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A semiempirical formula for the inclusive electroweak response functions in the two-nucleon emission
channel is proposed. The method consists in expanding each one of the vector-vector, axial-axial, and
vector-axial responses as sums of six subresponses. These correspond to separating the meson-exchange
currents as the sum of three currents of similar structure and expanding the hadronic tensor as the sum of the
separate contributions from each current plus the interferences between them. For each subresponse, we
factorize the coupling constants, the electroweak form factors, the phase space, and the delta propagator, for
the delta-forward current. The remaining spin-isospin contributions are encoded in coefficients for each
value of the momentum transfer, q. The coefficients are fitted to the exact results in the relativistic mean
field model of nuclear matter, for each value of q. The dependence on the energy transfer ω is well
described by the semiempirical formula. The q-dependency of the coefficients of the subresponses can be
parametrized or can be interpolated from the provided tables. The description of the five theoretical
responses is quite good. The parameters of the formula, the Fermi momentum, number of particles,
relativistic effective mass, vector energy, the electroweak form factors, and the coupling constants, can be
modified easily. This semiempirical formula can be applied to the cross section of neutrinos, antineutrinos,
and electrons.
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I. INTRODUCTION

In recent years, the study of quasielastic neutrino
scattering by nuclei has received increasing interest from
the theoretical and experimental point of view. This is due
to recent neutrino accelerator experiments aimed at meas-
uring neutrino-nucleus cross sections. The ultimate goal is
to measure the neutrino oscillation parameters accurately,
something that requires knowing with precision the cross
sections of neutrino scattering with the nuclei of the
detectors. Extensive reviews describing the state of the
art of the subject, namely, recent advances and open
challenges in the field of neutrino-nucleus scattering, can
be found in Refs. [1–9].
Experimental measurements of the inclusive charge-

changing (CC) quasielastic cross section ðνμ; μ−Þ and
ðν̄μ; μþÞ, have been carried out in several laboratories, each
of which is characterized by a neutrino flux or distribution in
a range of energies with different widths around 1 GeV [10–
16]. Comparison of these data with the different nuclear
models of the reaction revealed the discrepancies between
the different approaches, as well as discrepancies with the

experimental data [17–25]. In particular, the importance of
including the contributions of multinucleon emission was
highlighted. The calculation of two-particles two-holes
(2p2h) contribution varies in different models, but all agree
on a contribution that can be around 20%of the cross section
with one-nucleon emission only.
Neutrino CC cross sections are averages for different

incident energies. Therefore, the differences between mod-
els are also differences between averages—although theo-
retically, the double differential cross section is calculated
for fixed neutrino energies. To compare with data for fixed
energy, the only possibility is to use the electron ðe; e0Þ
experiments. This allows the neutrino models to be
calibrated, taking into account that the electromagnetic
current is related to the vector part of the weak current. It is
only the axial current that is not fixed by the electrons.
Various approaches to the study of quasielastic lepton
scattering have been applied. For finite nuclei quantum
Monte Carlo methods [26], continuum shell model with
random phase approximation (RPA) correlations [27], or
spectral function methods [28,29] can be mentioned. For
high or intermediate energies, relativistic corrections are
important, yet corrections to kinetic energy can be partially
included. But the nuclear interaction at the relativistic level
requires a special care [30,31]. The relativistic mean field
(RMF) is the simplest model available that includes the
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interaction in a fully relativistic way in the form of scalar
and vector mean potentials [32,33]. Other models use fits to
generate, e.g., parametrizations of the transverse enhance-
ment of the transverse response [19,34]. Most of the
approaches require approximations that sometimes violate
fundamental current conservation requirements. The influ-
ence of other factors such as short-range correlations, final-
state interaction, exchange currents, pion emission, and
resonance excitation contribute to the differences between
the various models and to the difficulty of accurately
reproducing electron data in the full kinematical range [35].
In this paper, we focus on the inclusive two-nucleon

emission (2p2h) channel for neutrino and electron scatter-
ing. Because of the nuclear force between correlated
nucleons, a high-energy neutrino can induce emission of
a pair of nucleons. In the case of ðνμ; μ−Þ reaction, proton-
proton (PP) and proton-neutron (PN) pairs can be ejected,
while neutron-neutron (NN) and PN pairs can be ejected in
the ðν̄μ; μþÞ reaction. A large part of the 2p2h cross section
is produced by interaction with nuclear meson-exchange
currents (MECs), where the exchanged bosons W� are
absorbed by mesons exchanged between two nucleons. The
most important part of the interaction occurs when the
boson absorption by the nucleon produces a virtual Δ that
decays and communicates its energy to a pair of nucleons.
Several phenomenological models have been proposed

to calculate the 2p2h channel in neutrino interactions. Each
of these models, based on the Fermi gas, takes its own
approximations, and in general they are numerically
expensive. A first calculation revealed the importance of
2p2h to reproduce the data of neutrino scattering [17,36],
and similar effects were found in a relativistic calculation
[37,38] and also in a local Fermi gas with RPA and other
many-body corrections [18,39,40]. These models require
integration in many dimensions and intensive numerical
computation of traces of two-body operators. Although
several approaches have been proposed [41,42] that reduce
the calculation, in the absence of analytical formulas for the
2p2h responses, it is necessary to elaborate numerical
tables or parametrizations of theoretical calculations for
their implementation in Monte Carlo simulators [43,44].
In Ref. [45], the impact of 2p2h was investigated in a

simple model using an ansatz physically motivated by the
phase-space function of two particles in a Fermi gas. The
matrix elements of the MECs averaged over the neutrino
flux were approximated by a constant that was fitted to the
neutrino data. In this work, we explore extensions of this
simple model by adding other physical dependencies,
motivated by the theoretical structure of the MEC oper-
ators, which contain form factors, coupling constants, and
propagators of theΔ, as physical dependencies that must be
present in the MEC responses. The rest of the more
complex dependencies associated with elements of the
spin-isospin matrix of Dirac operators are synthesized in
constants for each value of the transferred momentum.

These constants are obtained by a fit of a theoretical model
but could also be fitted to data if there were a sufficient
number of them. The resulting semiempirical (SE) formula
for the MEC responses allows us to compute the inclusive
2p2h responses analytically for fixed q, having the param-
eters tabulated as a function of q, and to interpolate for
intermediate values.
The need of an analytical formula for the inclusive 2p2h

responses is based on the difficulty of calculating the
integral in seven dimensions for the 2p2h responses, which
then has to be integrated with the neutrino flux. With a
suitable parametrization, the calculation time is reduced.
An alternative parametrization was carried out in the
relativistic Fermi gas (RFG) model of Ref. [46] for the
vector responses, containing Gaussians and polynomials. A
similar parametrization was made in Ref. [20] for the axial
contributions. In this paper, we follow a different approach,
using the RMF model of nuclear matter and a semi-
empirical parametrization of the 2p2h responses that has
the advantage that the dependence on the momentum, q,
and energy transfer, ω, has a theoretical basis. This is
analogous to the Bethe-Weizsacker semiempirical mass
formula of nuclear binding energy [47], where the depend-
ence on A and Z also has a theoretical basis. In particular,
we extract the dependence of the responses on the number
of particles, the Fermi momentum, and the relativistic
effective mass. Furthermore, the dependence is exact on
the form factors and the electroweak coupling constants.
The formula will contain constants that we will adjust to the
exact results. The frozen and modified convolution approx-
imations have been proposed [41,42] that reduce the
integrals to one dimension and five dimensions, respec-
tively, to which an integral over the neutrino flux would
have to be added. However, the semiempirical formula has
the advantage that it is analytical and gives better results
than the frozen one, since the parameters have been
adjusted to reproduce the exact responses.
Note that the developments in this paper are applicable to

the calculation of inclusive cross sections only. The MEC
model that we use to fit the SE-MEC responses is based on
Feynman diagrams for pion production on the nucleon. In
our case, these diagrams will be considered in a RMF
model of nuclear matter. In this model, the nucleons are
relativistic and interact with vector and scalar potentials, the
effect of which is to give them an effective mass and a
repulsive vector energy. The idea is to combine this SE-
MEC formula with the superscaling approach with rela-
tivistic effective mass M� (SuSAM*) in which a new
scaling function f�ðψ�Þ including dynamical relativistic
effects has been proposed [48–50] through the introduction
of an effective mass for the nucleon. The SuSAM* model
describes a large amount of the electron data within a
phenomenological quasielastic band, and it was extended
to the neutrino and antineutrino sector [51], SuSAM* was
first developed from the set of 12C data [48,49] and later
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applied to other nuclei in Refs. [50,52]. Recently, the
superscaling function has been refitted by subtraction of the
MEC 2p2h cross section before performing the scaling
analysis, in order to avoid double-counting when adding
the MEC responses [53].
The scheme of the paper is as follows. In Sec. II, we

present the formalism for neutrino scattering, the inclusive
2p2h hadronic tensor, the model of MEC, the analytical
approximation of the phase-space integral in frozen
nucleon approximation, and the averaged Δ propagator.
In Sec. III, we write the semiempirical formula for the MEC
responses. In Sec. IV, we present the results of the fit and
compare with the exact results. In Sec. V, we draw our
conclusions.

II. FORMALISM OF CC NEUTRINO SCATTERING

A. Neutrino cross section

In this section, we summarize the formalism for charge-
changing neutrino scattering. The case of electron scatter-
ing can be easily inferred from this by considering only the
longitudinal and transverse response functions. Thus, we
consider charged-current inclusive quasielastic reactions in
nuclei induced by neutrinos and antineutrinos, focusing on
the ðνμ; μ−Þ and ðν̄μ; μþÞ cross sections. The relativistic
energies of the incident (anti)neutrino and detected muon
are ϵ ¼ Eν, and ϵ0 ¼ mμ þ Tμ, respectively. Their momenta
are k and k0. The 4-momentum transfer is kμ − k0μ ¼
Qμ ¼ ðω;qÞ, with Q2 ¼ ω2 − q2 < 0. The lepton scatter-
ing angle, θ, is the angle between k and k0. The double-
differential cross section can be written as

d2σ
dTμd cos θ

¼ G2cos2θc
4π

k0

ϵ
v0½VCCRCC þ 2VCLRCL

þ VLLRLL þ VTRT � 2VT 0RT 0 �: ð1Þ

Inside the brackets in Eq. (1), there is a linear combination
of the five nuclear response functions, where (+) is for
neutrinos and (−) is for antineutrinos. Here, G ¼ 1.166 ×
10−11 MeV−2 is the Fermi constant, θc is the Cabibbo
angle, cos θc ¼ 0.975, and the kinematical factor
v0 ¼ ðϵþ ϵ0Þ2 − q2. The VK coefficients depend only on
the lepton kinematics and do not depend on the details of
the nuclear target,

VCC ¼ 1þ δ2
Q2

v0
ð2Þ

VCL ¼ ω

q
−
δ2

ρ0
Q2

v0
ð3Þ

VLL ¼ ω2

q2
−
�
1þ 2ω

qρ0
þ ρδ2

�
δ2

Q2

v0
ð4Þ

VT ¼ −
Q2

v0
þ ρ

2
þ δ2

ρ0

�
ω

q
þ 1

2
ρρ0δ2

�
Q2

v0
ð5Þ

VT 0 ¼ −
1

ρ0

�
1 −

ωρ0

q
δ2
�
Q2

v0
; ð6Þ

where we have defined the dimensionless factors
δ ¼ mμ=

ffiffiffiffiffiffiffiffiffi
jQ2j

p
, proportional to the muon mass mμ,

ρ ¼ jQ2j=q2, and ρ0 ¼ q=ðϵþ ϵ0Þ.
The response functions, RKðq;ωÞ, are defined as suitable

combinations of the hadronic tensor, Wμν, in a reference
frame where the z axis (μ ¼ 3) points along the momentum
transfer q and the x axis (μ ¼ 1) is defined as the transverse
(to q) component of the (anti)neutrino momentum k lying
in the lepton scattering plane; the y axis (μ ¼ 2) is then
normal to the lepton scattering plane. The usual compo-
nents are then

RCC ¼ W00 ð7Þ

RCL ¼ −
1

2
ðW03 þW30Þ ð8Þ

RLL ¼ W33 ð9Þ

RT ¼ W11 þW22 ð10Þ

RT 0 ¼ −
i
2
ðW12 −W21Þ: ð11Þ

The inclusive hadronic tensor is constructed from the
matrix elements of the current operator JμðQÞ between
the initial and final hadronic states, summing over all the
possible final nuclear states with excitation energy ω ¼
Ef − Ei and averaging over the initial spin components,

Wμν ¼
X
f

X
i

hfjJμðQÞjii�hfjJνðQÞjiiδðEi þ ω − EfÞ:

ð12Þ

In the case of electron scattering, the cross section is

dσ
dΩdϵ0

¼ σMottðvLRL
em þ vTRT

emÞ: ð13Þ

where σMott is the Mott cross section, vL and vT are
kinematic factors

vL ¼ Q4

q4
ð14Þ

vT ¼ tan2
θ

2
−

Q2

2q2
: ð15Þ
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The electromagnetic longitudinal and transverse response
functions, RL

emðq;ωÞ and RT
emðq;ωÞ, are

RL
em ¼ W00

em ð16Þ

RT
em ¼ W11

em þW22
em: ð17Þ

Attending to the kind of final states, the hadronic tensors
can be written as sum of one-particle (1p1h) plus two-
particles (2p2h),…, emission channels

Wμν ¼ Wμν
1p1h þWμν

2p2h þ � � � . ð18Þ

In this work, we are interested in the 2p2h channel only. We
studied the 1p1h responses and cross section for CC
neutrino and antineutrino scattering in Ref. [51] and for
electron scattering in Refs. [50,52,53]. Here, we extend
these works to deepen the study of the interaction of
neutrinos with nuclei at intermediate energies and the role
of the 2p2h electroweak response functions, as described in
the next subsection.

