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We study the doubly heavy baryon Ξcc production in ϒð1SÞ decay. The nonrelativistic framework is
employed to describe the bound states for the calculation on the partial width. It is shown that the
corresponding branching ratio can be significant and can be well measured as the ϒð1SÞ decay to
J=Ψþ cc̄þ anything process.
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I. INTRODUCTION

ϒð1SÞ [1] decay is a good arena to study QCD and
hadron physics. Several instructive results have been
obtained. For example, recent searches on the exotic
XYZ hadrons via the inclusive channel ϒ → J=Ψþ
anything [2] and on light tetraquark hadrons in several
channels of ϒ decay [3] have been made. Both reported
negative results. As a matter of fact, in the energy region
above J=Ψ mass at Beijing Electron Positron Collider and
that aboveϒmass at B factories, many exotic XYZ hadrons
have been observed (for a recent review, see [4]). These
exotic particles, except those directly couple to the virtual
photon in eþe− annihilations, are all produced from the
decays of either the exited cc̄ bound states or the B hadrons.
On the other hand, ϒ decay is an environment significantly
different from those where the exotic particle production is
observed. ϒ decays via the OZI-suppressed ways, i.e., the
annihilation of the bb̄ quarks. The dominant mode (> 80%)
is the hadronic one generally referred to as “3-gluon” decay
[5], and the subsequent hadronization is a special case of
multiproduction. The negative results [2,3] mentioned
above can shed light on property of confinement and the
unitarity of the hadronization in multiproduction processes
as we have pointed out [6–9]. The experimental facts
mentioned above confirm that the cc̄ pair produced in
perturbative process prefers to transfer into general hadrons
like J=Ψ rather than exotic XYZ’s in this multiproduction
process; and that for light hadrons, it is also the similar
case, i.e., the above negative experimental results on light

exotic hadrons indicate that the dominant decay channels
should be ϒ → h0s, with h0s referring to mesons as well as
baryons. In one word, ϒ generally decays to mesons and
baryons, with exotic ones hardly possible to be observed.
But the to-date measured decay channels of ϒ are much far
from exhausting the total decay width. Especially, almost
no baryon channel is measured [5]. So measuring the
baryon production is an important task for better under-
standing the dynamics in ϒ decay.
Among all the baryons which can be produced in ϒ

decay, the doubly heavy baryon Ξcc is special. SELEX and
LHCb have respectively reported the observations of this
kind of baryons with different mass [10–12]. One of the
possibilities can be that different SU(2) multi-states of Ξcc
are observed by these two collaborations. To measure these
multistates, and further to explore SU(3) multistates, can
surely help to clarify and deepen our knowledge on the
property and production mechanism of Ξcc. ϒ decay can
provide a clean platform for such measurements.
There is a further special reason that stands for the

observation on Ξcc in ϒ decay. It is noticed that most of the
presented data of ϒ decay are upper limits [5]. However,
the decay channel ϒ → J=Ψþ X is well measured for
several times by several collaborations and has attracted
wide interests, which is important on the study of PQCD
and NRQCD (for the full literature list, please see a recent
review [13]). It was pointed out that, based on the soft J=Ψ
spectrum by CLEO measurement which was quite rough at
that time, and on the calculation of the partial width [14],
the dominant contribution could be ϒð1SÞ → J=Ψþ cc̄g.
Then the spectrum and branching ratio is confirmed by
CLEO II [15,16] and later by BELLE [2], though detailed
calculations show that several competing sub-processes
contribute [17,18]. This fact strongly implies that the
perturbative production of cc̄cc̄ in ϒ decay is significant.
This leads to the fact that the double charm baryon is hence
easily produced as argued by the color connection analysis
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[19]. For c1c̄2c3c̄4g system from ϒ decay, c1c̄2 and c3c̄4
respectively come from a virtual gluon. But c1c̄4 and c3c̄2
can respectively be in color singlet, i.e., the color space can
be reduced as

