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Canonical quantization of gravitational systems is obstructed by the problem of time. Due to
diffeomorphism symmetry the Hamiltonian vanishes: dynamics with respect to a background time
parameter appears “frozen.” Two strategies towards the quantization of such systems are the identification
of a clock degree of freedom before quantization (deparametrization), and quantization on a kinematical
Hilbert space which is subject to constraints (Dirac quantization). The usual canonical quantization in
quantum field theory is analogous to deparametrization. Here we introduce a frozen formalism and Dirac
quantization for a complex Klein–Gordon scalar field, and show that the resulting theory is equivalent to
usual canonical quantization. We then apply the formalism to the group field theory formalism for quantum
gravity, for which both deparametrization and a “timeless” quantization have been proposed in past work.
We show how a frozen formalism for group field theory links between these two existing approaches, and
illustrate in particular the construction of physical observables. We derive effective cosmological dynamics
for group field theory in the new formalism and compare these to previous work. The frozen formalism
could be extended to other approaches to quantum gravity that do not use a preferred time parameter.
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I. INTRODUCTION

Canonical quantization, as presented in undergraduate
textbooks on quantum mechanics, provides an in principle
direct route from any classical to the corresponding
quantum theory: starting from a classical theory defined
by an action, one runs the Legendre transform to obtain
the corresponding Hamiltonian theory, uses its Poisson
structure to define canonical commutation relations, and
constructs quantum observables as Hermitian operators
corresponding to classical phase-space functions. In prac-
tice, ambiguities and additional choices appear for all but
the very simplest systems motivating, e.g., the more
systematic approach of geometric quantization [1].
Things become more complicated for systems with

gauge symmetries: not any phase-space variable is now
an observable, and one would like to focus on the dynamics
of observables only. Moreover, gauge symmetries are
associated with constraints which must be implemented
in the quantum theory. If the gauge symmetry involves
diffeomorphisms of time, gauge transformations and
dynamics are intertwined; the attempt to define dynamics

with respect to a given time parameter leads to a “frozen
formalism” with vanishing Hamiltonian. A Hamiltonian
formalism able to deal with gauge symmetries and in
particular with diffeomorphism-invariant theories was
developed by Dirac [2]. Constructing a quantum theory
via Dirac’s algorithm then leads to the infamous problem of
time [3]: all states and observables are independent of the
time parameter used to set up the theory. Evolution must
then be defined in relational terms, as the evolution of
some degrees of freedom with respect to others [4].
In this paper we focus on two of the most popular

approaches in the canonical quantization of generally
covariant systems: deparametrization (or reduced quanti-
zation) in which one of the dynamical variables is identified
as a “clock” before quantization, and Dirac quantization in
which one first constructs a kinematical Hilbert space and
demands that physical states satisfy the quantum version
of the constraints of the theory.1 Deparametrization, while
often easiest to implement, suffers from ambiguities and the
lack of covariance, since it is not guaranteed that different
choices of clock lead to equivalent theories [6]. Moreover,
the degree of freedom used as a clock is often added by
hand in order to guarantee its clocklike behavior; in
quantum cosmology this is often a massless scalar field,
which is classically monotonic on almost any solution.
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1One can also define a notion of quantum deparametrization
as, e.g., in Ref. [5], where the clock is identified within a theory
defined through Dirac quantization; we will not discuss this here.
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In contrast, Dirac quantization requires at least some
control over the space of physical states (solutions to the
constraint), and leads to a number of subtle technical issues
[7]. The physical Hilbert space is usually not a subspace
of the initial kinematical Hilbert space; it can be con-
structed through group averaging [8]. The relation between
the viewpoints of different clocks is clearer in Dirac
quantization [5,9].
Most of the literature on deparametrization and Dirac

quantization, and especially on comparisons between them,
focuses on finite-dimensional systems such as particle
models or homogeneous models in quantum cosmology.
The model example on which the different approaches and
challenges are often discussed is the relativistic particle
in (Minkowski) spacetime, which has a one-dimensional
diffeomorphism symmetry corresponding to reparametri-
zations on the worldline. Quantization of the relativistic
particle leads to relativistic (Klein-Gordon) quantum field
theory, where the wave function is promoted to a quantum
field and the Hilbert space is enlarged to a Fock space of
many-particle states. The usual presentation of canonical
quantization of the Klein-Gordon field, however, follows
the logic of deparametrization where a clock (here a time
coordinate on Minkowski spacetime) is chosen before
quantization. One has to ensure that the resulting formalism
remains Lorentz covariant. There is however no remnant of
the reparametrization invariance of the relativistic particle
action.
Here we propose a frozen formalism for a complex

Klein-Gordon quantum field: the quantum field is given an
additional dependence on a proper-time parameter τ but the
equations of motion imply that this dependence is trivial.
This allows defining a Dirac-type quantization in which
there is a (Hamiltonian) constraint acting on a kinematical
Hilbert space. We show how a physical inner product can
be constructed through group averaging by extending the
inner product for a relativistic particle to a Fock space. We
construct both the physical Fock space and physical
observables on this physical Fock space through “projec-
tion” maps that map operators on the kinematical Hilbert
space to operators on the physical Hilbert space. For the
Klein-Gordon field, we find that the resulting theory is then
equivalent to the usual Fock quantization.
We then extend this formalism to the group field theory

