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We extract the excitation energy scales of the hadron spectra in a less model-dependent method using the
Schottky anomaly. The Schottky anomaly is a thermodynamical phenomenon that the specific heat of a
system consisting of a finite number of energy levels has a peak at finite temperature due to the energy gaps.
Using the masses of all hadrons that are experimentally established, we obtain the excitation energy scales
of the hadron spectra and investigate their flavor dependence.
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I. INTRODUCTION

Understanding the hadron structure is one of the impor-
tant subjects in hadron physics. In particular, the quest of
effective constituents of hadrons can be a clue to investigate
the hadron structure. For instance, the constituent quark
explains the fine structure of the quarkonia [1,2] and the
static properties, such as magnetic moment, of the light
hadrons [3,4], even though it is not one of the fundamental
elements of quantum chromodynamics. To identify effec-
tive degrees of freedom in composite objects, it is good to
investigate excitation modes. Recently it has been pointed
out in Refs. [5,6] that if one takes a diquark picture for the
Λc baryon the diquark-quark confinement potential should
be weaker than the quark-antiquark potential obtained in
heavy quarkonia in order to reproduce the Λc excitation
spectrum.
In this work, we visualize the excitation energy scales in

various hadronic spectra in a less model-dependent way by
examining specific heats obtained by hadronic mass spec-
tra. This method is used widely in different areas.
Reference [7] first applied for hadron physics to extract
the effective degrees of freedom of the constituent of a
hadron. This is based on the fact that the specific heat of a
system is closely related to dynamical degrees of freedom
in thermodynamics. This idea was also applied for nuclear
systems to investigate their collective degrees of freedom
[8]. Recently Ref. [9] investigated hadronic specific heats
calculated by observed heavy meson spectra in order to
extract different energy scales underlying the internal
dynamics of hadron resonances for the identification of
exotic hadrons. By following Ref. [9], we extend the study

to all of the observed hadrons, and investigate the hadron
structure in a model independent way by comparing the
visualized excitation energy scales systematically. In the
hadron spectra, excitations in the confinement potential are
major modes, while excitations induced by spin dependent
forces, such as spin-spin and spin-orbit interactions, are
minor and considered as fine structure. In this paper we try
to extract such major excitation modes in order to inves-
tigate the nature of the confinement force.
The paper is organized as follows. In Sec. II, we explain

the characteristics of the Schottky anomaly for two-state
and N-state systems, and apply it to a hadronic model
described with the Coulomb-plus-linear potential. In
Sec. III, we perform calculations to visualize the excitation
energy scales of hadrons using the Schottky anomaly, and
discuss their flavor dependence. Finally, Sec. IV is devoted
to a summary of this work and future prospects.

II. SCHOTTKY ANOMALY

The Schottky anomaly is a phenomenon in which the
specific heat has a peak called the Schottky peak at a finite
temperature. The temperature dependence of the specific
heat is determined by excitation energies of the system
when the number of energy levels in the system is finite.
Now we focus on low excited states because observed
hadrons are in low-lying states. In this section, we discuss
the Schottky anomaly using some examples. First, as one
of the simplest examples, we will discuss the two-state
system. Next, we investigate the characteristics of the
Schottky anomaly using more general systems. Finally,
we will discuss the Schottky anomaly seen in a model close
to observed hadronic systems.

A. Two-state system

Let us consider a two-state system with the ground state
energy E0 and the energy gap ΔE. The canonical partition
function of the system is obtained as
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ZðβÞ ¼ e−βE0ð1þ e−βΔEÞ; ð1Þ

where β is the inverse temperature. The expectation value
of the energy of the system can be written as

hEi ¼ −
1

Z
∂Z
∂β ; ð2Þ

using the partition function Z. With this energy expectation
value the specific heat of the system is written as

C ¼ ∂
∂T hEi ¼ kBβ2

∂2

∂β2 lnZ; ð3Þ

for β ¼ 1=kBT. Hereafter, we take unit of kB ¼ 1, and in
this unit the specific heat is a dimensionless quantity, and
the temperature T has the dimension of energy. From
Eqs. (1) and (3), the specific heat of the two-state system is
obtained as

C ¼ ðβΔEÞ2
�
2 cosh

βΔE
2

�
−2
: ð4Þ

As can be seen in Eq. (4), the specific heat of the two-state
system is given as a function of βΔE and is independent on
the energy of the ground state. The limiting values of the
specific heat at sufficiently high and low temperatures are
both 0. Therefore, the specific heat has amaximumvalue at a
finite temperature. Figure 1 plots the specific heat C in the
two-level system against βΔE. The specific heat takes a
maximum value when βΔE ≃ 2.4 and converges zero at
sufficiently high and low temperature. This behavior is
called the Schottky anomaly, and this type of the specific
heat is called the Schottky-type specific heat. If one observes
the peak temperature of the specific heat, Tpeak, one can
extract the excitation energy by using ΔE ¼ 2.4Tpeak.
The qualitative interpretation is as follows. For a two-level

system with energies E0 and E1, the probability to take the
ground stateE ¼ E0 at sufficiently low temperature is unity,

ProbðE ¼ E0Þ ¼ 1. If the temperature increases, the prob-
ability to take the excited state, ProbðE ¼ E1Þ, becomes
large. For the transition from E0 to E1 the system receives
heat from the exterior to excite the ground state with the
energy gap ΔE, and consequently the specific heat gets
large. If the temperature raises further, the probabilities for
taking these two states become equal, ProbðE ¼ E0Þ ¼
ProbðE ¼ E1Þ, and the system does not need to receive heat
from the outside. In this way, the specific heat increases and
takes a peak at certain finite temperature corresponding to
the energy gap ΔE.

B. N-state systems

Let us consider the specific heat of a system with several
states and discuss the effect of the multiple energy gaps in
the specific heat. The energy of the kth state is given by

Ek ¼ E0 þ ΔEk ðk ¼ 0;…; N − 1Þ; ð5Þ

and ΔEk is the excitation energy of the kth state from the
ground state and ΔE0 ¼ 0.
Now, in proceeding with the discussion here, we show

that the specific heat of the system generally does not
depend on the value of the ground state energy, but only on
the excitation energies. Using Eqs. (3) and (5) the partition
function of the system can be written as