ð31 ⊗ 3�4Þ ⊗ ð33 ⊗ 3�2Þ ¼ ð114 þ 814Þ ⊗ ð123 þ 823Þ: ð1Þ

This means that such combination of the pair can be color
singlet and easy to translate to J=ψ for proper invariant
mass. One can recognize that the color space can also be
reduced as

ð31 ⊗ 33Þ ⊗ ð3�2 ⊗ 3�4Þ ¼ ð3�13 þ 613Þ ⊗ ð324 þ 6�24Þ: ð2Þ

In such color states, the two-charm pair can combine with a
light quark to become Ξcc [19–21] for proper invariant
mass. This simple analysis implies that the production rate
of Ξcc þ c̄ c̄ g is expected not small once the J=Ψþ cc̄g
production rate is not small.
In this paper, we devote to study the production of Ξcc in

ϒ decay. We calculate the corresponding partial width and
the momentum distribution of Ξcc. Multistates like Ξþ

cc or
Ξþþ
cc could have different width and lead to quite different

feasibility or difficulty in observing them, but their pro-
duction mechanism is completely the same in ϒ decay.
Therefore we do not make any distinction for the inves-
tigation on the production. In the super B factory, once the
center of mass energy is tuned on the ϒ resonance, a large
sample of ϒ decay data can be obtained and could be
employed for the measurement. The following calculations
show that the branching ratio of Ξcc production can be
order of 10−4. For the ϒ decay, the process with two charm
pairs production is easy to be triggered by 3-jet like event
shape and strangeness enhancement (e.g., the K

π value)
[16,22], of which some of the charm meson production
events can be vetoed by lepton pair or hadron pair mass
around J=Ψmass. In this way, one can get a clean and large
sample of events to study the doubly charm baryon
multistates.
The calculation of the ϒ → Ξcc þ c̄ c̄þg suffers from

the complexity that both the initial and final states contain
bound states ϒ and Ξcc, which need to be investigated
respectively. In Sec. II, we describe the traditional non-
relativistic wave function method and apply it to the initial
state ϒ. However, for the doubly heavy baryon system, we
have to factorize out the corresponding matrix elements via
NRQCD method [23]. These are the contents of Sec. III,
and we obtain the formulas to calculate the partial width.
Then in Sec. IV, we investigate the numerical result with the
estimation for the NRQCD parameters and give simple
discussions on experimental feasibility.

II. INITIAL BOUND STATE

In the process ϒ → Ξcc þ c̄ c̄ g, both bottom and the
charm quarks are heavy. For the initial bound state, the

color singlet bb̄ pair with C ¼ −1, it directly leads to the
nonrelativistic wave function formulations [24–27], where
the relative momentum between b and b̄ is vanishing,
namely same as the case of positronium. For the final
bound state, a factorization formulation within the NRQCD
framework [28,29] is employed. One subtle point is that,
the nonrelativistic formulations are investigated in the rest
frame of each bound state, respectively; and then a
corresponding covariant form of description is obtained,
which can be employed in any frame. Here we start from
the initial state: The differential width of the process ϒ →
Ξcc þ c̄ c̄ g can be formulated as [14]

dΓ
dR

¼ jBϒhΞccc̄ c̄ gjSjbb̄ð3S1; 1Þij2
T

; ð3Þ

where dR is the differential phase space volume element for
Ξcc and c̄, c̄; g without the constrain of energy momentum
conservation; S is the S-matrix; Bϒ is related to the wave
function of ϒ at origin as

