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By using the quantum extremal island formula, we perform a simple calculation of the generalized
entanglement entropy of Hawking radiation from the two-dimensional Liouville black hole. No reasonable
island was found when extremizing the generalized entropy. We explain qualitatively the reason why the
page curve cannot be reproduced in the present model. This suggests that the islands may not necessarily
save the information paradox for the Liouville black holes.
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I. INTRODUCTION

Recently, remarkable progress was made in studying the
information paradox of the black holes, which is caused by
Hawking radiation [1]. It was shown that the island
proposed to be in the entanglement wedge of the radiation
should be taken into account when calculating entangle-
ment entropy of Hawking radiation [2–5]. It was proposed
that the entanglement entropy of Hawking radiation should
be given by [5]

SR ¼ min

�
ext

�
A½∂I�
4GN

þ Sbulk½Rad ∪ I�
��

; ð1Þ

where “Rad” is the region that the distant observer collects
the radiation and I is the island. Sbulk½Rad ∪ I� is the
entanglement entropy of the quantum fields (including
gravitational field) in the region “Rad” and island I:∂I is
the boundary surface of the island and A½∂I�=4GN is the
area of the surface. The terms in the square brackets are just
the generalized entropy of Bekenstein [6]. If extremizing
the generalized entropy, one can determine the location of
the island. The minimum value is chosen as the entangle-
ment entropy of Hawking radiation if there are more than
one extremum. It was shown that the Page curve [7] can be

reproduced by using this formula. See [8] for a nice review
of this formula.
The island formula was initially proposed for the AdS

black holes from a holographic perspective. However,
subsequent works show that this formula does not require
the AdS=CFT correspondence. The island formula was
justified by the replica wormholes in the gravitational path
integral [9–11]. In particular, it may also be applicable to
asymptotically flat black holes. Although the island for-
mula has been successfully applied to many types of black
hole spacetime, including black holes in Jackiw-Teitelboim
(JT) gravity, higher dimensional asymptotically flat and
AdS black holes and the Page curves are properly repro-
duced [12–43], it is still interesting to check whether this
formula is applicable to other types of black hole solutions.
In this paper, we investigate whether the quantum

extremal island formula can be applied to resolve the
information paradox of the eternal Liouville black hole in
the two-dimensional dilaton gravity with the exponential
potential. This type of model was initially introduced by
Mann [44]. Later, this model was also investigated by Cruz
et al. in [45,46]. It was shown that this model has the
analytical black hole solutions. The black hole solution in
this model was shown to have Hawking temperature
proportional to its mass. This implies that the black hole
will never evaporate completely consistent with the third
law of the thermodynamics. We will show that the entropy
of the Hawking radiation without islands grows with time
linearly, which contradicts the finite degrees of freedom of
a black hole. Furthermore, we demonstrate that there seems
no reasonable quantum extremal surface when extremizing
the generalized entanglement entropy by using the island
formula. We explain qualitatively the reason why the Page
curve cannot be reproduced in the present model. This
implies that the island formula may not necessarily save the
information paradox for the Liouville black holes.
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II. LIOUVILLE BLACK HOLES
IN 2D DILATON GRAVITY

We consider the model of 2D dilaton gravity with the
exponential potential, the action of which is explicitly given
by [44–46]

I ¼ 1

2π

Z
d2x

ffiffiffiffiffiffi
−g

p ðϕRþ 4λ2eβϕÞ: ð2Þ

Note that the signs of the parameters λ2 and β will be
determined in the following. This model is similar to the
deformed JT gravity recently investigated by Witten et al.
[47–51]. However, we are considering the asymptotically
flat black hole solutions while the asymptotically AdS
black holes have been studied in [47,49,51].
In conformal gauge, the spacetime metric can be written

