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The f0ð1710Þ was previously proposed to be a dynamically generated state with interactions between
vector mesons. We extend the study of f0ð1710Þ by including its coupling to channels of pseudoscalar
mesons within the coupled-channel approach. The channels involved are K�K̄�; ρρ;ωω;ϕϕ;ωϕ; ππ;
KK̄; ηη. We show that the pole assigned to f0ð1710Þ does not change much. Then we calculate the partial
decay widths of f0ð1710Þ → K�K̄� → ππ; KK̄; ηη as the coupled channel dynamically generated state as
well as assuming it to be a pure K�K̄� molecule. In both cases the ratios of partial decay widths agree fairly
with that in PDG.
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I. INTRODUCTION

More and more hadron resonances have been proposed
to be hadron molecules [1] with much more predicted ones
to be searched for [2]. Among various approaches for
studying hadron molecules, a quite popular one is the
unitary extension of chiral perturbation theory, which has
been successful in studying the meson-baryon and meson-
meson interactions at low energy [3–10]. A well-known
example is the Λð1405Þ [11], which can be dynamically
generated in the vicinity of the πΣ and K−p thresholds. The
another example is f0ð980Þ [8,12], which is considered to
arise due to ππ andKK̄ coupled channel interactions. Some
recent works [13,14] studied the interaction of the nonet
of vector mesons themselves and found a pole with the
quantum number JPC ¼ 0þþ mainly coupling to the K̄�K�
channel, possibly corresponding to f0ð1710Þ.
In this paper, we extend the previous study [14] of

f0ð1710Þ by including its coupling to channels of pseu-
doscalar mesons in addition to vector mesons to see how
these more coupled channels influence the result on the
f0ð1710Þ pole and whether its corresponding partial decay
widths to these channels of pseudoscalar mesons are
compatible with experimental data. Our work is organized

as follows. In Sec. II, we outline the formalism to the
coupled-channel interaction [15]. In Sec. III, we give our
numerical results and discussion with a brief summary at
the end.

II. FORMALISM

The interaction Lagrangian among vector mesons and
pseudoscalar mesons is given by [16,17]

LVPP ¼ −ighVμ½P; ∂μP�i; ð1Þ
where the symbol h…i stands for the trace in the SUð3Þ
space and the coupling constant g ¼ MV=2fπ with
MV ¼ 845.66 MeV, the SUð3Þ-averaged vector-meson
mass, and fπ ¼ 92 MeV as the pion decay constant. The
vector field Vμ is

Vμ ¼

0
BBB@

1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω K�0

K�− K̄�0 ϕ

1
CCCA

μ

; ð2Þ

and the pseudoscalar field P is

P ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA: ð3Þ

With the Lagrangian given in Eq. (1), we are able to
calculate the vector-vector to pseudoscalar-pseudoscalar
scattering amplitudes. The Feynman diagrams needed are
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shown in Fig. 1, where V means vector meson and Pmeans
pseudoscalar meson.
The amplitudes with isospin-0 for the processes

Vðp1ÞVðp2Þ → Pðp3ÞPðp4Þ are listed in Table I. The
convention used to relate the particle basis to the isospin
basis is

jπþi ¼ −j1; 1i; jKþi ¼ −
���� 12 ; 12

�
;

jρþi ¼ −j1; 1i; jK�þi ¼ −
���� 12 ; 12

�
: ð4Þ

The Vt and Vu correspond to the t- and u-channel diagrams,
respectively. The superscript is the particle exchanged.
Here, t ¼ ðp1 − p3Þ2 and u ¼ ðp1 − p4Þ2 are the usual
Mandelstam variables. The potential has the form

Vex
tðuÞ ¼

g2

tðuÞ −m2
ex
ϵ1 · p3ϵ2 · p4; ð5Þ

where the ϵi is the ith polarization vector of the incoming
vector meson. The polarization vector can be characterized
by its three-momentum pi and the third component of the
spin in its rest frame, and the explicit expression of
the polarization vectors can be found in Appendix A
of Ref. [18].
In term of these amplitudes with isospin-0, we can get

the S-wave potential via [18]

TðJIÞ
lS;l̄S̄

ðsÞ¼ Y0
l̄
ðẑÞffiffiffi

2
p

Nð2Jþ1Þ
X

σ1 ;σ2 ;σ̄1
σ̄2 ;m

Z
dp̂00Ym

l ðp00Þ�ðσ1σ2Mjs1s2SÞ

×ðmMM̄jlSJÞðσ̄1σ̄2M̄js̄1s̄2S̄Þð0M̄M̄ jl̄S̄JÞ
×TðIÞðp1;p2;p3;p4;ϵ1;ϵ2;ϵ3;ϵ4Þ; ð6Þ

with s ¼ ðp1 þ p2Þ2 as the usual Mandelstam variable,
M ¼ σ1 þ σ2 and M̄ ¼ σ̄1 þ σ̄2. And N accounts for the
identical particles, for example