(GFT) approach to quantum gravity [10], which provides
the main motivation for this work. GFT can be seen as a
quantum field theory reformulation of the background-
independent dynamics of quantum gravity as defined by
spin foams [11] and loop quantum gravity (LQG) [12]. In
particular, the GFT setting should allow for canonical
quantization (at least for some, perhaps simplified models).
As in the direct canonical quantization of gravitational
systems, here one faces the absence of any background
time parameter, and hence a problem of time. In the
literature one finds two approaches towards defining an

operator and Hilbert space formalism of GFT. The first is a
more abstract “timeless” quantization as proposed in
Refs. [12,13]2: one promotes the GFT field and its con-
jugate to creation and annihilation operators on a kinemati-
cal Hilbert space similar to that of canonical LQG, and then
imposes dynamics weakly (in the sense of expectation
values, usually in a mean-field approximation). In this
approach it is not entirely clear how the choice of original
operator algebra is motivated and how the use of unphysical
states (i.e., states that are not exact solutions to the
dynamics) impacts on the validity of the formalism.
There is also a priori no distinction of which operators
correspond to observables, although relational observables
similar to the canonical quantum gravity setting have been
defined [14]. There is no distinction between kinematical
and physical inner product, which is consistent with the fact
that the states used are not exact solutions to the dynamics.
In contrast, a “deparametrized” canonical quantization

for GFT has been studied in Ref. [15] following a similar
proposal in a GFT toy model [16]. In this approach one
identifies the massless scalar field χ appearing in some GFT
models as a clock variable before quantization and per-
forms the Legendre transform, leading to a conventional
quantum theory in which states or observables evolve in χ.
This deparametrized formalism can be applied to extract
effective cosmological dynamics of GFT, leading to very
similar results compared to the timeless formalism [15–17].
Given that the effective cosmology of GFT can be under-
stood from solutions to the classical GFT equations of
motion [18], this agreement is perhaps not surprising, but
there are clear differences between the two approaches.
The deparametrized approach only works with exact
solutions to the dynamics and is hence based on a
Hilbert space of physical states (on which there are no
further constraints). Some observables which have diver-
gences in the timeless setting are well behaved in this
deparametrized approach. The usual objections of lack of
covariance would presumably also apply to the deparame-
trized quantization in GFT.
By applying the frozen formalism to GFT, we show how

a Dirac-type quantization of GFT can be achieved: the
timeless Fock space is now interpreted as a kinematical
Hilbert space on which constraints are imposed strongly.
We again define projections which map operators from the
kinematical to a physical Hilbert space, and use these to
construct physical observables. We show how the resulting
Fock space corresponds to two copies of the Fock space of
the deparametrized setting, where the two copies arise since
the GFT field is complex whereas it was taken to be real in
Ref. [15]. Thus, the frozen formalism provides a link

2To be clear, in this paper we use the term timeless for a general
formalism based on a Hilbert space whose elements do not satisfy
dynamical equations, but frozen for a Dirac-type canonical
quantization in which fields initially depend on a parameter τ
but the dynamics state that this dependence is trivial.
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between the timeless and deparametrized quantum theories.
The effective cosmology obtained in this setting is again
analogous to effective Friedmann equations found in
previous work starting from Ref. [14]. The frozen formal-
ism proposed here may be applicable in more general
settings in quantum gravity, since it mimics the basic
assumption of Dirac quantization that no time variable
should be selected before quantization. In this sense, the
frozen formalism should be seen as part of the general
program of Dirac (constraint) quantization as an approach
to the problem of time; it can bring theories without an
obvious constraint structure into a form where a kinemati-
cal Hilbert space with subsequent constraint quantization
and group averaging may be defined.
In Sec. II we start by reviewing the dynamics of a

relativistic particle in Minkowski spacetime and its Dirac
quantization as well as the standard canonical quantization
of a complex Klein-Gordon field. We then propose a frozen
formalism defined in terms of a new action for the Klein-
Gordon field. This action does not change the classical
dynamics but it suggests a different route to canonical
quantization. We show in which sense this quantization is
equivalent to the usual one, and define maps from states and
observables in the kinematical to those in the physical
Hilbert space. In Sec. III we introduce the GFT formalism
and review previous proposals for canonical quantization.
We then apply the frozen formalism to GFT, where we
restrict ourselves to quadratic actions as we do throughout
the paper. The dynamics of GFT are similar to Klein-
Gordon theory, with the important difference that there are
modes with oscillatory solutions but also unstable modes
with real exponential solutions. Technical subtleties asso-
ciated with this property can be overcome by using analytic
continuation of the GFT action into the complex χ plane. In
Sec. IV we show how the frozen formalism leads straight-
forwardly to the construction of relational observables,
which are analogous to those defined previously in the
timeless formalism. We also derive a simple effective
Friedmann equation, showing that its predictions agree
with previous work in GFT cosmology. As an example of
an operator on the kinematical Hilbert space that does not
become a physical observable, we discuss an operator
corresponding to the matter clock itself.

II. FROZEN FORMALISM FOR A
KLEIN-GORDON FIELD

In this section we introduce a field theoretic version of
the frozen formalism appearing in the Dirac quantization of
finite-dimensional quantum systems with gauge symmetry
under reparametrizations of a “proper-time” or worldline
parameter τ. Given that the usual Klein-Gordon field can be
introduced as the many-particle extension of the quantum
theory of a single relativistic particle, this is a natural
starting point for our formalism.

A. Relativistic particle

A relativistic particle in D-dimensional Minkowski
spacetime is the archetypal example of a dynamical system
with reparametrization invariance. It can be defined by a
worldline action

S½qμ; pμ; N� ¼
Z

dτ

�
pμ

dqμ

dτ
þ N

2
ðp2 þm2Þ

�
; ð1Þ

which is clearly invariant under reparametrizations,

τ↦ τ̃ðτÞ; dqμ

dτ
↦

dqμ

dτ̃
; NðτÞ↦ Ñðτ̃Þ¼Nðτ̃Þ

τ̃0ðτÞ : ð2Þ

Equation (1) is already in Hamiltonian form: qμ and pμ are
canonically conjugate and the Hamiltonian

H ¼ −
N
2
ðp2 þm2Þ ð3Þ

is constrained to vanish by the equation following from
varying with respect to N. This condition is of course the
mass-shell constraint of a relativistic particle.
In canonical (Dirac) quantization [2] one now introduces

operators q̂μ and p̂ν which satisfy

½q̂μ; p̂ν� ¼ iδμν ð4Þ

and act on a kinematical Hilbert space L2ðRDÞ; for a state
jψi in this Hilbert space to be considered physical it must
satisfy

