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We present the results of the first calculation of the logarithmic corrections to the QCD contribution to
same-signW-pair production, pp → e�νeμ�νμjj, for same-sign charged leptons. This includes all leading
logarithmic contributions which scale as α4Wα

2þk
s logkðŝ=p2⊥Þ. This process is important for the study of

electroweak couplings and hence the QCD contributions are usually suppressed through a choice of vector
boson scattering cuts. These select regions of phase space where logarithms in ŝ=p2⊥ are enhanced. While
the logarithmic corrections lead to a small change for the cross sections, several distributions relevant for
experimental studies are affected more significantly.
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I. INTRODUCTION

Vector boson scattering (VBS) describes the process
pp → VV þ 2j where each V may be a W or Z boson. All
possible V�V� → VV processes can be inserted between
two quark lines to give this final state, e.g., Fig. 1(a), and it
provides a key opportunity to study the mechanism of
electroweak symmetry breaking, and in particular the
means by which the Higgs boson unitarizes VV scattering.
Other topologies may also contribute at this orderOðα4WÞ in
the squared matrix element and the same final state may
also be generated by gluon exchange between the quark
lines, which contributes at Oðα2Wα2sÞ. There is also an
interference channel between the two at Oðα3WαsÞ. Given
the experimental importance of this process, next-to-
leading order (NLO) QCD corrections to the different
channels have been extensively studied [1–9] and matched
with parton shower corrections [10–13]. Calculations of
NLO electroweak corrections [14] and combined NLO
QCD and electroweak corrections are now also avail-
able [15–19]. See, e.g., [20] for a recent review.
In order to cleanly study the electroweak processes of

interest, analyses typically apply cuts which require a large
invariant mass between two jets and/or a large rapidity
separation between two jets [21–23]. These are very
effective at enhancing the electroweak contributions over

the QCD channels, but it is important to accurately predict
the purity of the sample which remains. In particular,
the requirement of large invariant mass or large rapidity
separation enhances the importance of logarithmic correc-
tions of the form logðŝ=p2

t Þ, which arise at all orders
of αs [the leading logarithmic (LL) corrections scale as
αkþ2
s logkðŝ=p2

t Þ]. The combination αs logðŝ=p2
t Þ is not

necessarily small in these regions of phase space so that
the logs can damage the convergence of the perturbative
expansion. This means that the very cuts that suppress the
QCD contribution make it harder to calculate a reliable
estimate of that contribution.
Similar cuts are applied to separate the electroweak

vector boson fusion (VBF) and QCD gluon fusion (GF)
components in vector boson fusion analyses of
pp → H þ 2j. In this case, predictions including all LL
corrections and matched to fixed order are available within
the high energy jets (HEJ) framework [24–27]. Further, that
framework also allows the inclusion of finite quark-mass
effects for arbitrary jet multiplicities [28], which is cur-
rently only available at LO up to three jets. Here it was seen
that while the inclusive cross sections for GF were in good
agreement between the LL predictions of HEJ and fixed-
order calculations at NLO, significant differences in the
invariant-mass and rapidity distributions lead to a large
difference in the predicted cross sections after cuts on
invariant mass and rapidity separation were applied. At
NLO, the impact of requiring jΔyj1j2 j > 2.8 and mj1j2 >
400 GeV reduced the cross section to 9% of the inclusive
value while at LL with finite quark masses, the impact of
the same cuts reduced the cross section to 4% of the
corresponding inclusive value, indicating the cuts were
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roughly a factor of two more effective. This behavior is
largely due to the dominance of the gg component within
the inclusive cuts, and the difference in the mjj spectrum of
the gg, qg, and qq components [29,30]. The same behavior
has also been seen in other comparisons between combi-
nations of fixed-order, parton shower, and HEJ predictions,
e.g., [31–33].
Given the identical type of cuts usually applied to

the jets when studying VBS to those in VBF, one would
expect the impact of adding LL corrections to also be
significant in this process. In this paper, we calculate the
αks logkðŝ=p2

t Þ corrections to the Oðα2Wα2sÞ component of
VBS. We do this within the HEJ framework. These could
then be straightforwardly combined with predictions for
electroweak channels to give a complete description of
pp → W�W�þ ≥ 2j,1 for example using the method
described in [17]. This was done previously for pp →
W þ 2j in [34] where LL predictions of the QCD compo-
nent from HEJ were combined with electroweak predictions
from Powheg+Pythia [35–38] and were found to describe data
very well, especially at large invariant mass.
In the following section, we outline how LL accuracy is

obtained in the predictions from HEJ and then focus on how
to construct the necessary amplitudes to describe pp →
W�W�þ ≥ 2j at this order. In Sec. III, we illustrate the
impact of the LL corrections on distributions that are
typically studied at the LHC, both before and after VBS
cuts are applied. We conclude in Sec. IV.