ZðβÞ ¼
XN−1

k¼0

e−βEk ¼ e−βE0

XN−1

k¼0

e−βΔEk; ð6Þ

From Eq. (2), the expected value of energy is

hEi ¼ E0 −
1

z
∂z
∂β ; ð7Þ

where a reduced partition function z is defined by

zðβÞ≡XN−1

k¼0

e−βΔEk : ð8Þ

The specific heat is obtained by differentiating both sides of
Eq. (7) with temperature. At this time, the first term of the
right-hand side of Eq. (7) does not contribute to the specific
heat because it is a constant. The second term does not
depend on the ground state energy E0. Therefore, the
specific heat of the system is determined only by the
excitation energies, and independent of the ground state
energy.
We first consider the case for N ¼ 3, in which there are

two excitation energies, ΔE1 and ΔE2. In this system, the
reduced partition function z is given as

zðβÞ ¼ 1þ e−βΔE1 þ e−βΔE2 : ð9ÞFIG. 1. Specific heat of the two-state system as a function of
βΔE. The Schottky peak is seen at βΔE ≈ 2.4.
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Let us fix the second excitation energy as ΔE2¼400MeV.
We compare the specific heats calculated with ΔE1 ¼
50 MeV and ΔE1 ¼ 200 MeV. In the former case, two
excitation energies have different magnitudes, while in the
latter they are comparable. In Fig. 2, we plot the specific
heats for ΔE1 ¼ 50 MeV (a) and ΔE1 ¼ 200 MeV (b).
The solid lines show the specific heats of the three-state
systems. For comparison, we also plot the specific heats of
the two-state systems with ΔE1 and ΔE2 as the dashed and
dashed-dotted lines, respectively. In Fig. 2(a) there are two
separated peaks. Comparing it with the specific heat for the
two-state systems, one finds that the peak at lower temper-
ature corresponds to the smaller excitation energy ΔE1,
while the peak at higher temperature to the larger excitation
energy ΔE2. It is also seen in the figure that the height
of the peak at the lower temperature is higher than that of
the other. This implies that the specific heat of the three-
state system is dominated by the lower excitation mode.
Figure 2(b) shows the specific heat of the three-state system
with ΔE1 ¼ 200 MeV. Here one finds only one peak. It is
interesting to note that the peak position is just between the

temperatures corresponding to the excitation energies ΔE1

and ΔE2. Thus, when two excitation energies have similar
values, which means that two levels have a similar energy,
the specific heat has one peak at a temperature correspond-
ing to an energy between two excitation energies. In this
way we can extract an isolated excitation energy scale using
the Schottky anomaly without looking at fine energy gaps.
Next we demonstrate the effect on the Schottky peak by

higher excited states. For this purpose, we consider N-state
systems with an equal energy gap, ΔEk ¼ kΔE with
ΔE ¼ 400 MeV. Figure 3 shows the specific heats for a
2-state system (solid line), a 3-state system (dashed line),
and a 4-state system (dotted-dashed line). The peak temper-
atures can be read as 167 MeV, 213 MeV, and 256 MeV for
the 2-state, 3-state, and 4-state systems, respectively. The
excitation energy scale of these systems is 400 MeV. This
can be extracted in the 2-state system by reading the
temperature of the peak position and multiplying it by 2.4.
In the 3-state system, the Schottky peaks by these two
excitation modes are overlapped and only one peak appears
and the peak position is shifted about 20% higher. For the
4-state system, similarly, the peak position is shifted about
20% higher than that of the 3-state system. In this way, if
there is a series of excitation modes, the effect of higher
excited states on the peak position is seen in a 20% shift of
the peak position. This tells us that the estimate of the
energy scale by the Schottky anomaly has potentially about
20% error.
It is interesting to point out that the specific heat of the

N-state systems with an equal energy gap can be expressed
as a function of dimensionless parameter x ¼ βΔE as

C ¼ x2
P

k

P
l k

2e−ðkþlÞx − ðPkke
−kxÞ2

ðPke
−kxÞ2 : ð10Þ

Therefore, the peak positions of the specific heat are
determined by x independently of the explicit value of

FIG. 2. The solid line in each figure shows specific heat when
there are two excitation energies. Dashed lines and dashed-dotted
line shows the specific heat when ΔE ¼ ΔE1;ΔE2ð¼400 MeVÞ
with one excitation energy.

FIG. 3. Specific heats of the N-state systems with an equal
energy gap ΔE ¼ 400 MeV. The solid, dotted, and dashed-
dotted lines denote the specific heats of the 2-state, 3-state, and 4-
state systems, respectively.
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ΔE. Because the temperature is scaled as T ¼ xΔE, the
estimation error discussed above is independent of the
explicit value of ΔE.

C. Analysis of calculated data

In this subsection, we consider a more realistic spectrum
using a potential model for the heavy quarkonia and
investigate the behavior of the specific heat. The charmo-
nium spectrum can be reproduced well by a central
potential given by

VðrÞ ¼ −
4

3

αs
r
þ krþ V0; ð11Þ

with spin dependent forces as long as the D̄D threshold
does not open [2]. Here, αs, k, and V0 are the potential
parameters to be fitted by experimental observables. Here
we use a parametrization given in Ref. [5] as an example.
We calculate the energy eigenvalue of charmonia using
only the central potential. The eigenvalue can be obtained
by solving the eigenvalue equation

−
1

2μ

d2χlðrÞ
dr2

þ
�
VðrÞþlðlþ1Þ

2μr2

�
χlðrÞ¼En;lχlðrÞ; ð12Þ

where μ is the reduced mass of the charm and anti-charm
quarks. The charm quark mass is set as 1.5 GeV. Table I
shows the energy eigenvalues obtained in the calculation.
The explicit values of the parameters that we use are
k ¼ 0.9 GeV fm−1 and αs ¼ 0.4. Parameter V0 is adjusted
so that the ground state energy is to be zero. We also
calculate the charmonium spectrum using k¼0.4GeVfm−1

in order to check whether the Schottky peak can distinguish
the strength of the string tension. The partition function of
this system can be written as

ZðβÞ ¼
X
n;l

ð2lþ 1Þe−βEn:l : ð13Þ

Here, the coefficient is the degeneracy due to the magnetic
quantum number. The specific heats calculated from these
spectra are shown in Fig. 4. We summarize the values of the
peak temperature Tpeak in Table II. Comparing the results
for different values of k, one can see that the Schottky peak
can distinguish the size of the potential parameter.
In Sec. III, we will calculate the specific heats of the

observed hadron spectra to obtain the excitation energies.
There we consider the observed hadron spectra, which have
up to the first or second excited states. We obtain the
excitation energy scale by using ΔE ¼ 2.4Tpeak following
the two-state system. Here, we verify the validity of this
argument by performing a similar calculation using the
spectrum obtained by the model calculation with
k ¼ 0.9 GeV · fm−1. First, we obtain ΔE ¼ 362 MeV as
a result of calculating the excitation energy scale using the
states up to 1P. This is about 20% different from 430 MeV
that is the energy gap of in the ground state and the 1P state.
This difference comes from the degeneracy of the 1P states

TABLE I. Calculated energy eigenvalue of charmonium for
k ¼ 0.9, 0.4 GeV fm−1 in units of MeV, using αs ¼ 0.4,
μ ¼ 0.75 GeV.

State k ¼ 0.9 GeV · fm−1 k ¼ 0.4 GeV · fm−1

1S 0 0
1P 430 287
2S 604 384
1D 723 468
2P 890 564
1F 970 617
3S 1043 648
2D 1125 707
1G 1191 709
3P 1276 793
2F 1335 833
1H 1395 870 FIG. 4. Specific heat of the charmonium system calculated by a

quark model with potential (11).
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due to the orbital angular momentum l ¼ 1. In the
application for the observed spectra, we extract the exci-
tation energies without specifying the angular momentum
of the excited states by usingΔE ¼ 2.4Tpeak. Thus this may
underestimate the excitation energy about 20% and we
accept this difference as uncertainty of the estimation. We
also discuss the extraction uncertainty coming from the
number of the observed states. Let us take the potential (11)
again as an example. If we consider the excited states up to
the 1D state of the potential (11), the peak temperature for
this spectrum is about 10% larger than that for the spectrum
up to the 1P state according to Table II. Similarly the peak
temperature for the spectrum up to the 1F state is about
10% larger than that up to 1D state. Considering the fact
that only some lower excited states have been observed, we
evaluate the uncertainty of the estimation of the excitation
energies to be 20%.