Bϒ ¼ Ψϒð0Þffiffiffiffi
V

p
2mb

: ð4Þ

For convenience, we normalize all final state particle states
to be 2EV (where E is the particle’s energy and V is the
volume of the total space). This normalization is also used
for all free quarks in bound states. For the initial state, Bϒ
normalizes the state of ϒ to be 1, so that the width can be
directly written as above. In Eq. (3) the sum over all spin
states for final particles and average of the 3 spin states for
ϒ are not explicitly shown and the “time” T is 2πδð0Þ. We
only consider the case of the initial state bb̄ as color singlet,
with a special “1” in the state ket to mark this.
For the factorization of the initial bound state, the width

is written, based on the above equation, as

dΓ ¼ dR0 1
3

1

M2
ϒ
jΨϒð0Þj2jhΞccc̄ c̄ gjT jbb̄ð3S1; 1Þij2: ð5Þ

Here dR0 ¼ dRð2πÞ4δð4ÞðPi − PfÞ, the factors time T and
volume V have been canceled by the δð4Þð0Þ. T is the T -
matrix with Sfi ¼ δfi þ ð2πÞ4δð4ÞðPi − PfÞT fi. Sum over
all spin states is indicated.
Employing the projection operator formulation (e.g.,

[24]), and the radial wave function Rϒ to describe the
initial bound state, we get the decay amplitude T fi as,

T fi ¼
1

2

1ffiffiffiffiffiffi
4π

p 1ffiffiffiffiffiffiffi
Mϒ

p Rϒð0ÞTr½O0ð=PþMϒÞð−=ϵÞ�: ð6Þ

O0 is the amplitude for bb̄ → Ξccc̄ c̄ g, with relative
momentum of bb̄ vanishing and without the bb̄ legs. P
and ϵ are 4-momentum and polarization vector of ϒ,
respectively.
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III. FINAL BOUND STATE AND
THE PARTIAL WIDTH

In the above Eq. (6), the final state of the ϒ decay except
the inclusively observed Ξcc, can be divided into a
perturbative part XP and a nonperturbative part XN . To
the lowest-order (tree level) in PQCD, the amplitude T fi is
obtained as

T fi¼
Z

d4q1
ð2πÞ4Aijðk1;k2;P1;P2;P3;k;kN ;q1Þ

Z
d4x1e−iq1x1

×hΞccðkÞþXN jQiðx1ÞQjð0Þj0i: ð7Þ

We assign k1; k2; P1; P2; P3; k as the momenta of the
corresponding particles, b; b̄; c̄; c̄; g;Ξcc, respectively,
k1 ¼ k2 ¼ P=2. Aijðk1; k2; P1; P2; P3; k; kN ; q1Þ, which
includes the initial wave function and the perturbative
contribution, can be directly read from Fig. 1. Both i and j
are Dirac and color indices. In the matrix element, XN
represents the nonperturbative effects, with small total
momentum kN to fulfill the total energy-momentum con-
servation (kN to be neglected in later derivations). QðxÞ is
the Dirac field for charm quark. q1x1 ≔ q1μx

μ
1 and we will

always use this convention. Here we simply illustrate the
derivation from the corresponding Wick terms in the S-
matrix to get this result. This helps to expose the physical
meaning of the q1. After the field operators acting on the
corresponding initial and final states, integrating on the
spacetime variables which only appear in exponential (to

get the δ function of vertex), as well as integrating on the
fermion propagator four momenta and the corresponding δ
function of vertex, one arrives to

Z
d4l1
ð2πÞ4

d4l2
ð2πÞ4

Z
d4xd4yAðl1; l2Þe−il1xeiP1xe−il2yeiP2yð2πÞ4δ4ðP − l1 − l2 − P3ÞhΞccðkÞ þ XN jQ̄ðxÞQ̄ðyÞj0i: ð8Þ

With the help of the diagrams in Fig. 1, one can clearly
understand the procedure: Since two charm field operators
in the matrix acting on the final bound state, the result is
unknown, hence the dependence of the x and y is unknown,
and the integration on x and y is not yet done. We keep one
δ function for easy to derive, since in this form we can
keep both the integration on l1 and l2, the momenta of
two gluon propagators. l1 is the four-momentum of the
propagator linking the vertex connecting the leg P1, while
l2 of that linking P2. Aðl1; l2Þ is the short for