B. 2p2h hadronic tensor in the RMF

In this paper, we consider the 2p2h responses within the
RMF model of nuclear matter [54–57]. In this model, the
nucleons are interacting with a relativistic field containing
scalar and vector potentials. The single-particle wave
functions are plane waves with momentum h and with
on-shell energy

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

NÞ2 þ h2
q

; ð19Þ

where m�
N is the relativistic effective mass of the nucleon

defined by

m�
N ¼ mN − gsϕ0 ¼ M�mN; ð20Þ

where mN is the bare nucleon mass, gsϕ0 is the scalar
potential energy of the RMF [55], and M� ¼ 0.8 for 12C,
the nucleus considered in our results. Additionally, the
nucleon acquires a positive energy due to the repulsion by
the relativistic vector potential, Ev ¼ gvV0. Thus, the total
nucleon energy is

ERMF ¼ Eþ Ev: ð21Þ

In this work, we use values of kF, M� and Ev that are
obtained phenomenologically from the data of (e; e0) [53].
In particular, we use the value Ev ¼ 141 MeV for 12C. In
the semiempirical formulas in the next section, these values
could easily be modified if desired. For many observables,
that only depend on the energy differences between a final
particle and an initial one, the vector energy cancels out and
does not affect the results.

The nuclear states in the RMF are Slater determinants
constructed with plane waves obtained by solving the free
Dirac equation with effective mass m�

N . Note that we use
the same effective mass for particles and holes. In this
approximation, the model is the simplest possible that
implements the mean field, so the results for very large
momenta should be taken with caution.
All states with momentum h < kF are occupied in the

ground state, with kF the Fermi momentum. The 2p2h
excitations are obtained by raising two particles above the
Fermi level, with momenta p0

1 and p0
2 > kF, leaving two

holes with momenta h1 and h2 < kF. In this work, we focus
on the 2p2h part of the hadronic tensor. It is generated by
the interaction with a two-body current operator, whose
matrix elements are given by

hfjJμðQÞjii ¼ ð2πÞ3
V2

δðp0
1 þ p0

2 − q − h1 − h2Þ

×
ðm�

NÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
1E

0
2E1E2

p jμðp0
1;p

0
2;h1;h2Þ; ð22Þ

where V is the volume of the system and the on-shell
energies and momenta of the particles and holes are
ðE0

i;p
0
iÞ, and ðEi;hiÞ, for i ¼ 1, 2. Note that 3-momentum

is conserved and that the relativistic factors ðm�
N=EÞ1=2

contain the effective mass and the on-shell energies.
The spin-isospin two-body current matrix elements
jμðp0

1;p
0
2;h1;h2Þ are defined in the next subsection.

Inserting this expression into the hadronic tensor,
Eq. (12), and taking the limit V → ∞ (infinite nuclear
matter), we transform the sums into integrals, to obtain the
2p2h hadronic tensor for the RMF theory of nuclear matter

Wμν
2p2h ¼

V
ð2πÞ9

Z
d3p0

1d
3p0

2d
3h1d3h2

×
ðm�

NÞ4
E1E2E0

1E
0
2

wμνðp0
1;p

0
2;h1;h2Þ

× Θðp0
1; h1ÞΘðp0

2; h2ÞδðE0
1 þ E0

2 − E1 − E2 − ωÞ
× δðp0

1 þ p0
2 − q − h1 − h2Þ; ð23Þ

where V=ð2πÞ3 ¼ Z=ð8
3
πk3FÞ for symmetric nuclear matter.

The Pauli blocking function Θ is defined as the product of
step functions for the initial and final momentum

Θðp0
i; hiÞ≡ θðp0

i − kFÞθðkF − hiÞ: ð24Þ

Finally, the function wμνðp0
1;p

0
2;h1;h2Þ represents the

hadron tensor for a single 2p2h transition, summed up over
spin and isospin,
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wμνðp0
1;p

0
2;h1;h2Þ

¼ 1

4

X
s1s2s01s

0
2

X
t1t2t01t

0
2

jμð10; 20; 1; 2Þ�Ajνð10; 20; 1; 2ÞA: ð25Þ

The two-body current matrix elements is antisymmetrized,

jμð10; 20; 1; 2ÞA ≡ jμð10; 20; 1; 2Þ − jμð10; 20; 2; 1Þ: ð26Þ

The factor 1=4 in Eq. (25) accounts for the antisymmetry of
the two-body wave function with respect to exchange of
momenta, spin, and isospin quantum numbers.
In this work, we use Eq. (23) to compute the five 2p2h

inclusive response functions RCC, RCL, RLL, RT , RT 0 , for
neutrino and antineutrino scattering. Integrating over p0

2

using the momentum delta function, these responses are
given by

RK
2p2h ¼

V
ð2πÞ9

Z
d3p0

1d
3h1d3h2

ðm�
NÞ4

E1E2E0
1E

0
2

Θðp0
1; h1Þ

× Θðp0
2; h2ÞrKðp0

1;p
0
2;h1;h2Þ

× δðE0
1 þ E0

2 − E1 − E2 − ωÞ; ð27Þ

where p0
2 ¼ h1 þ h2 þ q − p0

1. The five elementary
response functions for a 2p2h excitation rK are defined
in Eqs. (7)–(11), in terms of the elementary hadronic tensor
wμν, Eq. (25), for K ¼ CC;CL; LL; T; T 0. Because of axial

symmetry around the momentum transfer q (the z axis), we
can fix the azimuthal angle of the first particle, ϕ0

1 ¼ 0 and
multiply by 2π. Finally, the energy delta function allows us
to integrate analytically over p0

1, reducing Eq. (27) to 7-
dimensional integral, that we compute numerically [58].

C. Electroweak meson-exchange currents

In this work, we use the electroweak MEC model
described by the nine Feynman diagrams depicted in
Fig. 1. The two-body current matrix elements
jμð10; 20; 1; 2Þ corresponding to this model enter in the
calculation of the elementary 2p2h hadronic tensor,
Eq. (25). The different contributions have been taken from
the pion weak production model of Ref. [59].
To obtain the MEC, we have started from the pion

production currents given in Eq. (51) of Ref. [59]. and we
have applied the Goldberger-Treiman relation fπNN=mπ ¼
gA=ð2fπÞ, with fπ ¼ 93 MeV, to factorize a common
coupling constant fπNN=mπ in all vertices πNN. We have
not included the nucleon-pole diagrams where the W�-
boson is coupled to the nucleon current, since these
diagrams are not considered part of the MEC and are
not taken into account here. Some previous calculations of
the correlations in the 2p2h channel, of pionic type [60] or
of Jastrow type [61], indicate that their effect when added to
the one-body response is to produce a tail to the right of the
Quasielastic (QE) peak of the order of 10% of the total
height.

(a) (b) (c)

(d) (e)

(f) (g) (h) (i)

FIG. 1. Feynman diagrams for the electroweak MEC model used in this work.

SEMIEMPIRICAL FORMULA FOR ELECTROWEAK RESPONSE … PHYS. REV. D 104, 113006 (2021)

113006-5



The MEC is the sum of four two-body currents: seagull (diagrams a and b), pion in flight (diagram c), pion-pole
(diagrams d and e), and Δð1232Þ excitation forward (diagrams f and g), and backward (diagrams h and i).

jμsea ¼ ½I�V �1020;12
f2πNN

m2
π

V
s0
1
s1

πNNðp0
1;h1ÞFπNNðk21Þūs02ðp0

2Þ
�
FV
1 ðQ2Þγ5γμ þ

Fρðk22Þ
gA

γμ
�
us2ðh2Þ þ ð1 ↔ 2Þ ð28Þ

jμπ ¼ ½I�V �1020;12
f2πNN

m2
π

FV
1 ðQ2ÞVs0

1
s1

πNNðp0
1;h1ÞVs0

2
s2

πNNðp0
2;h2Þðkμ1 − kμ2Þ ð29Þ

jμpole ¼ ½I�V �1020;12
f2πNN

m2
π

Fρðk21Þ
gA

FπNNðk22Þ
Qμūs0

1
ðp0

1Þ=Qus1ðh1Þ
Q2 −m2

π
V
s0
2
s2

πNNðp0
2;h2Þ þ ð1 ↔ 2Þ ð30Þ

jμΔF ¼ ½U�
F �1020;12

f�fπNN

m2
π

V
s0
2
s2

πNNðp0
2;h2ÞFπNΔðk22Þūs01ðp0

1Þkα2Gαβðh1 þQÞΓβμðQÞus1ðh1Þ þ ð1 ↔ 2Þ: ð31Þ

jμΔB ¼ ½U�
B �1020;12

f�fπNN

m2
π

V
s0
2
s2

πNNðp0
2;h2ÞFπNΔðk22Þūs01ðp0

1Þkβ2Γ̂μαðQÞGαβðp0
1 −QÞus1ðh1Þ þ ð1 ↔ 2Þ: ð32Þ

where kμi ¼ ðp0
i − hiÞμ is the 4-momentum transferred to

the ith nucleon. Note that the energy of each nucleon
includes the vector energy, Eq. (21), but the vector energies
of the initial and final nucleons cancel out when computing
the components k0i ¼ E0

i − Ei.
In these equations, we have defined the following

function:

V
s0
1
s1

πNNðp0
1;h1Þ≡ FπNNðk21Þ

ūs0
1
ðp0

1Þγ5=k1us1ðh1Þ
k21 −m2

π
: ð33Þ

This function appears in all the currents, describing the
propagation and emission (or absorption) of the exchanged
pion, having a strong form factor FπNN given by [62,63]

FπNNðk21Þ ¼
Λ2 −m2

π

Λ2 − k21
ð34Þ

and Λ ¼ 1300 MeV.
The charge dependence of the currents in the different p-

n channels is determined by the matrix elements of the
isospin operators I�V , U

�
F , and U�

B , where the þð−Þ sign
refers to neutrino (antineutrino) scattering. They are
defined by

I�V ¼ ðIVÞx � iðIVÞy ð35Þ

U�
F ¼ðUFÞx � iðUFÞy ð36Þ

U�
B ¼ðUBÞx � iðUBÞy; ð37Þ

where

IV ¼ i½τð1Þ × τð2Þ� ð38Þ

ðUFÞj ¼
ffiffiffi
3

2

r X3
i¼1

ðTiT
†
jÞ ⊗ τi ð39Þ

ðUBÞj ¼
ffiffiffi
3

2

r X3
i¼1

ðTjT
†
i Þ ⊗ τi; ð40Þ

where T⃗ is an isovector transition operator from isospin 3
2

to 1
2
.
Additionally, each current contains coupling constants

and electroweak form factors. The coupling constants are
fπNN ¼ 1, gA ¼ 1.26, and f� ¼ 2.13.
The electroweak form factors are FV

1 ¼ Fp
1 − Fn

1 in the
seagull vector and pion-in flight currents, for which we use
Galster’s parametrization [64], and Fρ in the axial seagull
and pion-pole currents, taken from Ref. [59]. In the case of
the Δ current, we use the form factors CV

3 and CA
5 ,

respectively, for the vector and axial parts of the current
[59]. These appear in the N → Δ transition vertex in the
forward current

ΓβμðQÞ ¼ CV
3

mN
ðgβμ=Q −QβγμÞγ5 þ CA

5 g
βμ ð41Þ

and for the backward current

Γ̂μαðQÞ ¼ γ0½Γαμð−QÞ�†γ0: ð42Þ

The vector and axial form factors in the Δ current are from
Ref. [59],
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CV
3 ðQ2Þ ¼ 2.13

ð1 −Q2=M2
VÞ2

1

1 − Q2

4M2
V

;