III. APPLICATION TO HADRON

In this chapter, we apply the Schottky anomaly for the
observed hadron spectra and visualize a typical hadron
excitation energy scale for each hadron spectrum.
Furthermore, we investigate the hadron structure system-
atically by comparing the excitation energy scales of each
spectrum. We note that the specific heat and temperature
treated here do not represent the thermodynamic feature of
hadrons but are merely mathematical parameters. For a
hadronic system, the canonical partition function of the
system is given as

ZhadronðβÞ ¼
X
i

ð2Ji þ 1Þð2Ii þ 1Þe−βEi ; ð14Þ

using observed hadron mass Ei with the degeneracy of
the total angular momentum J and the isospin I. Here we
use the hadron masses without their decay width. The
specific heat of the system is expressed with the partition
function as

Chadron ¼ β2
∂2

∂β2 lnZhadron: ð15Þ

By plotting Chadron against temperature we read the
Schottky peak temperature Tpeak and then extract excited
energy scales of the system by

ΔE ¼ 2.4Tpeak: ð16Þ

Here we presume that the observed hadron spectra have up
to first or second excited states. It is important that the first
excited states should be observed enough to obtain reliable
results.
For the calculation of the specific heats we use the

hadron masses shown by the Particle Data Group [10] and
pick up the hadrons of which total angular moment and
isospin have been determined and of which existence is
sufficiently confirmed experimentally with • for mesons
and with either symbol **** or *** for baryons in the
summary tables. We have summarized the list of states used
in the calculations in this chapter in the Appendix.

A. Heavy mesons

In this section, we calculate the excitation energy scales
of heavy mesons using the Schottky anomaly. First we
perform calculations for heavy qurkonia and then for open
charm and open bottom states. Finally we discuss the flavor
dependence of heavy meson energy scales from these
results. Reference [9] calculated the specific heat of the
heavy mesons to search for exotic mesons.

1. Heavy quarkonia

In the calculation we use the charmonia listed in
Table IX. We calculate the specific heat using these
charmonium states with the spin degeneracy. Figure 5
shows the results of calculating the specific heat of the
charmonia as a function of 2.4T. The solid line in Fig. 5
shows the specific heat calculated with all of the charmonia

TABLE II. Peak temperature of the specific heats in units of
MeV.

k ¼ 0.9 GeV · fm−1 k ¼ 0.4 GeV · fm−1

States Tpeak 2.4Tpeak Tpeak 2.4Tpeak

Up to 1P 151 362 101 242
Up to 1D 166 398 109 262
Up to 1F 180 432 116 278
Up to 1G 191 458 122 293
Up to 1H 202 485 128 307

FIG. 5. Specific heat of charmonium. The solid line shows the
specific heat of all charmonium system. The dashed and dashed-
dotted lines denote the specific heats calculated by using
charmonia with s ¼ 0 and s ¼ 1 separately, respectively. The
separation is done in a way written in the text.
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in the list. We find that the solid line has two Schottky
peaks. From these peaks we read the excitation energies
ΔE ¼ 106 MeV and 441 MeV for the lower and higher
peaks, respectively. As will be described later, we consider
that the peak on the low temperature corresponds to the
hyperfine structure due to the spin-spin interaction and the
peak on the high temperature corresponds to the orbital
excitation due to the central potential.
In order to understand the nature of the excitation

energies, we separately plot the specific heats for the
charmonia by the spin configuration of the quarks, s ¼ 0
and s ¼ 1. If the charmonia are assumed to be cc̄ states, the
spin configuration can be specified by parity P and charge
conjugation C as follows. The parity of the meson can be
written as

P ¼ ð−1Þlþ1; ð17Þ
using the orbital angular momentum l. This is because
orbital motion gives parity ð−1Þl and qq̄ has negative
internal parity in addition. Next for C parity, because taking
charge-conjugation of qq̄ is same as the replacement of
quark and antiquark, the charge conjugate C is found as

C ¼ ð−1Þð−1Þlð−1Þsþ1; ð18Þ
for the orbital angular momentum l and the spin s. With
Eqs. (17) and (18) one finds

C ¼ Pð−1Þsþ1: ð19Þ
This implies that P ¼ C for s ¼ 1 and P ¼ −C for s ¼ 0.
In Fig. 5 the results of the specific heats for s ¼ 0 and

s ¼ 1 are shown as the short dashed line and dash-dotted
line, respectively. We see that the lower peak disappears in
both plots and find the excitation energies ΔE ¼ 453 MeV
for s ¼ 0 and 424 MeV for s ¼ 1. This means that the
lower peak seen in the full spectrum should correspond to
the hyperfine splitting induced by the spin-spin interaction
between quark and antiquark, and that the higher peak in
the full spectrum is common for both spin configuration.
Let us move to the calculation for bottomonium. Figure 6

shows the results of the specific heat for bottomonium. In
the calculation we use the bottomonia shown in Table X.
The solid line in Fig. 6 shows the specific heat calculated
with all of the bottomonia in the list. Again, we obtain two
excitation energy scales, and the values of each energy
scale are 51 MeV and 445 MeV. Similarly to charmonium,
we plot separately the specific heats for S ¼ 0 and S ¼ 1 in
Fig. 6 as dashed and dot-dashed lines, respectively. It is
considered that the peak on the low temperature corre-
sponds to the hyperfine structure and the peak on the high
temperature corresponds to the orbital excitation, as in the
case of charmonium. The energy scales of orbital excitation
of bottomonium is close to 440 MeV like the charmonium.
Therefore, the energy scales of the orbital excitation are

insensitive to the flavor for the heavy quarkonia. On the
other hand, the energy scale of the hyperfine structure of
bottomonium is about half that of charmonium. This can be
explained by the fact that the magnitude of splitting due to
spin-spin interaction can be written as,

ΔEhf ¼
32π

9

αs
mqmq̄

jΨð0Þj2; ð20Þ

using quark model [11], and the splitting decreases as the
quark mass increases. The excitation energy scales
obtained here are summarized in Table III.

2. Open charm and open bottom mesons

Here we consider open charm and open bottom mesons.
In the calculation we use the charmed mesons and
bottomed mesons shown in Tables XI and XII, respectively.
First, we calculate the specific heat of the open charm

system. Figure 7(a) shows the specific heat calculated with
all of the open charm mesons. There are two peaks again
and the corresponding excitation energies are read as
108 MeV and 344 MeV for lower and higher peaks,
respectively. We will see that the low temperature peak
is due to the mass difference between the s quark and the u
or d quark, or hyperfine structure.
We plot separately theDs andDmesons in Figs. 7(b) and

7(c) respectively. The solid lines in both figures show the

FIG. 6. Same as in Fig. 5 but for bottomonium.