II. CONSTRUCTION OF LEADING-LOGARITHM
AMPLITUDES

A. Logarithmic accuracy

The Born-level scattering amplitudes for the same-sign
W-pair production process pp → W�W�þ ≥ 2j depicted
in Fig. 1(b) can be expanded in powers of ŝ=p2

t considered
in the limit of large ŝ → ∞ with fixed p⊥j1 ∼ p⊥j2 ∼ p⊥,
where p⊥ is an arbitrary (but fixed) transverse scale. In this
limit, large ŝwith fixed p⊥ is reached by increasing rapidity

differences between the jets. For processes permitting a
gluon (color-octet) exchange between the two jets (which
the production of a same-sign W pair does), this expansion
of jMj2 starts at α2s ŝ2=p4⊥.
The leading logarithmic corrections to the cross section

are controlled by the scattering amplitudes in this so-called
multi-Regge kinematic (MRK) limit, where the invariant
mass between each pair of colored particles is large but the
transverse scales are fixed. The higher-order corrections to
the cross section for these processes will contain terms of
αs logðŝ=p2

t Þ [39–41], and such corrections have tradition-
ally been resummed through the use of the formalism
developed by Balitskii, Fadin, Kuraev, and Lipatov [42].
The all-order, leading logarithmic accuracy in logðŝ=p2

t Þ
is ensured by a systematic control of the power expansion
to ŝ=ðp2

t Þn of jMj2 of each real correction with n legs, and
the expansion into terms of ðαs logðŝ=ptÞÞn of the virtual
corrections, with subtraction terms organizing the cancel-
lation of divergences between real and virtual corrections.
In order to control just the leading logarithmic corrections
to the Born-level process, one needs to consider just the
leading expansion in ŝ=p2

t of each multiplicity and its
virtual corrections. This leading term in the expansion in
ŝ=p2

t has contributions only from processes that allow a
color octet exchange between each particle considered in
order of increasing rapidity. So processes with the rapidity
ordering (or equivalently light cone momentum ordering in
the MRK limit) qQ → Qq (incoming and outgoing states
ordered in light cone momentum, and dropping the Ws
from the listing, since their ordering is irrelevant for the
discussion) will not contribute at leading order in the
expansion, whereas the leading order term will receive
contributions from the same partonic process with the states
ordered as qQ → qQ.
For states of higher multiplicity, the leading contribution

is from orderings such as qQ → qgQ, which permit a color
octet (gluon, spin-1) exchange between each parton con-
sidered in the ordering of rapidity. The orderings qQ →
gqQ require a color singlet (spin-1

2
) exchange between the

gq. The contribution to the square of the scattering
amplitudes in the MRK limit is then suppressed by one
power of ŝ compared to the contribution from the ordering
qQ → qgQ. This power suppression of the amplitude leads
to a logarithmic suppression of the contribution to the cross
section (see, e.g., [26,43,44]).
The factorization of the scattering amplitudes in the

MRK limit [40,43] implies that the MRK limit of these
amplitudes can be constructed to the required accuracy in
s=ðp2

t Þn using building blocks which depend on a reduced
set of the momenta. The cross section can be calculated to
leading logarithmic accuracy using an amplitude consisting
of so-called impact factors, describing the forward and
backward particle production, and a Lipatov vertex describ-
ing the production of a gluon of central rapidity. The
Lipatov vertex depends on the momenta of the incoming

(a) (b)

FIG. 1. Possible tree-level diagrams which contribute to pp →
VVjj at (a) Oðα4WÞ and (b) Oðα2Wα2sÞ to the squared matrix
element. Interference between the two contributes at Oðα3WαsÞ.

1We use this notation from now on to represent same-signWW
production in association with jets; i.e., it is shorthand for
pp → VVþ ≥ 2j, V ¼ Wþ or V ¼ W−.
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and outgoing quarks and the emitted gluon. The impact
factor2 depends on the momenta of the incoming quark pa,
the outgoing quark p1, and the W (or its decay products)
only. These impact factors are in fact the same as those used
for single W production in association with dijets [24,45].
The cross sections discussed in the current study will be
matched to full fixed-order accuracy of high multiplicity
(up to six jets), see Sec. II C. Earlier studies have shown
that with such high-multiplicity matching, the overall
impact of subleading logarithmic contributions on two-
and three-jet observables is very minor indeed. Therefore

we will in this study calculate to just leading logarithmic
accuracy, matched to high multiplicity fixed order.

