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We apply a dynamical three-constituent quark light-front model to study the proton. The dynamics is
based on the notion of a diquark (bound or virtual) as the dominant interaction channel, which parameterize
a contact interaction between the quarks in order to build the three-body Faddeev Bethe-Salpeter equations
for the valence state, and we focus on the totally symmetric part of the wave function. The Dirac
electromagnetic form factor is used to fix the model parameters, and the valence wave function is obtained.
From that we investigate its Ioffe-time image, nonpolarized longitudinal and transverse momentum
distributions, and the double momentum distribution.
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I. INTRODUCTION

The complex nucleon wave function on the null plane
ðxþ ¼ tþ z ¼ 0Þ expressed in the Fock space in terms of
its constituent degrees of freedom, namely quarks and
gluons at a given scale μ and strongly interacting, ulti-
mately provides the image through the associated proba-
bility densities [1–3]. The relevant degrees of freedom at
the hadronic scale are the dressed constituents, which carry
the complex infrared (IR) physics, namely, the confinement
and spontaneous chiral symmetry breaking (χSB). In
particular, the dynamical χSB is reflected in the large
dressing of the light-flavored quarks, and also in the
nucleon mass [3]. The large IR dressing of the gluon is
also well known as computed with lattice QCD (for a recent
discussion of the gluon propagator in the Landau gauge
see [4]).
The light-front (LF) wave function is an eigenstate of the

mass squared operator and the compatible operators P⃗
(momentum), J2 (squared angular momentum), Jz, and
other compatible operators like the parity. However, Pz, J⃗⊥,
and parity are not diagonal in the Fock space; i.e., they
contain the interaction [1,2]. Although simple to state, still
today the connection between QCD in Euclidean space,
their IR properties, with the LF wave function, and its Fock
decomposition is yet a challenge for our understanding,
beyond the large momentum behavior that thanks to the

asymptotic freedom is well known, like the counting rules
(see, e.g., [1]) as well as the UV behavior of the Fock
amplitudes [5].
Ideally the LF nucleon wave function onto the null plane

should have an infinite number of Fock-state components
that evolves with the renormalization scale μ. The wave
function can be decomposed into Fock components each
one associated with a probability amplitude Ψnðx1; k⃗1⊥;
x2; k⃗2⊥;…; μÞ for n ≥ 3 partons, which is invariant under
LF kinematical boosts. The probability corresponding to
each Fock component is given by

PnðμÞ ¼
�Yn

i¼1

Z
d2ki⊥
ð2πÞ2

Z
1

0

dxi

�
δ

�
1 −

Xn
i¼1

xi

�

× δ

�Xn
i¼1

k⃗i⊥
�
jΨnðx1; k⃗1⊥; x2; k⃗2⊥;…; μÞj2; ð1Þ

where the transverse momentum of the constituent is k⃗i⊥
and its longitudinal momentum fraction xi. We observe that
the probability PnðμÞ is invariant under LF kinematical
boosts including translations on the null-plane hypersur-
face, so that we can choose, in particular, the frame where
the transverse momentum vanishes.
The valence component corresponds to n ¼ 3. For

simplicity, we have not depicted the dependence on the
polarization state of the nucleon, as well as its constituents.
The probability for each Fock component is PnðμÞ, where
we kept the scale dependence. At the hadron scale ð∼ΛQCDÞ
the dominant component is the valence one, and for
example in the pion case it amounts to about 70% as it
has been computed recently in a Bethe-Salpeter (BS)
framework [6]. The total normalization is

P∞
i≥3 PnðμÞ ¼ 1.
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Each Fock amplitude can be written in the configuration
space associated with the null plane, where the three-
dimensional position coordinates for each constituent are
fb−i ; b⃗i⊥g, namely the lightlike coordinate ðb−i ¼ t − zÞ
and transverse position ðb⃗i⊥Þ, conjugate to kþi ¼ xipþ and

k⃗i⊥, respectively. The Fock component of the wave
function on the null plane is obtained by a Fourier trans-
form:

Ψ̃nðx̃1; b⃗1⊥;…; μÞ

¼
�Yn

i¼1

Z
d2ki⊥
ð2πÞ2

Z
1

0

dxi
2π

eix̃ixi−ib⃗i⊥·k⃗i⊥
�

× δ

�
1 −

Xn
i¼1

xi

�
δ

�Xn
i¼1

k⃗i⊥
�
Ψnðx1; k⃗1⊥…; μÞ; ð2Þ

where the dependence on the Ioffe time x̃i ¼ b−i p
þ [7–9]

was given in the probability amplitude instead of the
lightlike position onto the null plane. The probability
densities jΨ̃nðx̃1; b⃗1⊥;…; μÞj2 build an image of the
nucleon on the null plane, where the lightlike coordinate
shows the relevance of the Ioffe time to complete the image
of the nucleon (see a recent general discussion in [10] and
in the case of the pion in [6]). Importantly, the Ioffe time is a
Lorentz invariant quantity that is related to the spatial
distance between the struck quark and the spectators. Using
the Ioffe time one can through the inverse Fourier transform
construct frame-independent parton distribution functions
(PDFs). It should also be noted that the Ioffe-time repre-
sentation of the PDF can be related at small spacelike
separations to the so-called Ioffe-time pseudodistribution
[11], which has been used to obtain the parton distribution
of the pion from lattice QCD [12].
Different parton probability densities, namely one-, two-,

and N-body ones can be defined given the LF wave
function and reveal the multifaceted structure of the
nucleon, which are associated with different observables
being of interest not only for the present hadron facilities
but also for the physics cases of the future electron ion
collider [13]. In particular, we mention the electromagnetic
ones, as for example the elastic form factor, and the parton
distributions which are associated with one-body proba-
bility densities.
Other quantities which can be computed from the LF

wave function are the generalized parton distributions
(GPDs), being the nonperturbative objects entering the
cross sections for deeply virtual Compton scattering, and
the transverse momentum distributions associated with
semi-inclusive deeply inelastic scattering [14]. The PDFs
extracted from inclusive deep inelastic scattering give only
information about the longitudinal momentum fraction of
the parton, i.e., simply a one-dimensional view of the

hadron. The GPDs and transverse momentum distributions
(TMDs) provide a more complete image of the hadronic
structure, in particular regarding the distribution of spin and
orbital momentum in hadrons. That also allows a three-
dimensional nucleon tomography in mixed position-
momentum space (see e.g., [15]). However, the most
complete image is obtained through the six-dimensional
Wigner distributions, and their Fourier transforms that are
related to the generalized TMDs (GTMDs), which can
appear in the representation of hard QCD processes
[15–18]. GTMDs are associated to matrix elements of bi-
local partonic field operators with separation in all three
light-front coordinates defined onto the null-plane hyper-
surface. In general, they are off-forward matrix elements
between hadron states, which depend on the partons
longitudinal transverse momentum components. In particu-
lar, the GTMDs correlate hadronic states with the same
parton longitudinal momentum, namely for vanishing skew-
ness, and different relative transverse distance between the
struck partons’ initial and final states. It is worthwhile to
mention that the GTMDs contain the bilocal correlators that
define both the GPDs, TMDs, PDFs, and as well as the
electromagnetic form factor, which are obtained by taking
certain limits or performing integrations, see, e.g., [15].
In particular, we remind that the spacelike electromag-

netic form factor can be obtained from the celebrated Drell-
Yan-West formula [1] using the “plus” component of the
current, with momentum qþ ¼ 0 and q2 ¼ −q⃗2⊥ ¼ −Q2,
which is diagonal in the Fock space:

FðQ2Þ ¼
X∞
n¼3

FðnÞðQ2Þ ¼
X∞
n¼3

Xn
j¼1

ej

×

�Yn
i¼1

Z
d2ki⊥
ð2πÞ2

Z
1

0

dxi

�
δ

�
1 −

Xn
i¼1

xi

�

× δ

�Xn
i¼1

k⃗fi⊥
�
Ψ†

nðx1; k⃗f1⊥; x2; k⃗f2⊥;…; xj; k⃗
f
j⊥;…Þ

×Ψnðx1; k⃗i1⊥; x2; k⃗i2⊥;…; xj; k⃗
i
j⊥;…Þ; ð3Þ

where the number of constituents in the Fock components
is n ≥ 3, and ej is the constituent charge in units of the
fundamental charge. The partial contribution to the form
factor from each Fock component of the wave function is
FðnÞðQ2Þ. In the adopted frame the pair-creation contribu-
tion to the plus component of the current are suppressed,
which is important since the present model of the proton is
limited to the valence component, i.e., n ¼ 3 in (3). The
quark momenta obtained via the LF boost from the Breit
frame to the rest frame of the initial (i) and final (f) nucleon
states are given by the following:
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k⃗ii⊥ ¼ k⃗i⊥ þ q⃗⊥
2
xi; k⃗

f
i⊥ ¼ k⃗i⊥ −

q⃗⊥
2
xi; i ≠ j and

k⃗fðiÞj⊥ ¼ ð−Þ q⃗⊥
2
ð1 − xjÞ −

X
i≠j

k⃗i⊥; ð4Þ

with the transverse momentum of the quark that absorbed
the virtual photon being k⃗j⊥ ¼ � q⃗⊥

2
−
P

n
i≠j k⃗i⊥, with þ

and − meaning the momentum in the initial and final
hadron states, respectively. For each Fock component of the
LF wave function the transverse momenta add up toP

n
j¼1 k⃗

i
j⊥ ¼ P

n
j¼1 k⃗

f
j⊥ ¼ 0⃗⊥, for the rest frames of the

initial and final hadron states. The normalized proton wave
function gives Fð0Þ ¼ 1.
Beyond the electromagnetic processes, proton-proton

collisions performed at the Large Hadron Collider in its
high-luminosity phase requires a detailed consideration of
the nucleon structure for the understanding of the observed
data, associated with multiple parton interactions (MPIs),
which are required for the description of hadronic final
states (see, e.g., [19]).
MPIs become more important for high-energy collisions

as the parton flux increases, while the parton momentum
fractions decrease, as the nucleon momentum is shared
among more participants. Therefore, the search for new
physics demands the consideration of MPIs in the dedi-
cated experimental analysis (see the review book on
multiple parton interactions at the LHC [20]). One example
is the double parton scattering in hadron-hadron collisions,
where two independent hard-scattering processes happen
between partons from a parton pair in each hadron. It
receives contributions from all LF Fock components of
each hadron wave function, and such information is
encoded in the double parton distribution function [21].
The double parton scattering cross section which

depends on the double parton distribution functions
(DPDFs) contain contributions from all Fock component
of the wave function, and it is written as [21]

Dðx1; x2; η⃗⊥Þ ¼
X∞
n¼3

Dnðx1; x2; η⃗⊥Þ

¼
X∞
n¼3

Z
d2k1⊥
ð2πÞ2

d2k2⊥
ð2πÞ2

�Y
i≠1;2

Z
d2ki⊥
ð2πÞ2

Z
1

0

dxi

�

× δ

�
1−

Xn
i¼1

xi

�
δ

�Xn
i¼1

k⃗i⊥
�

×Ψ†
nðx1; k⃗1⊥þ η⃗⊥;x2; k⃗2⊥− η⃗⊥;…Þ

×Ψnðx1; k⃗1⊥; x2; k⃗2⊥;…Þ; ð5Þ

where η⃗⊥ is the transverse momentum shift and for
simplicity we have not depicted the polarization states
for neither the constituents nor the hadron itself. The
Fourier transform of Dðx1; x2; η⃗⊥Þ in η⃗⊥ gives the

probability of finding the constituents 1 and 2 with
momentum fraction x1 and x2 at a relative distance in
the transverse direction y⃗⊥ within the hadron state. Here y⃗⊥
is the Fourier conjugate of η⃗⊥. The quantity Dnðx1; x2; η⃗⊥Þ
is a contribution from a given Fock component of the LF
wave function to the double parton distribution.
In terms of operator product the double distribution

reads [22]

D̃ðx1; x2; y⃗⊥Þ ¼ 2pþ
Z

dy−
Z

dz−1
2π

dz−2
2π

× eiðx1z−1þx2z−2 Þpþ

×
X
λ

hp; λjOðy; z1ÞOð0; z2Þjp; λi; ð6Þ

which has been obtained for the nucleon by recent LQCD
calculations for different operator structures [22]. Despite
such efforts, it is useful to obtain the DPDFs at the nucleon
scale and identifying properties of the LF wave function, as
for example using anti–de Sitter/QCD approach [23] and
LF constituent quark models (see, e.g., [24]). Among such
efforts to detail the LF wave function within a dynamical
framework, we should mention the basis light-front quan-
tization applied to QCD [25] and recently used to study the
nucleon [26].
Motivated by the above discussion, our goal in this work

is to explore the consequences of the relativistic LF three-
body dynamics in the structure of the valence state of the
nucleon, by studying one- and two-quark momentum
distributions, where effectively the interaction is dominated
by a strong scalar quark-quark correlation. This model
relies on the use of the contact interaction between the
constituents within the Faddeev Bethe-Salpeter approach
on the light front [27–30], and more recently the model was
extended beyond the valence state in Euclidean space [31]
and in Minkowski space [32,33]. For practical applications,
the profile of the IR momentum dependence of the valence
wave function, as for instance computed from the trans-
verse amplitude, obtained by both the LF truncation and the
full four-dimensional approach are essentially equivalent,
once the bound state binding energies are close [31], which
will be enough for the present study. As a note, we observe
that short-range correlations between two quarks are
present in the model, in analogy with the nucleon-nucleon
short-range correlations (see, e.g., [34]), which have also its
counterpart in the relativistic three-body wave function
[33], with the proviso that the UV behavior has to be
viewed with caution as the scaling laws [5] from QCD are
not built in.
The model emphasizes the IR dynamics of constituent

quarks with a dominant scalar diquark correlation. Indeed,
one main feature that the continuum approaches to QCD
have been teaching us is that two-quark correlations,
namely, diquarks, which are not asymptotic states, are
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known to play a relevant role in the structure and dynamics
of the nucleon (see, e.g., [35] and the recent review [36]).
We should remind that the successful Nambu-Jona-