Ĉjψi ¼ 1

2
ðημνp̂μp̂ν þm2Þjψi ¼ 0: ð5Þ

The worldline parameter τ then disappears from the
quantum theory, given that all physical states satisfy

i
d
dτ

jψi ¼ 0; ð6Þ

since the Hamiltonian − N̂ Ĉ vanishes when acting on them.
The constraint Ĉ generates gauge transformations (repar-
ametrizations) in the theory; observables must commute
with the constraint to ensure that the action of an observable
preserves the space of physical states. Expectation values of
observables are then also independent of τ, and one obtains
a frozen formalism [3]. Dynamical information is encoded
in relational observables, which capture the dynamics of
degrees of freedom relative to one another rather than in an
external time.
A somewhat subtle point is the definition of a physical

inner product. Starting from a basis of states for L2ðRDÞ
normalized in the usual improper sense,
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hpjp0i ¼ ð2πÞDδðDÞðp − p0Þ; ð7Þ

one sees that solutions to Eq. (5) are not normalizable and
hence not elements of this kinematical Hilbert space. The
space of physical states hence needs a different inner
product which can be constructed by group averaging
[8]; writing any physical state as

jψphi ¼ δðĈÞjψi; ð8Þ

where jψi is an element of the kinematical Hilbert space,
the physical inner product is defined by

hϕphjψphi ≔ hϕjδðĈÞjψi; ð9Þ

where the right-hand side uses the inner product in the
kinematical Hilbert space. Concretely, if

jψi ¼
Z

dDp
ð2πÞD ψðpÞjpi; ð10Þ

written in terms of the basis (7), one finds3

hϕphjψphi ¼
Z

dDp
ð2πÞD δ

�
1

2π
ðp2 þm2Þ

�
ϕðpÞψðpÞ

¼
Z

dD−1p
ð2πÞD−1

1

2ωp⃗
ðϕðωp⃗; p⃗Þψðωp⃗; p⃗Þ

þ ϕð−ωp⃗; p⃗Þψð−ωp⃗; p⃗ÞÞ; ð11Þ

where ωp⃗ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
(see, e.g., Ref. [9] for more details

and discussion). Equation (11) is equivalent to the standard
relativistic inner product for solutions to the Klein-Gordon
equation, with a sign flipped to make it positive for positive
and negative frequency states (for which p0 ¼ �ωp⃗,
respectively). Although it can be represented as an integral
over spatial momenta only, Eq. (9) shows that this inner
product is Lorentz invariant. Maintaining the symmetries of
the Lagrangian theory is one argument for constructing an
inner product via group averaging.
Equation (11) then shows that the physical Hilbert space

is L2ðRD−1Þþ ⊕ L2ðRD−1Þ−, the direct sum of two Hilbert
spaces for positive and negative frequency states. Writing a
physical state as

jψphi ¼
Z

dD−1p
ð2πÞD−1

1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðψþðp⃗Þjp⃗;þi þ ψ−ðp⃗Þjp⃗;−iÞ

ð12Þ

defines a new basis for this physical Hilbert space with
normalization:

hp⃗;�jp⃗0;�0i ¼ ð2πÞD−1δ�;�0δðD−1Þðp⃗ − p⃗0Þ: ð13Þ

The wave functions ψ� in Eq. (12) correspond to the
components in Eq. (11) for which p0 ¼ �ωp⃗.

B. Conventional Klein-Gordon theory

The previous constructions define a consistent quantum
theory of a single relativistic particle. “Second quantiza-
tion” of this theory leads to a quantum field theory for a
complex scalar field Φ. Here the constraint (5) is not
imposed as an equation on the one-particle Hilbert space
but becomes the equation of motion for Φ,

ðημνpμpν þm2ÞΦðpÞ ¼ 0: ð14Þ

This field equation can be derived from an action

S½Φ; Φ̄� ¼ −
Z

dDp
ð2πÞD Φ̄ðpÞðημνpμpν þm2ÞΦðpÞ; ð15Þ

which can then again be used as a starting point for
canonical quantization. Conjugate momenta to the field
variables are obtained after Fourier transform from p0 to a
time coordinate t,

πðt;p⃗Þ¼ ∂L
∂ð∂tΦðt;p⃗ÞÞ; π̄ðt;p⃗Þ¼ ∂L

∂ð∂tΦ̄ðt;p⃗ÞÞ ; ð16Þ

and one can rewrite the action as

S ¼
Z

dt
dD−1p
ð2πÞD−1 ðπ∂tΦþ π̄∂tΦ̄ −HÞ;

H ¼ jπj2 þ ðp⃗2 þm2ÞjΦj2: ð17Þ

The canonical variables are then promoted to operators
satisfying

½Φ̂ðt; p⃗Þ; π̂ðt; p⃗0Þ� ¼ ½Φ̂†ðt; p⃗Þ; π̂†ðt; p⃗0Þ�
¼ ð2πÞD−1iδðD−1Þðp⃗ − p⃗0Þ: ð18Þ

To diagonalize the Hamiltonian one can introduce two sets
of annihilation operators:

âðp⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðωp⃗Φ̂ðp⃗Þ þ iπ̂†ðp⃗ÞÞ;

b̂ðp⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðωp⃗Φ̂†ðp⃗Þ þ iπðp⃗ÞÞ; ð19Þ

with their Hermitian conjugates acting as creation oper-

ators; writing the Hamiltonian as Ĥ ¼ R dD−1p
ð2πÞD−1 Ĥðp⃗Þ one

then finds (after normal ordering)
3The additional π factor inserted in the constraint is an arbitrary

choice made for convenience of normalization.
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Ĥðp⃗Þ ¼ ωp⃗ðâ†ðpÞâðp⃗Þ þ b̂†ðpÞb̂ðp⃗ÞÞ: ð20Þ

One can think of the creation and annihilation operators as
time dependent, inheriting the t dependence of the dynami-
cal fields, or construct them from fields at some initial time
t ¼ 0. The two sets of creation operators â† and b̂† are
associated with particles and antiparticles. We will adopt
the convention that these operators do not evolve in time.
Equation (19) means that the time-dependent original

fields can be written as

Φ̂ðt; p⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðe−iωp⃗tâðp⃗Þ þ eiωp⃗tb̂†ðp⃗ÞÞ;