CA
5 ðQ2Þ ¼ 1.2

ð1 −Q2=M2
AΔÞ2

1

1 − Q2

4M2
AΔ

; ð43Þ

with MV ¼ 0.84 GeV and MAΔ ¼ 1.05 GeV.
We use the πNΔ strong form factor of Ref. [65], given by

FπNΔðk22Þ ¼
Λ2
Δ

Λ2
Δ − k22

; ð44Þ

where ΛΔ ¼ 1150 MeV.
Finally, the Δ-propagator, including the decay width of

the Δð1232Þ, is given by

GαβðPÞ ¼
PαβðPÞ

P2 −M2
Δ þ iMΔΓΔðP2Þ þ ΓΔðP2Þ2

4

: ð45Þ

The projector PαβðPÞ over spin-3
2
on-shell particles is

given by

PαβðPÞ¼−ðPþMΔÞ

×

�
gαβ−

1

3
γαγβ−

2

3

PαPβ

M2
Δ
þ1

3

Pαγβ−Pβγα
MΔ

�
: ð46Þ

This concludes the description of the electroweak cur-
rent. The spinors of particles and holes are calculated in the
RMF model with the relativistic effective mass m�

N instead
ofmN , and with on-shell energy, Eq. (19). The total nucleon
energy in the RMF (21) includes the vector energy, Ev. As
can be seen, this vector energy cancels out in the terms of
the currents that depend on the vectors kμi . But it is not
canceled in the delta propagator, which is the only place
where Ev will appear explicitly.
Note that when considering the free Δ without self-

energy we are neglecting the interaction of the Δ in the
medium. The case of the interacting Delta is summarized in
Appendix A and is briefly discussed at the end of Sec. IV.
The seagull current has a vector and an axial part. The

pionic current is pure vector, and the pion-pole current is
pure axial. However, the pion-pole could be considered as
the axial part of the pion in flight in a certain sense. The
Δ-forward and backward currents have a vector and an
axial part also.
In the case of electron scattering, the above formulas are

valid, but only the vector part of the current appears. Thus,
the pion-pole diagrams (d and e) are not contributing. The
isospin operators are modified to the z component instead
of the � component [53]. Only the L and T responses are
present in ðe; e0Þ
The exact calculation of the response functions RKðq;ωÞ

with this model of currents is carried out by numerical
integration in seven dimensions of Eq. (27). The spin sums

are performed numerically. The isospin channels in the case
of neutrino CC scattering are pn and pp in the final states.
These two channels are computed separately and then
added to obtain the total responses. More details on the
calculation are given in Ref. [66].
Note that the same 2p2h responses were calculated in a

previous work [20,46] with a similar MEC model. The
differences with our new model are in the description of the
Δ propagator, which is included here in its entirety, while in
Refs. [20,46], only the real part of the denominator of theΔ
propagator was included. The second difference is that in
the present model the nucleon wave functions are solutions
of the Dirac equation in the mean field, that is, Dirac plane
waves with relativistic effective mass and vector energy. On
the contrary, in Refs. [20,46], a RFG without effective mass
was used, but including an energy shift of 40 MeV. As seen
in Ref. [53], the effect of the imaginary part of the
propagator is to increase the contribution of the ΔF
diagram and the position of the maximum. The effect of
the effective mass and vector energy is to reduce the height
of the peak, which partially compensates for the difference
of the MEC with respect to the calculation of Refs. [20,46].
Finally, the present model is restricted to a neutrino

energy range in which excitations of higher resonances,
beyond the Delta, are not essential. This is good enough for
experiments like T2K but not for DUNE.

D. Phase-space integral

Part of the dependence of the 2p2h response as a function
of q and ω will be associated with the number of 2p2h
states that can be excited while conserving energy and
momentum. That number is proportional to the phase-space
function. In the RMF of nuclear matter, it is given by

Fðq;ωÞ ¼
Z

d3p0
1d

3h1d3h2
ðm�

NÞ4
E1E2E0

1E
0
2

Θðp0
1; h1Þ

× Θðp0
2; h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ; ð47Þ

where p0
2 ¼ h1 þ h2 þ q − p0

1. This function was fully
studied in Refs. [58,67]. The phase space determines the
global behavior of the 2p2h responses, on top of the
additional modifications introduced by the particular model
of two-body current operator. The main modification of the
phase-space behavior in the responses is produced by the
Q2 dependence of the electroweak form factors. The rest of
the dependency on ðq;ωÞ comes from the structure of the
different Feynman diagrams, which are dominated by the
forward Δ excitations.
In this work, we approximate the phase space using the

frozen nucleon approximation [58,67], consisting in
neglecting the momenta of the holes compared to the
momentum transfer, which usually is larger than kF. Setting
h1 ¼ h2 ¼ 0, and E1 ¼ E2 ¼ m�

N inside the integral (47),
one can perform the integral over h1, h2,
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Fðq;ωÞfrozen ¼
�
4

3
πk3F

�
2
Z

d3p0
1

ðm�
NÞ2

E0
1E

0
2

Θðp0
1; 0Þ

× Θðp0
2; 0ÞδðE0

1 þ E0
2 − 2m�

N − ωÞ: ð48Þ

This integral can be reduced to one dimension, integrating
over the momentum p0

1 and the azimuthal angle ϕ0
1 of the

first ejected nucleon. In Ref. [58], the phase-space function
(47) was studied by computing the seven-dimensional
integral numerically and compared to the frozen approxi-
mation (48). This approximation is very good even for low
momenta, except in the very low-energy threshold zone,
where the 2p2h cross section is very small.
If we neglect Pauli blocking, the integral in Eq. (48) can

be made analytically by going to the center-of-mass frame
of the two final nucleons [67]. The following approximate
formula is obtained:

Fðq;ωÞ≃Fðq;ωÞfrozen

≃4π

�
4

3
πk3F

�
2m�2

N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m�2
N

ð2m�
N þωÞ2−q2

s
: ð49Þ

From this equation, we obtain the minimum ω to excite a
2p2h state for fixed q, in this approximation,

ωmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m�2

N þ q2
q

− 2m�
N: ð50Þ

The phase-space integral is zero below this value. Note that
this is the kinetic energy of a particle with mass 2m�

N and
momentum q.

E. Averaged Δ propagator

When a Δ is excited in the Δ-forward diagrams (f) and
(g) of Fig. 1, a broad resonant peak is produced. This
produces the dominant contribution to the MEC responses
in the region around the Δ peak. To get this resonant peak
in the semiempirical formula, we will approximate it by an
average of the Δ propagator over the Fermi gas.
The peak of the 2p2h responses is due to the denom-

inator in the Δ propagator for the forward diagrams,

GΔðH þQÞ≡ 1

ðH þQÞ2 −M2
Δ þ iMΔΓΔ þ Γ2

Δ
4

; ð51Þ

whereHμ ¼ ðERMF;hÞ is the 4-momentum of the hole. The
square of the momentum in the denominator can be written

ðH þQÞ2 ¼ ðERMF þ ωÞ2 − ðhþ qÞ2
≃ ðm�

N þ Ev þ ωÞ2 − 2h · q − q2; ð52Þ

where the energy of the hole has been approximated by
ERMF ¼ m�

N þ Ev in the RMF model, by neglecting the
kinetic energy of the first particle, and the momentum h2

has also been neglected compared to the momentum
transfer q2. In this nonrelativistic limit for the initial
nucleon, an average of the propagator (51) can be com-
puted analytically,

GavðQÞ ¼ Gavðq;ωÞ ¼
1

4
3
πk3F

Z
d3hθðkF − jhjÞ
a − 2h · qþ ib

; ð53Þ

¼ 1
4
3
πk3F

π

q

�ðaþibÞkF
2q

þ4q2k2F−ðaþibÞ2
8q2

×ln

�
aþ2kFqþib
a−2kFqþib

��
; ð54Þ

where the functions a and b are defined by

a≡m�2
N þ ðωþ EvÞ2 − q2

þ 2m�
Nðωþ Ev þ ΣÞ −M2

Δ þ Γ2

4
ð55Þ

b≡MΔΓ: ð56Þ

Note that we have included a shift parameter ΣðqÞ, to obtain
the correct position of the smeared Δ peak. The Δwidth ΓΔ
will be replaced by an effective width on the average ΓðqÞ.
The effective width and shift are used only in the

averaged propagator. In the exact calculation of the
MEC, there is no shift, and the well-known value of
the width of the Delta ΓΔðQ2Þ is used. In Ref. [41], it
was shown that the averaged propagator (in Ref. [41], it
was called the “frozen” propagator) describes the ω
dependence of the 2p2h responses only if effective values
of ΓðqÞ and ΣðqÞ are used. The effective values are taken as
parameters in the semiempirical formula, and they are fitted
to the exact responses. As explained in detail in Ref. [41], in
the exact responses, the Δ propagator inside the seven-
dimensional integral is being multiplied by a q-dependent
weight determined by the matrix elements of the MEC.
This changes the position and width of the MEC peak with
respect to the simple average of the denominator.
The effective shift and width parameters, ΣðqÞ, and ΓðqÞ,

will be adjusted with the semiempirical formula of the next
section, for each value of the momentum transfer q.

III. SEMIEMPIRICAL FORMULAS
OF MEC RESPONSES

In this section, we propose the semiempirical formulas
for the nuclear responses, RKðq;ωÞ, by separating the
contributions of the different Feynman diagrams of MEC
and the interferences between them and extracting the
contribution from the phase space, electroweak form
factors, and coupling constants, corresponding to each
term of the current. In the case of the Δ-forward current,
we also extract an average value of the Δ propagator. Much
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of the dependence on q and ω is coming from these factors.
The remaining dependence is coded into coefficients C̃iðqÞ
that are assumed to only depend on q.
First, we write the MEC as

jμ ¼ jμSP þ jμΔF þ jμΔB; ð57Þ

where the seagull-pionic (SP) contribution is the sum of
Figs. 1(a)–1(e),

jμSP ¼ jμsea þ jμπ þ jμpole: ð58Þ

Now, to compute the hadronic tensor wμν, Eq. (25), we deal
with products of the kind

jμ�jν ¼ jμ�SPj
ν
SP þ jμ�ΔFj

ν
ΔF þ jμ�ΔBj

ν
ΔB þ jμ�SPj

ν
ΔF þ jμ�ΔFj

ν
SP

þ jμ�SPj
ν
ΔB þ jμ�ΔBj

ν
SP þ jμ�ΔFj

ν
ΔB þ jμ�ΔBj

ν
ΔF: ð59Þ

Using this expansion, the response functions (7)–(11) can
be written as the sum of six subresponses corresponding to
SP,ΔF, andΔB, plus the interferencesΔF − SP,ΔB − SP,
and ΔF − ΔB,

RKðq;ωÞ ¼ RK
SP þ RK

ΔF þ RK
ΔB þ RK

ΔF−SP

þ RK
ΔB−SP þ RK

ΔF−ΔB; ð60Þ

this is a general expansion for all responses. In the case of
the CC;CL; LL, and T responses, we can also separate the
contribution of the vector and axial parts of the current,

RKðq;ωÞ¼RK;VV þRK;AA; K¼CC;CL;LL;T; ð61Þ

and their expansion is

RK;VVðq;ωÞ ¼ RK;VV
SP þ RK;VV

ΔF þ RK;VV
ΔB þ RK;VV

ΔF−SP

þ RK;VV
ΔB−SP þ RK;VV

ΔF−ΔB ð62Þ

RK;AAðq;ωÞ ¼ RK;AA
SP þ RK;AA

ΔF þ RK;AA
ΔB þ RK;AA

ΔF−SP

þ RK;AA
ΔB−SP þ RK;AA

ΔF−ΔB: ð63Þ

In the case of the T 0 response, only the vector-axial product
contributes,

RT 0 ðq;ωÞ ¼ RT 0;VAðq;ωÞ
¼ RT 0;VA

SP þ RT 0;VA
ΔF þ RT 0;VA

ΔB

þ RT 0;VA
ΔF−SP þ RT 0;VA

ΔB−SP þ RT 0;VA
ΔF−ΔB: ð64Þ

We have written the 2p2h response functions as sums of the
subresponses vector-vector, RK;VV

I;J ; axial-axial, RK;AA
I;J ; and

vector-axial, RT 0;VA
I;J , with I; J ¼ SP;ΔF;ΔB. From each

one of these subresponses, we factorize the electroweak
form factors, the coupling constants, an average delta
propagator Gavðq;ωÞ for each ΔF current, and finally
the phase space V

ð2πÞ9 Fðq;ωÞ. Then, for each subresponse,

we propose a semiempirical formula. Schematically, the
general structure will be

Riðq;ωÞ ¼ ½phase−space� × ½coupling constants�
× ½form factors� × ½averagedΔ propagators�
× C̃iðqÞ; ð65Þ

where we assume that the adjustable coefficients C̃iðqÞ do
not depend on ω, but only depend on q. This is the main
hypothesis on which the parametrization is based, that is,
that most of the ω dependence comes from phase space,
form factors, and the averaged Δ propagator. This is
justified a posteriori in the next section when we check
the quality of the fit by comparison with the exact results.
These coefficients will be fitted to the corresponding
subresponses in an exact calculation. The coefficients
can be interpreted as nuclear mean values of spin-isospin
contributions of the Feynman diagrams for each subres-
ponse in a 2p2h excitation.
Below, we write down the explicit formula for the 54

subresponses, taking into account that some of them may
need two coefficients or some additional correction, which
will be discussed in the next section.