TABLE III. Excitation energy scales of the heavy mesons
obtained by the Schottky anomaly in units of MeV.

cc̄ C ¼ 1, S ¼ 1 C ¼ 1, S ¼ 0

All 106, 441 143, 338 119, 353
s ¼ 0 s ¼ 1 Ds D�

s D D�
453 424 391 404 412 384

bb̄ B0 ¼ 1, S ¼ 1 B0 ¼ 1, S ¼ 0

All 51, 445 40, 386 39, 378
s ¼ 0 s ¼ 1 Bs B�

s B B�
446 437 390 395 378 393
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specific heat calculated with all of the Ds and D mesons.
Similar to the charmonium, two peaks appear for both
cases, and the values of the energy scale are 119 MeV and
353 MeV for strange open charm and 143 MeV and
338 MeV for nonstrange open charm.
In order to see the origins of these peaks, we separately

calculate the specific heats of the Ds and D�
s mesons and

the D and D� mesons, in which the Ds and D states
have Jp ¼ 0−; 1þ; 2−;…, while D�

s and D� have Jp ¼
0þ; 1−; 2þ;…. Although this is not a classification of the
quark spin configuration, we can resolve the splitting of the
ground states induced by the spin-spin interaction. The
separated specific heats are plotted in Figs. 7(b) and 7(c) as
dashed lines for Ds and D and dashed-dotted lines for D�

s
and D�. The figures show only one peak appears at higher
temperature for each line. This implies that the peaks
appearing at lower temperature in the solid lines of
Figs. 7(b) and 7(c) are considered to be the energy scale
of the hyperfine splitting as seen in quarkonia. It is notable
that the energy scales of the hyperfine splitting read
143 MeV for Ds and 119 MeV for D. This is opposite
to the quark mass dependence of the hyperfine splitting
Eq. (20). This would implies that the overlap of the wave
function jΨð0Þj2 forDs be larger than that forD. Regarding
the peaks at higher temperature, the energy scales read
391 MeV for Ds, 402 MeV for D�

s, 464 MeV for D, and
384MeV forD� from the dashed and dashed-dotted lines in
Figs. 7(b) and 7(c). These are larger than the energy scales
seen at higher temperature in the solid lines. That is, the
excitation energy scale found in the separated specific heats
for D −D�ðDs −D�

sÞ is larger than that of the higher peak
in the unseparated specific heat. According to the dis-
cussion in Sec. II B, it is expected that there is some energy
scale corresponding to the difference between DðDsÞ and
D�ðD�

sÞ and it is seen as one peak together with the orbital
excitation in the unseparated specific heat. For the origin of
the energy scale, we need detailed model calculations.
Next, we calculate the specific heat of the open bottom

system. Figure 8(a) shows the specific heat calculated with
all of the open bottom mesons and there are two peaks
again and the corresponding excitation energies are read
as 41 MeV and 367 MeV for lower and higher peaks,
respectively.
We plot separately the Bs and Bmesons in Figs. 8(b) and

8(c) respectively and the solid lines in both figures show the
specific heat calculated with all of the Bs and B mesons.
Similar to open charm, two peaks appear for both case,
and the energy scale values are 40 MeV and 386 MeV for
strange open bottom and 39 MeV and 378 MeV for
nonstrange open bottom.
In order to see the origins of these peaks, we separately

calculate the specific heats of the Bs and B�
s mesons and the

B and B� mesons. The separated specific heats are plotted

FIG. 7. Specific heats of the open charm systems. (a) Specific
heat calculated with all the open charm states given Table IX.
(b) Specific heats of the open charm states with strangeness. The
solid line stands for the specific heat of all the strange charm
mesons, while the dashed and dashed-dotted lines show the
specific heats of the Ds and D�

s mesons, respectively. (c) Specific
heats of the nonstrange open charm states. The solid line stands
for the specific heat of all the nonstrange charm mesons, while the
dashed and dashed-dotted lines show the specific heats of the D
and D� mesons, respectively.
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in Figs. 8(b) and 8(c) as dashed lines for Bs and B and
dashed-dotted lines for B�

s and B�. The figures show only
one peak appears at higher temperature for each line. This
implies that the peaks appearing at lower temperature in the
solid lines of Figs. 8(b) and 8(c) are considered to be the
energy scale of the hyperfine splitting as seen in open
charms. Regarding the peaks at higher temperature, the
energy scales read 390 MeV for Bs, 395 MeV for B�

s,
378 MeV for B, and 393 MeV for B� from the dashed and

dashed-dotted lines in Figs. 8(b) and 8(c). These energy
scales are a bit larger than those seen at higher temperature
in the solid lines. We do not find a strong indication for
the extra energy scale found in the open charm systems.
This would imply that the energy scale corresponding to
the difference of B − B�ðBs − B�

sÞ should be small.
Alternatively, the difference of the energy scale between
the separated and unseparated specific heats might be
caused by lack of open bottom states used in the calcu-
lation(see Sec. II C).

3. Summary of heavy mesons

We summarize the excitation energy scale of charmo-
nium, bottomonium, open charm and open bottom system
in Table III. In the heavy meson systems, we have found
two energy scales for hyperfine structure by spin-spin
interaction and the orbital excitation by central potential.
Comparing the results of charmonium and bottomonium,
we find that the energy scale of the orbital excitation is
about 440 MeV, and it is insensitive to the flavor of the
heavy mesons. On the other hand, the energy scale of
hyperfine structure becomes smaller as the quark mass
increases. For the open charm and bottom systems we
obtain a similar result of the quarkonia, that is, the two
peaks are found in the specific heats for all the open heavy
mesons; the higher peaks correspond to the orbital exci-
tations, while the lower peaks to the hyperfine splitting.
After separating the open heavy mesons in terms of
strangeness and spin, we find that the excitation energies
corresponding to the orbital motion are about 400 MeV
independently of their flavor.

B. Light mesons

In this section, we calculate the specific heat for light
mesons. First of all, let us start with the calculation of the
specific heat for all the light mesons summarized in
Table XIII. For the light mesons, there are several states
out of regularity such as Nambu-Goldstone bosons and
exotic candidates. These irregular mesons could spoil the
systematic extraction of the excitation energies. In Fig. 9(a)
we show the specific heat obtained by all the light mesons
in the solid line. The plot shows that there is only one peak
structure at 554 MeV. This energy scale is much larger than
the global excitation energy seen in the heavy mesons. We
expect that the Schottky peak in Fig. 9(a) contains several
excitation energies. To resolve these energies, we first
subtract the Nambu-Goldstone bosons (π, K, and η) from
the spectrum and calculate the specific heat without them.
As seen in the dashed line of Fig. 9(a), there are two peaks
at 178 MeV and 393 MeV. Next we remove the exotic
candidates, f0ð500Þ and K�

0ð700Þ, from the calculation.
The specific heat is shown in the dashed-dotted line of
Fig. 9(a). This plot shows two excitation energies at
13 MeV and 432 MeV. The lower peak comes from
the energy difference between ρð770Þ and ωð782Þ.