Φ̂†ðt; p⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðeiωp⃗tâ†ðp⃗Þ þ e−iωp⃗tb̂ðp⃗ÞÞ; ð21Þ

where we have written out the time dependence on the
right-hand side explicitly. A one-particle state at t ¼ 0 can
then be written as

jψi ¼
Z

dD−1p
ð2πÞD−1

1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðψþðp⃗Þâ†ðp⃗Þ þ ψ−ðp⃗Þb̂†ðp⃗ÞÞj0i;

ð22Þ

where j0i is the Fock vacuum annihilated by all annihi-
lation operators; the inner product between two such one-
particle states is

hϕjψi ¼
Z

dD−1p
ð2πÞD−1

1

2ωp⃗
ðϕþðp⃗Þψþðp⃗Þ þ ϕ−ðp⃗Þψ−ðp⃗ÞÞ;

ð23Þ

which is the same as the inner product (11). The one-
particle sector of the Fock space is exactly the physical
Hilbert space of the relativistic particle, i.e., the pairs of
functions ðϕþ;ϕ−Þ and ðψþ;ψ−Þ in Eq. (23) are again
elements of L2ðRD−1Þþ ⊕ L2ðRD−1Þ−. For each p⃗ the two
solutions to the constraint p2 þm2 ¼ 0 are now associated
with particle and antiparticle excitations. The states defined
in Eq. (13) can be identified with

jp⃗;þi ¼ â†ðp⃗Þj0i; jp⃗;−i ¼ b̂†ðp⃗Þj0i: ð24Þ

C. Frozen formalism

The usual canonical quantization of a complex scalar
field extends the physical Hilbert space of a relativistic
particle constructed in Sec. II A to a Fock space which
contains arbitrary numbers of such particles. However, this
viewpoint on quantum field theory shows no trace of the
Dirac quantization performed to construct the physical
Hilbert space of a relativistic particle; there is no repar-
ametrization invariance in the Klein-Gordon theory, no

kinematical Hilbert space, and no analog of the condition
(6). In this subsection we propose a quantization of the
complex scalar field which has these features, and thus
provides a field theory extension of the frozen formalism of
Dirac quantization.
Recall that the Schrödinger equation i ∂ψ∂t ¼ Ĥψ can be

derived from the action

S½ψ ; ψ̄ � ¼
Z

dXdt

�
i
2

�
ψ̄
∂ψ
∂t − ψ

∂ψ̄
∂t

�
− ψ̄ Ĥψ

�
; ð25Þ

where X denotes the configuration space of the theory one
is studying, and Ĥ is a differential operator acting on the X
variables which becomes the Hamiltonian in the quantum
theory. The quantum theory of the relativistic particle can
be seen as defined by a Schrödinger equation for which
only zero-energy states are allowed. This motivates the
definition of the field theory action:

S½Φ; Φ̄; N� ¼
Z

dDp
ð2πÞD dτ

�
i
2

�
Φ̄
∂Φ
∂τ −Φ

∂Φ̄
∂τ

�

þ Nðp2 þm2ÞjΦj2
�
: ð26Þ

Notice the similarity of Eq. (26) with the worldline action
(1) for the relativistic particle: the fields Φ and Φ̄ now
depend on a parameter τ. There is a significant literature on
such formulations of relativistic quantum mechanics in
which one introduces a worldline or proper-time parameter
τ [19]. For instance, in a theory in which the Hamiltonian is
not constrained to vanish, different energy eigenstates
correspond to all possible values for the squared mass
m2 which is then no longer a fundamental parameter of the
theory. Here we will follow a Dirac quantization, require
constrained dynamics and allow only zero-energy states,
similar to the discussion of, e.g., Ref. [20]. The equations of
motion following from Eq. (26) are

i
∂Φ
∂τ þ Nðp2 þm2ÞΦ ¼ 0;

−i
∂Φ̄
∂τ þ Nðp2 þm2ÞΦ̄ ¼ 0;

ðp2 þm2ÞjΦj2 ¼ 0: ð27Þ

The last equation implies that Φðτ; pÞ ¼ Φ̄ðτ; pÞ ¼ 0

unless p2 þm2 ¼ 0 and the first two equations then say
that Φ and Φ̄ must be independent of τ. The theory has
a reparametrization invariance which is rather trivial.
Classically, the theory defined by Eq. (26) is equivalent
to the one defined by Eq. (15).
One can now proceed with Dirac quantization.

Equation (26) implies that Φ and iΦ̄ are canonically
conjugate; the corresponding operators satisfy
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½Φ̂ðpÞ; Φ̂†ðp0Þ� ¼ ð2πÞDδðDÞðp − p0Þ; ð28Þ

as they do in usual nonrelativistic quantum field theory
based on actions of the form (25), but unlike in the standard
quantization of a relativistic field theory in which the field
operators commute. The field operators defined by Eq. (28)
act as creation and annihilation operators on a kinematical
Hilbert space. If we apply normal ordering, physical states
must satisfy the constraint(s)

ĈðpÞ ≔ ðp2 þm2ÞΦ̂†ðpÞΦ̂ðpÞjψi ¼ 0: ð29Þ

Φ̂†ðpÞΦ̂ðpÞ≕ N̂ðpÞ is the number density operator for the
mode p; physical states are those for which only physical
modes with p2 þm2 ¼ 0 are excited. To construct a
physical Hilbert space for solutions of Eq. (29), we follow
the same steps as in Sec. II A for one-particle states:

jψi ¼
Z

dDp
ð2πÞD ψðpÞΦ̂†ðpÞj0ikin; ð30Þ

where j0ikin is the Fock vacuum of the kinematical Hilbert
space; for such states, in analogy with Eq. (11) we define