A. Response RVV
T

RT;VV
ΔF ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
2

½C̃1;V1ðReðGV
avÞÞ2 þ C̃1;V2ðImðGV

avÞÞ2�ðm4
NÞ ð66Þ

RT;VV
SP ¼ V

ð2πÞ9 Fðq;ωÞ
�
f2πNN

m2
π

�
2

ðFV
1 Þ2ðC̃2;V ·m−2

N Þ
�
1 −

ω − 0.7q
mN

�
2

ð67Þ

RT;VV
ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
2

ðC̃3;VÞ ð68Þ
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RT;VV
ΔF−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

��
CV
3

mN

�
ðFV

1 Þ½C̃4;V1ðReðGV
avÞÞ þ C̃4;V2ðImðGV

avÞÞ�ðmNÞ ð69Þ

RT;VV
ΔF−ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
2

½C̃5;V1ðReðGV
avÞÞ þ C̃5;V2ðImðGV

avÞÞ�ðm2
NÞ ð70Þ

RT;VV
ΔB−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

��
CV
3

mN

�
ðFV

1 ÞðC̃6;V ·m−1
N Þ ð71Þ

B. Response RAA
T

RT;AA
ΔF ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2

ðC5
AÞ2½C̃1;A1ðReðGA

avÞÞ2 þ C̃1;A2ðImðGA
avÞÞ2�ðm2

NÞ ð72Þ

RT;AA
SP ¼ V

ð2πÞ9 Fðq;ωÞ
�
f2πNN

m2
π

�
2
�
1

gA

�
2

ðC̃2;A ·m−2
N Þ ð73Þ

RT;AA
ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2

ðCA
5 Þ2ðC̃3;A ·m−2

N Þ ð74Þ

RT;AA
ΔF−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

�
ðCA

5 Þ
�
1

gA

�
½C̃4;A1ðReðGA

avÞÞ þ C̃4;A2ðImðGA
avÞÞ� ð75Þ

RT;AA
ΔF−ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2

ðCA
5 Þ2½C̃5;A1ðReðGA

avÞÞ þ C̃5;A2ðImðGA
avÞÞ� ð76Þ

RT;AA
ΔB−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

�
ðCA

5 Þ
�
1

gA

�
ðC̃6;A ·m−2

N Þ ð77Þ

C. Response RVA
T0

RT 0;VA
ΔF ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
ðCA

5 Þ½C̃1;VA1ðReðGVA
av ÞÞ2 þ C̃1;VA2ðImðGVA

av ÞÞ2�ðm3
NÞ ð78Þ

RT 0;VA
SP ¼ V

ð2πÞ9 Fðq;ωÞ
�
f2πNN

m2
π

�
2

ðFV
1 Þ
�
1

gA

�
ðC̃2;VA ·m−2

N Þ
�
1 −

ω − 0.7q
mN

�
2

ð79Þ

RT 0;VA
ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
ðCA

5 ÞðC̃3;VA ·m−1
N Þ ð80Þ

RT 0;VA
ΔF−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

�
jGVA

av j
��

CV
3

mN

��
1

gA

�
ðC̃4;VA1 ·mNÞ þ ðCA

5 ÞðFV
1 ÞðC̃4;VA2Þ

�
ð81Þ

RT 0;VA
ΔF−ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
ðCA

5 Þ½C̃5;VA1ðReðGVA
av ÞÞ þ C̃5;VA2ðImðGVA

av ÞÞ�2mN ð82Þ

RT 0;VA
ΔB−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

���
CV
3

mN

��
1

gA

�
ðC̃6;VA ·m−1

N Þ þ ðCA
5 ÞðFV

1 ÞðC̃6;AV ·m−2
N Þ

�
ð83Þ
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D. Response RVV
CC

RCC;VV
ΔF ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
2

½C̃1;V1ðReðGV
avÞÞ2 þ C̃1;V2ðImðGV

avÞÞ2�ðm4
NÞ ð84Þ

RCC;VV
SP ¼ V

ð2πÞ9 Fðq;ωÞ
�
f2πNN

m2
π

�
2

ðFV
1 Þ2ðC̃2;V ·m−2

N Þ ð85Þ

RCC;VV
ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
2

ðC̃3;VÞ ð86Þ

RCC;VV
ΔF−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

��
CV
3

mN

�
ðFV

1 Þ½C̃4;V1ðReðGV
avÞÞ þ C̃4;V2ðImðGV

avÞÞ�ðmNÞ ð87Þ

RCC;VV
ΔF−ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2
�
CV
3

mN

�
2

½C̃5;V1ðReðGV
avÞÞ þ C̃5;V2ðImðGV

avÞÞ�ðm2
NÞ ð88Þ

RCC;VV
ΔB−SP ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�f3πNN

m4
π

��
CV
3

mN

�
ðFV

1 ÞðC̃6;V ·m−1
N Þ ð89Þ

E. Response RAA
CC

RCC;AA
ΔF ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2

ðC5
AÞ2½C̃1;A1ðReðGA

avÞÞ2 þ C̃1;A2ðImðGA
avÞÞ2�ðm2

NÞ ð90Þ

RCC;AA
SP ¼ V

ð2πÞ9 Fðq;ωÞ
�
f2πNN

m2
π

�
2
�
1

gA

�
2
�
C̃2;A1 þ C̃2;A2

�
ω ·mN

Q2 −m2
π

�
2
�
ðm−2

N Þ ð91Þ

RCC;AA
ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2

ðCA
5 Þ2ðC̃3;A ·m−2

N Þ ð92Þ

RCC;AA
ΔF−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

�
ðCA

5 Þ
�
1

gA

�
½C̃4;A1ðReðGA

avÞÞ þ C̃4;A2ðImðGA
avÞÞ� ð93Þ

RCC;AA
ΔF−ΔB ¼ V

ð2πÞ9 Fðq;ωÞ
�
f�fπNN

m2
π

�
2

ðCA
5 Þ2½C̃5;A1ðReðGA

avÞÞ þ C̃5;A2ðImðGA
avÞÞ� ð94Þ

RCC;AA
ΔB−SP ¼

V
ð2πÞ9 Fðq;ωÞ

�
f�f3πNN

m4
π

�
ðCA

5 Þ
�
1

gA

�
ðC̃6;A ·m−2

N Þ ð95Þ

F. Responses RVV
CL and RVV

LL

These responses are computed assuming conservation of the vector current:

RCL;VV ¼ −
ω

q
RCC;VV ð96Þ

RLL;VV ¼ ω2

q2
RCC;VV ð97Þ
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G. Responses RAA
CL and RAA

LL

The semiempirical formulas for RAA
CL and RAA

LL are similar
to the RAA

CC. Only the numerical values of the coefficients C̃i
change.

H. Electromagnetic responses RL
em and RT

em

It can be shown with the formalism of Ref. [66] that for
symmetric nuclear matter the electromagnetic 2p2h
responses are one-half of the VV weak responses

RL
em ¼ 1

2
RCC;VV ð98Þ

RT
em ¼ 1

2
RT;VV: ð99Þ

Therefore, the same semiempirical formulas for the VV
responses apply for the electromagnetic responses with a
factor 1=2.

I. Properties of semiempirical formulas

Here, we describe and clarify some particularities about
the semiempirical formulas (66)–(95) for the subresponses
and their theoretical meaning:

(i) All the dependence on ω is analytical. So, the
semiempirical expansion assumes that the ω
dependence comes mainly from the product of
phase space Fðq;ωÞ, electroweak form factors,
and averaged Δ propagator. The only exceptions
are RT;VV

SP and RT 0;VA
SP subresponses, which include

an ω-dependent factor that is obtained empirically
by comparing with the exact result.

(ii) The coefficients C̃i in all the formulas are dimen-
sionless. That is why powers of nucleon masses have
been introduced in the subresponses.

(iii) The phase space Fðq;ωÞ is common to all the
formulas. In this work, it is computed analytically
using the approximation (49).

(iv) All the responses are proportional to the volume V ¼
ð2πÞ3Z=ð8

3
πk3FÞ for symmetric nuclear matter

Z ¼ N. For asymmetric matter, the formulas should
be modified using two different Fermi momenta for
protons and neutrons.

(v) Each subresponse includes a specific product of
form factors and coupling constants, except the
axial SP subresponses, which do not allow us to
extract explicitly the form factor FρðkiÞ.

(vi) In most subresponses, the averaged Δ propagator
appears separated in real and imaginary parts, each
one multiplied by a parameter C̃i. The only
exception is the RT 0;VA

ΔF−SP, which only include the
modulus jGavj. Note that in the formulas there
are three versions of the averaged propagator: GV

av

for the VV responses, GA
av for the AA subresponses,

and GVA
av for the T 0, VA responses. They

differ in the values of the effective width, Γ, and
shift, Σ, of the Δ propagator. The corresponding
six parameters are denoted by ΓV, ΓA, ΓVA, ΣV , ΣA,
and ΣVA.

Finally, the semiempirical formulas allow us to calcu-
late analytically and directly all the 2p2h electroweak
responses. For a fixed value of q, the total 2p2h response
depends on the sum of all the subresponses, with a total of
73 parameters. This number of parameters may seem
large. Note that the axial part and the vector part of the
five response functions, as well as their interferences, are
described simultaneously. This could be compared with
the parametrization of Refs. [20,46], which needs about
56 parameters to describe all the 2p2h responses in
another nuclear model, based on the RFG and not
RMF, and also using only the real part of the Δ
propagator. Here, we use the full Δ propagator [53].
However, the present parametrization is an advance since
we obtain explicit dependence of the responses on
physical magnitudes—form factors, coupling constants,
Fermi momentum, etc—that can be modified a posteriori
if desired. Also, as we show below, many of these 54
subresponses are very small and could safely neglected,
leaving us with a smaller number of parameters.
However, in this paper, we have computed all the
subresponses.

IV. RESULTS

In this section, we obtain the values of the coefficients of
the semiempirical formulas (66)–(95) and the parameters Γ
and Σ in the averaged Δ propagator (54), (55), (56). Since
the experimental responses are not available and it is not
possible to obtain them phenomenologically, the coeffi-
cients cannot be obtained directly from data. Therefore, the
only possibility is to fit a theoretical model. In our case, the
interest is to obtain a parametrization of the responses to
make theoretical predictions of neutrino cross sections in a
computationally fast way. All numerical results in this
section correspond to 12C with kF ¼ 225 MeV=c,
M� ¼ 0.8, and Ev ¼ 141 MeV, fitted in Ref. [53].
First, we have calculated the “exact” subresponses for a

set of kinematics, ðq;ωÞ, performing numerical integrations
in seven dimensions in the RMF of nuclear matter
described in Sec. II. Our computer code calculates the
seven total 2p2h responses of neutrino CC scattering, RK ,
K ¼ CC;CL; LL; T; T 0, and electrons, RL

em and RT
em, using

Eq. (27). Our numerical code allows us to include in the
calculation some specific Feynman diagrams and exclude
others. To compute the subresponses, we have performed
three runs with the individual currents, SP, ΔF, and ΔB,
and three more runs with the pairs of currents (SPþ ΔF),
(SPþ ΔB), and (ΔF þ ΔB). Subtracting the separate
contributions of the single currents, the interference sub-
responses are obtained. For instance,

MARTINEZ-CONSENTINO, AMARO, and RUIZ SIMO PHYS. REV. D 104, 113006 (2021)

113006-12



RSP−ΔF ¼ RSPþΔF − RSP − RΔF: ð100Þ
An additional run is performed with the full MEC to get the
complete result. Each run requires computing the seven
response functions in a grid of ðq;ωÞ values, with q ¼
200;…; 2000 MeV=c in steps of Δq ¼ 100 and ω ¼
10;…; q in steps of Δω ¼ 10 MeV. The grid contains
about 15,000 kinematical points ðqi;ωiÞ. Note that the
computation for each kinematical point takes an average
of 5 min on our high-performance processors. This means
each run requires about 52 days in one processor and one
year for the seven runs. We have used the PROTEUS
scientific computing cloud of the ic1 [68] [2300 processors
with total 90,000 Giga FLOP (floating point arithmetic
operations)], allowing us to do the calculation in a few days.
Once we have stored the tables of the exact subresponses

in the grid, we fit the coefficients of the semiempirical

formula for fixed q. The fit is made by minimizing a χ2

function for each subresponse separately, thus obtaining the
coefficients C̃iðqÞ. The RT;VV