B. Amplitudes for pp → W�W� + ≥ 2j within HEJ

In this subsection we present the new amplitudes
required to apply the HEJ method to the process pp →
W�W�þ ≥ 2j. At this point we include the leptonic decay
of theW bosons as we will need this to compute predictions
for typical experimental cuts and analyses. As described in
the previous subsection, for a given multiplicity, a HEJ

amplitude is built out of impact factors and Lipatov vertices.
These multiplicities are then combined with the Lipatov
ansatz for virtual corrections in order to achieve leading
logarithmic accuracy in ŝ=p2

t at all orders in αs.
We begin with the impact factors which are independent

of the number of gluons in the amplitude and hence can be
derived from the lowest order process where they occur.
The starting point is therefore the LO process:

qðpaÞQðpbÞ → ðW�
1 →Þlðpl1Þl̄ðpl̄1ÞðW�

2 →Þl0ðpl2Þl̄0ðpl̄2Þq0ðp1ÞQ0ðp2Þ; ð1Þ

where q andQ represent different quark or antiquark flavors. There are eight Feynman diagrams that contribute at LO, each
similar to Fig. 1(b), which arise from the qq0W vertices for each boson being assigned to different points on different quark
lines.
We define the following current to describe the production of a W boson from a quark line with an off shell gluon,

qðpiÞ → ðW → ll̄Þq0ðpoÞg�:

jWμ ðpi; po; pl; pl̄Þ ¼
g2W
2

1

ðpl þ pl̄Þ2 −m2
W þ iΓWmW

½ū−ðplÞγαv−ðpl̄Þ�

×

�
ū−ðpoÞγαð=po þ =pl þ =pl̄Þγμu−ðpiÞ

ðpo þ pl þ pl̄Þ2
þ ū−ðpoÞγμð=pi − =pl − =pl̄Þγαu−ðpiÞ

ðpi − pl − pl̄Þ2
�
; ð2Þ

as illustrated in Fig. 2. The exact tree-level result can then be compactly expressed as the following two contractions of two
such currents:

iMHEJ;tree ¼ g2s

�
jWμ ðpa; p1; pl1 ; pl̄1

ÞgμνjWν ðpb; p2; pl2 ; pl̄2Þ
q2

þ jWμ ðpa; p1; pl2 ; pl̄2ÞgμνjWν ðpb; p2; pl1 ; pl̄1Þ
q̃2

�
; ð3Þ

where q¼pa−p1−pl1−pl̄1 and q̃¼pa−p1−pl2 −pl̄2 .
This amplitude remains exact at Oðα2WαsÞ within the HEJ

framework. In particular, our full amplitudes already
achieve LO accuracy without the need for further matching
with the exception of channels with identical leptons or
quarks. The extra contributions arising in these special
cases are suppressed in the MRK limit and do not affect
the logarithmic accuracy. They are nonetheless included

through the fixed-order matching described in the next
subsection.
In order to achieve LL accuracy in the inclusive

predictions, we supplement the tree-level amplitude with
corrections arising from real and virtual corrections at α3s
and above. Although separately divergent in 4d, we follow
the procedure outlined in [24,46] to arrive at a finite
amplitude for qQ → W�W�q0g…gQ0 for any number of
intermediate gluons. It is built from the following [24]:

(i) A skeleton function for the process (often the LO
matrix element), given by a contraction of impact
factors.

FIG. 2. Schematic illustration of the current, jWμ ðpi; po;
pl; pl̄Þ, defined in Eq. (2) to describe the production of a W
boson from a quark line with an off shell gluon (shown as a
zigzag line).

2In the formalism of HEJ this impact factor is a current.
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(ii) A Lipatov vertex, Vμ, for each real gluon emission
with transverse momentum above scale λcut.

(iii) Finite exponential factors for each t-channel propa-
gator which arise from the sum of the virtual
corrections at LL (given by the Lipatov ansatz)
and integration over all unresolved real emissions
with pt < λcut.

We typically choose values of λcut to be around 0.2 GeV,
and have checked that our final results (cross sections and
distributions) are not strongly dependent on this value. We
have compared results for the total cross section at values of
λcut between 0.2 and 2 GeV and observe discrepancies of a
few percent at most, with no clear trend. This is a nontrivial
check that the implementation is correct.
The construction above is built around the concept of

effective t-channel momentum (although far more than
contributions from t-channel diagrams are included). These
are the momenta which would correspond to a planar
t-channel diagram when the outgoing colored particles
are ordered in rapidity. For qQ → W�W�q0g…gQ0, it is
already clear at lowest order that there is not a unique
definition of a t-channel momentum, as it depends on the
pairing of W bosons with quark lines [see Eq. (3)].
However, the addition of extra gluons does not make this
problem any worse than at leading order, and hence for any
number of colored particles in the final state there will be
two sets of planar t channels. We will keep both (and the

interference between them),which significantly complicates
the expressions compared to the HEJ description of single-W
production [45]. It is similar to the treatment of pp →
Z þ 2j in HEJ [46]. Specifically, we write the amplitude
using two skeleton functions, each with its own tower of
real and virtual corrections. Interference between these is
immediately included upon squaring the amplitude.
These skeleton functions are defined as

B ¼ jWμ ðpa; p1; pl1 ; pl̄1ÞgμνjWν ðpb; pn; pl2
; pl̄2Þ;