FIG. 8. Same as in Fig. 7 but for the open bottom systems.
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The position of the higher peak is closed to that of the
dashed line. Thus, we regard that the higher excitation
energy is a typical excitation energy scale of the light
mesons. It is interesting that this energy scale is very similar
with what we find in heavy mesons.
Next we decompose the light mesons in terms of their

isospin. Again we remove the Nambu-Goldstone bosons
and the two scalar mesons from the calculation. The solid
line in Fig. 9(b) shows the specific heat of the I ¼ 0 states
and the peak position is read as 401 MeV. Similarly the
specific heats of the I ¼ 1 and I ¼ 1=2 are shown in the
dashed and dashed-dotted lines of Fig. 9(b) respectively,
and the excitation energies are read as 450 MeV and
438 MeV. These excitation energy scales are similar to
that we have obtained using the light mesons before the

isospin decomposition. From these results excluding the
Nambu-Goldstone bosons and the scalar mesons, the
typical excitation energy scale of the light mesons is
estimated to be about 400 to 450 MeV. We summarize
the excitation energy scales of the light meson systems in
Table IV. Considering this result together with those of the
heavy mesons (Table III), we find flavor independence in
the excitation energy scale of the meson systems.

C. Baryons

In this section, we calculate the Schottky peaks of
baryon. First, we examine the light baryons, and next
we consider the heavy baryons. Finally we discuss the
flavor dependence of the baryon energy scales from these
results.

1. Light baryons

We calculate the specific heat using all of the light
baryons listed in Tables XIV and XV. In Fig. 10 we show
the specific heats calculated with all the light baryons and
find only one peak at 324 MeV. In this peak, several
excitation energies are expected to be contributed because
the hyperfine splitting can be larger than heavy quark
systems according to Eq. (20).
To resolve the compound excitations, we decompose the

light baryons in terms of their strangeness. In Fig. 11, we
show the specific heat for the N and Δ baryons in the solid
line. Only one peak is seen at 384 MeV. Further, we
decompose the spectrum into the N and Δ sectors in order
to resolve possible spin-spin interactions seen in the ground

FIG. 9. (a) Specific heats for the light mesons. The solid line
denotes the specific heat calculated with all the light mesons
given in Table XI. The dashed line stands for the specific heat
calculated without the Nambu-Goldstone bosons, π, K, η, while
the dashed-dotted line shows the one without the Nambu-Gold-
stone bosons and the scalar exotics, f0ð500Þ and K�

0ð700Þ.
(b) Specific heats of the light mesons for each isospin. The
specific heats are obtained without the Nambu-Goldstone bosons
and the scalar exotics. The solid, dashed, and dashed-dotted lines
show the specific heats of the light mesons with I ¼ 0, I ¼ 1, and
I ¼ 1=2, respectively.

FIG. 10. Specific heat of light baryon.

TABLE IV. Excitation energies of the light mesons obtained by
the Schottky anomaly in units of MeV.

All w=o π; K; η w=o, π; K; η; f0ð500Þ; K�
0ð700Þ

All 554 178, 393 13, 432
I ¼ 0 � � � � � � 401
I ¼ 1 � � � � � � 450
I ¼ 1=2 � � � � � � 438
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states of N and Δ. The decomposed specific heats are
shown in the dashed line for N and the dashed-dotted line
for Δ of Fig. 11. We find that the corresponding Schottky
peaks are 452 MeV and 427 MeV, respectively. These
values are larger than the peak position of the solid line
where the N and Δ are included into the calculation
collectively. This is because the mass difference of
Nð940Þ and Δð1232Þ, which is around 270 MeV, is also
seen in the Schottky peak of the N − Δ spectrum. Although
the Nð940Þ − Δð1232Þ mass difference stems from the
hyperfine splitting, one cannot resolve all the effects of the
hyperfine splitting in the decomposed specific heats.
Next we consider hyperons with S ¼ −1. The solid line

in Fig. 12(a) shows the specific heat for the Λ and Σ spectra
and we find two peaks at 66 MeVand 358 MeV. The lower
peak is considered to be the mass difference of Λð1115Þ
and Σð1190Þ, because this peak disappears when we
consider the specific heat separately for Λ and Σ after
performing the isospin decomposition. The separated
specific heats for Λ and Σ are plotted as the dashed and
dashed-dotted lines in Fig. 12(a) respectively. We find that
they have only one Schottky peak located at 372 MeV and
373 MeV, respectively. Since the specific heat of the Σ
system has a shoulder on the low temperature, it can be
expected that an energy scale other than orbital excitation
appears. This may be considered to be spin-spin splitting
between Σð1190Þ and Σð1385Þ. But, we cannot separate
this effect by the model independence way. We also plot
the specific heat for Λ without the Λð1405Þ resonance,
which is a candidate of hadronic composite states [12–17],
in Fig. 12(a) as the dotted line. We find the excitation
energy scale to be 392 MeV.
Finally, we will analyze the Ξ system. Unfortunately

there are only several states confirmed experimentally. The
specific heat is shown in Fig. 12(b), and the excitation
energy scale is found to be 326 MeV. Only one peak
appears, being considered to be the average energy scale of

hyperfine structure and orbital excitation like other bary-
ons. We cannot separate the effect of the ground state
hyperfine structure by a method with model independence.

2. Heavy baryons

In this section, we investigate the Schottky peaks for
heavy baryons listed in Table XVI. In Fig. 13(a) we show
the specific heat for the Λc and Σc baryons in the solid line.
Here there are only one peak in the Λc − Σc spectrum at
148 MeV. This peak may be contributed mainly by the
mass difference between the ground states of Λc and Σc
together with their internal excitations. In order to see the
internal excitations in the Λc baryon, we show separately
the specific heat of the Λc baryon in the dashed line of
Fig. 13(a) and find a Schottky peak at 329 MeV. For Σc,
we do not have enough states to investigate the internal
excitation energy.
Figure 13(b) shows the results of the calculation of the

specific heats for the Ξc system, which contains one charm

FIG. 11. Specific heats of the light unflavored baryons. The
solid line stands for the specific heat calculated with all the
unflavored baryons, while the dashed and dashed-dotted lines
show those of the nucleons and the Δ baryons, respectively.

FIG. 12. Specific heats of the hyperons. (a) Specific heats of the
hyperonswith strangenessS ¼ −1. The solid line shows the specific
heats for the Λ and Σ baryons, while the dashed and dashed-dotted
lines stand for those for theΛ andΣ baryons, respectively. Thedotted
line shows the specific heat ofΛwithoutΛ�ð1405Þ. (b) Specific heat
of the hyperons with strangeness S ¼ −2.
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quark and one strange quark. The energy scale is found to
be 154 MeV. This peak may be considered to be a mixture
of orbital excitation and hyperfine splitting as with other
baryons.
Finally, the same analysis is performed for the Λb − Σb

system as the charmed baryons. The specific heat is shown
in Fig. 13(c) as the solid line and we find the energy scale to
be 143 MeV. Again, this may correspond to the mass
difference between the ground states of Λb and Σb. We also
show the specific heat calculated with only the Λb states in
Fig. 13(c) as the dashed line. This plot shows that the
energy scale is 290 MeV.