N ¼ 2 for ρρ → ππ; ð7Þ

N ¼ 1 for ρρ → KK̄; ð8Þ

N ¼ 0 for ωϕ → KK̄: ð9Þ

Like vector scattering VV → VV, the partial wave projec-
tion Eq. (6) for a t-channel exchange amplitude of VV →
PP would also develop a left-hand cut via [14]

1

2

Z þ1

−1
d cos θ

1

t −m2
ex þ iϵ

¼ −
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðs;m2
1; m

2
2Þλðs;m2

3; m
2
4Þ

p
× log

m2
1 þm2

2 −
ðsþm2

1
−m2

2
Þðsþm2

3
−m2

4
Þ

2s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1
;m2

2
Þλðs;m2

3
;m2

4
Þ

p
2s −m2

ex þ iϵ

m2
1 þm2

2 −
ðsþm2

1
−m2

2
Þðsþm2

3
−m2

4
Þ

2s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1
;m2

2
Þλðs;m2

3
;m2

4
Þ

p
2s −m2

ex þ iϵ
; ð10Þ

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2bc − 2ac the
Källén function. In vector scattering VV → VV, left-hand

cuts are smoothed by the N=D method [19,20]. As for the
scattering VV → PP, all left-hand cuts are located below
the PP threshold, which are far away from the energy
region we are interested in, so we do not deal with these
cuts.
The basic equation to obtain the unitarized T matrix is

TðJIÞðsÞ ¼ ½1 − VðJIÞðsÞ · GðsÞ�−1 · VðJIÞðsÞ: ð11Þ
Here VðJIÞ denotes the partial-wave amplitudes and GðsÞ is
a diagonal matrix made up by the two-point loop function
giðsÞ,

giðsÞ ¼ i
Z

d4q
ð2πÞ4

1

ðq2 −m2
i1 þ iϵÞððP − qÞ2 −m2

i2 þ iϵÞ ;

ð12Þ

FIG. 1. The t- and u-channel Feynman diagrams.

TABLE I. The potential of each channel with isospin-0.

Channel Tð0Þ

ρρ→
π
ππ −16ðVπ

t þ Vπ
uÞ

ρρ→
K
KK̄ −2

ffiffiffi
6

p ðVK
t þ VK

u Þ
ωω→

K
KK̄ 2

ffiffiffi
2

p ðVK
t þ VK

u Þ
ϕϕ→

K
KK̄ 4

ffiffiffi
2

p ðVK
t þ VK

u Þ
ωϕ→

K
KK̄ −4ðVK

t þ VK
u Þ

K�K̄�→
K
ππ −2

ffiffiffi
6

p ðVK
t þ VK

u Þ
K�K̄�→

K
ηη 6

ffiffiffi
2

p ðVK
t þ VK

u Þ
K�K̄�→

π;η
KK̄ −6ðVπ

t þ Vη
t Þ
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with P2 ¼ s and mi1;2 as the masses of the particles in the
ith channel. The pole position is at the zeros of determinant

Det≡ det ½1 − VðJIÞðsÞ · GðsÞ�: ð13Þ

The above loop function is logarithmically divergent and
can be calculated with a once-subtracted dispersion relation
or using a regularization fΛðqÞ

giðsÞ ¼ i
Z

d4q
ð2πÞ4

f2ΛðqÞ
ðq2 −m2

i1 þ iϵÞððP − qÞ2 −m2
i2 þ iϵÞ :

ð14Þ

After the q0 integration is performed by choosing the
contour in the lower half of the complex plane, we get

giðsÞ ¼
Z

∞

0

jqj2djqj
ð2πÞ2

ωi1 þωi2

ωi1ωi2ðs− ðωi1 þωi2Þ2 þ iϵÞf
2
ΛðjqjÞ;

ð15Þ

where q is the three-momentum and ωi1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

i1;2

q
.