B̃ ¼ jWμ ðpa; p1; pl2 ; pl̄2ÞgμνjWν ðpb; pn; pl1
; pl̄1Þ; ð4Þ

which relate to the two possible combinations of leptons
and quark lines. These have corresponding planar t-channel
momenta:

q1¼pa−p1−pl1 −pl̄1 ; qi ¼ qi−1−pi i¼ 2;…;n−1;

q̃1¼pa−p1−pl2 −pl̄2 ; q̃i ¼ q̃i−1−pi i¼ 2;…;n−1:

ð5Þ

We refer to the corresponding momenta squared as ti ¼ q2i
and t̃i ¼ q̃2i for i ¼ 1;…; n − 1. We also define the rapidity
differences of consecutive quarks/gluons to be
Δyi ¼ yiþ1 − yi. The LL accurate matrix element is then
given by

jMHEJ;reg
qQ→W�

1
W�

2
q0ðn−2ÞgQ0 j2 ¼ g4s

CF

8Nc
ðg2sCAÞn−2

� jBj2
t1tðn−1Þ

expðω0ðqðn−1Þ⊥ÞΔyn−1Þ
Yn−2
i¼1

−V2ðqi; qðiþ1ÞÞ
titðiþ1Þ

expðω0ðqi⊥ÞΔyiÞ

þ jB̃j2
t̃1 t̃ðn−1Þ

expðω0ðq̃ðn−1Þ⊥ÞΔyn−1Þ
Yn−2
i¼1

−V2ðq̃i; q̃ðiþ1ÞÞ
t̃it̃ðiþ1Þ

expðω0ðq̃i⊥ÞΔyiÞ

þ 2ℜfBB̃gffiffiffiffiffiffiffi
t1t̃1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðn−1Þ t̃bðn−1Þ

q exp

�
ω0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðn−1Þ⊥q̃ðn−1Þ⊥

q �
Δyn−1

�

×
Yn−2
i¼1

−Vðqi; qðiþ1ÞÞ · Vðq̃i; q̃ðiþ1ÞÞffiffiffiffiffiffi
tit̃i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðiþ1Þt̃ðiþ1Þ

q expðω0ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi⊥q̃i⊥

p ÞΔyiÞ
�
; ð6Þ

where

Vμðq1; q2Þ ¼ −ðq1 þ q2Þμ þ
pμ
a

2

�
q21

p · pa
þ p · pb

pa · pb
þ p · pn

pa · pn

�
þ pa ↔ p1;

−
pμ
b

2

�
q22

p · pb
þ p · pa

pa · pb
þ p · p1

pb · p1

�
− pb ↔ pn for p ¼ q1 − q2;

ω0ðq⊥Þ ¼ −
g2sCA

4π2
log

�
q2⊥
λ2cut

�
: ð7Þ

One can immediately check that at Oðα4Wα2sÞ this exactly
agrees with the summed, averaged and squared amplitude
of Eq. (3). One can extend this test to higher orders by

comparing the result of Eq. (6) with the virtual corrections
removed [i.e., setting ω0ðq2⊥Þ ¼ 0] at a fixed order in αs to
the corresponding LO result. In the MRK limit, these
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should match. We illustrate this in Fig. 3 for squared matrix
elements for sample channels at α4Wα

3
s and α4Wα

4
s . The

rapidities of the outgoing particles in these slices are
(a) yd ¼ ye ¼ yνe ¼ Δ, ys ¼ yμ ¼ yνμ ¼ −Δ, yg ¼ 0,
(b) yd¼ye¼yνe ¼Δ, ys¼yμ¼yνμ ¼−Δ, yg1 ¼ Δ=3,

yg2 ¼ −Δ=3.
The rapidity separation of the quarks and gluons is
controlled by the parameter Δ and hence the MRK limit
is approached at the right-hand side of the plots. The other
parameters used are given in Appendix A, but the behavior
seen is not sensitive to the exact values of the transverse
momentum or the azimuthal angles. In both plots, we show

the squared matrix element divided by ŝ2, to achieve a finite
nonzero value in the MRK limit. The exact LO result
(black, dotted line) and the approximation within HEJ

(solid, red line) are very similar throughout the range
and converge to the same limiting value at large Δ. The
plots also show the rich dynamics of the matrix elements
that would be missed at small values of Δ if the limiting
value was used throughout phase space.
The LL accurate cross section is then given by the

following sum over multiplicities and integration over all
phase space (where ll numbers the four leptons from theW
decays):

σLLpp→W�W�þ2j ¼
X
fi1;fi2

X∞
n¼2

Yn
i¼1

�Z
d2pi⊥
ð2πÞ3

Z
dyi
2

�Y4
l¼1

�Z
d2pll⊥
ð2πÞ3

Z
dyll
2

� jMHEJ;reg
qQ→W�

1
W�

2
q0ðn−2ÞgQ0 j2

ŝ2

× xafA;fi1ðxa;QaÞx2fB;fi2ðxb;QbÞð2πÞ4δ2
�Xn

k¼1

pk⊥ þ
X4
m¼1

plm⊥
�
O2jðfpjgÞ: ð8Þ

We emphasize here that no approximation is made to the
phase space being integrated over, only within the matrix
element itself. This integral can be efficiently implemented
in an exclusive Monte Carlo event generator giving full
flexibility to implement experimental cuts and distribu-
tions. Before this integration, we first multiply the squared
matrix element by reweighting factors to implement fixed-
order accuracy, as discussed in the next section.