ΔF responses are used to fit the
effective width, ΓVðqÞ, and shift, ΣVðqÞ, of the averaged
delta propagator as well. The same procedure is followed to
fit the AA and VA effective widths and shifts using the
responses RT;AA

ΔF , and RT 0;VA
ΔF , respectively. Therefore, in the

transverse subresponses ΔF, four coefficients are being
adjusted simultaneously. Once the widths and shifts have
been fitted in this way, they are set to that value in all the
subresponses.
The coefficients obtained in the fit are tabulated in

Appendix B. In Table I, the effective width, ΓðqÞ, and
shift, ΣðqÞ, of the averaged Δ propagator, Gavðq;ωÞ, are
given for VV, AA, or VA responses. The coefficients C̃i are
provided in Tables II (for the RVV

T response function),

FIG. 2. Coefficients of the semiempirical formulas and parameters Γ, Σ in the averaged Δ propagator, for the RT 2p2h response
function plotted against the momentum transfer q. The dots are the fitted values, and the curves are the parametrizations with polynomial
functions. Tables of these coefficients and parametrizations are given in the Appendix.
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III (for RAA
T ), IV (for RVV

CC), V (for RAA
CC), VI (for R

AA
CL), VII

(for RAA
LL), and VIII (for RVA

T 0 ). The tables are given as a
function of q and can be interpolated for other q values. We
also provide polynomial parametrizations in Appendix C.
In Fig. 2, we plot the coefficients of the semiempirical

formula for the case of the subresponses RT for VV and AA
cases.We plot the coefficients C̃i and the effectivewidths,ΓV
and ΓA, and shifts, ΣV and ΣA, of the averagedΔ propagator
as a function of the momentum transfer q. Smooth depend-
ence on q is observed, except for very low q below
300 MeV=c where the dependence is more abrupt in some
cases, specifically in the case of thewidths and shifts of theΔ
propagator for q < 300 MeV=c. The reason why there is an
abrupt change for low momentum in the Δ current

coefficients is because the peak of the delta is not reached
below q ¼ 300 MeV=c, since at least the transferred energy
must be large enough to produce the Δ. In the present RMF
model, this is ω ¼ mΔ −m�

N − Ev ≃ 340 MeV. Therefore,
these coefficients are less restricted, and their value has
greater indeterminacy when making the fit. Similar results—
not shown in Fig. 2—are obtained for the dependence onq of
the rest of the coefficients of the semiempirical formula.
The most relevant coefficients for calculating the

responses are those corresponding to the Δ-forward trans-
verse responses (T and T 0) because these subresponses are
dominant in the Δ region. These coefficients are C̃1Vi, C̃1Ai,
and C̃1VAi. They increasemoderatelywith q, and their values
vary between C̃i ≃ 0 and 100 for 200 ≤ q ≤ 2000 MeV=c.

FIG. 3. Comparison between all the subresponses that contribute to each of the response functions for q ¼ 500 MeV=c. Only the most
important subresponses appear in the legend. But they are all drawn. For each color, the solid line is the parametrization, and the dotted
lines are the exact calculation.
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In Figs. 3 and 4, we show, as an example, all the
responses and subresponses as a function of ω for two
values of the momentum transfer q ¼ 500 and
1000 MeV=c, respectively. The dominant subresponses
in the responses T and T 0 are the delta-forward ones,
while the axial delta-forward and seagull-pionic response
functions CC, CL, and LL. The rest of the subresponses
give a very small contribution to the total and could in
principle be neglected, although we have included all in the
calculation. In the figures, we plot the exact result and
semiempirical formula, using the parametrization of the C̃i
parameters given in the Appendix C, for each one of the
dominant subresponses and also for the total responses.
In Fig. 5, it is seen that the total responses are well

described by the semiempirical formula in the range of q ¼
200;…; 2000 MeV=c considered in the present work. The

five 2p2h response functions forCCneutrino scattering from
12C, computed with the RMF model and with the semi-
empirical formula, are mostly identical in the scale of the
figure. This indicates that the semiempirical formula can be
used with guarantees to calculate the cross section in the
2p2h channel. For other values of q, it is enough to
interpolate the tables of the coefficients of Appendix B,
or to use the polynomial parametrizations of Appendix C. In
Fig. 6, we give an example of how the formula works in the
case of ðe; e0Þ cross section of 12C for various kinematics.
The electron energy and the scattering angle are fixed in the
experiment.When changing omega, themomentum transfer
is not constant but depends on the three variables contin-
uously. Then, it is necessary to interpolate the coefficients of
the semiempirical formula to calculate the 2p2h cross
section. In the figure, we used polynomial interpolation.

FIG. 4. The same as Fig. 3 for q ¼ 1000 MeV=c.
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The greatest utility of the SE formula is to calculate the
2p2h interaction with neutrinos, since the neutrino flux
implies an integration on the incident energy. The inte-
grated cross section in the flux is shown in Fig. 7. There, we
show the transverse and longitudinal contributions to the
cross section with and without 2p2h MEC. The effect of
MEC responses, computed with the SE formula, is to
increase the cross section of about ∼20%, depending on the
kinematics. Note that these results have been obtained
using C5

Að0Þ ¼ 1.2 for the axial Δ coupling. But in
Ref. [59], it was found that a value of 0.89 was more
adequate according to the pion emission data. If this value
is used with the semiempirical formula, the effect of the
axial MEC contribution in Fig. 7 would be reduced by
almost one-half. Note that the L contribution of the MEC is

very small and almost negligible and could be omitted in
the calculation.
To visualize the quality of the semiempirical formulas,

we show in Fig. 8 the quotient between the semiempirical
formula (se) and the exact result (th), for q ¼ 500 MeV=c
as a function of ω. In the zones dominated by the transverse
responses T and T 0 at the peak of the delta, the quotient is
very close to 1. For the ω values where the responses are
appreciable, the quotient is practically 1 because the
coefficients have been adjusted. The quotient deviates
from 1 only for ω values where the responses are not
important nor negligible.
The semiempirical formula also allows studying the

relative behavior between the different contributions or
subresponses. In particular, one can find relations between

FIG. 5. Comparison of the five 2p2h response functions for CC neutrino scattering from 12C, computed with the RMF model and with
the semiempirical formula. They are plotted as a function of ω for fixed values of thew momentum transfer q ¼ 200;…; 2000 MeV=c.
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FIG. 6. Cross section for (e; e0) scattering off 12C for various kinematics as a function of omega. The quasielastic contribution with
emission of a particle is shown using the SuSAM* model of Ref. [53] and the contribution of channel 2p2h, calculated both with the
exact RMF (MEC) and with the semiempirical formula (SE-MEC). Experimental data are from Refs. [69–71].

FIG. 7. Quasielastic neutrino and antineutrino, differential cross section integrated over the neutrino flux of the MiniBooNE
experiment for selected kinematics of the scattering angle bins. we show the separate T, T 0 and longitudinal responses
(L ¼ CCþ CLþ LL) with and without MEC. The curves without MEC (dotted lines) have been computed using the SuSAM*
model of Ref. [53]. The curves with MEC (solid lines) have been calculated with the SE formula of the 2p2h responses. Experimental
data from Refs. [11,12].
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the dominant subresponses RTVV
ΔF , RT 0VA

ΔF , and RTAA
ΔF as

follows. First, note that the only difference between the
vector and axial parts of the ΔF current, Eq. (31), is in the
electroweak vertex (41), ΓβμðQÞ ¼ Γβμ

V ðQÞ þ Γβμ
A ðQÞ, with

Γβμ
V ðQÞ ¼ CV

3

mN
ðgβμ=Q −QβγμÞγ5;

Γβμ
A ðQÞ ¼ CA

5 g
βμ; ð101Þ

Then, the vector current ΔF is expected to behave roughly
like q=m with respect to the axial current. As a conse-
quence, the coefficients of the semiempirical RTVV

ΔF and
RT 0VA
ΔF responses would contain a factor ðq=mÞ2 and q=m,

respectively, with respect to the RTAA
ΔF coefficients.

Therefore, if we define the coefficients

C̃0
1;Vi ≡ C̃1;Vi

ðq=mNÞ2
; C̃0

1;VAi ≡ C̃1;VAi

ðq=mNÞ
; ð102Þ

FIG. 8. Quotient between the semi-empirical (se) and theoretical (th) 2p2h response functions for CC neutrino and electron scattering.
For q ¼ 500 MeV=c as a function of ω.

MARTINEZ-CONSENTINO, AMARO, and RUIZ SIMO PHYS. REV. D 104, 113006 (2021)

113006-18



then one expects the quotients C̃0
1;Vi=C̃1;Ai and C̃

0
1;VAi=C̃1;Ai

to be approximately independent of q. This is shown in
Fig. 9, in which we plot these quotients and see that they are
roughly

C̃0
1;Vi

C̃1;Ai
≃
1

2
ð103Þ

C̃0
1;VAi

C̃1;Ai
≃

1ffiffiffi
2

p : ð104Þ

If we neglect the small contributions of the SP and ΔB
diagrams, the semiempirical formulas (66), (72), and (78)
allow ua to make quantitative estimations of relation
between the T and T 0 responses. In fact, the following
approximate formulas can be obtained between RT;VV and
RT;AA,

RT;AA

RT;VV ≃
RT;AA
ΔF

RT;VV
ΔF

≃
ðCA

5 Þ2
ðCV

3 Þ2 1
2
ð q
mN
Þ2 ; ð105Þ

as can the following relation between the T and T 0
responses.

RT

RT 0 ≃
RT
ΔF

RT 0
ΔF

≃
ðCV

3 Þ2 1
2

	
q
mN



2 þ ðCA

5 Þ2

CV
3C

A
5

1ffiffi
2

p
	

q
mN



≡RT=T 0 ðq;ωÞ; ð106Þ

where we have defined he function RT=T 0 ðq;ωÞ that
represents the approximate quotient between the subres-
ponses T and T 0 for the ΔF diagrams. To obtain Eq. (106),
we have used the empirical relations (103) and (104)
between the corresponding coefficients, and we have
assumed that the averaged Δ propagators are similar for
the VV, AA, and VA responses, and they cancel out in the
numerator and denominator. The function R depends on ω
through the Q2 dependence of the Δ form factors CV

3 ðQ2Þ
and CA

5 ðQ2Þ. The comparison between this relationship and
the exact result is also shown in Fig. 9 for two values of the
momentum transfer.
If we also assume that the form factors have an

approximately similar dependence on Q2, and that this
dependence is canceled in the numerator and the denom-
inator, we can simply use the values at the origin, Q2 ¼ 0,
of the form factors to obtain a simple approximate formula
for the relationship between T and T’ responses. In fact,
inserting the values CA

5 ð0Þ ¼ 1.2, and CV
3 ð0Þ ¼ 2.13 in

Eq. (106), we can write

FIG. 9. Top: relation between the coefficients of the ΔF subresponses RTVV
ΔF and RT 0VA

ΔF , with respect to RTAA
ΔF . Bottom: comparison of

the quotient RT=RT 0
with several approximations (see the text). The RT=T 0 and R̃T=T 0 functions have been obtained from the

semiempirical formulas of the ΔF subresponses.
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RT

RT 0 ≃
ð2.13Þ2 1

2

	
q
mN



2 þ ð1.2Þ2

2.13 × 1.2 1ffiffi
2

p
	

q
mN


 ≡ R̃T=T 0 ðqÞ: ð107Þ

Note that this approximation does not depend onω, and this
relation is compared in Fig. 10 with the exact result
computed for ω at the maximum of Δ peak. We see that
the formula (107) is valid for q between 500 and
1100 MeV=c, where R̃T=T 0 ≃ 2. Note that this value
depends on the value of C5

A, and here we have used 1.2.

For larger q, the approximations fail because in this region
the dominance of the ΔF starts to decay.
Note that Eqs. (106) and (107) relate RT and RT 0

,
similarly to Eqs. (8,9) of Ref. [19], but with the Δ form
factors instead of the nucleon form factors, and with similar
kinematic factors. In our case, we see, from Figs. 9 and 10,
that this relationship is approximately RT ≃ 2RT 0

in the
region of the Δ peak. This opens the way to determine the
2p2h response of neutrinos from fits of the corresponding
response in the electromagnetic channel.
Finally, in this work, we have considered the noninter-

acting free Δ in the MEC. The semiempirical formula
can be extended to include the case of a Δ interacting
with the mean field [56,72]. In this case, the Δ acquires
effective mass, M�

Δ, and vector energy, EΔ
v (see

Appendix A). In the simplest case of universal coupling,
theΔ scalar and vector energies are the same as those of the
nucleon. In Fig. 11, we show the effect of including the Δ
self-energy for universal coupling, compared to the case of
free Δ. In Fig. 11, we also compare with the extended
semiempirical formula of Appendix A. The effect of the Δ
interaction is a q-dependent shift, from−50 MeV, for small
q, up to þ50, for large q. The height of the transverse
response decreases for low q by ≃30%. The semiempirical
formula allows us to easily study the dependence of the
responses for other values of the Δ interaction with the
mean field.