Lasinio model applied to investigate phenomenological
aspects of QCD in the IR region [37], embodies the
dynamical chiral symmetry breaking by producing massive
constituent (m ∼ 300 MeV) for the u and d quarks and
pions/kaons as Goldstone bosons, bringing in addition
diquarks, with the favored one being the scalar color

antitriplet ð½ud�3̄c
0þÞ state. We see that the renewed interest

from LQCD groups in determining the properties of
diquarks in a gauge invariant way [38] gives at the physical
pion mass a difference of 319(1) MeV between the mass of

the lightest diquark, ½ud�3̄c
0þ , and the light antiquark, and a

size of about one fm. The low-energy diquark effective
degree of freedom has also been invoked to smooth the
transition between the hadron to quark phases of dense
matter (see Ref. [39]).
The model adopted in this work considers a bound or a

virtual state pole in the quark-quark transition amplitude as
the main dynamical characteristic, which is in line with
modern evidences of the relevance of the ½ud�3̄c

0þ state in the
IR properties of the quark-quark effective interaction within
the nucleon. We aim to explore the proton bound-state
structure in terms of constituent quarks degrees of freedom
by calculating the valence LF wave function, where our
focus is to study its Ioffe time representation, as well as the
different one- and two-quark momentum distributions.
The rest of this work is organized as follows. A brief

presentation of the LF three-quark model is given in Sec. II,
containing the description of the homogeneous LF Faddeev
integral equation and numerical results for the vertex
Faddeev component. The results for the distribution ampli-
tude and Ioffe-time image of the proton are given in Sec. III.
The calculations of the valence Dirac form factor of the
proton are discussed in Sec. IV. The results for the
momentum distributions, namely valence parton distribu-
tion, valence double parton distribution, and transverse
momentum distributions for single and two quarks in the
forward limit and integrated in longitudinal momenta are
shown in Sec. V. The main points of our work are
summarized in Sec. VI. The work is completed by two
appendices: in Appendix A the derivation of the main
dynamical integral equation of the model is given, and in
Appendix B is presented the adopted numerical method to
solve it.

II. BRIEF PRESENTATION OF THE
LF THREE-QUARK MODEL

The effective LF three-body model [27], which will be
applied in the present work to study the proton, was
originated as an attempt to generalize Weinberg’s infinite
momentum frame realization of the two-boson BS equation
[40] to the three-body problem. Weinberg’s original

proposal kept a close relation of the three-dimensional
dynamics in the light front to the Minkowski space BS
equation for the bound state. Later on, within the frame-
work of LF quantization such an equation was realized to
be the lowest-order equation with the kernel expressing the
coupling of the two- and three-particle LF Fock states (see,
e.g., [41]). The full equivalence of the two-body BS
equation and its LF three-dimensional representation have
to take into account, besides the valence component, an
infinite number of Fock states. In principle, covariance
under kinematical boosts is guaranteed even working with a
finite truncation of the Fock space, however covariance
under dynamical LF boosts, which are nondiagonal in the
LF Fock space, requires the dynamics to involve an infinite
set of these states. Therefore, the BS equation has built-in
dynamically an infinite set of LF Fock states. One pos-
sibility of projecting the BS equation to LF was done using
the quasipotential approach [42], where all the dynamics
are buried in an effective interaction which contains the
virtual propagation of the system in an infinite number of
Fock states in close relation to the “iterated resolvent
method” [1] to reduce the QCD dynamics in a hadron to
its valence component.
At the three-body level, relevant to study the nucleon

structure, the counterpart of the Weinberg’s equation for the
contact interaction was proposed in [27]. It was performed
the projection to the LF of the Minkowski space Faddeev-
Bethe-Salpeter (FBS) equation for the three-boson vertex
keeping only the valence contribution. In principle, the
interaction kernel of the LF-FBS equation contains contri-
butions beyond the valence component, appearing as effec-
tive LF three-body forces (see, e.g., [31]). Indeed, the
projection of the Minkowski space FBS equation onto the
LF was done via the quasipotential approach in [43] and
further developed in [44,45]. We outline in Appendix A the
derivations including the three-body valence wave function
and LF dynamical equation within the three-body BS
framework.
As we have mentioned above, the model adopted to

investigate the Ioffe time representation of thewave function,
and also the double parton distribution, is based on the
contact interaction between the constituent quarks,where the
spin degree of freedom is not taken into account, as it is our
aim to to study the spatial nonpolarized distribution of the
quarks in the valence state. In themodel we consider only the
totally symmetric momentum part of the the colorless three-
quark wave function corresponding to the valence nucleon
state, as we are interested for the time being on the
investigation of the properties associated with the momen-
tum distributions and the image of the nucleon onto the null
plane. The valence LF wave function is given by [33]

Ψ3ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥Þ

¼ Γðx1; k1⊥Þ þ Γðx2; k2⊥Þ þ Γðx3; k3⊥; Þffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ðM2
N −M2

0ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥ÞÞ
; ð7Þ
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with Γðxi; ki⊥Þ, where ki⊥ ¼ jk⃗i⊥j, being the Faddeev
component of the vertex function for the bound state,
x1 þ x2 þ x3 ¼ 1, k⃗1⊥ þ k⃗2⊥ þ k⃗3⊥ ¼ 0⃗⊥, and

M2
0ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥Þ

¼ k⃗21⊥ þm2

x1
þ k⃗22⊥ þm2

x2
þ k⃗23⊥ þm2

x3
ð8Þ

is the free three-body squared mass for on-mass-shell
constituents. The factorized form of the valence wave
function, namely with a vertex function depending solely
on the bachelor quark LF momenta, is a consequence of the
effective contact interaction between the constituent quarks,
which is an idealized model resembling the successful
Nambu-Jona-Lasinio model applied to model QCD [37].
It should be understood as an effective low-energy model
which is meant to have significance in the IR region where
constituent quarks are massive and bound forming the
nucleon. We show in Appendix A the derivation of the
valence LF wave function starting from the three-legs
Bethe-Salpeter amplitude.