C. Matching to fixed order

In the previous subsection, we have described how to
construct the cross section for pp → W�W�þ ≥ 2j at LL
accuracy in ŝ=p2

t . In order to increase the validity of the

approach, we will supplement this with subleading terms
which will provide leading-order accuracy at each order in
αs up to the point where this is computationally feasible.
For this process, in this study, that is samples with two,
three, four, five, and six jets at LO. We observe that the
impact of adding higher multiplicity fixed-order samples
decreases with each multiplicity, and in particular that the
six-jet sample has at most a few percent effect in any
distribution so we are confident that our results have
converged.
The matching is then implemented using the methods of

HEJ2 [27], which reorganizes the integral over phase space
to supplement fixed-order samples at each order with
real and virtual corrections such that leading-logarithmic

(a) (b)

FIG. 3. Phase space explorer plots for uc → WþWþ þ n jets for (a) three jets and (b) four jets.
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accuracy is maintained at all orders in αs and additionally
leading-order accuracy is achieved for the n-jet components
for n ¼ 2–6. This method is implemented in the exclusive
event generator, HEJ2 [47].3 The process pp → W�W�þ ≥
2j will be included in a future public release of HEJ2. The
fixed-order input is given as Les Houches events and can be
taken from any generator. In this study we have used
SHERPA [48] to generate the fixed-order input.
Finally, we rescale all the final HEJ2 predictions to match

the total cross section to the inclusive NLO cross section for
each scale choice. However, for the setup described in
Sec. III, and as discussed there, this turns out to have a
negligible impact in this case.

III. IMPACT OF LEADING-LOGARITHM
CORRECTIONS

We will now show the predictions constructed and
matched as described in the previous section for observ-
ables commonly studied at the LHC for the process
pp → W�W�þ ≥ 2j, where one W� decays in the elec-
tron channel and one in the muon channel. Wewill compare
these with an NLO calculation of the same process
(here taken from SHERPA [48] using COMIX [49] with the
extension of OpenLoops [50]) to assess the impact of the new
LL corrections. Also included for comparison is a calcu-
lation including MC@NLO matching [51] with the shower
generator CS Shower [52] packaged with SHERPA. We use
the NNPDF3.0 NLO PDF set [53] as provided by LHAPDF6

[54]. We choose the central factorization and renormaliza-
tion scale as the geometric mean of the transverse momenta
of the two leading jets, μF ¼ μR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip⊥;j1p⊥;j2

p . These
scales are varied independently by a factor of 2 around this
central value, with the constraint that their ratio is kept
between 0.5 and 2. The uncertainty bands shown in the
plots are obtained from the envelope of these variations.
In Figs. 5–9 we show distributions measured in a recent

CMS analysis [22]. It is not meaningful to compare to the
data points in that study as these include the large Oðα4WÞ
contributions. The cuts applied to the predictions are listed
in Table I. Those in the first group form the inclusive cuts
which are applied to all plots. The additional three criteria
(below the second horizontal line) give the extra cuts on
leading dijet invariant mass, leading jet pseudorapidity
separation, and the Zeppenfeld variable [55]

zl ¼
ηl − 1

2
ðηj1 þ ηj2Þ

jηj1 − ηj2 j
; ð9Þ

where j1 and j2 are the two hardest jets in the event. These
cuts are used to try to suppress the QCD contribution to this
process. We will refer to them as “VBS cuts” and will show
results before and after these extra criteria. The output of
HEJ is exclusive in the momenta of all outgoing particles.

Here we have used the functionality of linking HEJ directly
with Rivet [56] to apply the cuts and fill the histograms.
Before discussing the distributions, we give the cross

sections obtained at NLO, with MC@NLO and with HEJ2

before and after the application of VBS cuts in Table II for
the central scale choice above. Both before and after VBS
cuts the values are remarkably similar for the central value
of the renormalization and factorization scales. This is a
marked difference to other processes where similar cuts
have been applied. For example in pp → Hþ ≥ 2j despite
relative agreement at the inclusive level, the HEJ2 predic-
tions were significantly more suppressed by VBF cuts than
those at NLO (by about a factor of 2) [28]. This result is
sensitive to the scale choice; in the window of variations we
studied, the ratio between the HEJ2 and NLO cross sections
varies by as much as 22% in either direction. It is also clear
from the distributions that follow that this agreement is not
flat in phase space (even for the central scale choice) but
arises from different regions where the HEJ2 result is greater
and less than NLO. In Fig. 4, we show the exclusive jet
rates. For only the inclusive selection criteria, we see a
steady decrease at each multiplicity, but in the HEJ2