FIG. 10. The semiempirical approximation R̃T=T 0 of the quo-
tient between the T and T 0 responses, as a function of q.

FIG. 11. Comparison of the transverse response functions including or not the Δ self-energy in the MEC, in the case of universal
coupling, EΔ

v ¼ Ev, and M�
Δ ¼ 1042 MeV. The results of the modified semiempirical formula for interacting Δ are also shown.
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V. CONCLUSIONS

In this article, we have proposed a semiempirical formula
to approximately calculate the 2p2h responses in neutrino
scattering. The formula is based on classifying the con-
tribution of Feynman diagrams of MEC with a similar
structure, in terms of the same electroweak form factor and
the same number of delta-forward propagators, obtaining in
our case six contributions, or subresponses, from our three
types of diagrams: delta forward, seagull pionic, and delta
backward.
It is proposed that each subresponse is the product of the

phase-space function of two particles, electroweak form
factors, and averaged delta propagators, multiplied by
coefficients that only depend on q. These coefficients
are fitted with a RMF model of nuclear matter for the
2p2h responses. In the SE formula, we use an approxima-
tion of the phase space (frozen nucleon approximation) and
a model for the average propagator of the delta-forward
current.
The hypothesis that the coefficients do not depend on ω

is generally fulfilled, with two minor exceptions in the
transverse SP subresponses, where a corrective term with a
second-degree polynomial in ω is added. Altogether, we
have shown that the dependence onω of the 2p2h responses
comes mainly from these three elements: phase space, form
factor, and averaged propagator of the delta forward, and
that is it.
Having extracted in the subresponses everything that can

be factorized, the semiempirical formulas explicitly contain
the dependence on the Fermi momentum, the number of
particles, the effective mass and vector energy of the RMF,
the electroweak form factors, and the coupling constants, in
addition to the explicit dependence on q and ω through the
phase space and the averaged Δ propagator.
The semiempirical formula has been obtained for free Δ,

but then we have generalized it to include a Δ interacting
with the mean field, which already depends on the Δ
effective mass and its vector energy.
An advantage of the semiempirical formula is that it

provides the 2p2h responses in a model in an easily
reproducible way and that it also allows many of the
model’s parameters to be varied at will.
The semiempirical formula could be extended by includ-

ing more diagrams or contributions to the MEC, for
example, ρ-meson exchange, correlation diagrams, and
excitation of other nucleon resonances, simply by adding
the corresponding form factors, couplings, and propagators
to construct the subresponses of the new contributions. The
SE formula could also be fitted with other models to
recalculate the coefficients.
The SE formulas are promising for application in

neutrino calculations and event simulators because they
are analytical and allow modifying physical parameters of
the model. We are currently studying other nuclei, and we
have checked that the formula is valid in symmetric nuclei,

N ¼ Z, with the same coefficients of this article, and only
the averaged Δ propagator must be modified by readjusting
the effective width and shift.
In the future, we will apply the semiempirical formula to

the case of asymmetric matter, N ≠ Z, which is of interest
for current and future neutrino experiments, since in this
case the emission channels of pp, pn, and nn have to be
treated separately.
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APPENDIX A: SEMIEMPIRICAL FORMULA
FOR Δ IN THE MEDIUM

In this Appendix, we explain how the semiempirical
formula must be modified to include the effective mass of
the Δ and its vector energy. In this work, we have neglected
the interaction of the Δ, treating it as a free particle. If we
assume that the Δ interacts with the scalar and vector fields
of the RMF, the Δ acquires an effective mass and a vector
energy [56,72],

M�
Δ ¼ MΔ − gΔs ϕ0 ðA1Þ

EΔ
RMF ¼ EΔ þ EΔ

v ðA2Þ

with EΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Δ þM�2

Δ

p
is the on-shell energy of the

intermediate Δ isobar with momentum pΔ.
In this case, the delta current would be modified by

substituting the propagator of the free delta, Eq. (45), for
the propagator in the medium, which is the following [56]:

GαβðPÞ ¼
PαβðP�Þ

P�2 −M�2
Δ þ iM�

ΔΓΔðP�2Þ þ ΓΔðP�2Þ2
4

: ðA3Þ

The projector PαβðP�Þ is now

PαβðP�Þ¼−ðP�þM�
ΔÞ

×

�
gαβ−

1

3
γαγβ−

2

3

P�
αP�

β

M�2
Δ

þ1

3

P�
αγβ−P�

βγα
M�

Δ

�
; ðA4Þ

where P�μ ¼ Pμ − δμ;0EΔ
v . With the Δ in the medium, the

peak position of the delta-forward response is expected at

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM�2

Δ

q
−m�

N − Ev þ EΔ
v . ðA5Þ
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In the particular case of a free Δ, we recover the original
position of the peak at

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

Δ

q
−m�

N − Ev: ðA6Þ

We see that the position of the Δ-forward peak depends on
q and the values of the vector energies and the effective
masses. In this case, the averaged Δ propagator, Eq. (54), is
still calculated with the same formula, but changing the
values of the parameters a and b to include the vector
energy and the effective mass of the Δ in the mean field

a≡m�2
N þ ðωþ Ev − EΔ

v Þ2 − q2

þ 2m�
Nðωþ Ev − EΔ

v þ ΣÞ −M�2
Δ þ Γ2

4
ðA7Þ

b≡M�
ΔΓ: ðA8Þ

Note that the Δ effective mass also appears in the
numerator of the Δ propagator, and this modifies
the values of the matrix elements of the delta-forward
current operator and the values of the responses. We have
computed the new responses. For simplicity, we have
assumed universal coupling, where the scalar and vector
self-energies of the Δ are the same as the nucleon, and also
the case where only the vector energies are equal. For
universal coupling, EΔ

v ¼ Ev ¼ 141 MeV, and
M�

Δ ¼ 1042 MeV. We have found that the semiempirical
formula can be easily modified to include these cases in the
following lines, by replacing the parameters of the Δ-
forward responses

C̃1;ij →

�
M�

Δ
MΔ

�
2

C̃1;ij ðA9Þ

C̃4;ij →

�
M�

Δ
MΔ

�
C̃4;ij ðA10Þ

C̃5;ij →

�
M�

Δ
MΔ

�
C̃5;ij; ðA11Þ

where i ¼ V; A; VA, and j ¼ 1, 2. The rest of the param-
eters of the SE formula are not modified.

APPENDIX B: TABLES OF COEFFICIENTS OF
THE SEMIEMPIRICAL MEC FORMULAS

In this Appendix, we provide the values of the coef-
ficients, C̃iðqÞ, of the semiempirical MEC responses for
q ¼ 200 MeV=c up to q ¼ 2000 MeC=c in steps of
Δq ¼ 100 MeV=c. These tables can be interpolated to
compute them for other q values. Alternatively, polynomial
parametrizations of these coefficient are provided in
Appendix C. The tables are included as additional material
in plain text [73].
In Table I, we give the averaged width, ΓðqÞ, and

averaged shift, ΣðqÞ, of the averaged Δ propagator,
Gavðq;ωÞ, for each one of the response functions of the
kind VV, AA, or VA.
The coefficients of the SE MEC are provided in Tables II

(for the RVV
T response function), III (for RAA

T ), IV (for RVV
CC),

V (for RAA
CC), VI (for R

AA
CL), VII (for R

AA
LL), and VIII (for R

VA
T 0 ).

TABLE I. Values of the Σ and Γ parameters of the averaged Δ propagator in the vector, axial, and vector-axial responses.

q ΣV ΓV ΣA ΓA ΣVA ΓVA

200 429.56 411.88 370.98 354.59 −414.99 392.89
300 78.986 185.09 56.717 213.63 68.141 202.39
400 91.125 166.59 77.657 105.54 86.064 114.85
500 98.153 110.12 79.080 108.77 89.183 109.51
600 102.60 101.32 81.094 112.29 92.511 104.93
700 107.11 95.220 83.883 112.49 96.193 100.76
800 111.70 89.771 87.198 111.84 100.14 96.588
900 116.35 84.322 90.914 111.16 104.23 92.175
1000 120.93 79.042 94.968 110.81 108.29 87.599
1100 125.48 74.275 99.373 110.79 112.16 82.932
1200 130.43 70.570 104.18 110.83 115.85 78.412
1300 136.28 67.973 109.36 110.74 119.34 74.053
1400 143.48 66.060 114.90 110.19 122.58 69.760
1500 152.32 64.801 120.78 108.83 125.39 65.752
1600 163.36 63.297 126.84 106.84 127.73 61.963
1700 177.02 60.783 132.90 103.96 129.37 58.403
1800 193.85 56.980 138.53 100.53 130.07 55.603
1900 214.45 51.489 143.10 97.028 129.72 53.580
2000 239.30 44.367 145.85 94.244 128.13 52.692
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TABLE II. Coefficients C̃iðqÞ of the RVV
T response function in the semiempirical MEC formulas.

q C̃1;V1 C̃1;V2 C̃2;V C̃3;V C̃4;V1 C̃4;V2 C̃5;V1 C̃5;V2 C̃6;V

200 −5.6455 4.7254 324.95 0.8821 19.976 −11.856 −0.0750 −0.1005 4.9442
300 −2.3128 7.0572 277.05 1.6642 6.7713 −8.4869 −0.2942 −0.1056 8.2559
400 2.8522 5.6335 237.33 2.3559 −3.6706 −2.9271 −0.4448 −0.1328 10.339
500 4.6067 5.6932 207.99 2.9384 −4.6034 −2.4378 −0.4102 −0.2456 11.498
600 6.3810 7.3485 187.15 3.4589 −5.3142 −2.0497 −0.4561 −0.3564 12.148
700 8.6406 10.267 172.73 3.9693 −6.3515 −1.3441 −0.5438 −0.4778 12.560
800 11.229 14.080 163.24 4.5053 −7.4147 −0.2435 −0.6380 −0.5912 12.867
900 14.017 18.385 157.49 5.0833 −8.3548 1.2379 −0.7307 −0.6812 13.126
1000 16.967 22.966 154.81 5.7084 −9.1218 3.0420 −0.8307 −0.7465 13.364
1100 20.125 27.880 154.72 6.3784 −9.6915 5.1327 −0.9510 −0.7926 13.588
1200 23.578 33.383 156.96 7.0876 −10.030 7.5290 −1.1024 −0.8230 13.803
1300 27.448 39.763 161.41 7.8296 −10.104 10.278 −1.2937 −0.8428 14.007
1400 31.840 47.170 168.06 8.5967 −9.8987 13.412 −1.5289 −0.8607 14.200
1500 36.836 55.518 177.07 9.3820 −9.4335 16.925 −1.8104 −0.8945 14.380
1600 42.528 64.336 188.67 10.179 −8.7568 20.743 −2.1399 −0.9698 14.545
1700 49.031 72.952 203.28 10.980 −7.9275 24.742 −2.5173 −1.1085 14.696
1800 56.482 80.929 221.50 11.781 −6.9963 28.795 −2.9423 −1.3179 14.831
1900 65.053 88.622 244.16 12.577 −5.9638 32.999 −3.4146 −1.5896 14.948
2000 74.960 98.238 272.46 13.365 −4.7513 38.182 −3.9421 −2.0225 15.050

TABLE III. Coefficients C̃iðqÞ of the RAA
T response function in the semiempirical MEC formulas.