3. Discussion for the baryon system

Table V summarizes the baryon excitation energies
extracted by the Schottky anomaly. As seen above, it is
hard to separate out the hyperfine splitting in the baryon
excitations in a model independent way. In order to
investigate the flavor dependence of the energy scale of
the baryons systematically, we compare the energy scales
of N, Λ, Λc, and Λb. The Λ, Λc, and Λb baryons have
isospin I ¼ 0. This means that the ud system in the ground
states of Λs has the spin zero and the spin-spin force may
not contribute to the mass spectrum. The ratios of the
excitation energy to the nucleon one is found to be 1.00,
0.82, 0.73, 0.64 for N, Λ, Λc, and Λb, respectively.
In order to extract the systematics of the excitation

energies among the N, Λ, Λc, and Λb baryons, we
investigate the scaling law of the excitation energy. We
assume that the excitation energy can be described by the
power of a mass scale of the system:

ΔEðMÞ ¼ a
ðM=ΛÞb ; ð21Þ

where a and b are constant parameters, M is a mass of
interest and Λ is a normalization of the mass scale. Here we

FIG. 13. Specific heats of the heavy baryons. (a) Specific heats
of the charmed baryons with strangeness S ¼ 0. The solid line
shows the specific heats for the Λc and Σc baryons, while the
dashed line stands for that for the Λc baryons only. (b) Specific
heat of the Ξc baryon. (c) Specific heats of the bottomed baryons
with strangeness S ¼ 0. The solid line shows the specific heats
for the Λb and Σb baryons, while the dashed line stands for that
for the Λb baryons only.

TABLE V. Excitation energy scales of the baryons obtained by
the Schottky anomaly in units of MeV. Symbol S, C, and B0 stand
for strangeness, charm and bottom quantum numbers, respec-
tively. The value in the bracket is the excitation energy scale of
the Λ system without Λð1405Þ.
Light baryons S ¼ 0 S ¼ −1 S ¼ −2

All 384 66, 358 326
I ¼ 1

2
; 0 452 372 (392) � � �

I ¼ 3
2
; 1 427 373 � � �

Heavy baryons C ¼ 1, S ¼ 0 C ¼ 1, S ¼ −1 B0 ¼ −1, S ¼ 0
All 148 154 143
I ¼ 0 329 � � � 290
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set Λ ¼ 1 MeV. We try several models to investigate the
systematics of the excitation energy.
First, we consider the excitation energy to be a function

of the ground state mass M0 for each system. We fit the
excitation energies by Eq. (21) with M ¼ M0 and find out
the values of a and b. The ground state masses used in the
fitting are shown in Table VI. The fitted values are a ¼
2034 MeV and b ¼ 0.23. This implies that ΔE ∝ M−1=4

0 .
Next, we consider ΔE to be a function of a constituent

quark mass Mq. These baryons have the up and down
quarks in common and one of the quarks are different
among them. Therefore, these baryons can be specified by
u or d, s, c, and b quarks, respectively. The excitation
energy can be regarded as a function of these constituent
quarks. We fit the excitation energy by Eq. (21) with
M ¼ M0. In Table VI, we show the values of the constitu-
ent quark masses used in the fitting and the fitted values of
a and b. The fitted value of b tells us that ΔE ∝ M−1=6

q .
Finally, we take a diquark picture for these baryons. We

regard the u and d quarks in the baryon to form a diquark and
these baryon are considered to be a two-body system of the
diquark and a quark. In this picture the excitation energy can
be a function of the reduced mass μ of the diquark and the
quark. Here we assume the constituent diquark mass as
Mdq ¼ 500 MeV and the constituent quarkmasses as shown
in Table VI. In Fig. 14(a) we show the excitation energy as a
function of the reduced mass. Fitting the excitation energy
by Eq. (21) with M ¼ μ, we obtain a ¼ 5238 MeV and
b ¼ 0.47. This implies that ΔE ∝ μ−1=2. Because this
dependence is same as a simple harmonic oscillator, the
system can be regarded as a ud diquark and quark two-body
system with a harmonic oscillator potential. From the fitted
value a the string constant of the oscillator is found to be
k ¼ 707 MeV=fm2. We perform the same calculation with-
out Λð1405Þ, and we obtain a ¼ 5730 MeV and b ¼ 0.49.
As a result, the tendency of ΔE ∝ μ−1=2 appears to be more
probable. In Fig. 14(a)we also plot the excitation energies for
ΛwithoutΛð1405Þ and fitted excitation energy as the dashed
line. This plot shows that the excitation energy of Λ without

Λð1405Þ appears closer to the fitted line and the systematics
for the baryon excitation energy gets better than that with
Λð1405Þ. This implies that theΛð1405Þ can be considered as
an exotic hadron better than other baryons.
Now assuming that these baryons are composed of a ud

diquark and a quark with a harmonic oscillator potential,
we try to extract the string constant k and the ud diquark
mass Mdq from the excited energies. For the harmonic
oscillator system the excitation energy is described as

TABLE VI. Parameters used for discussion in Sec. III C 3. ΔE
is the excitation energy scale obtained by the Schottky anomaly.
M0 is the ground state mass of each baryon. Mq is an assumed
values of the constituent quark mass of each baryon. μ is the
reduced mass of the ud diquark and the constituent quark mass,
where the diquark mass is assumed to be Mdq ¼ 500 MeV.

ΔE(MeV) M0(MeV) Mq(MeV) μ(MeV)

N 452 940 300 188
Λ 372 1116 450 237
Λc 329 2286 1500 375
Λb 290 5620 4000 444
a(MeV) � � � 2034 1073 5238
b � � � 0.2306 0.160 0.473

FIG. 14. (a) Excitation energy scales of baryon as a function of
the reduced mass of the ud diquark and the constituent quark. The
plus symbol points are the excitation energy obtained by the
Schottky anomaly, while the solid line denotes the calculation
using Eq. (21) with the fitted values a ¼ 5238 MeV and
b ¼ 0.47. The diquark mass is assumed to 500 MeV. The
constituent quark masses used in the plot are shown in Table VI.
The times symbol point is the excitation energy of Λ without
Λ�ð1405Þ and the dashed line is the calculation Eq. (21) with
a ¼ 5730 MeV and b ¼ 0.49, which is obtained without
Λ�ð1405Þ. (b) Excitation energy scales of baryon as a function
of the constituent quark mass Mq. The solid line is calculated
using Eq. (22) with the fitted values k ¼ 890 MeV=fm2 and
Mdq ¼ 445 MeV. The dashed line is the calculation Eq. (22) with
k ¼ 922 MeV=fm2 and Mdq ¼ 474 MeV, which is obtained
without Λ�ð1405Þ.
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ΔE ¼
ffiffiffi
k
μ

s
; with μ ¼ MdqMq

Mdq þMq
: ð22Þ

By fitting the excitation energies with Eq. (22), we find that
k ¼ 890 MeV=fm2 and Mdq ¼ 445 MeV. In Fig 14(b) we
show the excitation energies of the baryons extracted by
the Schottky anomaly in points as a function of the
constituent quark mass Mq together with that obtained
using the fitted values of k and Mdq in the solid line. We
perform the same calculation without Λð1405Þ, and we
obtain k¼992MeV=fm2 andMdq¼474MeV. In Fig. 14(b)
we also show the fitted excitation energy without Λð1405Þ
as the dashed line.