In order to proceed we need to determine fΛðqÞ. There are
two kinds of choices, sharp cutoff and smooth cutoff,
typically:

fΛðqÞ ¼
(ΘðΛ2 − q2Þ
exp

h
− q2

Λ2

i : ð16Þ

In order to compare with the previous results of coupled
channel approach [14], the same sharp cutoff is used in this
paper when channels with pseudoscalar mesons are
included in addition. To explore the position of the poles,
we need to take into account the analytical structure of
these amplitudes in the different Riemann sheets. By
denoting qon for the CM trimomentum of the particles 1
and 2 in the ith channel

qoni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmi1 −mi2Þ2Þðs − ðmi1 þmi2Þ2Þ

p
2

ffiffiffi
s

p : ð17Þ

As the quantity is two valued itself [21], we need to
distinguish the two Riemann sheets of qoni uniquely
according to

qon>i ¼
�−qoni if Imqoni < 0

qoni else
: ð18Þ

And the analytic continuation to the second Riemann sheet
is given by

gð2Þi ðsÞ ¼ giðsÞ þ
i
4π

qon>i ffiffiffi
s

p : ð19Þ

III. NUMERICAL RESULTS AND DISCUSSION

First we assume that f0ð1710Þ is K�K̄� hadron molecule
state and calculate the partial decay widths of f0ð1710Þ →
K�K̄� → ππ; KK̄; ηη with the hadronic triangle loop
approach [22–25], as shown in Fig. 2.
The loop function corresponding to this process as

shown in Fig. 2 is

D ¼ −i
Z

d4q
ð2πÞ4

1

ðp3 þ qÞ2 −m2
K� þ iϵ

×
1

ðp4 − qÞ2 −m2
K̄� þ iϵ

1

q2 −m2
3 þ iϵ

; ð20Þ

where for different final statem3 can be the mass of π, K, η.
Since the mass of f0ð1710Þ is close to the threshold of
K�K̄�, the internal lines with K� and K̄� exchange can be
approximated nonrelativistically. And the loop function can
be simplified as

D¼−i
Z

d4q
ð2πÞ4

1

4m2
K�

1

ðp0−ω1Þ2− ðq0Þ2− iϵ

×
1

ðq0Þ2−ω2
3þ iϵ

�
Λ2−m2

ex

Λ2−q2

�
2

exp

�
−
ðpþqÞ2

Λ2
G

	
; ð21Þ

with p3 ¼ ðp0;pÞ; q ¼ ðq0;qÞ, ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þm2

K�
p

,
and ω3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

3

p
. Here for the vertex f0ð1710ÞK�K̄�

the Gaussian form factor is added. For the t-channel meson
exchange, coupling constants with an off shell meson are
dressed by monopole form factors [26,27]. For simplicity,
we take ΛG and Λ to be equal to be in the range of 0.8–
1.0 GeV. And the results are

Γðf0ð1710Þ→ ππÞ
Γðf0ð1710→KK̄ÞÞ¼ 0.394�0.134 ð0.23�0.05Þ; ð22Þ

Γðf0ð1710Þ→ ηηÞ
Γðf0ð1710→KK̄ÞÞ¼ 0.239�0.057 ð0.48�0.15Þ; ð23Þ

where the values of the PDG [28] are given between
brackets. It seems that the calculated partial decay width of
f0ð1710Þ → ππ is larger than the central value in PDG, but
it is still within the range of large error bar.
To check how the f0ð1710Þ is influenced by various

coupled channels in the unitary coupled channel approach,

FIG. 2. Decay of f0ð1710Þ.
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we start with the single K�K̄� channel case by dropping its
couplings to all other channels. The Fig. 3 gives the jTj2
matrix of scattering K�K̄� → K�K̄�. We label the K�K̄� as
channel 1, and the remain channel indices are listed in
Table II. A bound state is found locating at

ffiffiffi
s

p ¼ 1.66 GeV
for cutoff qmax ¼ 0.9 GeV and

ffiffiffi
s

p ¼ 1.60 GeV for
qmax ¼ 1.0 GeV. The bound state moves down when the
cutoff qmax increases, similar to the case for the ρρ bound
states [29]. This is understandable that the smaller qmax
value gives a stronger cutoff to the loop integration to
reduce the attractive force.
Then we turn on additional channels to study their

influence on the mass and width of the resonance. The
T matrix for a single channel a is given by