q C̃1;A1 C̃1;A2 C̃2;A C̃3;A C̃4;A1 C̃4;A2 C̃5;A1 C̃5;A2 C̃6;A

200 16.329 34.206 19.944 20.615 4.1488 −2.5516 −2.7292 2.6273 17.649
300 21.430 18.820 18.724 18.470 3.7251 −0.2755 −2.3497 −0.0523 16.196
400 22.912 23.973 16.754 15.620 2.7107 1.3642 −2.1103 −1.1070 13.495
500 24.292 28.051 14.811 13.089 2.4231 1.8619 −2.2025 −1.5055 10.924
600 25.597 31.450 13.062 11.054 2.2471 2.2170 −2.3253 −1.7242 8.8130
700 26.669 34.336 11.520 9.4730 2.0649 2.5229 −2.3886 −1.8179 7.1491
800 27.590 36.844 10.172 8.2615 1.8603 2.7740 −2.3935 −1.8096 5.8390
900 28.405 39.083 8.9866 7.3289 1.6293 2.9601 −2.3566 −1.7396 4.7773
1000 29.015 41.136 7.9396 6.6055 1.3711 3.0905 −2.2927 −1.6460 3.8973
1100 29.845 43.044 7.0164 6.0317 1.0980 3.1824 −2.2107 −1.5499 3.1401
1200 30.530 44.799 6.1995 5.5604 0.8124 3.2402 −2.1127 −1.4694 2.4634
1300 31.210 46.400 5.4813 5.1521 0.5207 3.2635 −1.9980 −1.4097 1.8359
1400 31.879 47.821 4.8477 4.7766 0.2225 3.2622 −1.8677 −1.3610 1.2352
1500 32.511 49.056 4.2924 4.4065 −0.0743 3.2381 −1.7222 −1.3142 0.6426
1600 33.070 50.100 3.8069 4.0198 −0.3670 3.1950 −1.5655 −1.2580 0.0461
1700 33.514 50.979 3.3820 3.5983 −0.6496 3.1351 −1.4033 −1.1864 −0.5625
1800 33.803 51.770 3.0103 3.1267 −0.9176 3.0642 −1.2428 −1.1018 −1.1922
1900 33.905 52.613 2.6875 2.5931 −1.1712 2.9866 −1.0965 −0.9982 −1.8438
2000 33.778 53.762 2.4071 1.9874 −1.3992 2.9084 −0.9692 −0.8808 −2.5212
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TABLE IV. Coefficients C̃iðqÞ of the RVV
CC response function in the semiempirical MEC formulas.

q C̃1;V1 C̃1;V2 C̃2;V C̃3;V C̃4;V1 C̃4;V2 C̃5;V1 C̃5;V2 C̃6;V

200 −0.1024 0.0854 8.5525 0.0476 0.3211 −0.1617 0.0030 −0.0135 0.0357
300 −0.0486 0.1498 6.7440 0.1319 0.1593 −0.1606 −0.0159 −0.0211 0.1003
400 0.0678 0.1505 5.4143 0.2642 −0.0385 −0.0810 −0.0463 −0.0248 0.1893
500 0.1578 0.1882 4.5372 0.4452 −0.0496 −0.0868 −0.0653 −0.0422 0.3005
600 0.3027 0.2904 3.9966 0.6710 0.0294 −0.0948 −0.1020 −0.0694 0.4303
700 0.5658 0.4717 3.6898 0.9354 0.2210 −0.0787 −0.1666 −0.1106 0.5732
800 1.0273 0.7286 3.5402 1.2320 0.5934 −0.0121 −0.2661 −0.1706 0.7238
900 1.8174 1.0250 3.4920 1.5559 1.2182 0.1411 −0.4121 −0.2582 0.8770
1000 3.1690 1.2899 3.5088 1.9032 2.1686 0.4230 −0.6208 −0.3881 1.0291
1100 5.5066 1.4027 3.5654 2.2711 3.5213 0.8816 −0.9112 −0.5782 1.1773
1200 9.5630 1.1584 3.6453 2.6577 5.3523 1.5678 −1.3018 −0.8488 1.3193
1300 16.468 0.2226 3.7376 3.0612 7.7257 2.5367 −1.8108 −1.2243 1.4536
1400 27.710 −1.8853 3.8351 3.4808 10.692 3.8489 −2.4530 −1.7339 1.5790
1500 44.980 −5.7623 3.9328 3.9156 14.285 5.5617 −3.2416 −2.4152 1.6947
1600 70.073 −12.111 4.0275 4.3654 18.052 7.7114 −4.1882 −3.3012 1.8002
1700 104.98 −21.738 4.1169 4.8302 23.426 10.286 −5.3006 −4.4046 1.8959
1800 152.13 −35.588 4.1997 5.3101 29.007 13.208 −6.5868 −5.7040 1.9812
1900 214.67 −54.766 4.2747 5.8056 35.314 16.426 −8.0633 −7.1889 2.0576
2000 296.65 −80.395 4.3415 6.3170 42.457 20.217 −9.7724 −9.1248 2.1249

TABLE V. Coefficients C̃iðqÞ of the RAA
CC response function in the semiempirical MEC formulas.

q C̃1;A1 C̃1;A2 C̃2;A1 C̃2;A2 C̃3;A C̃4;A1 C̃4;A2 C̃5;A1 C̃5;A2 C̃6;A

200 0.4310 0.6758 238.27 9.3999 0.3545 1.0876 −50.597 0.0504 −0.0292 0.3475
300 0.7425 0.6100 215.77 8.4094 0.3314 −8.2958 −11.926 0.0265 0.0090 0.0575
400 1.1073 1.3165 175.09 7.7175 0.3006 −7.1932 −8.0118 0.0064 0.0216 −0.1498
500 2.1427 2.1218 138.76 6.9936 0.2787 −4.9007 −7.7936 0.0210 0.0146 −0.3151
600 3.1362 3.1395 109.68 6.2763 0.2646 −0.4025 −8.1195 0.0515 0.0109 −0.4585
700 4.3281 4.3521 87.033 5.6002 0.2544 4.6146 −8.0345 0.0965 0.0144 −0.5908
800 5.7860 5.7550 69.523 4.9837 0.2442 10.156 −7.5209 0.1605 0.0296 −0.7057
900 7.6019 7.3393 55.929 4.4317 0.2305 16.577 −6.5162 0.2447 0.0588 −0.8128
1000 9.9183 9.1025 45.328 3.9429 0.2106 24.215 −4.9410 0.3495 0.1041 −0.9201
1100 12.958 11.016 37.025 3.5122 0.1822 33.432 −2.6731 0.4694 0.1641 −1.0171
1200 17.041 13.007 30.456 3.1346 0.1430 44.503 0.4040 0.5954 0.2368 −1.1184
1300 22.616 14.950 25.230 2.8037 0.0918 57.725 4.4288 0.7159 0.3149 −1.2640
1400 30.266 16.646 21.041 2.5137 0.0271 73.368 9.5238 0.8128 0.3868 −1.3986
1500 40.702 17.843 17.664 2.2593 −0.0514 91.621 15.780 0.8644 0.4368 −1.5547
1600 54.774 18.212 14.919 2.0359 −0.1444 112.59 23.235 0.8495 0.4422 −1.7426
1700 73.477 17.381 12.677 1.8392 −0.2522 136.52 31.950 0.7379 0.3723 −1.9275
1800 97.967 14.957 10.833 1.6658 −0.3739 163.50 41.932 0.5062 0.1975 −2.1423
1900 129.63 10.517 9.3095 1.5124 −0.5101 193.73 53.264 0.1143 −0.1323 −2.3821
2000 170.12 3.6516 8.0440 1.3765 −0.6595 227.56 66.185 −0.4731 −0.6773 −2.6522
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TABLE VI. Coefficients C̃iðqÞ of the RAA
CL response function in the semiempirical MEC formulas.

q C̃1;A1 C̃1;A2 C̃2;A1 C̃2;A2 C̃3;A C̃4;A1 C̃4;A2 C̃5;A1 C̃5;A2 C̃6;A

200 −1.1765 −2.5379 −72.678 −7.2538 0.0806 5.5173 34.373 0.0563 0.1300 −0.7486
300 −2.1851 −2.0364 −91.567 −7.3504 −0.1306 9.9664 13.202 0.1902 −0.0182 −0.6646
400 −3.0251 −3.6397 −86.641 −7.0749 −0.2579 8.1204 10.129 0.1989 0.0688 −0.4324
500 −4.9236 −5.0983 −75.322 −6.5790 −0.3193 6.9727 9.2048 0.1870 0.1269 −0.2418
600 −6.3387 −6.6909 −63.463 −5.9990 −0.3393 2.5570 9.3724 0.1727 0.1655 −0.1346
700 −7.8449 −8.3950 −52.859 −5.4096 −0.3340 −2.7198 9.1389 0.1527 0.1909 −0.1047
800 −9.5543 −10.225 −43.896 −4.8494 −0.3134 −8.5236 8.4471 0.1251 0.2045 −0.1183
900 −11.573 −12.190 −36.470 −4.3350 −0.2830 −15.121 7.2693 0.0907 0.2064 −0.1513
1000 −14.046 −14.312 −30.392 −3.8718 −0.2457 −22.835 5.5497 0.0531 0.2008 −0.1864
1100 −17.186 −16.579 −25.435 −3.4593 −0.2019 −32.018 3.1768 0.0182 0.1931 −0.2067
1200 −21.292 −18.932 −21.379 −3.0945 −0.1506 −42.966 0.0363 −0.0051 0.1917 −0.1904
1300 −26.782 −21.257 −18.053 −2.7730 −0.0910 −55.972 −4.0071 −0.0072 0.2058 −0.1377
1400 −34.193 −23.366 −15.321 −2.4898 −0.0212 −71.313 −9.0779 0.0268 0.2493 −0.0681
1500 −44.183 −25.025 −13.066 −2.2405 0.0598 −89.177 −15.266 0.1140 0.3370 0.0141
1600 −57.540 −25.924 −11.196 −2.0209 0.1528 −109.72 −22.625 0.2718 0.4888 0.1558
1700 −75.203 −25.715 −9.6367 −1.8273 0.2584 −133.11 −31.192 0.5271 0.7308 0.3566
1800 −98.277 −24.042 −8.3357 −1.6560 0.3769 −159.48 −40.991 0.9038 1.0907 0.5645
1900 −128.11 −20.522 −7.2402 −1.5045 0.5089 −189.04 −52.100 1.4318 1.6084 0.8363
2000 −166.30 −14.797 −6.3199 −1.3699 0.6537 −222.20 −64.787 2.1540 2.3542 1.1126

TABLE VII. Coefficients C̃iðqÞ of the RAA
LL response function in the semiempirical MEC formulas.

q C̃1;A1 C̃1;A2 C̃2;A1 C̃2;A2 C̃3;A C̃4;A1 C̃4;A2 C̃5;A1 C̃5;A2 C̃6;A

200 7.7088 17.531 233.20 5.0374 9.4317 3.1687 −49.648 −1.2839 1.2848 3.4218
300 10.129 9.2250 180.29 6.0908 8.1410 −5.1516 −17.177 −1.1784 0.1189 2.1615
400 10.742 11.672 130.90 6.3740 6.7068 −5.1196 −11.029 −0.9983 −0.4267 1.5098
500 12.296 13.556 95.868 6.1594 5.5049 −5.8216 −8.7191 −0.9352 −0.6065 1.2160
600 13.590 15.271 71.787 5.7313 4.5619 −2.0130 −8.5029 −0.8949 −0.6911 1.1226
700 14.933 16.968 55.051 5.2304 3.8319 3.0303 −8.0879 −0.8569 −0.7349 1.1446
800 16.477 18.749 43.149 4.7251 3.2680 8.6441 −7.2951 −0.8243 −0.7630 1.2170
900 18.343 20.667 34.439 4.2463 2.8272 15.023 −6.0701 −0.8030 −0.7775 1.3022
1000 20.673 22.776 27.928 3.8069 2.4761 22.503 −4.3435 −0.8019 −0.7903 1.3936
1100 23.665 25.080 22.940 3.4113 2.1877 31.380 −2.0133 −0.8286 −0.8101 1.4126
1200 27.589 27.524 19.060 3.0580 1.9416 42.013 1.0546 −0.8948 −0.8527 1.4160
1300 32.827 29.998 15.983 2.7448 1.7231 54.657 4.9885 −1.0084 −0.9300 1.3692
1400 39.872 32.313 13.511 2.4679 1.5207 69.579 9.9124 −1.1826 −1.0605 1.2548
1500 49.320 34.251 11.500 2.2234 1.3272 86.942 15.909 −1.4322 −1.2638 1.0643
1600 61.902 35.509 9.8547 2.0074 1.1366 106.95 23.046 −1.7716 −1.5598 0.8203
1700 78.500 35.763 8.4949 1.8163 0.9445 129.79 31.376 −2.2227 −1.9720 0.5642
1800 100.17 34.688 7.3611 1.6472 0.7488 155.55 40.907 −2.8139 −2.5330 0.2057
1900 128.23 31.939 6.4108 1.4973 0.5476 184.45 51.726 −3.5732 −3.2833 −0.2214
2000 164.22 27.217 5.6116 1.3640 0.3392 216.84 64.070 −4.5204 −4.2713 −0.6653
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APPENDIX C: PARAMETRIZATIONS OF
NUCLEAR RESPONSE COEFFICIENTS

In this Appendix, we provide parametrizations of the q
dependence of the semiempirical formula coefficients,
C̃iðqÞ, and of the averaged width, ΓðqÞ, and averaged
shift, ΣðqÞ, of the averaged Δ propagator, Gavðq;ωÞ,
for each one of the response functions in the semi-
empirical MEC formulas. We provide two kind of para-
metrizations. Most of the coefficients allow a polynomial
parametrization,

C̃iðqÞ ¼
X8
j¼0

aj

�
q

2mN

�
j
; ðC1Þ

where the maximum range of the polynomial is 8 for some
of the coefficients, but in many cases, the polynomial

degree is less or much less than 8. The factors in the
polynomial are dimensionless.
For some of the coefficients, the parametrization is

better written as a polynomial of the inverse variable
2mN=q,

C̃iðqÞ ¼
X8
j¼0

aj

�
2mN

q

�
j
: ðC2Þ

These are labeled with a star symbol (*) in the tables below.
The parameters of the averaged width, ΓðqÞ, and

averaged shift, ΣðqÞ, are given in Table IX.
Parameters are provided in Tables X (for the RVV

T
response function), XI (for RAA

T ), XII (for RVV
CC), XIII

(for RAA
CC), XIV (for RAA

CL), XV (for RAA
LL), and XVI (for R

VA
T 0 ).