Aijðk1; k2; P1; P2; P3; l1; l2Þ. From the following derivation
one sees how the l1, l2 are replaced and one gets
Aijðk1; k2; P1; P2; P3; k; kN ;q1Þ. The exponentials are those
from the (configuration space) propagators and the field
operators. The key physical point is the relation of the
spacetime displacement invariance and the energy-momen-
tum conservation. With the help of the spacetime displace-
ment operator eiP̂y (P̂ is the four-momentum operator),
Eq. (8) can be written as

Z
d4l1
ð2πÞ4

d4l2
ð2πÞ4d

4xd4yAðl1;l2Þe−il1xeiP1xe−il2yeiP2yð2πÞ4δ4ðP− l1− l2−P3ÞhΞccðkÞþXN jeiP̂yQ̄ðx−yÞQ̄ð0Þe−iP̂yj0i: ð9Þ

hΞccðkÞ þ XN j is the eigenstate of the Hermitian operator P̂, so P̂μjΞccðkÞ þ XNi ¼ ðkμ þ kμNÞjΞccðkÞ þ XNi, P̂j0i ¼ 0. At
the same time, by taking x − y ¼ x1 and since d4x ¼ d4x1,

FIG. 1. Six Feynman diagrams for the “amplitude” A in Eq. (7).
The g* g* g system are in the same color, angular momentum and
charge conjugation states as those ofϒ. The left bubble represents
the wave function of ϒ. A does not include the bubble of Ξcc and
the two legs connected to it, which correspond to the matrix
element in Eq. (7).
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Z
d4l1
ð2πÞ4

d4l2
ð2πÞ4d

4x1d4yAðl1;l2Þe−il1x1e−il1yeiP1x1eiP1ye−il2yeiP2yeiðkþkNÞyð2πÞ4δ4ðP− l1− l2−P3ÞhΞccðkÞþXN jQ̄ðx1ÞQ̄ð0Þj0i:

ð10Þ

Collecting the exponentials and integrals we have (now the hΞccðkÞ þ XN jQ̄ðx1ÞQ̄ð0Þj0i irrelevant from the following
calculations)

Z
d4l1
ð2πÞ4 d

4x1d4y
d4l2
ð2πÞ4 ð2πÞ

4δ4ðP − l1 − l2 − P3Þe−iðl1þl2−P1−P2−k−kNÞyAðl1; l2Þe−iðl1−P1Þx1

¼
Z

d4l1
ð2πÞ4 d

4x1d4ye−iðP−P1−P2−P3−k−kNÞyAðl1; l2Þe−iðl1−P1Þx1

¼
Z

d4l1
ð2πÞ4 d

4x1ð2πÞ4δ4ðP − P1 − P2 − P3 − k − kNÞAðl1; l2Þe−iðl1−P1Þx1

¼ ð2πÞ4δ4ðP − P1 − P2 − P3 − k − kNÞ
Z

d4q1
ð2πÞ4 d

4x1Aðq1; k; kNÞe−iq1x1 : ð11Þ

For the last line, q1 ¼ l1 − P1,
R
d4l1 ¼

R
d4q1. ð2πÞ4δ4ðP − P1 − P2 − P3 − k − kNÞ is the total energy-momentum

conservation in Sfi ¼ δfi þ ð2πÞ4δð4ÞðPi − PfÞT fi. Thus the T fi is obtained as Eq. (7).
Taking the absolute square of the above amplitude, one gets