Taa ¼
Vaa

1 − Vaaga
: ð24Þ

If we turn on another channel b, then the T matrix for
a → a becomes

Taa ¼
Vaa þ V2

abgb
1−Vbbgb

1 − ðVaa þ V2
abgb

1−Vbbgb
Þga

: ð25Þ

Compared to the single channel, Vaa is replaced by

Veff ¼ Vaa þ
V2
abgb

1 − Vbbgb
: ð26Þ

Denoting the second term as

V 0 ¼ V2
abgb

1 − Vbbgb
; ð27Þ

then Taa can be written as

Taa ¼
Vaa þ V 0

1 − ðVaa þ V 0Þga
¼ ð1þ αÞVaa

1 − ð1þ αÞVaaga
: ð28Þ

with α ¼ V 0=Vaa. For calculating the loop integral ga for
channels of vector mesons, we use the same sharp cutoff as
in the previous study [14]. However, if we turn on the
channels of pseudoscalar mesons, the t-channel exchanged
pseudoscalar meson in VV → PP is mostly off shell for the
calculation of V 0, and the implementation of some off shell
form factors is necessary [29]. Adjustment of the sharp
cutoff parameter qmax for the loop integration has no
influence for the imaginary part of gb, which corresponds
to two on shell pseudoscalar mesons with an off shell t-
channel exchanged pseudoscalar meson. To take into
account this off shell effect of the t-channel exchanged
meson, the same kind of monopole form factor as in our
triangle loop approach as well as in Ref. [29]

F ¼ Λ2 −m2
ex

Λ2 − q2
ð29Þ

is included at each VPP vertex for the exchanged pseu-
doscalar meson with momentum q. For the VV → PP
process, the t-channel exchange meson is much more off
shell than corresponding VV → VV case. The off shell
suppression effect makes Vab to be a few times smaller than
Vaa, so that jαj ≪ 1 and the inclusion of the pseudoscalar
channels does not change much the previous result.
When the form factor is implemented, the T matrix for

K�K̄� → ηη is showed in Fig. 4. For cutoff qmax ¼
0.9 GeV, the real part of the resonance is around
1.66 GeV, which is the same as the single channel. The
imaginary part is about 6,14,26 MeV for different Λ ¼ 0.8,
0.9, 1.0 GeV. And for cutoff qmax ¼ 1.0 GeV, the situation
is similar.
For the K�K̄� − KK̄ system, the jTj2 is showed in

Fig. 5. The resonance is
ffiffiffi
s

p ¼ 1.76 − 0.015i GeV for

FIG. 3. jT11j2 for different qmax ¼ 0.9, 1.0 GeV.

TABLE II. Channel indices and threshold energies.

Channel index Channel Threshold (GeV)

1 K�K̄� 1.784
2 ρρ 1.54
3 ωω 1.564
4 ϕϕ 2.04
5 ωϕ 1.802
6 KK̄ 0.99
7 ππ 0.276
8 ηη 1.096
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qmax ¼ 0.9 GeV and
ffiffiffi
s

p ¼ 1.75 − 0.022i GeV for
qmax ¼ 1.0 GeV. Compared to the single channel, turning
on the KK̄ channel makes the resonance moving up along
the real axis. And the situation is similar for K�K̄� − ππ

system, see Fig. 6. The resonance is at
ffiffiffi
s

p ¼ 1.69 −
0.004i GeV for qmax ¼ 0.9 GeV and

ffiffiffi
s

p ¼ 1.64 −
0.007i GeV and qmax ¼ 1.0 GeV. We find the width of
the resonance in K�K̄� − ηη system is about equivalence to

FIG. 4. jT18j2 for different Λ ¼ 0.8, 0.9, 1.0 GeV and qmax ¼ 0.9, 1.0 GeV.

FIG. 5. jT16j2 for Λ ¼ 0.9 GeV and different qmax ¼ 0.9, 1.0 GeV.

FIG. 6. jT17j2 for Λ ¼ 0.9 GeV and different qmax ¼ 0.9, 1.0 GeV.

FIG. 7. jT12j2 and jT13j2 for Λ ¼ 0.9 GeV and qmax ¼ 0.9 GeV.
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that in K�K̄� − ππ system, and about 2 ∼ 3 times smaller
than that in the K�K̄� − KK̄ system. For comparison, we
also show the jTj2 for K�K̄� − ρρ and K�K̄� − ωω system,
see Fig. 7. The resonance is about

ffiffiffi
s

p ¼ 1.70 − 0.014i GeV
for K�K̄� − ρρ and

ffiffiffi
s

p ¼ 1.63 − 0.013i GeV for K�K̄� −
ωω with the cutoff qmax ¼ 0.9 GeV. It is interesting that
turning on the ωω channel makes the pole to move
down, recall that the pole is at 1.66 GeV for K�K̄� single
channel. Actually we find that if there is no interaction
for the additional channel, such as Vðωω → ωωÞ ¼ 0,
Vðηη → ηηÞ ¼ 0, the pole moves down in the coupled
channel, otherwise, the pole moves up along the real axis.
Finally, we turn on all channels and show the jT11j2 in 2-