in terms of the so-called Kruskal coordinates as

ds2 ¼ −e2ρðxþ;x−Þdxþdx−: ð3Þ

The equation of motion of the model can be given by

∂þ∂−

�
ρ −

β

2
ϕ

�
¼ 0; ð4Þ

∂þ∂−

�
ρþ β

2
ϕ

�
¼ −λ2βe2ðρþ

β
2
ϕÞ; ð5Þ

−∂2
�ϕþ 2∂�ρ∂�ϕ ¼ 0: ð6Þ

It can be seen that the field ρ − β
2
ϕ is a free field and ρþ β

2
ϕ

satisfies the Liouville equation. It was shown that by setting
ρ ¼ β

2
ϕ, Eq. (5) can be rewritten as

∂þ∂−ð2ρÞ ¼ −λ2βe4ρ: ð7Þ

This is exactly the Liouville equation, and the general
solution is given by

ρ ¼ 1

4
ln

∂þF∂−G
ð1þ λ2βFGÞ2 ; ð8Þ

where FðGÞ is an arbitrary function of xþðx−Þ. Using the
constraint equation (6), one can get

∂2
�ρ ¼ 2ð∂�ρÞ2: ð9Þ

By substituting Eq. (8) into the above equation, one can
reach the general solution as [44–46]

e2ρ ¼ 1

Cxþx− þ Axþ þ Bx− þD
; ð10Þ

where A, B, C, and D are arbitrary constants satisfying the
constraint

AB − CD ¼ −λ2β: ð11Þ

For simplicity, we only consider the solution with
A ¼ B ¼ 0, which can also be treated as the gauge fixing
of Kruskal coordinates xþ → xþ − A

C and x− → x− − B
C. In

this case, the solution can be written as

e−2ρ ¼ e−βϕ ¼ λ2β

C
þ Cxþx−: ð12Þ

This solution represents a black hole solution when
C < 0 and λ2β < 0. The horizon is located at

xþx− ¼ 0: ð13Þ

The scalar curvature is given by

R ¼ −4λ2βeβϕ ¼ −4λ2β
λ2β
C þ Cxþx−

: ð14Þ

Therefore, the curvature singularity is located at

λ2β

C
þ Cxþx− ¼ 0: ð15Þ

One can find that the scalar curvature blows up at the
singularity and approaches to zero asymptotically. The
solution is also asymptotically flat. The Penrose diagram is
shown in Fig. 1, which is the same as that of the
Schwarzschild black hole.
We now explain how to determine the signs of the

parameters. If C > 0, the solution (12) does not have the
appropriate metric signature in the xþx− < 0 region outside
the horizon. If λ2β > 0, the location of the curvature

singularity xþx− ¼ − λ2β
C2 < 0, i.e., the singularity is outside

the horizon, which means that the singularity is naked.
Therefore, assuming the cosmic censorship conjecture, we
should consider the black hole solution with the constraint
conditions C < 0 and λ2β < 0.

FIG. 1. Penrose diagram of the Liouville black holes.

RAN LI, XUANHUA WANG, and JIN WANG PHYS. REV. D 104, 106015 (2021)

106015-2



The asymptotic flatness of the black hole is also manifest
in the coordinates introduced in the following. In the right
region of the Penrose diagram, by introducing the coor-
dinate transformation

ffiffiffiffiffiffi
jCj

p
x� ¼ �e�

ffiffiffiffiffi
jCj

p
σ�R ; ð16Þ

the metric can be written as

ds2 ¼ −dσþRσ−R
1þ λ2β

C e−
ffiffiffiffiffi
jCj

p
ðσþR−σ−RÞ

: ð17Þ

Obviously, when σþR − σ−R → ∞, the spacetime approaches
to the flat one. In the left region, by introducing the
coordinate transformation

ffiffiffiffiffiffi
jCj

p
x� ¼∓e∓

ffiffiffiffiffi
jCj

p
σ�L ; ð18Þ

the metric can be written as

ds2 ¼ −dσþLσ−L
1þ λ2β

C e
ffiffiffiffiffi
jCj

p
ðσþL−σ−LÞ

: ð19Þ

When σþL − σ−L → −∞, the spacetime also approaches to
the flat one. Therefore, similar to the eternal Schwarzschild
black holes, there are two asymptotically flat universes in
the Penrose diagram. Notice that σ� ¼ t� σ holds both in
the left region and in the right region. By definition, the
time t in the two regions are all upward. This is essential for
the information paradox of the eternal black holes.
Introducing the coordinate transformation