A. Homogeneous LF Faddeev integral equation

The Faddeev equation for the vertex component of the
valence LF wave function is given by [27,30]

Γðx; k⊥Þ ¼
F ðM2

12Þ
ð2πÞ3

Z
1−x

0

dx0

x0ð1 − x − x0Þ

×
Z

∞

0

d2k0⊥
Γðx0; k0⊥ÞbM2

0 −M2
N

; ð9Þ

where

bM2
0 ¼ M2

0ðx; k⃗⊥; x0; k⃗0⊥; 1 − x − x0;−ðk⃗⊥ þ k⃗0⊥ÞÞ: ð10Þ

For the sake of completeness, we provide in Appendix A a
derivation of Eq. (9) starting from the three-boson BS
equation by projecting it onto the LF via the quasipotential
technique.
The two-quark amplitude has the expression [33]

F ðM2
12Þ ¼

Θð−M2
12Þ

1
16π2y log

1þy
1−y −

1
16πma

þ ΘðM2
12ÞΘð4m2 −M2

12Þ
1

8π2y0 arctan y
0 − 1

16πma

;

ð11Þ

with its argument, the effective off-shell mass of the two-
quark subsystem squared, given by

M2
12 ¼ ð1 − xÞM2

N −
k2⊥ þ ð1 − xÞm2

x
;

y ¼ M12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

12

p and y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−M2

12

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

12

p : ð12Þ

Additionally, in Eq. (11), ΘðxÞ denotes the Heaviside theta
function.
The kernel of the LF Faddeev equation (9) contains the

quark exchange mechanism expressed by the presence of
the three-quark LF resolvent, namely the operator
½ bM2

0 −M2
N �−1. Consistently with the adopted model, it is

well known [35] that the four-dimensional formulation of
the three-quark BS equation presents the quark exchange
kernel, when the diquarks dominate the quark-quark
interaction. We should emphasize the physical significance
of the present model in the context of nucleon models
formulated commonly within the BS approach in Euclidean
space [35]. Our model provides directly the LF wave
function allowing to access momentum distributions and
keeps the straight relation with the Bethe-Salpeter frame-
work, in contrast with commonly used Euclidean BS
approaches. Furthermore, it incorporates the main physics
of more sophisticated Euclidean formulations, as the quark
exchange kernel, and a pole in the quark-quark amplitude
representing a bound or virtual diquark state.
The quark-quark scattering amplitude, F ðM2

12Þ, weights
the Faddeev LF integral equation and carries the pole of the
bound or virtual diquark, which depends on the scattering
length a, which can be either positive or negative. If a > 0,
then the quark-quark system is bound and the nucleon will
be described as a quark-diquark system. On the contrary if
a is negative no physical two-body bound state exists and
the nucleon is thus a Borromean state. In both cases,
F ðM2

12Þ has a pole, for a > 0 in the physical complex-
energy sheet and for a < 0 in the second sheet, meaning the
virtual state. Therefore, in either case the strong diquark
correlation is present in the model and should be interpreted
as dominating the IR properties of the nucleon. Both of
these two cases will be investigated in this paper. An earlier
study of the nucleon performed with a truncated form of
Eq. (9) was performed in [28].
In Appendix B it is explained the adopted numerical

method to solve the integral equation by using a bicubic
spline expansion. The condition Fð0Þ ¼ 1, has been
adopted to normalize the solution, where FðQ2Þ is the
valence Dirac form factor, which will be discussed
in Sec. IV.

B. Vertex Faddeev component

The structure of the three-quark valence state is encoded
in the vertex function Γðx; k⊥Þ, which was computed with
the two parameter sets from Table I. The constituent quark
masses are 317 MeV (model I) and 362 MeV (model II) to
be compared with about 350 MeV from a recent LQCD
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calculation in the Landau gauge [46]. We choose two
possibilities for diquarks, namely an unbound one for
a < 0 and a bound one for a > 0, with a diquark mass
of 681 MeV. These parameters are found by reproducing
qualitatively the spacelike Dirac form factor up to about
1 GeV2, as it will be shown later on. We observe that, the
diquark mass of 681 MeV, which has a difference of
319 MeV with respect to the quark mass, coincidentally
matches the gauge invariant result from the LQCD calcu-
lation [38] of 319(1) MeV at the physical pion mass.

The results for the vertex function Γðx; k⊥Þ are shown
in Fig. 1 for models I (lower panel) and II (upper panel).
The vertex function for both models has characteristic
transverse momentum around the IR scale of ∼ΛQCD,
which drives the decreasing behavior with k⊥. In addition,
the vertex function peaks between x ∼ 0.35–0.4, and the
peak evolves to somewhat larger values of x with k⊥, as a
consequence of the dominance of k2⊥=x in the free squ-
ared mass operator, which comes with the quark ex-
change kernel, as should be a general feature of the di-
quark (bound or virtual) dominance in the quark-quark
interaction.
It is seen in the upper panel of Fig. 1 that, for model II

with a > 0, there is one node around x ¼ 0.8 and also one
for a small x. As studied in detail in Ref. [31], for a > 0 the
physical ground state of (9) is not the lowest energy
solution of the equation. That is, it exists another unphys-
ical solution with M2

N < 0. This state is the relativistic
analog of the well-known Thomas collapse in nonrelativ-
istic three-body systems with zero-range interaction [49].
For example, at 1=ðamÞ ¼ 0.26 one hasM2

N ¼ −69 m2, so
it is a very deep state. In principle, it should be possible to
remove this state by a momentum cutoff Λ of the order of
1 GeV, which would weaken the interaction in the short-
range region.

III. DISTRIBUTION AMPLITUDE
AND IOFFE-TIME IMAGE

A. Distribution amplitude

The distribution amplitude (DA), ϕðx1; x2Þ for the
nucleon is defined as

ϕðx1;x2; x3Þ ¼
Z

d2k1⊥d2k2⊥d2k3⊥× δðk⃗1⊥þ k⃗2⊥þ k⃗3⊥Þ

×Ψ3ðx1; k⃗1⊥; x2; k⃗2⊥;x3; k⃗3⊥Þ; ð13Þ

with x3 ¼ 1 − x1 − x2, and obeys the symmetry relation

ϕðx1; x2; x3Þ ¼ ϕðx2; x1; x3Þ: ð14Þ

It gives the dependence of the wave function on the
longitudinal momentum fraction when the quarks share
the same transverse position. In Fig. 2, the calculated DA is
shown for the two models considered in the present work.
In the figure the DA was normalized so that

Z
1

0

dx1

Z
1−x1

0

dx2

Z
1

0

dx3δð1 − x1 − x2 − x3Þ

× ϕðx1; x2; x3Þ ¼ 1:

The two different models give similar results with a slightly
wider distribution for model II, which reflects the wave

TABLE I. Constituent mass in MeV, scattering length, diquark
mass, and three-body mass for the two considered models. Our
diquark mass for model II is slightly smaller than the scalar
diquark mass of 691 MeV obtained in [47]. Also shown is the

radius defined as rF1
¼ ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6 dF1

dQ2 jQ2¼0

q
and the corresponding

experimental value is 0.757 fm [48].

Model m [MeV] a ½m−1� M2 [MeV] MN [m] rF1
[fm]

I 317 −1.84 … 2.97 0.97
II 362 3.60 681 2.60 0.72

FIG. 1. Vertex function, Γðx; k⊥Þ, for the models I (lower panel)
and II (upper panel).
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function behaviour close to xi ∼ 0. Further insight comes
with the Fourier transform as discussed in what follows.