D. Excitation energy scales for positive and negative
parity hadrons

The Nð1440Þ nucleon resonance is the first excited
state of nucleon with JP ¼ 1

2
þ. This state is called Roper

resonance [18] and the mass cannot be reproduced by
simple quark models [19]. The property of the Roper
resonance is one of the important subject in hadron physics.
It was pointed out that similar lower excited states with
positive parity are also found for hyperons [20], and
recently their heavy baryon candidates have been proposed
in Ref. [21]. It is very interesting that these Roper like
excited states are located about 500 MeV higher than their
ground state. Here we separately calculate the excitation
energies for the positive and negative party baryons.
For the N, Δ, Λ, Σ, Λc, and Λb baryons, we calculate the

excitation energy scale of the positive and negative parity
states using their specific heats. Figure 15(a) shows the
specific heats of the positive parity states. We read the
excitation energies from the figure and we summarized
the excitation energy scales in Table VII. The obtained
excited energies are around 500 MeV less dependently on
their flavor. This supports the proposal given in Ref. [21].
In order to see the excitation energy to negative parity
states, we calculate the specific heat with the negative
parity states together with the ground state. Figure 15(b)
shows the specific heats and Table VII summarizes the
excitation energies extracted from the specific heats. From
the table we find strong flavor dependence of the excited
energies to the negative parity states; the excitation energy
gets smaller for the heavier baryons. This is consistent with
what we have found in Sec. III C 3. Thus, we say that for
baryons we have flavor dependence on the orbital excita-
tion energies. For the negative parity Λ baryon, we also
calculate the specific heat without Λð1405Þ and find the
excitation energy scale to be 410 MeV, which is larger than
that with Λð1405Þ. As a result, the difference of the
excitation energy scales between Λ and Σ gets smaller.
For mesons also, we calculate the excitation energy scale

of the positive and negative parity states. In order to see the
excitation energy to the positive parity states, we calculate

the specific heat with the positive parity states together with
the ground state, which has a negative parity, for each
flavor. Figure 16(a) shows the specific heats of the heavy
mesons, while Fig. 16(b) plots those for the light mesons
without the Nambu-Goldstone bosons, f0ð500Þ and
K�

0ð700Þ. Table VIII summarizes the excitation energies
extracted from the specific heats. We find different exci-
tation energy scales for heavy quarkonia and open heavy
states. The former is around 440 MeV, while the latter

FIG. 15. (a) Specific heat of the positive parity baryons. The
solid line, short dashed, short dashed-dotted, long dashed, long
dashed-dotted, and dotted lines show specific heat of the nucleon,
Δ, Λ, Σ, Λc, and Λb baryons, respectively. (b) Same as (a) but for
negative parity baryons. In addition, the dashed-dashed-dotted
line shows specific heat of Λ without Λ�ð1405Þ.

TABLE VII. Excitation energy scales of the positive and
negative parity baryons obtained by the Schottky anomaly in
units of MeV. The value in the bracket is excitation energy scale
of Λ system without Λð1405Þ.

N Δ Λ Σ Λc Λb

þ Parity 557 501 527 468 450 407
− Parity 510 509 373 (410) 427 307 251
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around 330 MeV. For the light mesons, the I ¼ 1 states
have rather a larger excitation energy (∼460 MeV) than
those for the I ¼ 0 and I ¼ 1=2 states (∼410 MeV). These
energies are close each other, but we do not find their
systematics. If one could find the origin of the difference of
these energy scales, it would be interesting. Figures 16(c)
and 16(d) show the specific heats of the negative parity
mesons. Unfortunately, for the open heavy states, we do
not have enough states to investigate their excitation

energies. The extracted energies are summarized in
Table VIII. Although we find a large flavor dependence
in the excitation energies, we could not find significant
systematics in the flavor dependence.

IV. SUMMARY

The specific heats of the hadronic systems have been
calculated using the hadron masses observed in experiment.
Weuse the Schottky anomaly to extract the typical excitation
energy scales of a hadronic system ΔE. The extraction is
done by reading the temperature Tpeak where the specific
heat has a peak and by assuming ΔE ≃ 2.4Tpeak, which is a
general relation in the two-state system.
We have obtained excitation energy scales for hadronic

systems. Among the excitation energy scales, we have
pinned down that of the hyperfine structure in the heavy
meson systems and the excitation energy coming from the
global structure of the confinement potential which is seen
commonly in all of the hadron spectra. Thus, the latter scale

TABLE VIII. Excitation energy scales of the positive and
negative parity mesons obtained by the Schottky anomaly in
units of MeV.

Heavy mesons Light mesons

cc̄ bb̄ D Ds B Bs I ¼ 0 I ¼ 1 I ¼ 1=2

þ parity 438 454 340 348 321 329 418 459 398
− parity 544 635 � � � � � � � � � � � � 440 569 639

FIG. 16. (a) Specific heat of the positive parity heavy mesons. The solid line, short dashed, short dashed-dotted, long dashed, long
dashed-dotted, and dotted lines show specific heat of the charmonium, bottomonium,D,Ds, B, and Bs mesons, respectively. (b)Specific
heat of the positive parity light mesons. The solid line, dashed, dashed-dotted lines show specific heat of the I ¼ 1, I ¼ 0, and I ¼ 1=2,
mesons, respectively. (c) Specific heat of the negative parity heavy mesons. The solid line, dashed, dashed-dotted lines show specific
heat of the charmonium and bottomonium mesons, respectively. (d) Same as (b), but for negative parity light mesons.
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may stem from orbital excitation. In the meson system, the
energy scale of the orbital excitation is found to be 400–
440 MeV insensitively to flavor dependence. On the other
hand, in the baryon systems, we find flavor dependence of
the energy scale of orbital excitation. The excitation
energies for heavier systems are smaller than those for
lighter systems. We have found by comparing the obtained
excitation energies of N, Λ, Λc, and Λb baryons, which
have similar isospin structures, that the excitation energy
for these baryons can be described as ΔE ∝ μ−1=2, where μ
is the reduced mass of the consistent quark and a ud
diquark. This implies that these baryons may be described
by a constituent quark and a ud diquark with a harmonic
oscillator potential. We have also found that without the
Λð1405Þ resonance this systematics becomes better. This
gives a further support for Λð1405Þ to be an exotic hadron.
We have also examined separately the excitation energies to
the positive and negative parity excited states from the
ground state for baryons. We have found that the positive
parity excitation energy for the baryons are rather flavor
independent as pointed out in Ref. [21], while the negative
parity excitation energies have flavor dependence that the
heavier baryons have smaller excitation energies than
the lighter baryons. For the mesons, we have not found
significant systematics for the separated excitation ener-
gies. As a future prospect, it would be interesting to confirm
these conclusions if one could observe further excited
states, such as open heavy mesons, Ξ, Ξc, and Ξb baryons,
in which lower excited states are not sufficiently observed.
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APPENDIX: TABLES OF STATES USED FOR
CALCULATION OF SPECIFIC HEAT

In this section we list the hadron states used to calculate
the specific heat. We use the value in the bracket of the
name of the state for its mass.

TABLE IX. Charmonium states used in the calculation. In the
left (right) line, the charmonia in which two quarks form spin 0
(1) are listed. (See the text for the details.)