hϕphjψphi ¼
Z

dDp
ð2πÞD δ

�
1

2π
ðp2 þm2Þ

�
ϕðpÞψðpÞ

¼
Z

dD−1p
ð2πÞD−1

1

2ωp⃗
ðϕðωp⃗; p⃗Þψðωp⃗; p⃗Þ

þ ϕð−ωp⃗; p⃗Þψð−ωp⃗; p⃗ÞÞ; ð31Þ

where jψphi ¼ δðp2 þm2Þjψi for a general one-particle

state jψi. In general a formal insertion of δðĈðpÞÞ into the
inner product would lead to the question of how to define
δðN̂ðpÞÞ; here, instead of trying to make such a definition
more rigorous, we first only define the inner product for
single-particle states through Eq. (31). This construction
then leads to exactly the physical Hilbert space of single
particles or antiparticles defined in the previous sections,
i.e., the Hilbert space L2ðRD−1Þþ ⊕ L2ðRD−1Þ−.
We can extend the construction of a physical inner

product to the entire kinematical Fock space generated by
the repeated action of Φ̂†ðpÞ on j0ikin: this extension is
determined by the requirement that the physical Hilbert
space is also a Fock space, the second quantization of the
physical one-particle Hilbert space.
Just as for the Dirac quantization of the relativistic

particle, this physical Fock space is not a subspace of
the kinematical Fock space, but is obtained by the action of
a different set of creation operators on a different vaccum
which we denote by j0iph. In order to make the relation
between the two separate Hilbert spaces explicit we define
a “projection”P (clearly not a projection in the usual sense)
of creation and annihilation operators,

Φ̂ðpÞ ↦ PΦ̂ðpÞ; Φ̂†ðpÞ ↦ PΦ̂†ðpÞ; ð32Þ

such that the projected operators generate a physical Fock
space when acting on j0iph. In order to fix the explicit form
of P, we now demand that the inner product for the one-
particle sector has to be consistent with Eq. (31). This
implies that we need

PΦ̂†ðpÞ ¼ 2πffiffiffiffiffiffiffiffi
2ωp⃗

p ðδðp0 −ωp⃗Þâ†ðp⃗Þ þ δðp0 þωp⃗Þb̂†ðp⃗ÞÞ;

ð33Þ

with an analogous definition (obtained by Hermitian
conjugate) for PΦ̂ðpÞ and with canonical commutators

½âðp⃗Þ; â†ðp⃗0Þ� ¼ ½b̂ðp⃗Þ; b̂†ðp⃗0Þ� ¼ ð2πÞD−1δðD−1Þðp⃗ − p⃗0Þ
ð34Þ

for the newly introduced creation and annihilation oper-
ators acting on j0iph. These definitions imply a map

jψi ¼
Z

dDp
ð2πÞD ψðpÞΦ̂†ðpÞj0ikin

↦ jψphi ¼
Z

dDp
ð2πÞD ψðpÞPΦ̂†ðpÞj0iph

¼
Z

dD−1p
ð2πÞD−1

1ffiffiffiffiffiffiffiffi
2ωp⃗

p ðψðωp⃗; p⃗Þâ†ðp⃗Þ

þ ψð−ωp⃗; p⃗Þb̂†ðp⃗ÞÞj0iph; ð35Þ

from the kinematical to the physical one-particle Hilbert
space; the map then extends to arbitrary Fock states by
writing these as the result of the action of some operator on
the vacuum j0ikin and then applying the map (32). For
instance, the physical inner product for two-particle states
becomes (schematically)

hϕphjψphi ¼
�
ϕ

����δ
�
1

2π
ðp̂2

1 þm2Þ
�
δ

�
1

2π
ðp̂2

2 þm2Þ
�����ψ

	
;

ð36Þ

which involves two insertions of a constraint corresponding
to the momenta of the two particles involved. This
generalized notion of Dirac quantization of a complex
scalar field based on the action (26) is then equivalent to the
canonical quantization based on Eq. (15).
One can define similar projection maps from Dirac

observables on the kinematical Hilbert space4 to

4These are Hermitian operators that commute “weakly” with
the constraints, i.e., commutators with constraints vanish if
Eq. (29) holds. If these commutators are nonzero, self-adjointness
on the physical Hilbert space is a nontrivial requirement [9].
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observables on the physical Hilbert space. For instance,
consider the particle number

N̂ ¼
Z

dDp
ð2πÞD Φ̂†ðpÞΦ̂ðpÞ; ð37Þ

which is a Dirac observable with discrete spectrum N0 on
the kinematical Fock space. The number operator on the
physical Fock space is

N̂ph ¼
Z

dD−1p
ð2πÞD−1 ðâ†ðp⃗Þâðp⃗Þ þ b̂†ðp⃗Þb̂ðp⃗ÞÞ: ð38Þ

If we demand that the projection map acting on bilinear
field operators maps the number operator on the kinemati-
cal Fock space to the one on the physical Fock space, this
fixes this map to be

Φ̂†ðpÞΦ̂ðpÞ ↦ PðΦ̂†ðpÞΦ̂ðpÞÞ
¼ 2πðδðp0 − ωp⃗Þâ†ðp⃗Þâðp⃗Þ
þ δðp0 þ ωp⃗Þb̂†ðp⃗Þb̂ðp⃗ÞÞ: ð39Þ

This map differs from the one defined for single field
operators in Eq. (33). First of all we chose a different
normalization, fixed by the requirement that the number
operator on the physical Hilbert space has spectrumN0 (i.e.,
particles are counted in units of 1). In contrast, a change in
normalization in Eq. (33) could be absorbed in a redefinition
of the wave function in Eq. (35). This difference is therefore
more a matter of conventions. More importantly however,
one cannot simply apply Eq. (33) separately to each field
operator in Eq. (37), since this would result in an additional
factor δð0Þ. The reason for this is again the difference
between the kinematical and physical inner product. Similar
considerations will apply in the rest of the paper: projection
maps always have to be defined separately for single field
operators and composite operators.
Equation (39) can be applied to more general Dirac

observables of the form

Ôf ¼
Z

dDp
ð2πÞD fðpÞΦ̂†ðpÞΦ̂ðpÞ ð40Þ

on the kinematical Hilbert space. One example is the
energy Ê ¼ Ôjp0j (absolute values ensure that all excita-
tions are associated with a positive energy), which after
applying Eq. (39) becomes

Êph ¼
Z

dD−1p
ð2πÞD−1 ωp⃗ðâ†ðp⃗Þâðp⃗Þ þ b̂†ðp⃗Þb̂ðp⃗ÞÞ; ð41Þ

which is the usual Hamiltonian (20). Ê0 ¼ Ôp0 is an equally
well-defined observable, which associates negative energy
with antiparticle excitations.