TABLE VIII. Coefficients C̃iðqÞ of the RVA
T 0 response function in the semiempirical MEC formulas.

q C̃1;VA1 C̃1;VA2 C̃2;VA C̃3;VA C̃4;VA1 C̃4;VA2 C̃5;VA1 C̃5;VA2 C̃6;VA C̃6;AV

200 3.0775 7.0669 33.839 4.1248 −122.58 175.36 −0.28107 0.16341 −84.995 135.39
300 6.0856 7.0257 39.591 5.2873 −45.017 68.720 −0.36476 −0.00935 −5.9848 24.604
400 8.2977 9.3332 40.713 5.6595 10.642 −13.723 −0.41794 −0.17344 6.0440 6.4537
500 10.413 12.083 39.821 5.6071 20.192 −31.555 −0.44973 −0.30008 5.8446 5.3355
600 12.682 15.166 38.151 5.3665 17.331 −30.514 −0.49020 −0.39654 4.1826 6.3500
700 14.967 18.484 36.245 5.0677 12.947 −26.221 −0.52323 −0.46538 2.9376 6.8790
800 17.214 21.943 34.390 4.7752 9.2326 −22.152 −0.53893 −0.50361 2.1534 6.8773
900 19.389 25.464 32.660 4.5129 6.4570 −19.001 −0.53699 −0.51340 1.6290 6.6367
1000 21.465 29.016 31.110 4.2871 4.4528 −16.072 −0.51836 −0.49662 1.2863 6.2528
1100 23.421 32.597 29.762 4.0941 3.0130 −15.132 −0.48558 −0.45727 1.0445 5.8248
1200 25.233 36.210 28.602 3.9272 1.9657 −14.031 −0.44114 −0.39951 0.86212 5.3968
1300 26.891 39.863 27.639 3.7794 1.1886 −13.267 −0.38738 −0.32521 0.71212 4.9943
1400 28.388 43.548 26.853 3.6443 0.59663 −12.723 −0.32579 −0.23678 0.59011 4.6091
1500 29.714 47.274 26.240 3.5167 0.13074 −12.320 −0.25785 −0.13292 0.48717 4.2444
1600 30.863 51.023 25.787 3.3926 −0.24908 −12.001 −0.18497 −0.01558 0.39962 3.8983
1700 31.828 54.804 25.479 3.2691 −0.57026 −11.726 −0.10735 0.11481 0.32699 3.5639
1800 32.598 58.687 25.307 3.1443 −0.85053 −11.474 −0.02521 0.25836 0.26413 3.2461
1900 33.166 62.755 25.264 3.0170 −1.1045 −11.225 0.06088 0.41597 0.21063 2.9409
2000 33.523 67.137 25.330 2.8868 −1.3401 −10.971 0.15142 0.59231 0.16352 2.6510

TABLE IX. Parameters of the effective shift, Σ, and width, Γ, of the averaged Δ propagator in the vector, axial, and vector-axial
responses in the polynomial interpolations given by Eq. (C1), or Eq. (C2) for the ones labeled with a star symbol �.

a0 a1 a2 a3 a4 a5 a6

ΣV 60.5191 174.869 −142.624 0.0 64.8675 51.5966 0.0
ΓV 1450.93 −14248.6 60480.2 −132124 155882 −94328.1 22938.6
ΣA� 93.7987 −207.022 880.16 −1497.82 1345.81 −472.81 0.0
ΓA 48.5674 457.116 −983.684 0.0 2539.27 −3068.47 1104.8
ΣVA� 83.6648 −43.5277 349.139 −500.553 371.11 −129.884 0.0
ΓVA� 173.605 −566.125 2174.47 −4916.66 5945.42 −3691.91 935.097
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TABLE X. Parameters of the coefficients C̃iðqÞ of the response function RVV
T in the interpolations given by Eq. (C1), or Eq. (C2) for

the ones labeled with a star symbol �.
a0 a1 a2 a3 a4 a5 a6 a7 a8

C̃1;V1 −19.6664 174.729 −504.898 878.162 −695.892 230.403 0.0 0.0 0.0

C̃1;V2 0.0 253.264 −2441.02 9243.9 −14669.3 5825.93 10974.9 −13547.1 4446.27

C̃2;V 464.634 −1606.42 3069.48 −2681.38 991.981 0.0 0.0 0.0 0.0

C̃3;V 0.0 10.3393 0.0 2.04851 0.0 0.0 0.0 0.0 0.0

C̃4;V1 94.6881 −1119.14 5033.78 −11612.8 14309.6 −8943.98 2231.48 0.0 0.0

C̃4;V2 −32.638 281.151 −1007.61 1735.12 −1334.5 390.521 0.0 0.0 0.0

C̃5;V1 0.0 −2.28139 4.09607 −5.10766 0.0 0.0 0.0 0.0 0.0

C̃5;V2 0.0 0.0 −4.75457 0.0 12.9405 −9.69383 0.0 0.0 0.0

C̃6;V −8.6321 188.024 −702.668 1404.74 −1543.33 882.04 −205.234 0.0 0.0

TABLE XI. Parameters of the coefficients C̃iðqÞ of the response function RAA
T in the polynomial interpolations given by Eq. (C1), or

Eq. (C2) for the ones labeled with a star symbol �.
a0 a1 a2 a3 a4 a5 a6

C̃1;A1� 40.1435 −6.64283 0.0 0.354216 −0.0596866 0.00286741 0.0

C̃1;A2� 70.1364 −18.7631 0.0 1.64276 −0.448886 0.0478086 −0.0017799
C̃2;A� −4.81568 8.57371 −1.05139 0.0446577 0.0 0.0 0.0

C̃3;A� −1.70277 4.96453 −0.275884 0.0 0.0 0.0 0.0

C̃4;A1� −7.1971 8.61063 −2.84088 0.399384 −0.0192562 0.0 0.0

C̃4;A2� 2.41265 1.1986 −0.572642 0.0682446 −0.00286093 0.0 0.0

C̃5;A1� 3.60383 −7.63457 3.56018 −0.757029 0.0746929 −0.00277361 0.0

C̃5;A2� 0.564127 −2.1691 0.636593 −0.0652588 0.00261604 0.0 0.0

C̃6;A� −6.78958 6.19498 −0.386024 0.0 0.0 0.0 0.0

TABLE XII. Parameters of the coefficients C̃iðqÞ of the response function RVV
CC in the polynomial interpolations given by Eq. (C1), or

Eq. (C2) for the ones labeled with a star symbol �.
a0 a1 a2 a3 a4 a5 a6 a7 a8

C̃1;V1 5.86212 −159.987 1683.15 −9120.25 28225.1 −51256.7 53538.9 −29301.5 6584.11

C̃1;V2 0.0 10.2676 −141.292 839.978 −2670.46 4936.0 −5039.63 2519.75 −504.43
C̃2;V 13.7234 −61.873 132.704 −119.937 39.5931 0.0 0.0 0.0 0.0

C̃3;V −0.0686547 0.0 8.18253 −2.41841 0.0 0.0 0.0 0.0 0.0

C̃4;V1 1.75335 −23.1728 127.716 −386.742 628.412 −421.798 107.647 0.0 0.0

C̃4;V2 0.0 −4.25877 36.7999 −123.11 166.971 −60.689 0.0 0.0 0.0

C̃5;V1 0.0 −1.50012 8.60699 −14.8142 0.0 0.0 0.0 0.0 0.0

C̃5;V2 0.0 0.542587 −6.74484 22.0466 −29.4463 6.74147 0.0 0.0 0.0

C̃6;V 0.0 −0.288279 5.91647 0.0 −10.6428 9.91934 −2.86346 0.0 0.0
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TABLE XIII. Parameters of the coefficients C̃iðqÞ of the response function RAA
CC in the polynomial interpolations given by Eq. (C1), or

Eq. (C2) for the ones labeled with a star symbol �.
a0 a1 a2 a3 a4 a5 a6

C̃1;A1 1.00967 −13.0344 73.0221 0.0 −198.704 259.352 0.0

C̃1;A2 3.83926 −62.2338 400.672 −1071.58 1612.63 −1160.11 288.513

C̃2;A1� −39.489 44.8644 1.70487 −0.355919 0.0 0.0 0.0

C̃2;A2� −2.17605 4.26239 −0.589857 0.0284662 0.0 0.0 0.0

C̃3;A 0.491785 −1.6485 4.50652 −5.29804 1.47136 0.0 0.0

C̃4;A1 0.0 −39.1279 69.8619 155.687 0.0 0.0 0.0

C̃4;A2 −237.745 3006.35 −14949.7 36613.0 −47206.4 30846.5 −8019.86
C̃5;A1 0.0888813 −0.283259 −1.87097 7.84059 0.0 −5.55097 0.0

C̃5;A2 −0.408277 5.44882 −22.9732 37.91 −20.0388 0.0 0.0

C̃6;A 1.04713 −8.02409 14.0568 −12.9651 3.55436 0.0 0.0

TABLE XIV. Parameters of the coefficients C̃iðqÞ of the response function RAA
CL in the polynomial interpolations given by Eq. (C1), or

Eq. (C2) for the ones labeled with a star symbol �.
a0 a1 a2 a3 a4 a5 a6

C̃1;A1 0.0 −5.53339 −53.5517 0.0 177.554 −239.114 0.0

C̃1;A2 −9.61627 139.949 −899.062 2402.54 −3417.33 2375.71 −613.648
C̃2;A1� 0.0 11.7941 −25.2288 6.74752 −0.71334 0.0274023 0.0

C̃2;A2� 2.15609 −4.27799 0.628945 −0.0298366 0.0 0.0 0.0

C̃3;A 0.636771 −7.06185 17.1626 −16.5615 6.28956 0.0 0.0

C̃4;A1 0.0 56.6646 −111.747 −126.814 0.0 0.0 0.0

C̃4;A2 136.9 −1630.92 7986.45 −19326.8 24651.6 −16013.6 4146.06

C̃5;A1 0.0 1.19682 −1.25693 −2.63388 0.0 3.99421 0.0

C̃5;A2 0.325959 −3.9354 18.934 −32.2136 18.3759 0.0 0.0

C̃6;A −1.6945 10.4321 −24.2097 21.6826 −5.45423 0.0 0.0

TABLE XV. Parameters of the coefficients C̃iðqÞ of the response function RAA
LL in the polynomial interpolations given by Eq. (C1), or

Eq. (C2) for the ones labeled with a star symbol �.
a0 a1 a2 a3 a4 a5 a6 a7 a8

C̃1;A1 6.14051 16.8939 26.5549 0.0 −131.934 203.693 0.0 0.0 0.0

C̃1;A2 141.573 −2569.7 19929.8 −81032.4 193118 −278723 239909 −113349 22609.3

C̃2;A1� −12.4591 12.5106 6.0512 −0.490028 0.0 0.0 0.0 0.0 0.0

C̃2;A2� −2.2448 4.431 −0.710191 0.0341804 0.0 0.0 0.0 0.0 0.0

C̃3;A 13.7017 −45.4469 66.7382 −45.3372 10.9484 0.0 0.0 0.0 0.0

C̃4;A1 0.0 −34.6322 55.3018 156.919 0.0 0.0 0.0 0.0 0.0

C̃4;A2 −204.783 2442.11 −11760.5 28204.8 −35811.5 23149.8 −5969.69 0.0 0.0

C̃5;A1 −1.63891 4.02606 −6.87094 5.50556 0.0 −4.39721 0.0 0.0 0.0

C̃5;A2 3.52402 −29.492 67.8688 −60.0326 14.9714 0.0 0.0 0.0 0.0

C̃6;A 6.74744 −43.2203 113.243 −117.526 40.5894 0.0 0.0 0.0 0.0
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