1þ λ2β

C
e−2

ffiffiffiffiffi
jCj

p
σ ¼ 1

1 − e−2
ffiffiffiffiffiffi
jCjx

p ; ð20Þ

the metric (17) can be written as

ds2 ¼ −ð1 − e−2
ffiffiffiffiffiffi
jCjx

p
Þdt2 þ 1

1 − e−2
ffiffiffiffiffiffi
jCjx

p dx2: ð21Þ

It can be shown that the time t has the periodicity along the
imaginary axis. Introducing a new spatial coordinate
defined by

x ¼
ffiffiffiffiffiffijCjp
2

R2; ð22Þ

near the horizon x ¼ 0, the metric (21) in the Euclidean
time t ¼ iτ coordinate has the form of

ds2 ¼ R2dð
ffiffiffiffiffiffi
jCj

p
τÞ2 þ dR2: ð23Þ

Clearly, the Euclidean time has the periodicity of 2πffiffiffiffiffi
jCj

p .

Hawking temperature, which is the inverse of the period, is
given by

T ¼
ffiffiffiffiffiffijCjp
2π

: ð24Þ

The mass of the black hole is the conserved charge
associated with the Killing vector kμ ¼ ð ∂∂tÞμ ¼ ð1; 0Þ. The
Noether charge is given by [45,46]

Q ¼ 1

2π
ϵμνð2kμ∇νϕþ ϕ∇μkνÞjx¼þ∞: ð25Þ

By employing the expression of the dilaton field in the
ðt; xÞ coordinates

ϕ ¼ −
2

β

ffiffiffiffiffiffi
jCj

p
x −

1

β
ln
λ2β

C
; ð26Þ

one can easily calculate the mass of the black hole, which is
given by

M ¼ 2
ffiffiffiffiffiffijCjp

βπ
: ð27Þ

The expression of the black hole mass gives another
constraint for the parameters. It is clear that β must be
positive in order to have a reasonable conserved quantity
for the black hole. Therefore, we conclude that our full
restrictions for the parameters are

C < 0; β > 0; λ2 < 0: ð28Þ

In the following, we will work with these conditions to
calculate the entropy of the Hawking radiation.
It can be seen that the Hawking temperature is propor-

tional to the mass as

T ¼ β

4
M: ð29Þ

This indicates that the evaporating time of this type of black
hole is infinity. According to the first law of thermody-
namics, the entropy of the black hole can be calculated as

SBH ¼
Z

dM
T

¼ 4

β
lnM − S0; ð30Þ

where S0 is an integral constant. The dilaton field at the
horizon is

ϕH ¼ ϕðxþx− ¼ 0Þ ¼ 1

β
ln

C
λ2β

: ð31Þ
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If choosing S0 ¼ 2
β lnð−4λ

2

βπ2
Þ, the black hole entropy is related

to the dilaton field at the horizon

SBH ¼ 2ϕH: ð32Þ

This is consistent with the conclusion that the dilaton field
plays the role of area in the case of the two-dimensional
dilaton gravity.
The above expression of the entropy is also the Wald

entropy for the two-dimensional dilaton gravity. Wald
entropy is defined as the Noether charge associated with
diffeomorphism invariance of a theory [52]. Iyer and
Wald derived the expression of the entropy for the two-
dimensional dilaton gravity, which is given by [53]

SWald ¼
4πffiffiffiffiffiffi−gp ∂L

∂R ; ð33Þ

where L is the Lagrangian of the theory and the right-hand
side is evaluated on the horizon. For the action (2), theWald
entropy is then given by Eq. (32).

