Π̃sqðQ2Þ

#
¼−

1

2
g4Z4g

27

2

Z
k

Z
l
Isqðl2;k2;Q2;z;ΩÞ

×

�KsqðQ2;k2;l2;z;z0;yÞ
K̃sqðQ2;k2;l2;z;z0;yÞ

�
: ðA38Þ

Using Eq. (A33), and because Isq does not depend on the
variable w, we can integrate out w to arrive at

FIG. 22. Kinematics in the squint diagram (left) and sunset diagram (right).
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"
ΠsqðQ2Þ
Π̃sqðQ2Þ

#
¼ −

1

2
g4Z4g

27

2

1

ð2πÞ6
Z

dk2k2
Z

dl2l2
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p

× Isqðl2; k2; Q2; z;ΩÞ
�K0

sqðQ2; k2; l2; z;ΩÞ
K̃0

sqðQ2; k2; l2; z;ΩÞ

�
: ðA39Þ

The kernels K0
sq and K̃0

sq are given by

"
K0

sq

K̃0
sq

#
¼ −

1

18
k2l2ð7k2 þ 20l2Þð1 −Ω2Þ

"
cðQ2; k2; zÞ
c̃ðQ2; k2; zÞ

#

with the coefficients

cðQ2; k2; zÞ ¼ k2
�
6k2

Q2
ð1 − 4z2Þ þ 7 − 43z2

�

þ kz
Q

½5k2ð1þ 8z2Þ þ 9Q2�;

c̃ðQ2; k2; zÞ ¼ 3k2½6k2z2 þQ2ð1þ 11z2Þ�
− 3kQz½5k2ð1þ 2z2Þ þ 3Q2�: ðA40Þ

(ii) The sunset diagram is almost negligible compared to
the squint diagram, which dominates the contribution from
the two-loop terms by far. It is given by

Πμν
sun ¼ −

1

6

Z
k

Z
l
½Γ4g;0�μαβγai;jk½Γ4gðQ; l−; k0;−lþÞ�νγ

0β0α0
bk;ji

×
Zðl2þÞ
l2þ

Zðl2−Þ
l2−

Zðk02Þ
k02

Tαα0
lþ Tββ0

k0 T
γγ0
l−
; ðA41Þ

where the prefactor −1=6 comes from the sign
in the DSE and the symmetrization factor. We employ
the same strategy as before and absorb the

dressing functions in a quantity Isunðl2;k2;Q2;z;ΩÞ
defined by

Isun ¼ F4gðx̄Þ
Zðl2þÞ
l4þ

Zðl2−Þ
l4−

Zðk02Þ
k04

; ðA42Þ

where the four-gluon vertex dressing depends on the
symmetric variable

x̄ ¼ l2þ þ l2− þ k02 þQ2

4

¼ 1

2

�
l2 þ 3k2

4
þQ2 − k ·Q

�
: ðA43Þ

The sunset diagram can then be written as

Πμν
sun ¼ −

1

6
g4Z4g

9

2
δab

Z
k

Z
l
IsunK

μν
sun; ðA44Þ

with the color trace 9=2 and a kernel Kμν
sun that is purely

kinematic. The resulting dressing functions are�ΠsunðQ2Þ
Π̃sunðQ2Þ

�
¼−

1

6
g4Z4g

9

2

Z
k

Z
l
Isunðl2;k2;Q2;z;ΩÞ

×

�
KsunðQ2;k2;l2;z;z0;yÞ
K̃sunðQ2;k2;l2;z;z0;yÞ

�
: ðA45Þ

Once again, Isun does not depend on the variable w, which
can be integrated over to arrive at

�ΠsunðQ2Þ
Π̃sunðQ2Þ

�
¼ −

1

6
g4Z4g

9

2

4

ð2πÞ6
1

4

Z
dk2k2

Z
dl2l2

Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p

× Isunðl2; k2; Q2; z;ΩÞ
�
K0

sunðQ2; k2; l2; z;ΩÞ
K̃0

sunðQ2; k2; l2; z;ΩÞ

�
: ðA46Þ

Even though one must integrate over k2, l2, z and Ω, the
product of the second, third and fourth line in Eq. (A39) can
be written as

�
AðQ2; k2Þ
ÃðQ2; k2Þ

�
Bðk2Þ ðA47Þ

with

�
AðQ2; k2Þ
ÃðQ2; k2Þ

�
¼ Zðk2Þ

k4

Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
F3gðx1Þ

×
Zðk02Þ
k04

�
cðQ2; k2; zÞ
c̃ðQ2; k2; zÞ

�
ðA48Þ
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and

Bðk2Þ ¼ −
1

18
k2

Z
dl2l4ð7k2 þ 20l2ÞF3gðx2Þ

×
Z

1

−1
dΩð1 − Ω2Þ3=2 Zðl

2þÞ
l4þ

Zðl2−Þ
l4−

:

The functions A and Ã only require looping over three
variables (Q2, k2 and z) and the same is true for Bðk2Þ
which does not depend on Q2, hence the loops go over k2,
l2 and Ω. Therefore, calculating the squint diagram is
computationally no more expensive than the one-loop
diagrams, at least within our approximations for the
three-gluon vertex. Once again,ΠsqðQ2Þ is only logarithmi-
cally divergent and Π̃sqðQ2Þ diverges quadratically.
In this case the kernels K0

sun and K̃0
sun are more

complicated, but they are still even functions of Ω which
involve at most quartic powers (1, Ω2 and Ω4). Thus we
may expand them as follows:

K0
sun ¼

X2
n¼0

cnðQ2; k2; l2; zÞ½ð1 − Ω2Þl2�n; ðA49Þ

and likewise for K̃0
sun. The product of the second, third and

fourth line in Eq. (A46) then takes the form

X2
n¼0

l2n
�
AnðQ2; k2; l2Þ
ÃnðQ2; k2; l2Þ

�
Bnðk2; l2Þ; ðA50Þ

where

�
AnðQ2; k2; l2Þ
ÃnðQ2; k2; l2Þ

�
¼

Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
F4gðx̄Þ

Zðk02Þ
k04

×
�
cnðQ2; k2; l2; zÞ
c̃nðQ2; k2; l2; zÞ

�
;

Bnðk2; l2Þ ¼
Z

1

−1
dΩð1 − Ω2Þnþ1

2
Zðl2þÞ
l4þ

Zðl2−Þ
l4−

:

ðA51Þ

The coefficients cn read explicitly:

c0 ¼ −
1

8
ðk2 − 4l2Þ2

�
6k2

Q2
ð1 − 4z2Þ þ 4kz

Q
ð1þ 8z2Þ þ ð1 − 15z2 − 4z4Þ

�
;

c1 ¼
k2

6Q2
ð1 − 4z2Þ½−35k2 þ 92l2� − kz

Q

�
k2

3
ð13þ 92z2Þ þ 4l2ð5 − 28z2Þ

�

−
k2

6
ð11 − 84z2 − 32z4Þ þ 2l2ð5 − 12z2 − 16z4Þ;

c2 ¼ −
8k2

3Q2
ð1 − 4z2Þ þ 16kz

Q
ð1 − 2z2Þ þ 8

5
ð1 − 12z2 þ 16z4Þ: ðA52Þ

Also in this case, the potentially dangerous terms proportional to k2=Q2 do not produce quadratic divergences since they
come with factors ð1 − 4z2Þ, and the terms proportional to k=Q are multiplied by z so that their integrals vanish for k2 → ∞
or l2 → ∞. The coefficients entering in Π̃sunðQ2Þ, on the other hand, do lead to quadratic divergences:

c̃0 ¼
3

8
ð1 − z2Þðk2 − 4l2Þ2½6k2 − 8kQzþQ2ð4þ z2Þ�;

c̃1 ¼
7

2
k4ð8 − 5z2Þ − 2k2l2ð8 − 23z2Þ þ 1

2
k2Q2ð47 − 18z2 − 8z4Þ − 6l2Q2ð1 − 2z2 − 4z4Þ

þ kQz½−k2ð44 − 23z2Þ þ 12l2ð2 − 7z2Þ�;

c̃2 ¼
2

5
½5k2ð1 − 4z2Þ − 30kQzð1 − 2z2Þ − 3Q2ð1 − 12z2 þ 16z4Þ�: ðA53Þ

Wenote that thefAn; Ãng donot dependonΩ and theBn do
not depend on z andQ2. Thus, we still saved two integrations
such that the sunset diagram only requires one additional
integration compared to the one-loop and squint diagrams.

3. Three-gluon vertex DSE

Because we back-couple the three-gluon vertex into the
propagator DSEs, we must also work out its own DSE. It is
given by
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Γμνρ
3g ðp1; p2; p3Þ ¼ Γμνρ

3g;0ðp1; p2; p3Þ þMμνρðp1; p2; p3Þ
ðA54Þ

and the corresponding diagrams are shown in Fig. 23. Here
we neglected further two-loop diagrams as well as those
containing higher n-point functions (such as the two-ghost-
two-gluon vertex). We also restrict ourselves to the sym-
metric limit, where p2

1 ¼ p2
2 ¼ p2

3 ¼ Q2, and to the
classical tensor structure from Eq. (A13). As shown in
Ref. [60], this is a good approximation since the angular
dependence is mild and the effect from higher tensors are
small. A symmetrization of the diagrams is not necessary in
the symmetric limit where all six permutations are iden-
tical, hence we contract two of the three swordfish diagrams
from Fig. 3 into one (the factor 2 is implicit).
The full three-gluon vertex in the symmetric limit has the

general form

Γμνρðp1; p2; p3Þ ¼
X3
i¼1

FðiÞ
3g ðQ2ÞKμνρ

i ðA55Þ

and depends on three fully antisymmetric tensors,

Kμνρ
1 ¼ qμ1δ

νρ þ qν2δ
ρμ þ qρ3δ

μν;

Kμνρ
2 ¼ qμ1q

ν
2q

ρ
3;