dim and 3-dim with qmax ¼ 1.0 GeV in Fig. 8. The position
of the resonance is listed in Table III for different cutoffs.
We find that the real part of resonance is about 1710 MeV
and the width is about 100 MeV, quite close to the PDG
values for the f0ð1710Þ with mass 1704� 12 MeV and
width 123� 18 MeV [28]. Up to now, we have ignored the
width of K� which is about 50 MeV. Similar to the case for
the ρρmolecules studied in Ref. [29], the finite width of K�
does not influence the bind energy of K̄�K� molecule
much, but it increases the width of the molecule by the
direct decays of both K̄� and K�. With the effective
coupling constant of f0ð1710ÞK̄�K� determined by its
binding energy, the partial decay width of f0ð1710Þ →
K̄�K� → KπK̄π can be calculated straightforwardly to be
around 21 MeV, which makes the total width of f0ð1710Þ
in perfect agreement with its PDF value. This means that
the f0ð1710Þ can be dynamically generated by mesons
scattering. And we also find the lower resonance at 1.46 −
0.012i GeV for qmax ¼ 1.0 GeV and 1.48 − 0.008i GeV
for qmax ¼ 0.875 GeV. Compared to our previous work
[30], the resonance move down a little along the real axis,
which is 1.52 − 0.009i GeV for qmax ¼ 1.0 GeV and
1.53 − 0.005i GeV for qmax ¼ 0.875 GeV in [30].

For the unitary coupled channel approach, we can
calculate the ratio of decay width via [28]

ΓR→a ¼
jg̃aj2
MR

ρaðM2
RÞ; ð30Þ

with g̃a ¼ Rba=
ffiffiffiffiffiffiffiffi
Rbb

p
and ρa as the two-body phase space.

The residues may be calculated via an integration along a
closed contour around the pole using

Rba ¼ −
1

2πi

I
dsMba: ð31Þ

The branching ratios obtained this way are

Γðf0ð1710Þ → ππÞ
Γðf0ð1710 → KK̄ÞÞ ¼ 0.289� 0.092 ð0.23� 0.05Þ;

ð32Þ

Γðf0ð1710Þ → ηηÞ
Γðf0ð1710 → KK̄ÞÞ ¼ 0.294� 0.048 ð0.48� 0.15Þ;

ð33Þ

where the values of the PDG [28] are given in the brackets
at the end of each equation for comparison. In fact the
deviation from various collaborations is much larger
than the PDG range: the value of Γðf0ð1710Þ →
ππÞ=Γðf0ð1710 → KK̄ÞÞ is 0.64� 0.27� 0.18 in [31],
0.41þ0.11

−0.17 in [32], 0.2� 0.024� 0.036 in [33], 0.39�
0.14 in [34], and 0.32� 0.14 in [35]. The value of
Γðf0ð1710Þ → ηηÞ=Γðf0ð1710 → KK̄ÞÞ is 0.48� 0.15 in
[36] and 0.46þ0.70

−0.38 in [37]. And for the radiative decays of
J=ψ in Table IV from PDG [28], all we can say is that the
partial decay widths of f0ð1710Þ → ππ and f0ð1710Þ → ηη

FIG. 8. jT11j2 for Λ ¼ 0.9 GeV and qmax ¼ 1.0 GeV in 2-dim and 3-dim.

TABLE III. The resonance pole for different cutoffs.

qmaxðGeVÞ 0.7 0.8 0.9 1.0 1.1

Pole(GeV) 1.77–0.015i 1.75–0.028i 1.73–0.035i 1.72–0.045i 1.70–0.053i
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are similar to be around 1=3 of f0ð1710Þ → KK̄, which are
compatible with our results.
In summary, we extend the coupled channel interaction

of nonet of vectors by including channels of the octet of
pseudoscalars in addition using the unitary coupled-chan-
nel approach. The pole near the K�K̄� threshold remains to
be there with mass and width consistent with PDG values of
f0ð1710Þ. Meanwhile we deduce the partial decay widths
of f0ð1710Þ → K�K̄� → ππ; KK̄; ηη in the approach as
well as hadronic triangle loop approach for hadronic
molecule. In both cases, the results agree with that of
f0ð1710Þ in PDG. We can conclude that the properties of
f0ð1710Þ are consistent with the K�K̄� molecule state.
Previously, as a candidate of glueball, the f0ð1710Þ has

been extensively studied within the quarkonia-guleball
mixing picture [35,38–43]. With the success of the new
possible configuration as hadron molecule to explain its
decays, the structure of f0ð1710Þ could be beyond the
quarkonia-guleball mixing picture and need further explo-
ration by including the new possible configuration to fit its
various relevant properties, not only decays, but also
various productions.
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