III. ENTROPY OF RADIATION WITHOUT
ISLANDS

In this section, we consider the entropy of Hawking
radiation without the contribution of islands. This sharpens
the information paradox for the Liouville black holes.
As shown in Fig. 2, the radiation is taken to be in R and

R0. The boundary points in the right and left radiation
regions are denoted as A and A0. In general, A and A0 are
assumed to be far away from the right and left horizons. In
the σ coordinates, we have

σ�A ¼ t� b; σ�A0 ¼ t ∓ b: ð34Þ

Without islands, we assume that the total system is in a pure
state at the t ¼ 0 moment. In this case, we just need to
calculate the bulk entropy of the intervals ½A0; A�. We
assume the conformal field is taken to be in the vacuum

state in ðxþ; x−Þ coordinates. The entanglement entropy is
given by

S ¼ N
6
log jðxþA − xþA0 Þðx−A − x−A0 ÞeρðAÞeρðA0Þj

¼ N
6
log

4e2
ffiffiffiffiffiffi
jCjb

p
cosh2 ð ffiffiffiffiffiffijCjp

tÞ
jCjðλ2βC þ e2

ffiffiffiffiffi
jCj

p
bÞ

≃
N
3

ffiffiffiffiffiffi
jCj

p
tþ � � � ð35Þ

where N is the central charge of the bulk CFT and the last
step uses the late time approximation.
This indicates that the entropy of Hawking radiation

grows with time linearly as observed by the distant
observer. This entropy counts the entanglement between
the emitted particles and the degree of freedom behind the
event horizons. However, the black hole only has finite
number degrees of freedom which is counted by the
Bekenstein-Hawking entropy. Therefore, we have encoun-
tered the information paradox for the Liouville black holes.
We expect that the appearance of the islands at late time
may save the contradiction.

IV. ISLAND FORMULA IN LIOUVILLE
BLACK HOLES

In this section, we consider the generalized entanglement
entropy of the Hawking radiation by using the quantum
extremal island formula.
The Penrose diagram with the assumed islands is

presented in Fig. 3. We assume that the island is in the
region ½I0; I�. Considering the symmetry of the left and right
regions, we just need to calculate the entanglement entropy
of the matter fields in the interval ½I; A� and the area term
contribution from the island. As illustrated above, the area
term is represented by the dilaton field. Therefore, the
generalized entanglement entropy of the radiation taking
the islands’ contribution into account is given by

FIG. 2. Penrose diagram without island. Hawking radiation
from the two-sided black holes is collected by the observer in the
region R0 ∪ R.

FIG. 3. Penrose diagram with the assumed islands in the region
½I0; I�.
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S ¼ 4ϕðxþI ; x−I Þ þ
N
3
log jðxþA − xþI Þðx−A − x−I ÞeρðAÞeρðIÞj

¼ −
4

β
log

�
λ2β

C
þ CxþI x

−
I

�
þ N

3
log

jðxþA − xþI Þðx−A − x−I Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2β
C þ CxþI x

−
I

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2β
C þ CxþAx

−
A

q : ð36Þ

Extremizing the generalized entropy S with respect to xþI
and x−I , we have

−
4

β

Cx−I
λ2β
C þ CxþI x

−
I

−
N
3

1

xþA − xþI
−
N
6

Cx−I
λ2β
C þ CxþI x

−
I

¼ 0; ð37Þ

−
4

β

CxþI
λ2β
C þ CxþI x

−
I

þ N
3

1

x−I − x−A
−
N
6

CxþI
λ2β
C þ CxþI x

−
I

¼ 0: ð38Þ

We work in the semiclassical regime, where the param-
eter β and the central charge N of the CFT satisfies the
condition

1

β
≫ N ≫ 1: ð39Þ

Note that 1
β is proportional to the mass of the black hole.