Kμνρ
3 ¼ qμ1p

ν
2p

ρ
3 þ pμ

1q
ν
2p

ρ
3 þ pμ

1p
ν
2q

ρ
3; ðA56Þ

where qi ¼ pj − pk and fi; j; kg is an even permutation of
f1; 2; 3g. K1 is the classical tensor, whereas the remaining
ones carry higher momentum powers and thus their
dressing functions are subleading. Moreover, K3 vanishes
upon transverse projection and drops out from the coupled
DSEs in Landau gauge where it is always contracted with
two transverse gluons in the loops.
Equation (A55) can be verified as follows. In general, the

three-gluon vertex has 14 possible tensors, which are
arranged in Table V of Ref. [60] in terms of singlets,
antisinglets and doublets under the permutation group S3.
Since the full vertex is Bose-symmetric and the color
structure fabc antisymmetric, the Lorentz part must be
antisymmetric as well. The three tensors K1, K2 and K3 are
already antisymmetric (they correspond to A0ðψ1Þ, A0ðψ2Þ
and A0ðψ4Þ in the table), whereas the remaining ones

would have to be combined with the momentum doublet
D ¼ fa; sg to construct antisymmetric tensors, where the
variables a and s are given by

a ¼
ffiffiffi
3

p p2
2 − p2

1

p2
1 þ p2

2 þ p2
3

; s ¼ p2
1 þ p2

2 − 2p2
3

p2
1 þ p2

2 þ p2
3

: ðA57Þ

However, these variables vanish in the symmetric limit and
thus D ¼ 0, so that in the symmetric limit only the three
tensors above survive.
In the following we work out Mμνρ

diagðp1; p2; p3Þ, where
“diag” stands for the ghost triangle, gluon triangle and the
swordfish diagrams in Fig. 23. In practice we expand each
diagram in the full basis

Mμνρ
diagðp1; p2; p3Þ ¼

X3
i¼1

MðiÞ
diagðQ2ÞKμνρ

i ; ðA58Þ

and read off the coefficient Mð1Þ
diagðQ2Þ for the tree-level

tensor Kμνρ
1 by inverting the matrix equation

½Kμνρ
i Mμνρ

diag� ¼
X3
j¼1

½Kμνρ
i Kμνρ

j �MðjÞ
diagðQ2Þ: ðA59Þ

Note that Mð1Þ
diagðQ2Þ is different from the result obtained

when taking the trace with the tree-level tensor:

Kμνρ
1 Mμνρ

diag

Kμνρ
1 Kμνρ

1

¼ Mð1Þ
diag − ð3Mð2Þ

diag þMð3Þ
diagÞ

Q2

6
; ðA60Þ

but we find that the difference is numerically negligible
(which confirms that the remaining dressing functions are
strongly suppressed). Omitting the superscript (1), the DSE
(A54) then becomes

F3gðQ2Þ ¼ Z3g þMghðQ2Þ þMglðQ2Þ þMsfðQ2Þ:
ðA61Þ

Starting from the kinematics in Fig. 23, we define two
external momenta Q and p and a loop momentum k such
that the three incoming momenta pi and the internal
momenta ki are given by

FIG. 23. Momentum routing in the three-gluon vertex DSE.
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p1 ¼ −p −
Q
2
; k1 ¼ −kþQ

2
;

p2 ¼ p −
Q
2
; k2 ¼ −k −

Q
2
;

p3 ¼ Q; k3 ¼ p − k: ðA62Þ

In the symmetric limit we have p2
1 ¼ p2

2 ¼ p2
3 ¼ Q2 and

thus p2 ¼ 3Q2=4 and p ·Q ¼ 0, so we can choose the
four-momenta as

Q ¼
ffiffiffiffiffiffi
Q2

p
2
6664
0

0

0

1

3
7775; p ¼

ffiffiffiffiffiffiffiffiffi
3Q2

p
2

2
6664
0

0

1

0

3
7775;

k ¼
ffiffiffiffiffi
k2

p
2
666664

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
sinψffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

cosψffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
y

z

3
777775: ðA63Þ

The arguments of the internal propagators then become

k21 ¼ k2 þQ2

4
− kQz;

k22 ¼ k2 þQ2

4
þ kQz;

k23 ¼ k2 þ 3Q2

4
−

ffiffiffi
3

p
kQy

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; ðA64Þ

where we wrote Q ¼
ffiffiffiffiffiffi
Q2

p
and k ¼

ffiffiffiffiffi
k2

p
. The symmetric

variables that enter as arguments of the internal three-gluon
vertices are given by

x1 ¼
Q2 þ k22 þ k23

3
;

x2 ¼
k21 þQ2 þ k23

3
;

x3 ¼
k21 þ k22 þQ2

3
¼ 4k2 þ 3Q2

6
; ðA65Þ

and the symmetric variable that enters in the four-gluon
vertex is

x4 ¼
2Q2 þ k21 þ k22

4
¼ 4k2 þ 5Q2

8
: ðA66Þ

The integral measure has the same form as in Eq. (A16)
except that the integration over y is no longer trivial:

Z
k
¼ 1

ð2πÞ3
1

2

Z
Λ2

0

dk2k2
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dy: ðA67Þ

Note that k21, k
2
2 do not depend on y and x3, x4 depend

neither on z nor y. As before, we restrict ourselves to
Landau gauge with ξ ¼ 0 and Z̃Γ ¼ 1.
(i) The ghost triangle is given by

igfabcM
μνρ
gh ¼−2

Z
k
½−igfb0ac0kμ2�½−igfc0ba0kν3�

× ½−igfa0cb0kρ1�DGðk21ÞDGðk22ÞDGðk23Þ;
ðA68Þ

where the symmetry factor 2 comes from the Lagrangian
and the minus from the closed fermion loop. The color
factors combine to −ðNc=2Þfabc, and with a minus from
each ghost propagator we arrive at