predictions the four-, five-, and six-jet rates remain at
21%, 6%, and 2% of the exclusive two-jet rate, respectively.
After VBS cuts, the relative importance of the higher
multiplicity rates in the HEJ2 predictions is enhanced with
the two-jet and three-jet rates being very similar and the
four-, five, and six-jet rates now increasing to 40%, 13%,
and 3% of the exclusive two-jet rate, respectively. In the
NLO sample after VBS cuts, the three-jet rate is a third
larger than the two-jet rate for the central scale choice. The
scale variation bands here are very large; however, for any
one choice the three-jet was always comparable to or
greater than the two-jet rate. This is already one measure of
the importance of the higher-order corrections in αs (i.e., α4s
and above). The MC@NLO predictions shows that the

TABLE I. The selection cuts used in the analysis where the
lepton cuts apply only to the charged leptons. The last three rows
define the additional VBS cuts.

Variable Selection cut

Lepton pseudorapidity jηlj < 2.5
Jet pseudorapidity jηjj < 4.7
Leading/subleading lepton pT pT > 25=20 GeV
Missing transverse momentum Emiss

T > 30 GeV
Jet pT pT > 50 GeV
Lepton isolation ΔRðl; jetÞ > 0.4 o/w

jet is removed
Dilepton mass mll > 20 GeV
Dilepton mass restriction jmll −mZj > 15 GeV
Dijet mass mj1j2 > 500 GeV
Jet rapidity separation jΔηj1j2 j > 2.5
Max lepton Zeppenfeld variable [Eq. (9)] maxðzlÞ < 0.75

3This is publicly available at https://hej.hepforge.org.
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effect of adding a parton shower to the NLO predictions is
to distribute the three-jet component among the higher jet-
rate bins. The large contribution to the cross section from
events with three or more jets suggests that additional jet
vetoes could be used to further suppress the relative QCD
contribution to pp → VV þ 2j.
The jet rate plots are affected by the lepton isolation cut

(see Table I). Any jet which satisfies ΔRðl; jetÞ < 0.4 for
any charged lepton is removed from the event, but the event
is still kept provided there are at least two further jets. This
means that events that arise from a theoretical calculation
with, e.g., four jets can appear in the plot in the two-jet or
three-jet bin. For comparison, we show the equivalent plots
from HEJ2 without lepton isolation applied in Appendix C.
Figure 5 shows the comparison for the difference in

pseudorapidity between the two leading jets.4 Here we see
only modest differences in shape between the two

descriptions that are slightly enhanced once VBS cuts
are applied in the right-hand plot. However, any differences
lie mostly within the scale variation bands. Here, and in the
remaining distributions, we observe only a small impact of
adding a parton shower to the pure NLO calculation, with
no significant changes in shapes of distributions.
Figure 6 exhibits greater differences in shape in the

distribution of the transverse momentum of the leading jet.
For the inclusive cuts in (a), the HEJ2 prediction starts much
lower than the NLO prediction but increases with respect to
it until the predictions cross around 200 GeV. Above this
value the prediction from HEJ2 falls more slowly leading to
a prediction of a harder spectrum in pj1;⊥. A very similar
behavior is seen in (b) after the application of VBS cuts.
This distribution clearly emphasizes that the close agree-
ment of the total cross section values is a coincidence of the
experimental setup used. If the transverse momentum
requirement of the jets had been larger, then the HEJ2 cross
section would have also been correspondingly larger than
that from NLO.
Similarly, in Fig. 7 we see that the HEJ2 and NLO

predictions for the invariant mass distribution of the two

(a) (b)

FIG. 4. Exclusive jet rates for pp → W�W�þ ≥ 2j, (a) without and (b) with additional VBS cuts.

TABLE II. This table gives the total cross section calculated with the new HEJ2 LOþ LL predictions in this paper compared to the
result at NLO accuracy, both before and after the VBS cuts given in the text.