Creation operators constructed from Eq. (33) can be seen
as defining a physical Hilbert space in the Heisenberg
picture: states are time independent, arising from action of
creation operators at t ¼ 0 on a Fock vacuum. Observables
of the form (40) are time independent in either the
Schrödinger or Heisenberg picture, since all particle num-
ber densities are conserved in the theory (for particle and
antiparticle sector separately). One might alternatively be
interested in time-dependent (Schrödinger) Fock states or
equivalently time-dependent single field operators, which
can be used to create time-dependent states by acting on
the vacuum j0iph. Such operators can be obtained from

Eq. (33) by inserting a time evolution factor eip
0t, which

yields a time-dependent projection:

PtΦ̂†ðpÞ ¼ 2πffiffiffiffiffiffiffiffi
2ωp⃗

p ðeiωp⃗tδðp0 − ωp⃗Þâ†ðp⃗Þ

þe−iωp⃗tδðp0 þ ωp⃗Þb̂†ðp⃗ÞÞ: ð42Þ

Looking at the time dependence of a physical Fock state
defined in this way, one sees that particle and antiparticle
states evolve with opposite phase factors, in contrast to the
usual quantization where they both evolve as e−iωp⃗t. The
reason for this difference is the same we saw in defining
the energy; the kinematical variable p0 is positive for the
particle sector but negative for the antiparticle sector. This
unusual property can be traced back to the difference
between Eq. (42) and the relation (21) in conventional
Klein-Gordon theory and fundamentally to the fact that the
field Φ̂ and its Hermitian conjugate Φ̂† defined by Eq. (21)
commute whereas here they do not.
Particle and antiparticle sectors are decoupled and there

is no operational way of distinguishing the sign of a phase
factor, so this issue is not relevant for the physical content
of the theory, but it would become relevant and potentially
problematic for an interacting theory (which we will not
study in this paper).
It is possible to define time-dependent observables on the

physical Hilbert space as well. Consider for instance

Q̂f ¼
Z

dDp
ð2πÞD fðpÞΦ̂†ðpÞΦ̂ð−pÞ; ð43Þ

with fðpÞ ¼ fð−pÞ. This operator commutes weakly with
the constraints (29): the commutator of Q̂f with a constraint

ĈðpÞ vanishes on all physical states. Hence this operator
preserves the space of physical states defined by Eq. (29),
and defines a Dirac observable on the kinematical Hilbert
space [cf. the discussion above Eq. (37)].
Let us first consider the projection of such an observable

to an observable on the physical Fock space at time t ¼ 0,
when Heisenberg and Schrödinger pictures agree. Instead
of Eq. (39) we now define
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PðΦ̂†ðpÞΦ̂ð−pÞÞ ¼ 2πðδðp0 − ωp⃗Þâ†ðp⃗Þb̂ð−p⃗Þ
þ δðp0 þ ωp⃗Þb̂†ðp⃗Þâð−p⃗ÞÞ; ð44Þ

using again the normalization derived from the number
operator (38) and making sure the resulting operator is well
defined in the inner product on the physical Fock space.
Away from t ¼ 0, we can either work in the Schrödinger
picture where states evolve according to Eq. (42), or in the
Heisenberg picture where observables such as PQ̂f should
instead evolve in time. As usual, demanding that expect-
ation values agree in the two pictures fixes the time
dependence of operators in the Heisenberg picture; here
we find that we need to extend the time-dependent map (42)
to composite operators by

PtðΦ̂†ðpÞΦ̂ð−pÞÞ¼2πðe−2iωp⃗tδðp0−ωp⃗Þâ†ðp⃗Þb̂ð−p⃗Þ
þe2iωp⃗tδðp0þωp⃗Þb̂†ðp⃗Þâð−p⃗ÞÞ; ð45Þ

and hence

PtQ̂f ¼
Z

dD−1p
ð2πÞD−1 ðfðωp⃗; p⃗Þe−2iωp⃗tâ†ðp⃗Þb̂ð−p⃗Þ

þ fðωp⃗; p⃗Þe2iωp⃗tb̂†ð−p⃗Þâðp⃗ÞÞ; ð46Þ

which is a Hermitian operator on the physical Fock space
defined in the Heisenberg picture. The time dependence of
this observable is due to a mixing of particle and anti-
particle sectors, and its physical interpretation may be
unclear at this point.

III. FROZEN FORMALISM IN
GROUP FIELD THEORY

Background-independent approaches to quantum gravity
encounter a problem of time due to the absence of a global
background time parameter. This is particularly apparent in
approaches to canonical quantization of gravitational sys-
tems such as in quantum cosmology or LQG, where the
methods of Dirac quantization have mostly been applied
[8]. However, there are other approaches in which one does
not directly quantize the degrees of freedom of classical
gravity, but expects gravitational dynamics to emerge from
the interaction of different (“nonspatiotemporal”) quantum
degrees of freedom. Such approaches also face a problem
of time if they are to be compatible with general covariance.
Here we will focus on GFT [10] which incorporates much
of the structure of canonical LQG while also being
formulated in the language of quantum field theory. We
can use the insights from our discussion of Klein-Gordon
theory to define a frozen canonical quantization of GFT.