Mμνρ
gh ¼−g2Nc

Z
k

Gðk21ÞGðk22ÞGðk23Þ
k21k

2
2k

2
3

kμ2k
ν
3k

ρ
1: ðA69Þ

With the projection (A59), the component of the tree-level
tensor becomes

MghðQ2Þ ¼ −g2Nc

Z
k

Gðk21ÞGðk22ÞGðk23Þ
k21k

2
2k

2
3

×
k2

12
ð1 − z2Þð1 − y2Þ: ðA70Þ

The ghost triangle is negative since the integrand is
always positive. In practice the ghost contribution is
small, except at IR momenta where it behaves like
Mghð0Þ ∼ −

R
dk2Gðk2Þ3=k2. For the decoupling case this

produces a logarithmic divergence, whereas for the scaling
case the diagram scales with the power ðQ2Þ−3κ. In both
cases the ghost triangle dominates the infrared (see e.g.,
Fig. 8 in [60]), and because the tree-level term is positive,
the three-gluon vertex necessarily has a zero crossing at
intermediate momenta.
We also note that if we had implemented the full ghost-

gluon vertex from Eq. (51), then by the projection (A59) the
longitudinal B term (which may have massless poles)

contributes only to Mð3Þ
gh ðQ2Þ, which is the dressing

function of the tensor K3 in Eq. (A56). However, K3 is
longitudinal and drops out from the DSEs in Landau gauge
because it is contracted with two internal transverse gluon
lines in each loop diagram where the three-gluon vertex
appears. Therefore, the longitudinal poles from the ghost-
gluon vertex do not couple into the three-gluon vertex, at
least not in the symmetric limit. For the same reason K3
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would drop out from the gluon DSE and the ghost-gluon
vertex DSE in Fig. 17. In our setup, longitudinal poles can
thus only emerge from the ghost-gluon vertex.
(ii) For the gluon triangle the color factor is the same

apart from a minus sign, cf. Eq. (A12), and there is no
prefactor in front of the integral. This yields

Mμνρ
gl ¼ g2

Nc

2

Z
k

Zðk21ÞZðk22ÞZðk23Þ
k21k

2
2k

2
3

× Γβαρ
3g;0ðk2;−k1; p3ÞΓαγν

3g ðk1;−k3; p2Þ
× Γγβμ

3g ðk3;−k2; p1Þ; ðA71Þ

where the indices under the bar are contracted with the
transverse projectors from the gluon propagators with
respect to the first two momentum arguments of each
vertex. In this case the tree-level component becomes

MglðQ2Þ ¼ g2
Nc

2
Z3g

Z
k

Zðk21ÞZðk22ÞZðk23Þ
k41k

4
2k

4
3

× F3gðx1ÞF3gðx2ÞKgl; ðA72Þ

where the kernel Kgl is given by

Kgl¼
X3
n¼0

2k6
�
Q2

k2

�
n
�
cnγk2þdny

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γk2Q2

3

r �
: ðA73Þ

Here we abbreviated γ ¼ 1 − z2 and the coefficients are

c0 ¼ 1 − y2;

c1 ¼ 3 − 5y2 þ 1

12
γð5þ 50y2 þ 9y4Þ

c2 ¼
1

48
ð87 − 39y2 þ γð19þ 118y2 − 9y4ÞÞ;

c3 ¼
1

32
ð11þ 17y2Þ;

d0 ¼ 6þ γðy2 − 9Þ;

d1 ¼ 3þ 1

4
γðy2 − 33Þ − 8

3
γ2;

d2 ¼
1

8
ð3 − γðy2 þ 31ÞÞ;

d3 ¼ −
3

8
: ðA74Þ

The gluon triangle contribution to the three-gluon vertex is
usually positive and small.
(iii) The two swordfish diagrams in Fig. 23 turn out to be

the leading loop contributions to the three-gluon vertex
DSE, apart from the ghost triangle which dominates the IR
but is otherwise small (see Fig. 8 in [60] and Fig. 24 in

Ref. [63] for similar results; in our Setups 2 and 3 we find
the gluon triangle to be even more suppressed). Each of
them has a symmetry factor 1

2
and the first diagram picks up

a factor 2 because it counts twice in the symmetrization.
Using facdfbcd ¼ Ncδab and

fab0c0fa0bc0fa0b0c ¼
Nc

2
fabc; ðA75Þ

then the combination of color factors from the three- and
four-gluon vertex results in the four-gluon vertex combi-
nation Γ1 þ Γ2=2 from Eq. (A9), which is equivalent to an
effective vertex

Γμνρσ
4g ðp1;p2;p3;p4Þ¼F4gðδμρδνσ−δνρδμσÞ ðA76Þ

to be multiplied with 3
2
g2Nc. The first swordfish diagram

contains the tree-level four-gluon vertex (F4g → Z4)
whereas in the second diagram the full vertex F4gðx4Þ
depends on the symmetric variable x4. Together with all
prefactors, we arrive at