Cross section (fb) without VBS cuts, σincl with VBS cuts, σVBS σVBS=σincl

HEJ2 WþWþ 1.428� 0.002 0.1219� 0.0004 0.0854� 0.0003
NLO WþWþ 1.41� 0.05 0.12� 0.07 0.08� 0.02
MC@NLO WþWþ 1.285� 0.003 0.1033� 0.0006 0.0804� 0.0005
HEJ2 W−W− 0.6586� 0.0003 0.0402� 0.0001 0.0610� 0.0002
NLO W−W− 0.68� 0.02 0.04� 0.01 0.06� 0.02
MC@NLO W−W− 0.6186� 0.0004 0.0371� 0.0002 0.0600� 0.0002

4We use pseudorapidity to match the convention in the
Ref. [22]. In practice, there is little difference in NLO and
HEJ2 predictions when one chooses to use rapidity or pseudor-
apidity as the parton multiplicity within a jet is relatively low in
each case.
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leading jets have a different shape with a ratio which
increases steadily from 0.5 at mj1j2 ¼ 0 GeV to 1.4 by
mj1j2 ¼ 2 TeV where it roughly plateaus. A similar effect is
seen after VBS cuts are imposed, although of course here
the lower region has been removed. The point where the
predictions cross has moved to a slightly higher value of
mj1j2 as a result of the cuts on the other variables which
form part of the VBS cuts.
In Fig. 8, we show the distributions in the invariant mass

of the two charged leptons from the decays of the W
bosons. This is related to the invariant mass of the jets if one

considers event topologies where the W bosons follow the
direction of the associated quark lines. For modest trans-
verse momenta, the invariant mass between particles is
driven by their rapidity difference. The leptons, though, are
required to be more central than the jets and we see more
modest differences between the NLO and HEJ2 predictions.
The final distribution we show in this section is the

Zeppenfeld variable ze of the electron, defined in Eq. (9).
This measures the relative position of the electron in these
events with respect to the jet system. Both before and after
VBS cuts, the predictions from NLO and from HEJ2 are in

(a) (b)

FIG. 5. The differential distribution in the pseudorapidity separation of the two leading jets in pp → W�W�þ ≥ 2j, (a) without and
(b) with additional VBS cuts.

(a) (b)

FIG. 6. The differential distribution in the transverse momentum of the hardest jet in pp → W�W�þ ≥ 2j, (a) without and (b) with
additional VBS cuts.
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very close agreement, and the ratio between the two
remains largely flat throughout the region showing that
this variable is largely insensitive to the logarithmic
corrections at higher orders in αs.
In this section, we have compared the new predictions

for pp → e�νeμ�νμþ ≥ 2j available in HEJ2 (which
include the leading logarithmic corrections in ŝ=p2⊥ at
all orders in αs) with those obtained at NLO in QCD. We
have seen close agreement in the total cross sections
obtained in the two approaches at the central scale choice,

but a study of distributions in pj1;⊥, mj1j2 , and mll show
large differences in shape which make this agreement
appear to be a coincidence of the specific values chosen
in the experimental cuts.

IV. CONCLUSIONS

We have presented the calculation of all leading loga-
rithmic contributions which scale as α4Wα

kþ2
s logkðŝ=p2

t Þ to
the production of a same-sign W pair that decays

(a) (b)

FIG. 7. The differential distribution in the invariant mass of the two leading jets in pp → W�W�þ ≥ 2j, (a) without and (b) with
additional VBS cuts.

(a) (b)

FIG. 8. The differential distribution in the invariant mass of the two charged leptons in pp → W�W�þ ≥ 2j, (a) without and (b) with
additional VBS cuts.
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leptonically, i.e., the QCD contribution to the process
pp → e�νeμ�νμþ ≥ 2j. In order to separate the electro-
weak and QCD contributions to this process, so-called VBS
cuts are usually applied to require large invariant mass and
rapidity separation of the tagging jets. These cuts exactly
select regions of phase space where the logarithms above
become important. The equivalent corrections have been
seen to be significant in the QCD component of pp →
Hþ ≥ 2j through vector boson fusion, where similar cuts
are used. To assess their impact in pp → e�νeμ�νμþ ≥ 2j,
we have compared our new predictions to those obtained at
NLO within the experimental setup of a recent 13 TeV
CMS analysis.
We have found that the HEJ2 cross section is very close to

the NLO prediction both for inclusive cuts, and after VBS
cuts have been applied. However, it is clear from the
distributions that this agreement arises from cancellations
across phase space rather than being true throughout. The
distributions in transverse momentum of the leading jet in
Fig. 6, in invariant mass of the leading jets in Fig. 7 and in
invariant mass of the charged leptons in Fig. 8 show clear
differences in shape with differences of up to 50% between
HEJ2 and NLO. There are other distributions, Δηj1j2 and ze,
where the two sets of predictions show close agreement,
indicating that these distributions are more stable with
respect to higher-order logarithmic corrections.
Previous studies of this process have seen that the three-

jet component is significant in typical experimental analy-
ses, enhanced within VBS cuts. We also find this, and that it
extends beyond three jets. The exclusive jet components
within HEJ2 are matched to leading-order accuracy for 2–6
jets. We showed in Fig. 4 that the VBS cuts do indeed
increase the significance of the 3–6-jet components relative
to the two-jet component. The contribution from three jets
is similar to the two jet in HEJ2 and greater than the two jet
at NLO. The 4–6-jet components steadily decrease but such
that the six-jet components still contributed at the order of a
few percent in some distributions.
We therefore conclude that logarithmic corrections of the

form α4Wα
kþ2
s logkðŝ=p2

t Þ are numerically significant at the
13 TeV LHC, and should be included in accurate modeling
of the QCD background to VBS.
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APPENDIX A: MOMENTUM CONFIGURATIONS
FOR PHASE SPACE SLICES