A. Group field theory formalism and
canonical quantization

In the GFT models we consider, the basic variable is a
complex scalar field φ whose arguments are elements of a
Lie group, here taken to be four copies of SUð2Þ, and a real-
valued (scalar) matter field variable χ. The field is “gauge
invariant” with respect to its SUð2Þ arguments,

φðg1;…;g4;χÞ¼φðg1h;…;g4h;χÞ ∀ h∈SUð2Þ; ð47Þ

and its dynamics are defined in terms of an action

S½φ; φ̄� ¼
Z

d4gdχφ̄ðgI; χÞKφðgI; χÞ þ V½φ; φ̄�; ð48Þ

where V½φ; φ̄� includes the interaction terms which are
usually of fourth and higher order in the fields. The kernel
K in Eq. (48) can in general be a nonlocal operator acting
on φ but we will assume that K can be written in terms of a
finite number of derivatives and coupling constants. For
GFT models for quantum gravity, K is often taken to be
initially trivial, i.e., just a constant [11], but radiative
corrections then generate Laplace-Beltrami derivative oper-
ators with respect to the arguments of the field [21]. Within
a more general class of models in which K is nonlocal, one
could obtain a local form from considering the first few
terms in a derivative expansion [14].
The connection of GFT to quantum gravity is made by

expanding the GFT partition function perturbatively around
the free theory,

Z ¼
Z

DφDφ̄e−S½φ;φ̄� ¼
X
Γ

λVðΓÞ

symðΓÞA½Γ�; ð49Þ

where we have for simplicity assumed a single interaction
term including a coupling λ. The sum in Eq. (49) is over
Feynman graphs Γ; VðΓÞ is the number of vertices in Γ and
symðΓÞ a symmetry factor. For a suitable definition of the
interaction term, one can then identify each Γ with a
discrete spacetime history and A½Γ� with a spin foam
amplitude associated to Γ, i.e., with a discrete quantum
gravity (or topological field theory) path integral including
a sum over all geometric data on Γ [11]. Hence, assuming
one can somehow make mathematical sense of it, the GFT
partition function generates a sum over all possible discrete
spacetime histories weighted by quantum gravity ampli-
tudes, and can be argued to define a proposal for a theory of
quantum gravity. This correspondence is particularly well
understood for topological models such as the Ooguri
model [22] for which the amplitudes are those of a
topological field theory.
We are interested in defining a canonical quantization of

Eq. (48). For simplicity we will only consider the free
theory. Interactions contained in V½φ; φ̄� can be included
perturbatively as is standard in canonical quantization,

STEFFEN GIELEN PHYS. REV. D 104, 106011 (2021)

106011-8



although we leave this to future work. The first step is then
to bring Eq. (48) into a simpler form by using the Peter-
Weyl decomposition of functions on SUð2Þ into irreducible
representations. Define

φðgI; χÞ ¼
X
J

φJðχÞDJðgIÞ; φ̄ðgI; χÞ ¼
X
J

φ̄JðχÞDJðgIÞ;

ð50Þ

where J ¼ ðjI; mI; ιÞ is a multi-index5 depending on four
irreducible representations jI ∈ N0=2, magnetic indices
mI ∈ f−jI;−jI þ 1;…;þjIg and intertwiners ι [SUð2Þ
invariant maps from the tensor product ⊗ jI to the trivial
representation]. DJðgIÞ are convolutions of Wigner D
matrices defined by

DJðgIÞ ¼
X
nI

I jI ;ι
nI

Y4
K¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jK þ 1

p
DjK ðgKÞmK

nK; ð51Þ

where DjðgÞ are the usual Wigner matrices for the
representation j, I jI ;ι

nI is the intertwiner for jI labeled by
ι and the normalization has been fixed so that

Z
d4gDJðgIÞDJ0 ðgIÞ ¼ δJ;J0 ¼ δjI ;j0IδmI;m0

I
δι;ι0 : ð52Þ

The action (48), now restricted to its free part Sf and with χ
derivatives truncated at second order as in [14], then takes
the form

Sf ½φ; φ̄� ¼
X
J

Z
dχφ̄JðχÞðKð0Þ

J þKð2Þ
J ∂2

χÞφJðχÞ; ð53Þ

which is our starting point for canonical quantization. In the
literature one finds two approaches to defining a Hilbert
space quantization of Eq. (53). One is based on identifying
the matter variable χ with time (before quantization) and
performing a standard Legendre transform, which results in
a Fock space built from creation and annihilation operators
on which a conventional Hamiltonian evolution is defined,
as in the canonical quantization of usual bosonic quantum
field theory [15]. From the perspective of quantum gravity,
this strategy is analogous to deparametrization, in which a
time variable is identified among the dynamical degrees of
freedom before quantization [24]. Indeed a (free) massless
scalar is often used as a clock in deparametrization in
canonical quantum gravity, which was a main motivation
for introducing it also into GFT [14].
As we noted before, deparametrization amounts to a

gauge fixing before quantization; the resulting theory is not
generally covariant and one would need to show later that
the resulting theory does not depend on the choice of clock.

In general, no obvious candidate for a global clock may be
available. Dirac quantization can define a more covariant
notion of quantization.
A different quantization for GFT (which we here call

timeless) was introduced in Refs. [12,13]. Here the classical
fields are promoted to operators satisfying

½φ̂JðχÞ; φ̂†
J0 ðχ0Þ� ¼ δJ;J0δðχ − χ0Þ: ð54Þ

These field operators can be seen as creation and annihi-
lation operators on a Fock space, where they generate
quanta labeled by representation labels J and matter field
values χ, such that states with different J or χ labels are
orthogonal. This is precisely the structure of (kinematical)
LQG states on a graph formed by four links meeting at a
vertex6 if we extend the SUð2Þ holonomy variables of LQG
by a real-valued matter field at the vertex, in slight
generalization of canonical LQG where this matter field
would be valued in U(1) [25]. Repeated action of creation
operators on the Fock vacuum corresponds to adding more
vertices and links to the graph, and by integrating over
common arguments one can generate states that correspond
to LQG states on arbitrary four-valent graphs [12]. This
correspondence between Fock states generated by Eq. (54)
and quantum states in canonical LQG was one of the main
motivations for this timeless quantization. Since the GFT
dynamics have not been used to obtain Eq. (54), this
structure is purely kinematical (just as the LQG Hilbert
space in relation to the Hamiltonian constraint).
The philosophy starting from Ref. [13] has been to use

Eq. (54) to define a Hilbert space on which dynamics are
imposed, e.g., by demanding that the GFT equations of
motion are satisfied in expectation values for a class of
coherent states, leading to a mean-field approximation in
which one solves the classical GFT equations of motion.
This approximation is the basis for many results in the
application to cosmology [14]. The fact that one assumed
Eq. (54) then often appears inconsequential, given that one
only deals with classical field equations. Once the formal-
ism is pushed further, unusual features appear: two-point
functions for cosmological observables such as volume
fluctuations, evaluated in the inner product induced by
Eq. (54), are formally singular and require regularization
[26,27]. Moreover, formally any Hermitian operator
becomes an observable on the GFT Fock space, which
allows the definition of, e.g., a “total scalar field operator”
which sums up all χ labels in a general state. The
connection of this operator to the interpretation of χ as a
relational clock is not clear (see however Ref. [28] for a
possible effective relational interpretation). This is in
contrast with the deparametrized quantization in which

5This economical notation was introduced in Ref. [23].