Mμνρ
sf ¼ g2

3Nc

4

Z
k

Zðk21ÞZðk22Þ
k21k

2
2

× ½2Γβαρ
3g ðk2;−k1; p3ÞΓμναβ

4g;0 ðp1; p2; k1;−k2Þ
þ Γβαρ

3g;0ðk2;−k1; p3ÞΓμναβ
4g ðp1; p2; k1;−k2Þ�;

ðA77Þ

where the barred indices denote again transverse projec-
tion. Here the tree-level component becomes

MsfðQ2Þ ¼ −g2
3Nc

4

Z
k

Zðk21ÞZðk22Þ
k41k

4
2

× ½2Z4gF3gðx3Þ þ Z3gF4gðx4Þ�Ksf ;

ðA78Þ

where the kernel is given by

Ksf ¼
k2

12
ð1−z2Þ½4k2ð3þy2ÞþQ2ð5−y2Þ�: ðA79Þ

Observe that the y dependence inside the integrand is only
carried by Ksf, so we can integrate it out and use instead

K0
sf ¼

1

2

Z
dyKsf ¼

k2

18
ð20k2þ7Q2Þð1−z2Þ: ðA80Þ

K0
sf is positive and thus the contribution from the swordfish

diagrams is usually negative.
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APPENDIX B: RENORMALIZATION

Here we provide details on the arguments made in
Sec. III A. Using the expressions for the self-energies from
Appendix A, the DSEs for the ghost and gluon propagator
and three-gluon vertex read

GðQ2Þ−1 ¼ Zc þ ΣðQ2Þ;
ZðQ2Þ−1 ¼ ZA þΠðQ2Þ;
F3gðQ2Þ ¼ Z3g þMðQ2Þ; ðB1Þ

where ΠðQ2Þ ¼ ΠðQ2Þ þ Π̃ðQ2Þ=Q2. As explained in the
main text, in practice it is convenient to renormalize the
gluon DSE at an arbitrary renormalization scale Q2 ¼ μ2

and set Zðμ2Þ as a renormalization condition, and the ghost
dressing function Gð0Þ at the origin Q2 ¼ 0:

GðQ2Þ−1 ¼ G−1
0 þ ΣðQ2Þ − Σð0Þ;

ZðQ2Þ−1 ¼ Z−1
μ þΠðQ2Þ −Πðμ2Þ;

F3gðQ2Þ ¼ Z3g þMðQ2Þ: ðB2Þ

The ghost and gluon renormalization constants are then
dynamically determined from

Zc ¼ G−1
0 − Σð0Þ; ZA ¼ Z−1

μ −Πðμ2Þ; ðB3Þ

and the renormalization constants Z3g and Z4g are fixed
from Eq. (20).
Suppressing all momentum dependencies and kinematic

functions, the structural form of the self-energy terms
(A19) in the ghost DSE, (A21), (A24), (A28), (A39),
(A46) in the gluon DSE and (A70), (A72), (A78) in the
three-gluon vertex DSE is

Σ ∼
g2

4π

Z
GZ;

Π1-loop ∼
g2

4π

2
64 G2

Z3gF3gZ2

Z4gZ

3
75;

Π2-loop ∼
�
g2

4π

�
2
Z "

Z4gF4gZ3

Z4gF2
3gZ

4

#
;

M ∼
g2

4π

Z
2
666664

G3

Z3gF2
3gZ

3

Z3gF4gZ2

Z4gF3gZ2

3
777775: ðB4Þ

The terms under each integral must renormalize in the same
way. Indeed, from Eqs. (19)–(20) we have e.g.,

g2G2 ¼ ZA½g2G2�ðBÞ;
g2Z3gF3gZ2 ¼ ZA½g2F3gZ2�ðBÞ;

g2Z4gZ ¼ ZA½g2Z�ðBÞ: ðB5Þ

Now let us redefine the renormalized dressing functions
G and Z by

G0 ¼ ffiffiffi
γ

p G
G0

; Z0 ¼ λ
Z
Zμ

; ðB6Þ

with arbitrary factors γ and λ, and make the same
redefinitions for all quantities that renormalize like G
and Z:

fZ0
c;Σ0g ¼ fZc;Σg

G0ffiffiffi
γ

p ;

fZ0
A;Π0g ¼ fZA;ΠgZμ

λ
;

fF0
3g; Z

0
3g;M

0g ¼ fF3g; Z3g;Mg
ffiffiffi
γ

p
G0

Zμ

λ
;

fF0
4g; Z

0
4gg ¼ fF4g; Z4gg

γ

G2
0

Zμ

λ
:

Then Eq. (B4) becomes

Σ0 ∼
α

γλ

Z
G0Z0;

Π0
1-loop ∼

α

γλ

Z 2
64

G02

Z0
3gF

0
3gZ

02

Z0
4gZ

0

3
75;

Π0
2-loop ∼

�
α

γλ

�
2
Z "

Z0
4gF

0
4gZ

03

Z0
4gF

02
3gZ

04

#
;

M0 ∼
α

γλ

Z
2
666664

G03

Z0
3gF

02
3gZ

03

Z0
3gF

0
4gZ

02

Z0
4gF

0
3gZ

02

3
777775; ðB7Þ

where α is defined by

α ¼ g2

4π
ZμG2

0: ðB8Þ

The resulting DSEs assume the form
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G0ðQ2Þ−1 ¼ 1ffiffiffi
γ

p þ Σ0ðQ2Þ − Σ0ð0Þ;