dΓ ¼ 1

2Mϒ

X
XN

d3k
ð2πÞ3

Z
d3P1

ð2πÞ32E1

d3P2

ð2πÞ32E2

d3P3

ð2πÞ32E3

ð2πÞ4δ4ðP − P1 − P2 − P3 − kÞ × 1

3
×
1

3
×
1

2

×
Z

d4q1
ð2πÞ4

d4q3
ð2πÞ4 Aijðk1; k2; P1; P2; P3; k; q1Þ½γ0A†ðk1; k2; P1; P2; P3; k; q3Þγ0�kl

×
Z

d4x1d4x3e−iq1x1þiq3x3h0jQkð0ÞQlðx3ÞjΞcc þ XNihΞcc þ XN jQ̄iðx1ÞQ̄jð0Þj0i; ð12Þ

where the spin summation of the baryon Ξcc, and the
polarization and color summation of two anticharm quarks
are implied. Here we take nonrelativistic normalization for
the baryon Ξcc. The momentum change in the nonpertur-
bative process kN is negligible in this order. For this
approximation we can eliminate the sum over XN with
the unitary condition. In this way we can see that this

matrix element is process-independent, i.e., independent
from the details of XN which could be different in various
processes and energies. Employing the displacement oper-
ator again, while writing the δ function as spacetime
integral, and defining the creation operator a†ðkÞ for Ξcc
with the three momentum k, we obtain in the vacuum
saturation approximation

dΓ ¼ 1

2Mϒ

1

18

d3k
ð2πÞ3

Z
d3P1

ð2πÞ32E1

d3P2

ð2πÞ32E2

d3P3

ð2πÞ32E3

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4

d4q3
ð2πÞ4 Aijðk1; k2; P1; P2; P3; k; q1Þ

× ½γ0A†ðk1; k2; P1; P2; P3; k; q3Þγ0�kl
Z

d4x1d4x2d4x3e−iq1x1þiq3x3−iq2x2h0jQkð0ÞQlðx3Þa†kakQ̄iðx1ÞQ̄jðx2Þj0i; ð13Þ

with q2 ¼ k − q1.
In Ξcc rest frame, the heavy quarks move with a small

velocity υc. Hence, the Fourier transformed matrix element

can be expanded in υQ with fields of NRQCD. The relation

between NRQCD fields and Dirac fields QðxÞ in the rest

frame is

QðxÞ ¼ e−imct

�
χðxÞ
0

�
þOðvcÞ þ � � � ; ð14Þ

where χðxÞ is NRQCD field. We will work at the leading
order of υc. In the following we introduce v as the four
dimension velocity of Ξcc with vμ ¼ kμ=MΞcc

, to help to
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express our result of the matrix element in a covariant
normalization. The matrix element in the rest frame is

v0
Z

d4q1d4q2d4q3e−iq1x1−iq2x2þiq3x3

× h0jQkð0ÞQlðx3Þa†ðkÞaðkÞQ̄iðx1ÞQ̄jðx2Þj0i

¼
Z

d4q1d4q2d4q3e−iq1x1−iq2x2þiq3x3

× h0jQkð0ÞQlðx3Þa†ðk ¼ 0Þaðk ¼ 0ÞQ̄iðx1ÞQ̄jðx2Þj0i:
ð15Þ

Using Eq. (14), the matrix element in Eq. (13) can be
expanded with χðxÞ and χ†ðxÞ. The spacetime dependence
of the matrix element with NRQCD fields is controlled by
the scale mcvc. At the leading order of vc, i.e., vc ¼ 0, one
can neglect the relative movement of the operators. The
spacetime dependence of the operators are hence the same,
and can be taken to origin because of displacement
invariance. The mass of the baryon MΞcc

is approximated
equaling to 2mc. With this approximation the matrix
element in Eqs. (13), (15) is

h0jχa3λ3 ð0Þχ
a4
λ4
ð0Þa†aχa1λ1 ð0Þχ

a2
λ2
ð0Þj0i; ð16Þ

where we suppress the notation k ¼ 0 and it is always
implied that NRQCD matrix elements are defined in the
rest frame of Ξcc. The superscripts ai (i ¼ 1, 2, 3, 4) are
used to label the color of quark fields, while the subscripts