B. Ioffe-time image of the valence state

For the study of the space-time structure of the proton it
is of interest to obtain the wave function in terms of the
Ioffe times (x̃1 and x̃2) and the transverse coordinates (b⃗1⊥
and b⃗2⊥), which provides the image of the proton on the
null plane xþ ¼ 0. Such study has been performed recently
for the pion [6]. This is accomplished through the Fourier
transform of Ψ3ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥Þ. For simplicity,
we consider here the particular case:

Φðx̃1; x̃2Þ≡ Ψ̃3ðx̃1; 0⃗⊥; x̃2; 0⃗⊥Þ

¼
Z

1

0

dx1eix̃1x1
Z

1−x1

0

dx2

Z
1

0

dx3

× δð1− x1 − x2 − x3Þeix̃2x2ϕðx1; x2; x3Þ; ð15Þ

where the configuration space wave function is computed
at the origin b⃗1⊥ ¼ b⃗2⊥ ¼ 0⃗⊥.
In Fig. 3 we present our results for the squared modulus

of the Ioffe-time distribution given by Eq. (25). In the upper
panel is shown the 3D plot of the distribution in terms of the

variables x̃1 and x̃2 for model I. It is clear the preference of
quarks to minimize the relative distance in Ioffe time, as
also observed along x̃1 ¼ x̃2. The decrease along the just
reflects the presence of the third quark that recoils as the
center of mass is at rest. Notably, there is no perceptible
difference in this plot between models I and II.
Then, in the lower panel of Fig. 3 we show for both

models the Ioffe-time distribution as a function of x̃1 for
two fixed values of x̃2, namely x̃2 ¼ 0 and x̃2 ¼ 10. It is
seen that the results obtained with the two parameter sets
are almost identical for x̃1 < 17. In addition, we observe the
equality between the jϕ̃ð0; 10Þj ¼ jϕ̃ð10; 0Þj ¼ jϕ̃ð10; 10Þj,
which comes from the permutation symmetry of the wave
function:

jϕ̃ðx̃; 0Þj ¼ jϕ̃ð0; x̃Þj ¼ jϕ̃ðx̃; x̃Þj; ð16Þ

which is a general characteristic of the model. This explains
also the rough flat behavior of jϕ̃ðx̃1; 10Þj for 0 < x̃1 < 10
(dashed line).
For x̃2 ¼ 10 (dashed lines in Fig. 3) a sizable decrease of

the magnitude is observed at x̃1 > 10 and for larger values
an oscillatory behavior is seen. This reflects the size of the
proton of about 1 fm and a mass of 1 GeV, with their

FIG. 2. Distribution amplitude as a function of x1 and x2, for the
model I (lower panel) and for model II (upper panel).

FIG. 3. Upper panel: squared modulus of the Ioffe-time dis-
tribution as a function of x̃1 and x̃2, for the model I. Lower panel:
squared modulus of the Ioffe-time distribution as a function of x̃1
for two fixed values of x̃2, namely x̃2 ¼ 0 (solid line) and x̃2 ¼ 10
(dashed line). Results shown for the model I (blue line) and model
II (red line).
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dimensionless product taking into account the factor 1=2
from the adopted metric λ−1 ∼ 0.1 with the characteristic
oscillatory pattern having a wave length in Ioffe time of
about 10, which is observed in the figure. This is also
roughly the dimensionless scale, which governs the
decrease of the wave function in the two quarks relative
separation in Ioffe time.
Both trends, namely oscillation and damping of the wave

function are essentially the same for models I and II, as
their proton charge radius are somewhat close, besides the
same proton mass, as seen in Table I. It suggests that this
general behavior should be quite model independent.
Notably, a similar qualitative behavior of the Ioffe-time
distribution for the pion was obtained in [6]. We observe an
exponential damping of the probability density with the
relative separation between the Ioffe time of the two quarks,
and the damping is expected to be more sizable if confine-
ment is incorporated as it is effective at large distances.

IV. VALENCE DIRAC FORM FACTOR
OF THE PROTON

In the three-body null-plane model, i.e., only taking into
account the valence contribution ðn ¼ 3Þ in the form factor
formula (3), the Dirac form factor is given by

F1ðQ2Þ ¼
�Y3

i¼1

Z
d2ki⊥
ð2πÞ2

Z
1

0

dxi

�
δ

�
1 −

X3
i¼1

xi

�

× δ

�X3
i¼1

k⃗fi⊥
�
Ψ†

3ðx1; k⃗f1⊥;…ÞΨ3ðx1; k⃗i1⊥;…Þ;

ð17Þ
with Q2 ¼ q⃗⊥ · q⃗⊥. In Eq. (4) the transverse momenta of
the quarks in the Breit frame are given.
One has in Eq. (17) that d2ki⊥ ¼ jk⃗i⊥jdjk⃗i⊥jdθi (i ¼ 1, 2)

with k⃗i⊥ · q⃗⊥ ¼ jk⃗i⊥jjq⃗⊥j cos θi. Additionally, the needed
magnitudes of the transverse momenta are given by

jk⃗fðiÞi⊥ j2 ¼
����k⃗i⊥ � q⃗⊥

2
xi

����2;
¼ k⃗2i⊥ þQ2

4
x2i � xijk⃗i⊥jjq⃗⊥j cos θi; ð18Þ

with − for f and þ for i, in addition we have

jk⃗fðiÞ3⊥ j2 ¼
����� q⃗⊥

2
ðx3 − 1Þ − k⃗1⊥ − k⃗2⊥

����2

¼ ð1 − x3Þ2
Q2

4
þ k⃗21⊥ þ 2jk⃗1⊥jjk⃗2⊥j cosðθ1 − θ2Þ

þ k⃗22⊥ � ð1 − x3Þjq⃗⊥jðjk⃗1⊥j cos θ1 þ jk⃗2⊥j cos θ2Þ:
ð19Þ

In Fig. 4, the computed Dirac form factor, F1ðQ2Þ, for
the two parameter sets listed in Table I, is compared with
the global fit to experimental data by Ye et al. [50]. It is
seen that model II with a ¼ 3.60=m gives a quite good
agreement with the experimental data. This thus favors the
description of the nucleon as a quark-diquark system. The

computed values of the radius rF1
¼ ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6 dF1

dQ2 jQ2¼0

q
for

the two considered models are also listed in Table I. The
model II gives a radius of 0.72 fm that is about 5% lower
than the experimental value of 0.757 fm [48] from the
charge form factor. On the contrary, for the first model with
a < 0 a rather large radius of 0.97 fm was obtained. We
could have attempted to fit the charge radius from F1, by
changing the constituent quark mass and scattering length.
However, we choose to keep the qualitative reproduction of
the form factor up to Q2 ∼ 1 GeV2, which should be the
scale of our model.