Z0ðQ2Þ−1 ¼ 1

λ
þΠ0ðQ2Þ −Π0ðμ2Þ;

F0
3gðQ2Þ ¼ Z0

3g þM0ðQ2Þ;

Z0
c ¼

1ffiffiffi
γ

p − Σ0ð0Þ;

Z0
A ¼ 1

λ
−Π0ðμ2Þ; ðB9Þ

where G0 and Zμ no longer appear but instead α, γ and λ.
Removing the primes again and setting γ ¼ λ ¼ 1, we
arrive at Eq. (27) (in that case we pulled out α from the self-
energies), whereas setting γ ¼ α and λ ¼ 1 leads to Eq. (32)
(where we also redefined the scale).
For the same reason we included the factor

g2

4π
G2

0 ¼
α

Zμ
ðB10Þ

in Eq. (18) such that Π̃0ðQ2Þ ¼ βμ2, because otherwise this
term would not renormalize correctly.

APPENDIX C: NUMERICS

Solving the DSEs in Fig. 3 is numerically quite non-
trivial because the dressing functions can diverge both in
the IR and UV, change signs, and they generally emerge
from competing contributions which can vary substantially
over many orders of magnitude.
The prime example is the gluon DSE in Eq. (32), where

one must ensure that its rhs is positive for all x in each
iteration step, since a zero crossing would lead to a
spacelike pole in the gluon dressing function ZðxÞ and
thus a tachyonic pole in the gluon propagator, i.e.,

1þΠðxÞ −Π
�
1

β

�
> 0 ∀ x: ðC1Þ

The self-energy ΠðxÞ is sketched in Fig. 24. It diverges in
the IR; with increasing x it eventually becomes negative
and develops a minimum before at large x it approaches
zero from below. This leads to the condition

Π
�
1

β

�
< minΠðxÞ þ 1 ðC2Þ

which defines an interval for the subtraction point
xsub ¼ 1=β. Thus, β can neither become too small nor
too large. In addition, the interval can differ in the iteration
steps since ΠðxÞ can take different intermediate values
before convergence is reached. Ideally the starting guess for
ΠðxÞ should not be too different from the converged
solution to prevent the function from doing wild jumps

during the iteration. In practice we always scan the full α
range from α → 0 up to α → ∞, where we extrapolate
the converged solutions at the previous values of α as the
starting guess for the next α. For small α convergence is
easy to achieve, whereas with increasing α the bump of
the gluon dressing which defines the shape in Fig. 24
becomes increasingly narrow and this limits the window
in β. For intermediate values of α the typical intervals
are 10−6 ≲ β ≲ 0.5.
Because convergence can be very slow, we employ a

Newton method whose implementation in the Yang-Mills
system was first described in Ref. [94]. To this end, we first
map the momentum interval x ∈ ð0;∞Þ to an interval ω ∈
ð−1; 1Þ in such a way that we can adjust the IR and UV
cutoffs ωmin and ωmax and adjust the density of grid points
in the IR, UVand mid-momentum regions separately. Next,
we expand the dressing functions GðxÞ, ZðxÞ and F3gðxÞ in
polynomials,

lnGðxÞ−1 ¼
X
n

gnPnðωÞ;

lnZðxÞ−1 ¼
X
n

znPnðωÞ;

asinhF3gðxÞ ¼
X
n

fnPnðωÞ; ðC3Þ

where the logarithm and asinh ensure that the functions do
not vary overly strongly over the momentum range and thus
a polynomial expansion converges rapidly (nmax ¼ 64 is
usually sufficient). In practice we employ Legendre poly-
nomials for PnðωÞ although the choice does not matter.
The inverse relations are

gn ¼
Z

dωΩðωÞPnðωÞ lnGðxÞ−1;

zn ¼
Z

dωΩðωÞPnðωÞ lnZðxÞ−1;

fn ¼
Z

dωΩðωÞPnðωÞ asinhF3gðxÞ; ðC4Þ

where ΩðωÞ are the polynomial weights according to the
orthogonality relation

FIG. 24. Sketch of the gluon self-energy and the limits on the
subtraction point xsub ¼ 1=β it imposes.
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Z
dωΩðωÞPmðωÞPnðωÞ ¼ δmn: ðC5Þ

The DSEs in Eq. (32) then take the form x ¼ rðxÞ, where
the vector x ¼ fgn; zn; fn; Zc; ZAg contains the moments of
the dressing functions together with the renormalization
constants, and rðxÞ denotes the right-hand side of the DSEs.
The “natural iteration method” means that if xs is the result
of the current iteration, one calculates xnew ¼ rðxsÞ, imple-
ments the vector xnew as the new start guess in the rhs and
repeats, hoping that the system eventually converges. The
convergence criterion is to minimize the function

FðxÞ ¼ x − rðxÞ ¼! 0 or FðxÞ2 ¼! 0: ðC6Þ

The Newton method tries to find a better guess for the
minimum from the linear approximation