ηc, hc JPC Ψ; χc JPC

ηcð2984Þ 0−þ J=Ψð3097Þ 1−−

hcð3525Þ 1þ− χc0ð3415Þ 0þþ
ηcð3638Þ 0−þ χc1ð3511Þ 1þþ

χc2ð3556Þ 2þþ
Ψð3686Þ 1−−

Ψð3770Þ 1−−

Ψ2ð3823Þ 2−−

Ψ3ð3842Þ 3−−

χc1ð3872Þ 1þþ
χc2ð3930Þ 2þþ
Ψð4040Þ 1−−

χc1ð4140Þ 1þþ
Ψð4160Þ 1−−

Ψð4230Þ 1−−

χc1ð4274Þ 1þþ
Ψð4360Þ 1−−

Ψð4415Þ 1−−

Ψð4660Þ 1−−

TABLE X. Bottomonium states used in the calculation. In the
left (right) line, the bottomonia in which two quarks form spin 0
(1) are listed. (See the text for the details.)

ηb; hb JPC Ψ; χb JPC

ηbð9399Þ 0−þ ϒð9460Þ 1−−

hbð9899Þ 1þ− χb0ð9859Þ 0þþ
χb1ð9893Þ 1þþ
χb2ð9912Þ 2þþ
ϒð10023Þ 1−−

ϒ2ð10164Þ 2 − −
χb0ð10233Þ 0þþ
χb1ð10255Þ 1þþ
χb2ð10269Þ 2þþ
ϒð10355Þ 1−−

χb1ð10513Þ 1þþ
χb2ð10524Þ 1þþ
ϒð10579Þ 1−−

ϒð10860Þ 1−−

ϒð11020Þ 1−−
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TABLE XII. Open bottom states used in the calculation.

B;B� JP Bs; B�
s JP

Bð5279Þ 0− Bsð5367Þ 0−

Bð5721Þ 1þ Bs1ð5830Þ 1þ
B�ð5325Þ 1− B�

sð5425Þ 1−

B�
2ð5747Þ 2þ B�

s2ð5840Þ 2þ

TABLE XIII. Light meson states used in the calculation.

I ¼ 1 I ¼ 0 I ¼ 1
2

π; ρ; a; b JPC η; η0;ω;ϕ; h; h0; f; f0 JPC K; K� JP

πð135Þ 0−þ f0ð500Þ 0þþ Kð498Þ 0−

ρð770Þ 1−− ηð547Þ 0−þ K�
0ð700Þ 0þ

a0ð980Þ 0þþ ωð782Þ 1−− K�ð892Þ 1−

b1ð1235Þ 1þ− η0ð958Þ 0−þ K1ð1270Þ 1þ
a1ð1260Þ 1þþ f0ð980Þ 0þþ K1ð1400Þ 1þ
πð1300Þ 0−þ ϕð1020Þ 1−− K�ð1410Þ 0þ
a2ð1320Þ 2þþ h1ð1170Þ 1þ− K�

0ð1430Þ 0þ

π1ð1400Þ 1−þ f2ð1270Þ 2þþ K�
2ð1430Þ 2þ

a0ð1450Þ 0þþ f1ð1285Þ 1þþ K�ð1680Þ 1−

ρð1450Þ 1−− ηð1295Þ 0−þ K2ð1770Þ 2−

π1ð1600Þ 1−þ f0ð1370Þ 0þþ K�
3ð1780Þ 3−

a1ð1640Þ 1þþ ηð1405Þ 0−þ K2ð1820Þ 2−

π2ð1670Þ 2−þ h1ð1415Þ 1þ− K�
4ð2045Þ 4þ

ρ3ð1690Þ 3−− f1ð1420Þ 1þþ
ρð1700Þ 1−− ωð1420Þ 1−−

a2ð1700Þ 2þþ ηð1475Þ 0−þ
πð1800Þ 0−þ f0ð1500Þ 0þþ
π2ð1880Þ 2−þ f02ð1525Þ 2þþ

a4ð1970Þ 4þþ η2ð1645Þ 2−þ
ωð1650Þ 1−−

ω3ð1670Þ 3−−

ϕð1680Þ 1−−

f0ð1710Þ 0þþ
ϕ3ð1850Þ 1−−

η2ð1870Þ 2−þ
f2ð1950Þ 2þþ
f2ð2010Þ 2þþ
f4ð2050Þ 4þþ
ϕð2170Þ 1−−

f2ð2300Þ 2þþ
f2ð2340Þ 2þþ

TABLE XIV. Light unflavored baryon states used in the
calculation.

NðI ¼ 1=2Þ JP ΔðI ¼ 3=2Þ JP

Nð940Þ 1
2
þ Δð1232Þ 3

2
þ

Nð1440Þ 1
2
þ Δð1600Þ 3

2
þ

Nð1520Þ 3
2
− Δð1620Þ 1

2
−

Nð1535Þ 1
2
− Δð1700Þ 3

2
−

Nð1650Þ 1
2
− Δð1900Þ 1

2
−

Nð1675Þ 5
2
− Δð1905Þ 5

2
þ

Nð1680Þ 5
2
þ Δð1910Þ 1

2
þ

Nð1700Þ 3
2
− Δð1920Þ 3

2
þ

Nð1710Þ 1
2
þ Δð1930Þ 5

2
−

Nð1720Þ 3
2
þ Δð1950Þ 7

2
þ

Nð1875Þ 3
2
− Δð2200Þ 7

2
−

Nð1880Þ 1
2
þ Δð2420Þ 11

2
þ

Nð1895Þ 1
2
−

Nð1900Þ 3
2
þ

Nð2060Þ 5
2
−

Nð2100Þ 1
2
þ

Nð2120Þ 3
2
−

Nð2190Þ 7
2
−

Nð2220Þ 9
2
þ

Nð2250Þ 9
2
−

Nð2600Þ 11
2
−

TABLE XV. Light strange baryon states used in the calculation.

ΛðI ¼ 0Þ JP ΣðI ¼ 1Þ JP ΞðI ¼ 1=2Þ;ΩðI ¼ 0Þ JP

Λð1115Þ 1
2
þ Σð1190Þ 1

2
þ Ξð1315Þ 1

2
þ

Λð1405Þ 1
2
− Σð1385Þ 3

2
þ Ξð1530Þ 3

2
þ

Λð1520Þ 3
2
− Σð1660Þ 1

2
þ Ξð1820Þ 1

2
−

Λð1600Þ 1
2
þ Σð1670Þ 3

2
− Ξð2030Þ 5

2
?

Λð1670Þ 1
2
− Σð1750Þ 1

2
− Ωð1672Þ 3

2
þ

Λð1690Þ 3
2
− Σð1775Þ 5

2
−

Λð1800Þ 1
2
− Σð1910Þ 3

2
−

Λð1810Þ 1
2
þ Σð1915Þ 5

2
þ

Λð1820Þ 5
2
þ Σð2030Þ 7

2
þ

Λð1830Þ 5
2
−

Λð1890Þ 3
2
þ

Λð2100Þ 7
2
−

Λð2110Þ 5
2
þ

Λð2350Þ 9
2
þ

TABLE XI. Open charm states used in the calculation.

D;D� JP Ds; D�
s JP

Dð1870Þ 0− Dsð1968Þ 0−

Dð2420Þ 1þ Ds1ð2460Þ 1þ
Ds1ð2536Þ 1þ

D�ð2007Þ 1− D�
sð2112Þ 1−

D�
0ð2300Þ 0þ D�

s0ð2317Þ 0þ

D�
2ð2460Þ 2þ D�

s2ð2573Þ 2þ

D�
s1ð2700Þ 1−
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−
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þ
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