Therefore, the semiclassical condition (39) is valid as long
as the mass is big enough. In this case, the first terms in
Eqs. (37) and (38) (which come from the classical gravity
entropy) dominate over the third terms (which come from
the bulk CFTentropy). However, we still track the effects of
the third terms in Eqs. (37) and (38). It is generally believed
that under the semiclassical condition (39), the quantum
extremal surface prescription and island formula are sup-
posed to reproduce the Page curve of Hawking radiation.
Combining the two equations (37) and (38), we can get

xþI x
−
A ¼ x−I x

þ
A : ð40Þ

This equation implies that the boundary of the island (if it
exists) should be located at the same timeslice with the
observer far from the black hole. Because xþA > 0 and
x−A < 0, Eq. (40) requires that the right boundary point I of
the island should be located in the right region of the
Penrose diagram. By substituting Eq. (40) back to the
Eqs. (37) and (38), we get

�
N
12

−
2

β

�
C
xþA
x−A

ðx−I Þ2þ
�
N
12

þ2

β

�
CxþAx

−
I þ

Nλ2β

6C
¼0: ð41Þ

Remember that the restrictions for the parameters are

C < 0; β > 0; λ2 < 0: ð42Þ

Obviously, ðN
12
þ 2

βÞCxþA , which is the coefficient of the

ðx−I Þ1 term, is negative, and Nλ2β
6C is positive.

Under the semiclassical condition Eq. (39), ðN
12
− 2

βÞ,
which is the coefficient of the first term of Eq. (41), cannot
be zero. However, to track the general discussion, we still
distinguish the cases of ðN

12
− 2

βÞ ≠ 0 and ðN
12
− 2

βÞ ¼ 0.

When ðN
12
− 2

βÞ ≠ 0, the solutions are given by

x−I ¼ −
ðNβ þ 24Þ
2ðNβ − 24Þ

×

�
1�

�
1 −

8NðNβ − 24Þ
ðNβ þ 24Þ2

λ2β2

C2

1

xþA x
−
A

�
1=2

�
x−A:

ð43Þ

In the case of large xþA , one can get two groups of solutions
by expanding the solutions in Eq. (43) as the series of 1

xþA
.

The first group of solutions corresponding to “−” in
Eq. (43) is given by

ðx−I Þ1 ¼ −
2N

ðNβ þ 24Þ
λ2β2

C2

1

xþA
;

ðxþI Þ1 ¼ −
2N

ðNβ þ 24Þ
λ2β2

C2

1

x−A
; ð44Þ

while the second group of solution corresponding to “þ” in
Eq. (43) is given by

ðx−I Þ2 ¼ −
�
Nβ þ 24

Nβ − 24

�
x−A; ðxþI Þ2 ¼ −

�
Nβ þ 24

Nβ − 24

�
xþA :

ð45Þ

Note that the higher order terms of 1
xþA

are omitted in the

above expressions.
When ðN

12
− 2

βÞ ¼ 0, it can be easily checked that the
solution can also given by the first group of solutions in
Eq. (44). Therefore, we have obtained all of the solutions of
the possible locations of the island, which are given by
Eqs. (44) and (45) respectively.
Now let us discuss the implications of these solutions

given by Eqs. (44) and (45). First, the second group of
solution given by Eq. (45) seems to be unphysical. Under
the semiclassical condition given by Eq. (39), 0 < Nβ ≪ 1.
Therefore, we have
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ðx−I Þ2 > x−A; ðxþI Þ2 > xþA : ð46Þ

In this case, the boundary point I of the island is located in
the region of radiation. This solution for the boundary point
I is not physical.
Then, the first group of solutions is also shown to be

unreasonable. Under the restriction condition given by
Eq. (28) and the semiclassical condition given by Eq. (39),
the prefactor of the solution (44) satisfies