Fiðxs þ δxÞ ¼ FiðxsÞ þ
∂Fi

∂xj
����
x¼xs|fflfflfflffl{zfflfflfflffl}

Jij

δxj þ…¼! 0; ðC7Þ

where δx and xnew are determined from

Jδx¼! − FðxsÞ ⇒ xnew ¼ xs þ δx: ðC8Þ

This finds the direction δx of the largest variation,
following a tangent along the minimization function
until it crosses zero. We optimize the procedure using
backtracking, where we test different solutions xnewðλÞ ¼
xs þ λδx; we then employ the value of λ that minimizes
FðxÞ2 along that direction as the starting guess for the next
iteration and repeat until the minimum is found.
In practice we still solve the DSEs for the dressing

functions GðxÞ, ZðxÞ and F3gðxÞ and only insert the
Newton step between iterations: After one iteration step
in Eq. (32), we convert the solutions to the vector FðxsÞ and
the Jacobian matrix J, determine xnewðλÞ and convert it
back toGðxÞ, ZðxÞ, F3gðxÞ, Zc and ZA to be used in the next
iteration. Each λ amounts to another iteration, however with
the same J. Therefore, the main additional complication is
the computation of J.
As an example, consider the ghost DSE in (32) whose

self-energy is given in Eq. (A19). After redefinitions and
rescaling, it becomes

ΣðxÞ ¼ −N
Z

KΣ; KΣ ¼ GðuþÞZðu−Þ
uþu2−

uð1 − z2Þ;

where
R

denotes the (dimensionless) four-momentum
integration, N ¼ 4πNc, and u� ¼ uþ x=4� ffiffiffiffiffi

ux
p

z. The
ghost part of the vector FðxÞ in Eq. (C6) is

FðghÞ
i ¼ gi −

Z
dωΩðωÞPnðωÞ ln ḠðxÞ−1; ðC9Þ

where the bar denotes the outcome on the rhs of the DSE.
The corresponding entries in the Jacobian are

∂FðghÞ
i

∂gj ¼ δij −
Z

dωΩðωÞPiðωÞḠðxÞ
∂
∂gj ½ΣðxÞ − Σð0Þ�;

∂FðghÞ
i

∂zj ¼ −
Z

dωΩðωÞPiðωÞḠðxÞ
∂
∂zj ½ΣðxÞ − Σð0Þ�;

∂FðghÞ
i

∂Zc
¼ −

Z
dωΩðωÞPiðωÞḠðxÞ; ðC10Þ

together with

∂FðghÞ
i

∂fj ¼ 0;
∂FðghÞ

i

∂ZA
¼ 0: ðC11Þ

The ingredients are the derivatives of the ghost self-energy,
where the derivative with respect to fj vanishes because
ΣðxÞ does not depend on the three-gluon vertex. From
ḠðxÞ−1 ¼ Zc þ ΣðxÞ we have ∂=∂ZcḠðxÞ−1 ¼ 1, and the
derivative with respect to ZA vanishes because ZA does not
explicitly appear in the ghost DSE.
From Eq. (C3) we have

∂GðxÞ
∂gj ¼ −PjðωÞGðxÞ;

∂ZðxÞ
∂zj ¼ −PjðωÞZðxÞ ðC12Þ

and therefore

∂
∂gj ΣðxÞ ¼ N

Z
KΣPjðωþÞ;

∂
∂zj ΣðxÞ ¼ N

Z
KΣPjðω−Þ; ðC13Þ

where the mapping x ↔ ω implies the same mapping for
u� ↔ ω�. Thus, the derivatives of the self-energies are
structurally similar to the self-energies except for the
appearance of the polynomials. The remaining entries of
the matrix J are constructed along the same lines.
Employing these techniques, the solution of the coupled

DSEs for a given parameter set ðα; βÞ typically takes 5…10
minutes on a single CPU, with 10…20 iterations until
convergence is reached.
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APPENDIX D: LONGITUDINAL SINGULARITIES
IN THE GHOST-GLUON VERTEX

Here we provide details on the Bethe-Salpeter equation
(BSE) for the longitudinal part of the ghost-gluon vertex
discussed in Sec. IV C. To this end, we write the general
ghost-gluon vertex in Eq. (51) as

Γμ
ghðq;QÞ ¼ −igfabc½aqμ þ bQμ�; ðD1Þ

where q ¼ p −Q=2 is the average ghost momentum and
the two dressing functions aðq2; q ·Q;Q2Þ, bðq2; q ·
Q;Q2Þ are related to A and B by

A ¼ a − 1; B ¼ b −
a
2
: ðD2Þ

From Eq. (D1) one can project out a and b via

a ¼ Q2q · Γ − q ·QQ · Γ
q2Q2 − ðq ·QÞ2 ;

b ¼ q2Q · Γ − q ·Qq · Γ
q2Q2 − ðq ·QÞ2 : ðD3Þ

The longitudinal massless poles we are looking for can only
come from the function b. Under a ghost-antighost sym-
metry the vertex would be charge-conjugation symmetric,
Γμ
ghðq;QÞ ¼ −Γμ

ghð−q;QÞ, such that b would need to be
antisymmetric in q ·Q, i.e., b ¼ ðq ·QÞb0 with b0 sym-
metric. In our present formulation of Landau gauge this
symmetry does not hold and therefore b can also have even
terms in q ·Q.
Writing the vertex DSE as

aqμ þ bQμ ¼ qμ þQμ

2
þMμ

tot; ðD4Þ

where Mμ
tot is the sum of all loop diagrams, then the

contribution from the “Abelian” diagram (second diagram
on the rhs in Fig. 17) is given by