We give here the momentum configurations used for the
plots of the matrix elements in Fig. 3. For the three-jet final
state in Fig. 3(a), we use the following:

pi¼pi;⊥ðcosðϕiÞ;sinðϕiÞ;sinhðyiÞ;coshðyiÞÞ;
pd;⊥¼pl;⊥¼pg;⊥¼40GeV;

pνl;⊥¼
m2

W

2pl;⊥ðcoshðyl−yνlÞ−cosðϕl−ϕνlÞÞ
;

ps;⊥¼−ðpd;⊥þpe;⊥þpνe;⊥þpμ;⊥þpνμ;⊥þpg;⊥Þ;
ϕd¼2π=3; ϕe¼π=4; ϕμ¼−π=2;

ϕνe ¼−π=4; ϕνμ ¼þπ=2; ϕg¼0.4;

yd¼ye¼yνe ¼Δ; ys¼yμ¼yνμ ¼−Δ; yg¼0: ðA1Þ

For the four-jet final state in Fig. 3(b) we use the following:

pi¼pi;⊥ðcosðϕiÞ;sinðϕiÞ;sinhðyiÞ;coshðyiÞÞ;
pd;⊥¼pl;⊥¼pg1;⊥¼pg2;⊥¼40GeV;

pνl;⊥¼
m2

W

2pl;⊥ðcoshðyl−yνlÞ−cosðϕl−ϕνlÞÞ
;

ps;⊥¼−ðpd;⊥þpe;⊥þpνe;⊥þpμ;⊥þpνμ;⊥þpg1;⊥þpg2;⊥Þ;
ϕd¼π; ϕe¼π=4; ϕμ¼−π=2; ϕνe ¼−π=4;

ϕνμ ¼þπ=2; ϕg1 ¼π=2; ϕg2 ¼−π=3;

yd¼ye¼yνe ¼Δ; ys¼yμ¼yνμ ¼−Δ;

yg1 ¼Δ=3; yg2 ¼−Δ=3: ðA2Þ

The qualitative effects seen in Fig. 3 are only sensitive to
the rapidity values (and not to the exact choices of trans-
verse momenta or azimuthal angle).

TABLE III. The input parameters used for the plots in Sec. III.

Variable Value

PDF NNPDF30_nlo_as_0118
(lhapdf number 260000)

mZ 91.1876 GeV
ΓZ 2.4952 GeV
mW 80.385 GeV
ΓW 2.085 GeV
μF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip⊥;j1p⊥;j2
p

μR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip⊥;j1p⊥;j2

p
αsðmZÞ 0.118 (set to match PDF)
1=αw 132.232
GF 1.16639 × 10−5 GeV−2

SHERPA Version 2.2.2
OpenLoops Version 1.3.1
Parton Shower CS Shower (packaged with SHERPA)
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APPENDIX B: SIMULATION PARAMETERS

In Table III we summarize the parameters used to
generate the predictions in Sec. III.

SHERPA uses the complex mass scheme for vector boson
masses and αw is calculated in the Gμ scheme from these.

APPENDIX C: EXCLUSIVE JET RATES
WITHOUT LEPTON ISOLATION

REQUIREMENT

In Fig. 4 we showed the exclusive jet rates obtained at
NLO and with HEJ2 for the experimental setup described

in Table I. This includes a lepton isolation requirement
where any jet which satisfies ΔRðl; jetÞ < 0.4 is removed
from the event. This means that many events appear in
bins with lower numbers of jets than that present in the
calculation of the weight of that event. To more closely
reflect the impact of the higher orders in the calculation, in
Fig. 10 we show the jet rates from HEJ2 with the lepton
isolation requirement removed (all other cuts remain the
same). The differences with only inclusive cuts are
modest, with a slight decrease in the first bin and slight
increases in the higher bins. After VBS cuts, the effect is
more pronounced. The three-jet rate is now slightly above

(a) (b)

FIG. 9. The differential distribution in the Zeppenfeld variable for the electron in pp → W�W�þ ≥ 2j, without and with additional
VBS cuts.

(a) (b)

FIG. 10. Exclusive jet rates for pp → W�W�þ ≥ 2j as in Fig. 4 except now the lepton isolation requirement has been removed,
(a) without and (b) with additional VBS cuts.
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the two-jet rate and there is then a bigger step down to the
four, five, and six jet rates, which have each risen slightly
from the values after lepton isolation cuts. They are now

47%, 16%, and 4%, respectively, of the exclusive two-jet
rate compared to 40%, 13%, and 3% after the lepton
isolation cut is applied.
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