λi (i ¼ 1, 2, 3, 4) for the quark spin indices. The above
matrix element can be decomposed into two as following,
with the color and spin bases explicitly written:

h0jχa3λ3 ð0Þχ
a4
λ4
ð0Þaþaχa1λ1 ð0Þχ

a2
λ2
ð0Þj0i

¼ ðεÞλ4λ3ðεÞλ2λ1 · ðδa1a4δa2a3 þ δa1a3δa2a4Þ ·h1
þðσnεÞλ4λ3ðεσnÞλ2λ1 · ðδa1a4δa2a3 − δa1a3δa2a4Þ ·h3; ð17Þ

where σi (i ¼ 1, 2, 3) are Pauli matrices. ε ¼ iσ2 is totally
antisymmetric. The scalar matrix elements h1 and h3 are

h1 ¼
1

48

X
a1;a2

h0j½χa1εχa2 þ χa2εχa1 �a†aχa2†εχa1†j0i;

h3 ¼
1

72

X
a1;a2

h0j½χa1εσnχa2 − χa2εσnχa1 �a†aχa2†σnεχa1†j0i:

ð18Þ

h1ðh3Þ represents the probability for a cc pair in a 1S0ð3S1Þ
state and in the color state of 6ð ¯3 � Þ to transform into the
baryon. It is the Pauli exclusion principle determines that
only these two kinds of combination of color and spin
states, which are asymmetric, are possible [29]. With these
results the space-time integration can be done, the momenta
expressed with help of four-dimension velocity and the spin
projectors replaced by the corresponding four-dimension
ones, to recover the covariant form:

υ0
Z

d4x1d4x2d4x3e−iq1x1−iq2x2þiq3x3h0jQk
a3ð0ÞQl

a4ðx3Þa†ðkÞaðkÞQ̄i
a1ðx1ÞQ̄j

a2ðx2Þj0i

¼ ð2πÞ4δ4ðq1 −mcυÞð2πÞ4δ4ðq2 −mcυÞð2πÞ4δ4ðq3 −mcυÞ½−ðδa1a4δa2a3 þ δa1a3δa2a4ÞðP̃vCγ5PvÞjiðPvγ5CP̃vÞlkh1
þ ðδa1a4δa2a3 − δa1a3δa2a4ÞðP̃vCγμPvÞjiðPvγ

νCP̃vÞlkðυμυν − gμνÞh3 þ � � �� ð19Þ

where Pv ¼ 1þγ·v
2

, P̃v ¼ 1þγ̃·v
2

; C ¼ iγ2γ0, the charge conjugation operator.
With the formula in this section and the above section, we obtain the decay width as following:

dΓ ¼ 16π4α5s jRϒð0Þj2MΞcc

9M2
ϒ

1

½ðP1 þ k=2Þ2ðP2 þ k=2Þ2�2
X8
c¼1

�X6
ξ¼1

Āabc
ξ;αβ

��X6
ζ¼1

Ā�a0b0c
ζ;α0β0

�
Hαβα0β0

aba0b0

×
d3k

ð2πÞ32Ek

Y3
i¼1

d3Pi

ð2πÞ32Ei
ð2πÞ4δ4ðP − P1 − P2 − P3 − kÞ; ð20Þ

where

Hαβα0β0
aba0b0 ¼−ðTr½TaTa0TbTb0 � þTr½TaTa0 �Tr½TbTb0 �Þ×h1×Bαβα0β0

1 þðTr½TaTa0TbTb0 �−Tr½TaTa0 �Tr½TbTb0 �Þ×h3×Bαβα0β0
2 ;

ð21Þ
Bαβα0β0
1 ¼ Tr½γαð=P2 −mcÞγα0Pvγ5P̃vγ

β0 ð−=P1 −mcÞγβP̃vγ5Pv�; ð22Þ
Bαβα0β0
2 ¼ Tr½γαð=P2 −mcÞγα0PvγμP̃vγ

β0 ð−=P1 −mcÞγβP̃vγρPv�ðvμvρ − gμρÞ: ð23Þ

The function Āξ (ξ ¼ 1, 2, 3, 4, 5, 6) are given in Appendix.
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IV. NUMERICAL RESULT AND DISCUSSION