V. MOMENTUM DISTRIBUTIONS

A. Valence parton distribution

We study next the decomposition of the single PDF,
obtained from the integrand of Eq. (17) of the Dirac form
factor:

f1ðx1Þ ¼
1

ð2πÞ6
Z

1−x1

0

dx2

Z
1

0

dx3δð1 − x1 − x2 − x3Þ

×
Z

d2k1⊥d2k2⊥d2k3⊥δðk⃗1⊥ þ k⃗2⊥ þ k⃗3⊥Þ

× jΨ3ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥Þj2
¼ I11 þ I22 þ I33 þ I12 þ I13 þ I23; ð20Þ

where the contributions to the PDF are defined for
i ¼ 1, 2, 3 as

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

F
1(

Q
2 )

Q2 [GeV2]

Fit exp. data, Z. Ye et al

a = −1.84/m, m = 317 MeV

a = 3.60/m, m = 362 MeV

FIG. 4. Computed F1ðQ2Þ (solid and dot-dashed lines) com-
pared with the empirical fit (dashed line) obtained in Ref. [50].
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Iii ¼
1

ð2πÞ6
Z

1−x1

0

dx2

Z
1

0

dx3
x1x2x3

δð1 − x1 − x2 − x3Þ

×
Z

d2k1⊥d2k2⊥d2k3⊥δðk⃗1⊥ þ k⃗2⊥ þ k⃗3⊥Þ

×
½Γðxi; k⃗i⊥Þ�2

ðM2
N −M2

0ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥ÞÞ2
; ð21Þ

and for i ≠ j:

Iij ¼
2

ð2πÞ6
Z

1−x1

0

dx2

Z
1

0

dx3
x1x2x3

δð1 − x1 − x2 − x3Þ

×
Z

d2k1⊥d2k2⊥d2k3⊥δðk⃗1⊥ þ k⃗2⊥ þ k⃗3⊥Þ

×
Γðxi; k⃗i⊥ÞΓðxj; k⃗j⊥Þ

ðM2
N −M2

0ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥ÞÞ2
: ð22Þ

Due to the symmetries of the three-body wave function
under exchange of particles 2 and 3, it follows that I22 ¼
I33 and I12 ¼ I13.
The contributions to the PDF at vanishing Q2 are

presented for the two considered models in the middle
and upper panels of Fig. 4. The total PDF is also shown in
each panel with a thick solid line. For both models a
maximum of the PDF is seen at x ≈ 1=3. As is seen in the
right panel, the model II with a positive scattering length
gives an almost flat behavior around x ¼ 0.8 for the PDF.
Larger differences in the behavior of the contributions can
also be observed for this set of parameters.
Interesting to observe that all the contributions have

about the same size, and peak around 0.35, despite
measuring the PDF for the quark labeled by 1 with
momentum fraction x1. More variation of the peaks
position are seen for a > 0 where the vertex function
has a node for model II (see Fig. 1), while the interplay with
the denominator of the wave function where the smallest
virtuality in the mass squared leads to fixed positions in all
contributions around 1=3. The contribution from I11
corresponding to a configuration, where quark 1 is picked
up while the pair of quarks interacts, does not dominate,
meaning that the symmetrization of the momentum com-
ponent of the wave function is crucial for the proton PDF.

B. Valence double parton distribution

Following Eq. (5), we write the valence contribution to
the double quark distribution function as

D3ðx1; x2; η⃗⊥Þ ¼
1

ð2πÞ6
Z

1

0

dx3δð1− x1− x2− x3Þ

×
Z

d2k1⊥d2k2⊥d2k3⊥δðk⃗1⊥þ k⃗2⊥þ k⃗3⊥Þ

×Ψ†
3ðx1; k⃗1⊥þ η⃗⊥;x2; k⃗2⊥− η⃗⊥;x3; k⃗3⊥Þ

×Ψ3ðx1; k⃗1⊥;x2; k⃗2⊥;x3; k⃗3⊥Þ: ð23Þ

Our results for the DPDF calculated for η⃗⊥ ¼ 0⃗⊥ are
shown for the two considered models in Fig. 6. For this

particular value of transverse momentumD3ðx1; x2; 0⃗⊥Þ the
double distribution is the probability density for finding
quarks with momentum fraction x1 and x2. In the upper
panel it is seen that for model II, a strong suppression of the
DPDF is seen for x1 > 0.6 as for the PDF. The model
with a < 0 gives a slightly more narrow DPDF. Observe
the different shapes of the boundaries of the double
quark distribution, giving complementary information
with respect to the two-quark transverse momentum dis-
tribution, which is sensitive to the size of the proton, as we
are going to discuss. The boundary for the higher
probability density region for model I has an isosceles
triangle shape, while for model II it has an isosceles
trapezoid shape. The totally symmetric character of the
wave function leads to the symmetry properties of the
boundaries.
The triangular shaped boundary for model I, could be

anticipated from the peak of largest probability for xi ∼ 0.3,
being visible for 0.2 and above in Fig. 6, up to the boundary
x1 þ x2 ¼ 1 − x3. The trapezoid shaped boundary
observed for model II can be associated with the strong
damping of the PDF above x ∼ 0.6 seen in Fig. 5 and to its
peak around x ∼ 0.35, these two properties compete to
provide the form seen in the upper panel of Fig. 6. Model II
corresponds to an excited state and the nodes appearing in
the vertex function for x around 0.2 and 0.6 provides such
peculiar boundary form. What is noticeable is the sensi-
tivity of the double PDF to the details of the vertex
function, while the valence transverse distributions are
essentially sensitive to the size of the three quark configu-
ration. Therefore, it is quite interesting to see that radially
excited states have their particular imprints on the double
quark distribution as well as on the PDF.

C. Transverse momentum densities

The single quark transverse momentum distribution in
the forward limit [18] and integrated in the longitudinal
momentum is associated with the probability density to find
a quark with momentum k⊥:

PROTON IMAGE AND MOMENTUM DISTRIBUTIONS FROM … PHYS. REV. D 104, 114012 (2021)

114012-9



L1ðk1⊥Þ¼
k1⊥
ð2πÞ6

Z
1

0

dx1

Z
1−x1

0

dx2

Z
1

0

dx3

×δð1−x1−x2−x3Þ
Z

2π

0

dθ1

Z
d2k2⊥d2k3⊥

×δðk⃗1⊥þ k⃗2⊥þ k⃗3⊥ÞjΨ3ðx1;k⃗1⊥;x2;k⃗2⊥;x3;k⃗3⊥Þj2;
ð24Þ

and the two-quark one reads

L2ðk1⊥; k2⊥Þ

¼ k1⊥k2⊥
ð2πÞ6

Z
1

0

dx1

Z
1−x1

0

dx2

Z
1

0

dx3

× δð1− x1 − x2 − x3Þ
Z

d2k3⊥δðk⃗1⊥ þ k⃗2⊥ þ k⃗3⊥Þ

×
Z

2π

0

dθ1

Z
2π

0

dθ2jΨ3ðx1; k⃗1⊥; x2; k⃗2⊥; x3; k⃗3⊥Þj2: ð25Þ

In Fig. 7 the single quark transverse momentum density
from Eq. (24) is shown for models I and II. As expected, for
model I with a ¼ −1.84=m, the momentum distribution is
narrower than for a ¼ 3.6=m, as the radius for the former
case is larger. The peak of the momentum distribution is
about 0.08 GeV for model I and 0.12 GeV for model II,

reflecting the larger size of the proton in model I compared
to model II.
In Fig. 8 the two-quark transverse momentum density is

shown for the model I (lower panel) and model II (upper
panel). The more compact configuration of model II is
reflected in the wider distribution, and the probability
density peak is consistent with Fig. 7 to what was observed
for the quark distribution.
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FIG. 7. One-quark transverse momentum density vs k1⊥ for the
models I ða ¼ −1.84=mÞ and II ða ¼ 3.60=mÞ.
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VI. SUMMARY