−
2N

ðNβ þ 24Þ
λ2β2

C2
> 0: ð47Þ

Therefore, we have

ðx−I Þ1 > 0; ðxþI Þ1 < 0: ð48Þ

In this case, the boundary point I is located in the left region
near the horizon. The corresponding Penrose diagram is
shown in Fig. 4, which looks strange. It can be seen that the
left boundary I0 and the right boundary I of the island are
exchanged. This will lead to very strange entanglement
wedges for the islands. This kind of solution seems to be
unphysical too.
In summary, Eq. (40) requires that the right boundary

surface I of the island should be located in the right region
of the Penrose diagram. Our simple calculation shows that,
for the two-dimensional Liouville black holes, there is no
reasonable quantum extremal surface when extremizing the
generalized entanglement entropy. This implies that the
island formula may not resolve the information paradox for
the Liouville black holes.
At last, we give the qualitative argument why a reason-

able extremal point cannot be obtained by using the island
formula. In the papers which studied the information
paradox of the eternal black holes (for example, Ref. [5]
and Refs. [12–43]), the dilaton field or the area term that
counts the classical gravitational contribution to the gen-
eralized entropy increases when the boundary point I
moves outward from the black hole horizon, while the
bulk CFT entropy between the boundary point I and the

observer A decreases. In this case, it is possible to find the
extremal point of the generalized entropy. In the present
case, the dilaton field has the opposite behavior compared
to the previous examples. Note that

ϕðxþI ; x−I Þ ¼ −
1

β
log

�
λ2β

C
þ CxþI x

−
I

�
: ð49Þ

When the boundary point I moves outward from the black
hole horizon, xþI x

−
I decreases, which in turn leads to the

decrease of the dialton field too. Therefore, the dilaton field
and the bulk CFT entropy decrease simultaneously when
the boundary point I moves outwards from the black hole
horizon. In this case, we cannot obtain a reasonable
solution for the boundary point I outside the horizon.
This can provide a physical reason for the discrepancy
between our calculation and the one in Ref. [5].

V. CONCLUSION AND DISCUSSION

For the eternal black holes, it is generally believed that
the island extends outside the horizon, i.e., the quantum
extremal surface I should be just outside the future event
horizon. For the Liouville black holes, no reasonable island
has been found in the expected region by extremizing the
entanglement entropy.
One may imagine that the first group of solutions can be

used to resolve the information paradox only experienced
by the distant observer in the right region of the Penrose
diagram. In this case, the entanglement wedge of the island
is in the left region of the Penrose diagram as shown in
Fig. 5. This type of island was also found in pure de Sitter
space [33]. The location of the island in pure de Sitter space
is also quite different from the cases when considering the
black hole spacetimes. However, the island in de Sitter
space can be properly interpreted as the requirement of the
no-cloning theorem. The novel island in the Liouville black
holes seems to be unphysical. However, if substituting this
novel island solution in Eq. (44) into the generalized

FIG. 4. Penrose diagram with the islands which are given by the
first group of solutions.

FIG. 5. Penrose diagram with the novel island. It is assumed
that the information paradox is experienced only by the observer
in the right far from the horizon region.
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entanglement entropy of radiation, we have the finite value
at late time

S ≃ SBH þ N
12

ð2
ffiffiffiffiffiffi
jCj

p
b − logðλ2βC2ÞÞ: ð50Þ

Notice that this entropy is half of the generalized entropy in
Eq. (36) because we only consider the entanglement
entropy of the radiation in the right region. Although this
novel island can reproduce the finite entanglement entropy
of radiation, the scrambling time appears to be infinite. If
we throw a diary (strings of qubits) into the black hole from
the right region, it will never reach the island. The Hayden-
Preskill protocol [54] cannot be realized in this case. This
means that the information swallowed by the black hole

seems impossible to be released during the evaporation
process.
In conclusion, we suggest that the island formula in the

present form may not be used to resolve the information
paradox for the two-dimensional Liouville black holes. We
also suspect the quantum extremal island formula depends
strongly on the holographic duality and AdS spacetime.
One should be very careful when applying the formula to
study the information paradox of the asymptotically flat
black holes.
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