To get the numerical result, the parameters describing the
bound states have to be set. The knowledge about them are
varying. The radial wave function for ϒ at origin can be
obtained, e.g., by fitting its leptonic decay width which is
well known. On the other hand, the value of h1 and h3, is
difficult to be obtained. In principle they can be obtained by
fitting data. There are yet no experiment results now. For
diquark in color-triplet and spin triplet here we employ a
potential model with the radial wave function RccðrÞ at
origin [30] to estimate the numerical value of h3

h3 ¼
jRccð0Þj2

4π
; ð24Þ

with its value to be 0.03 GeV3. The key point for this
simple model lies in that the quark degree of freedom of the
matrix element h3 only contains two charm quark fields, so
it can be parameterized by a model of cc system. In the
above factorization we only keep the leading contribution
of the relative velocity. The simplest one is the non-
relativistic wave function as solution of the Schrödinger
equation with the Hamiltonian containing certain potential.
Suppose this averaged potential is irrelevant with the color
and spin details, h3 in Eq. (18) can be simplified as

h3¼ lim
x1→0;x2→0

h0jχðx1Þh0jχðx2ÞjΞccihΞccjχ†ðx2Þj0iχ†ðx1Þj0i:

The χðxÞ (χ†ðxÞ) is the nonrelativistic field which has the
physical meaning of annihilate (create) a charm quark at
spacetime point x. After solving the Schrödinger equation,
one can get a static solution which can be written as

h0jχðx1Þh0jχðx2ÞjΞcci ¼ ψðx1x2Þ
¼ ΨðR⃗Þψðr⃗Þe−iðMþδEÞt

¼ eiR⃗tψðr⃗Þe−iðMþδEÞt;

with the difference of two clocks comoving with each
charm quark neglected in this nonrelativistic approximation
and only “inner” interaction potential between two charm
quarks considered. R⃗; r⃗ are the center of mass position
vector and relative position vector, respectively. Hence

h3 ¼ lim
x1→0;x2→0

jeiR⃗tψðr⃗Þe−iðMþδEÞtj2 ¼ jψð0Þj2;

which is (24) for S wave. In this paper we just borrow the
solution of the radial wave function obtained in [30]. On the
other hand, there is no practical potential model for color-
sextet state. An conceptual approximation can be taken
with the similar potential model as color triplet. In this case
h1 is approximately the same order of magnitude as h3.
Here h1 can be taken as a free parameter, the reason is

explained in the following. In the numerical calculations,
we take Ψϒð0Þ ¼ 2.194 GeV3=2, Mϒ ¼ 9.46 GeV, MΞ ¼
3.621 GeV, mb ¼ 4.73 GeV. mc=mb is taken to be para-
meter, since there is ambiguity at tree level calculations as
well as in the models of the nonperturbative parameters.
The dependence of branching ratio on mc=mb is studied as
shown in Fig. 2, which is modest.
With mc=mb ¼ 0.25 and αsðmcÞ ¼ 0.253, the partial