We study the Ioffe-time image, nonpolarized longi-
tudinal and transverse momentum distributions, and the
double momentum distribution of the proton relying on a
dynamical constituent quark light-front three-body model.
The dynamics is based on the prevalence of the scalar
diquark channel in the quark-quark interaction. We assume
a minimal structure of quark-quark contact interaction,
resembling the Nambu-Jona-Lasinio model, with the sim-
plified assumption of factorization of the spin degree of
freedom, and focusing on the totally symmetric momentum
component of the light-front wave function. We study two
possibilities, namely a diquark in a bound or a virtual state.
The three-body light-front Faddeev Bethe-Salpeter equa-

tions for the valence state was solved in the presence of
virtual (model I) or bound (model II) diquark states, for
positive and negative scattering lengths, respectively. The
contact interaction allows us to simplify the integral
equations for the Faddeev components of the vertex
function, which depend only on the spectator quark
longitudinal momentum fraction and transverse momen-
tum. We have not used a momentum cutoff in the model as
originally introduced in [27] and adopted the no-cutoff
version [30]. This simplified dynamical model allowed us
to investigate only nonpolarized quantities.

The adopted dynamical light-front model has two
parameters: the constituent quark mass and scattering
length. To determine these parameters the proton mass
was fixed to its experimental value, and the binding energy
as well as the scattering length were varied to have a
qualitative fit of the Dirac form up to about 1 GeV2. It
reproduces the Dirac form factor radius somewhat close to
1 fm, having the case of bound diquark a more compact
configuration than the case with the virtual diquark state.
These two possibilities produces quite different proton
properties for the model with no cutoff. The bound diquark
produces a deep three-quark nonphysical state ðM2 < 0Þ,
and the one associated with the proton is in this case an
excited state, where the vertex function has nodes in the x
dependence, while for the virtual diquark the nucleon is the
ground state of the model. These two distinct natures of the
valence state for model I and II allowed to study their
observable consequences in the different momentum dis-
tributions and image.
Specifically, we computed several proton nonpolarized

quantities for the models (I) and (II):
(i) The DA: it corresponds to the probability amplitude

to find the quarks with given momentum fraction at
the same transverse position. Model I has a narrow
distribution on the ðx1; x2Þ plane when compared to
model II.

(ii) The Ioffe-time image: it corresponds to the Fourier
transform of the DA in the Ioffe time, and gives the
probability density of finding quarks along the light-
like direction for quarks at the same transverse
position. The quarks tend to have close Ioffe-time
positions, and exhibit characteristic oscillations re-
flecting the size and mass of the system, besides the
symmetry of the configuration space wave function.

(iii) The quark distribution function: it corresponds to the
probability density to find a quark with a given
momentum fraction at the nucleon scale, peaked
around x ∼ 0.3, but distinguishing model I and II,
the last one having nodes in the spectator function,
and presenting a more localized distribution.

(iv) The double quark distribution function: for η⃗⊥ ¼ 0,
it corresponds to the probability density to find the
quarks with given momentum fractions at the
nucleon scale. The shape of the boundary with large
probability to observe the momentum fractions
distinguish model I and II, with an isosceles tri-
angular and trapezoid shapes, for, respectively, the
ground-state and excited-state configurations.

(v) The single quark transverse momentum density is
associated with the probability density to find a
quark with a given transverse momentum and is
mainly sensitive to the size of the three-quark
configuration and found peaked around 0.1 GeV.

(vi) The double quark transverse momentum density; is
associated with the probability density to find the
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FIG. 8. Two-quark transverse momentum density versus k1⊥
and k2⊥, for the model I (lower panel) and II (upper panel).
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quarks with a given transverse momentum and,
again, mainly sensitive to the size of the three-
quark configuration, a smaller region in momentum
is found for the larger size of the proton for model I
compared to the more compact configuration of the
quarks in model II.

Future challenges for improving the nucleon effective
model to be taken: the computation of the Bethe-Salpeter
amplitude in the four-dimensional Minkowski space, which
includes an infinite number of Fock components, the
introduction of a cutoff and the spin degree of freedom,
which we expect will provide more insights into the
nucleon structure.
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APPENDIX A: DERIVATION OF THE LF WAVE
FUNCTION AND VERTEX EQUATION

The derivations made in this Appendix are based on the
LF projection technique of the BS equation and corre-
sponding amplitude based on the quasipotential expansion
developed in [42] for the two-boson problem and in
Refs. [43–45] for the three-boson case. For the sake of
completeness, we sketch here the main steps in deriving the
valence wave function (7) and the associated Faddeev
equation for the vertex function (9).
The starting point is the three-boson BS amplitude,

which is defined as

ΨMðy1; y2; y3;pÞ ¼ h0jTðφðy1Þφðy2Þφðy3ÞÞjpi; ðA1Þ

where yi is the space-time position of particle i, φðyÞ is the
bosonic field operator, and p the total momentum.
The valence LF wave function comes from the projection

of the BS amplitude onto the null plane:

ψ3ðk⃗1⊥; x1; k⃗2⊥; x2; k⃗3⊥; x3Þ
¼ ðpþÞ2ðx1x2x3Þ12
× χ3ðk⃗1⊥; x1; k⃗2⊥; x2; k⃗3⊥; x3Þ; ðA2Þ

with

χ3ðk⃗1⊥; x1;…Þ ¼
Z

dk−1 dk
−
2ΦMðk1; k2; k3;pÞ; ðA3Þ

where ΦM is the momentum representation of the
Minkowski space BS amplitude ΨM. We have introduced
the auxiliary LF amplitude χ3 for the convenience of the
derivations done in what follows.
The elimination of the relative LF time for the three-body

BS equation and associated amplitude requires an integra-
tion over two independent momenta k−, due to four-
momentum conservation, and we introduce the following
operation for a quantity defined in Minkowski space:

jA ≔
Z

dk−1 dk
−
2 hk−1 k−2 jA;