Mμ ¼ g2
Nc

2

Z
k
ða1kμ þ b1QμÞI ;

I ¼ a2
Gðk2þÞGðk2−Þ

k2þk2−

Zðl2Þ
l4

K0: ðD5Þ

Here, k� ¼ k�Q=2 are the internal ghost momenta,
l ¼ k − q is the gluon momentum, a1 ¼ aðk2; k ·Q;Q2Þ
and b1 ¼ bðk2; k ·Q;Q2Þ are the dressing functions for the
top vertex, and a2 is attached to the vertex on the right.
Because the internal gluons are transverse, the contribution
from b2 drops out. Writing the momenta as

Q ¼
ffiffiffiffiffiffi
Q2

p
2
6664
0

0

0

1

3
7775; q ¼

ffiffiffiffiffi
q2

q 2
6664

0

0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p

z

3
7775;

k ¼
ffiffiffiffiffi
k2

p
2
6664
0 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
y

z0

3
7775; ðD6Þ

the kinematic function K0 takes the form

K0 ¼ q2k2ð1 −Ω2Þ −Q2½q2ð1 − z2Þ

þ k2ð1 − z02Þ − 2

ffiffiffiffiffi
q2

q ffiffiffiffiffi
k2

p
ðΩ − zz0Þ�; ðD7Þ

where Ω ¼ zz0 þ y
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
and the integral mea-

sure is

Z
k
¼ 1

ð2πÞ3
1

2

Z
Λ2

0

dk2k2
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dy: ðD8Þ

After working out the projection (D3), the DSE takes the
form

a ¼ 1þ g2
Nc

2

Z
k
a1y

k
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

1 − z2

s
I þ ð…Þ;

b ¼ 1

2
þ g2

Nc

2

Z
k

�
b1 þ a1

k
Q
z0 − zΩ
1 − z2

�
I þ ð…Þ; ðD9Þ

where ð…Þ denotes the contributions from the remaining
loop diagrams. Note that the integral for a is suppressed by
the factor y, which is integrated over a symmetric integral
and picks out the parts in I that are odd in y; for the
same reason the integrand is nonsingular for q → 0. This
is compatible with the observation that the loop contribu-
tions to the ghost-gluon dressing are suppressed and A
is small.
Concerning the integral for b, one can employ the

identity (A33) and write

z0 − zΩ
1 − z2

¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

1 − z2

s
: ðD10Þ

In the limit Q2 → 0, the z0 dependence in I drops out and
the integration over w=Q yields again a finite result. Thus,
the integrand is finite at Q2 ¼ 0, so the only possible
singularities can come from b itself and must match on both
sides of the equation. The equation for b (and equivalently
for B) thus becomes an inhomogeneous BSE,
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b ¼ ½…� þ g2
Nc

2

Z
k
Ib1; ðD11Þ

where the inhomogeneity ½…� is finite at Q2 ¼ 0. As
discussed below Eq. (58), one can solve a homogeneous
BSE for the Bethe-Salpeter amplitude φ, which is the
residue at the pole; if that equation has a solution (i.e., if
some eigenvalue becomes 1) at a certain value of Q2, then
there must be a corresponding pole in b.
We can solve the homogeneous BSE directly at Qμ ¼ 0,

in which case the function I becomes

I ¼ Gðk2Þ2
k4

Zðl2Þ
l4

q2k2ð1 −Ω2Þ: ðD12Þ

Since the ghost and gluon dressing functions therein were
obtained from the Yang-Mills DSEs with a tree-level ghost-
gluon vertex, we set a2 ¼ 1 for consistency. The resulting
homogeneous BSE at Q2 ¼ 0 is

φðq2Þ ¼ g2
Nc

2
q2

Z
k

Gðk2Þ2
k2

Zðl2Þ
l4

ð1 −Ω2Þφðk2Þ: ðD13Þ

Note that this implies φðq2 → 0Þ ∝ q2, which is consistent
with b ∝ q2=Q2 being a dimensionless function. For
large q2 we find φðq2Þ ∝ 1=q2 and the integral is con-
vergent. After employing the redefinitions leading to
Eqs. (32), the BSE becomes identical to Eq. (59) in the
main text.
Returning to the question of a ghost-antighost symmetric

ghost-gluon vertex, in that case the most general form of the
vertex is Eq. (D1) with b ¼ ðq ·QÞb0, where the tree-level
vertex corresponds to a ¼ 1 and b ¼ 0. The tree-level
contribution to the equation for b therefore vanishes
and the integrand of the BSE (D13) picks up a factor
k ·Q=q ·Q ¼ kz0=ðqzÞ, which strongly suppresses the
kernel. In particular, we find that the maximum value of
the eigenvalue λ0 for the scaling solution (α → ∞ in
Fig. 19) becomes λ0 ≈ 0.13, so there is no pole at
Q2 ¼ 0. Even if there was a pole, the divergence of the
function b ∝ q ·Q=Q2 would not be strong enough to
ensure the validity of Eq. (55). The emergence of longi-
tudinal poles in the ghost-gluon vertex can thus be related
to the lack of the ghost-antighost symmetry.
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