width is Γ ¼ ð0.013h1 þ 0.24h3Þ KeV. Here we see that
the perturbative factor timing h1 is much smaller than that
of h3. So if there is no specially large enhancement on h1,
this part of the contribution cannot be significant and the
partial width is insensitive to the concrete value of h1. So h1
can be considered as free parameter. Since yet there is no
practical model for this color and spin state, for simplicity
we take h1 ¼ h3, and the decay width is 7.3 eV, leading to
the branching ratio as 1.3 × 10−4. The main theoretical
error/systematics on this estimation is coming from the
final bound state parameters h1 and h3, and the scale in the
strong coupling constant αsðμÞ. Taking into account a 10%
error of the parameters h1, h3, the branching ratio can be
ð1.3� 0.1Þ × 10−4, since this is just a linear dependence.
On the other hand, the dependence on the αs is more
sensitive. If we take the scale μ as 2mc, we obtain the
branching ratio to be half of the value from taking the scale
as mc, i.e., ð7.0� 0.6Þ × 10−5. The Ξcc and c̄ momentum
distributions are shown in Figs. 3 and 4, respectively. The
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FIG. 2. Dependence of branching ratio on mc=mb.
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FIG. 3. The normalized momentum distribution of Ξcc;
solid,h3 ¼ 0; dashed, h1 ¼ 0.
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line shape is mainly determined by the propagators of the
perturbative diagrams, insensitive to the color and spin
structures. These two anticharm quarks generally fragment
to open charm hadrons, respectively. A model for the
hadronization of these kind of final parton system can be
found in [20,21].

The experiment of BELLE in 2016 has collected
102 × 106 ϒ events [2,13]. So it is possible to make a
scan on the Ξcc production. In the future, further precise
measurement on the production of Ξcc can even be made
with more large luminosity at BELLE2. Similar produc-
tions characteristic of the partonic state with four charm
(anti)quarks (Tcc, di-J=Ψ resonance) can also be studied in
ϒ decay.
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APPENDIX

The functions Āξðξ ¼ 1;…; 6Þ in the decay width are

Ā1 ¼ Trs½TcTbTa� 1

½ðq − P3Þ2 −m2�½ðq − P1 − k=2Þ2 −m2�

× Tr

�
=ε�ðP3Þðmþ =P3 − =qÞγα

�
=q − =P1 −

=k
2
þm

�
γβðM þ =PÞ=ϵ

�

Ā2 ¼ Trs½TbTcTa� 1

½ðP2 þ k=2 − qÞ2 −m2�½ðq − P1 − k=2Þ2 −m2�

× Tr

�
γα

�
mþ =P2 þ

=k
2
− =q

�
=ε�ðP3Þ

�
=q − =P1 −

=k
2
þm

�
γβðM þ =PÞ=ϵ

�

Ā3 ¼ Trs½TcTaTb� 1

½ðP3 − qÞ2 −m2�½ðq − P2 − k=2Þ2 −m2�

× Tr

�
=ε�ðP3Þðmþ =P3 − =qÞγβ

�
=q − =P2 −

=k
2
þm

�
γαðM þ =PÞ=ϵ

�

Ā4 ¼ Trs½TaTcTb� 1

½ðP1 þ k=2 − qÞ2 −m2�½ðq − P2 − k=2Þ2 −m2�

× Tr

�
γβ

�
mþ =P1 þ

=k
2
− =q

�
=ε�ðP3Þ

�
=q − =P2 −

=k
2
þm

�
γαðM þ =PÞ=ϵ

�

Ā5 ¼ Trs½TbTaTc� 1

½ðP2 þ k=2 − qÞ2 −m2�½ðq − P3Þ2 −m2�

× Tr

�
γα

�
mþ =P2 þ

=k
2
− =q

�
γβð=q − =P3 þmÞ=ε�ðP3ÞðM þ =PÞ=ϵ

�

Ā6 ¼ Trs½TaTbTc� 1

½ðP1 þ k=2 − qÞ2 −m2�½ðq − P3Þ2 −m2�

× Tr

�
γβ

�
mþ =P1 þ

=k
2
− =q

�
γαð=q − =P3 þmÞ=ε�ðP3ÞðM þ =PÞ=ϵ

�
ðA1Þ

Here Trs½…� means only keeping the symmetric part; m ¼ mb, M ¼ Mϒ, q ¼ P=2. εðP3Þ is the polarization vector of the
gluon with momentum P3.
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FIG. 4. The normalized momentum distribution of c̄; sol-
id,h3 ¼ 0; dashed, h1 ¼ 0.
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