Aj ≔
Z

dk−1 dk
−
2Ajk−1 k−2 i; ðA4Þ

with A being a matrix element of an operator that has matrix
elements which are functions of two independent momenta
after the center of mass motion is factorized. With the above
notation the LF wave function is

jχ3i ¼ jjΦMi ¼ jG0jΓMi; ðA5Þ

where the BS equation for the vertex function is

jΓMi ¼ VG0jΓMi: ðA6Þ

Explicitly the three-particle free Green’s function is
given by

hk−1 ; k−2 jG0jk0−1 ; k0−2 i

¼ −i
ð2πÞ2

δðk−1 − k0−1 Þ
k̂þ1 k̂

þ
2 ðpþ − k̂þ1 − k̂þ2 Þ

×
δðk−2 − k0−2 Þ

ðk−1 − k̂−1onÞðk−2 − k̂−2onÞðp− − k−1 − k−2 − k̂−3onÞ
; ðA7Þ

where the hat means operator character and the on-minus-

shell momentum k̂−ion ¼ ðˆk⃗2i⊥ þm2
i Þ=k̂þi . The momentum

conservation applies to the kinematical components of the
momentum of particle 3, such that k̂þ3 ¼ pþ − k̂þ1 − k̂þ2 and
the analogous expression for the transverse components.
By performing the LF projection using Eq. (A4), the free
LF Green’s function becomes g0 ¼ jG0j, being the free
light-front resolvent, explicitly written as

g0ðk1; k2Þ ¼
iθðpþ − kþ1 − kþ2 Þθðkþ1 Þθðkþ2 Þ

kþ1 k
þ
2 ðKþ − kþ1 − kþ2 Þ

×
1

p− − k−1on − k−2on − ðp − k1 − k2Þ−on
; ðA8Þ

where ki ≡ fkþi ; k⃗i⊥g.
For the auxiliary Green’s function G̃0 one makes the

choice
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G̃0 ¼ G0jg−10 jG0; ðA9Þ

and with that the four-dimensional BS equation for the
vertex function is also a solution of

jΓMi ¼ WG̃0jΓMi ¼ WG0jg−10 jG0jΓMi; ðA10Þ

where the quasipotential W is given by

W ¼ V þ VΔ0W; ðA11Þ

with Δ0 ¼ G0 − G̃0.
The LF auxiliary amplitude turns out to be

jχ3i ¼ jG0jΓMi ¼ jG0WG0jg−10 jG0jΓMi; ðA12Þ

and introducing the LF interaction

w ¼ g−10 jG0WG0jg−10 ; ðA13Þ

and substituting in the expressions for jχ3i:

jχ3i ¼ g0wjG0jΓMi ¼ g0wjχ3i; ðA14Þ

where the LF vertex function is a solution of

jΓLFi ¼ wg0jΓLFi: ðA15Þ

We introduce in what follows the Faddeev decomposi-
tion to solve the above equation for the vertex function. The
potential is built from the two-body ones as

V ¼
X3
i¼1

Vi; and Vi ¼ Vð2ÞiS−1i ; ðA16Þ

where Si is the propagator of the particle i and Vð2Þi is the
interaction between the particles j and k.
The Faddeev decomposition of W reads

W ¼
X
i

Wi and w ¼
X
i

wi; ðA17Þ

where wi ¼ g−10 jG0WiG0jg−10 , and formally the LF three-
body wave function is

jχ3i ¼ g0
X
i

jvii with jvii ¼ wijχ3i; ðA18Þ

where jvii are the Faddeev components of the LF vertex
function, namely jΓLFi ¼

P
i jvii.

In terms of the pairwise interaction, Vi, one has

Wi ¼ Vi þ ViΔ0ðVi þ Vj þ VkÞ
þ ViΔ0ðVi þ Vj þ VkÞΔ0ðVi þ Vj þ VkÞ þ � � � :

ðA19Þ

At the lowest (LO) order the effective potential is

wLO
i ¼ g−10 jG0ViG0jg−10 ; ðA20Þ

and the Faddeev equations for the components of the vertex
read

jvLOi i ¼ tLOi g0ðjvLOj i þ jvLOk iÞ; ðA21Þ

with the LF T matrix being a solution of

tLOi ¼ wLO
i þ wLO

i g0tLOi : ðA22Þ

Furthermore, it should be noted that the LF resolvent and
potential are immersed in the three-body system.
For the contact interaction the matrix element of the

potential Vi is

hkj; kkjVijk0j; k0ki ¼ λð2πÞ2δðki − k0iÞðk2i −m2Þ: ðA23Þ

By introducing it in Eq. (A20), solving the LF T-matrix
equation (A22), and also taken into that the two-body
system is immersed in the three-body one, it is found that

hkj; kkjtLOi jk0i; k0ji ¼ −iF ðM2
jkÞkþi δðki − k0iÞ; ðA24Þ

where M2
jk ¼ ðp − ki;onÞ2 and momentum conservation

implies that p ¼ ki þ kj þ kk ¼ k0i þ k0j þ k0k.
Furthermore, for the zero-range interaction we have that

ViΔ0Vi ¼ 0 and it then follows thatWi ¼ Vi at the valence
order. We thus obtain

vLOi ðkiÞ ¼ −2iF ðM2
jkÞ

Z
dk0jk

þ
i g0ðk0i; k0jÞvLOj ðk0jÞ; ðA25Þ

where the measure is dk≡ dkþd2k⊥
2ð2πÞ3 and the factor of two

comes from the symmetrization of the total vertex function
with respect to the exchange of the bosons, which also
implies that

vLOi ðkiÞ ¼ vLOj ðkjÞ ¼ vLOk ðkkÞ:

Finally, identifying Γðxi; ki⊥Þ≡ vLOi ðkiÞ, with xi ¼ kþi =K
þ

one finds Eq. (9) from Eq. (A25).
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APPENDIX B: NUMERICAL METHODS

In the presentwork the homogeneous integral equation (9)
was solved for given values of a and M3 ¼ MN=m by
expanding the vertex function Γðx; k⊥Þ in a bicubic basis, on
the domain Ω ¼ Ik⊥ × Ix ¼ ½0;∞� × ½0; 1�, of the form

Γðx; k⊥Þ ¼
X2Nk⊥

i¼0

X2Nx−1

j¼0

AijSiðk⊥ÞSjðxÞ: ðB1Þ

In the calculations the intervals for k⊥ and xwere partitioned
into Nk⊥ and Nx subintervals, respectively.
The Eq. (9) can then be turned into a generalized

eigenvalue problem of the form

X
i0j0

Piji0j0Ai0j0 ¼ λðM3Þ
X
i0j0

Viji0j0Ai0j0 ; ðB2Þ

where Piji0j0 ¼ Si0 ðkðiÞ⊥ ÞSj0 ðxðjÞÞ and Viji0j0 is the right-hand

side of (9) with Γ replaced by Si0 ðkðiÞ⊥ ÞSj0 ðxðjÞÞ. The value of
the three-body mass M3 were found by iteratively solving
the nonlinear equation λðM3Þ ¼ 1 and the corresponding
coefficients from the solution of (B2). The obtained
solution for the vertex function was subsequently normal-
ized by imposing the condition Fð0Þ ¼ 1, where FðQ2Þ is
the valence LF Dirac form factor which is discussed
in Sec. IV.
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