6This is the sense in which Eq. (47) ensures gauge invariance:
with respect to SUð2Þ gauge transformations at a vertex in LQG.
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states or operators evolve in χ, which becomes a label as in
usual quantum mechanics.

B. Frozen GFT

The viewpoint we want to adopt in this paper is that
Eq. (54) should be understood as defining field operators
on a kinematical Hilbert space in the sense of Dirac
quantization, i.e., a Hilbert space whose states are not
physical unless they satisfy constraints. In contrast to
previous work on the timeless approach in which con-
straints are imposed weakly, here we advocate a strong
imposition of constraints. We argue that doing this clarifies
the link between deparametrized and timeless approaches.
As in the case of Klein-Gordon theory it is best to work

in momentum space, where constraints become decoupled
equations for each mode in the kinematical Fock space. Our
starting point is still the free GFT action:

Sf ½φ; φ̄� ¼
X
J

Z
dχφ̄JðχÞðKð0Þ

J þKð2Þ
J ∂2

χÞφJðχÞ: ð55Þ

An important feature of GFT models is that the
(J-dependent) couplings Kð0Þ

J and Kð2Þ
J can take either

sign7; in particular, different modes can have couplings of
different signs, so that solutions to the equations of motion
are either oscillatory plane waves or real (growing and
decaying) exponentials. Only modes with the latter behav-
ior lead to a realistic cosmology [18], given that for
solutions to the classical Friedmann equations the volume
grows or decays exponentially with respect to the scalar
field. Here this property poses an immediate challenge to
defining the action in Fourier space: depending on the

relative signs of Kð0Þ
J and Kð2Þ

J , if one wants to work with a
function space that contains at least the classical solutions
the notion of Fourier transform requires some careful
thought.
Let us define JC to be the space of multi-indices

J ¼ ðjI; mI; ιÞ such that Kð0Þ
J and Kð2Þ

J have the same sign,

and JR to be the space of multi-indices such that Kð0Þ
J and

Kð2Þ
J have opposite signs.8 We exclude the cases in which

Kð0Þ
J or Kð2Þ

J vanish, which require different treatment.
For J1 ∈ JC we then define

φJ1ðχÞ¼
Z

dp
2π

eipχφJ1ðpÞ; φ̄J1ðχÞ¼
Z

dp
2π

e−ipχφ̄J1ðpÞ;

ð56Þ

and the free action for such modes becomes

SJ1f ½φ; φ̄� ¼
Z

dp
2π

φ̄JðpÞðKð0Þ
J −Kð2Þ

J p2ÞφJðpÞ; ð57Þ

which is of the form of a Klein-Gordon action in ð0þ 1Þ
dimensions. The equations of motion are

ðKð0Þ
J −Kð2Þ

J p2ÞφJðpÞ ¼ ðKð0Þ
J −Kð2Þ

J p2Þφ̄JðpÞ ¼ 0: ð58Þ

For J2 ∈ JR we would like to define

φJ2ðχÞ ¼
Z

dP
2π

ePχφJ2ðPÞ; ð59Þ

so that the field is composed of real exponential modes. But
such a formula is difficult to invert; it can at best be seen as
defining a two-sided Laplace transform whose inversion
requires continuation of χ into the complex plane. Indeed,
for imaginary χ ¼ iX Eq. (59) would be the standard
Fourier transform in X, which can be inverted.
Defining the free GFT action for modes in JR requires

analytic continuation in the matter field parameter χ. In
quantum field theory analytic continuation relies on ana-
lyticity of the quantum fields, which we need to assume
here as well. For a complex scalar field both the field φ and
its conjugate φ̄ need to be analytic in χ. This implies that
they cannot actually be complex conjugates for all values of
χ (since then one would necessarily need to be antiholo-
morphic). Our convention will be that φ and φ̄ are complex
conjugates for real values of χ. The conjugate field must
then be defined as

φ̄J2ðχÞ ¼
Z

dP
2π

ePχφ̄J2ðPÞ ð60Þ

if we also assume that the fields in P space are complex
conjugates of each other.
With χ ¼ iX, our analytic continuation prescription for

the free GFT action for such modes is then

SJ2f ½φ; φ̄� ¼ i
Z

dXφ̄E
J ðXÞðKð0Þ

J −Kð2Þ
J ∂2

XÞφE
J ðXÞ

¼ i
Z

dP
2π

φ̄Jð−PÞðKð0Þ
J þKð2Þ

J P2ÞφJðPÞ: ð61Þ

As usual in analytic continuation, this action is defined in
terms of a “Euclidean field”φE

J defined byφ
E
J ðXÞ ¼ φJðiXÞ,

and the action becomes purely imaginary. We have used the
definition (59) and (60) of φJðPÞ, which one may then
regard as the primary definition of the GFT fieldmodes. The
action leads to the equations of motion

ðKð0Þ
J þKð2Þ

J P2ÞφJðPÞ¼ðKð0Þ
J þKð2Þ

J P2Þφ̄JðPÞ¼0: ð62Þ

These can now be solved mode for mode as in the case of
standard relativistic field equations.Whendefined in Fourier

7In all interesting applications, couplings only depend on
representation labels jI , not on magnetic indices or intertwiners.

8This notation is supposed to remind the reader of whether the
classical solutions are complex or real exponentials.

STEFFEN GIELEN PHYS. REV. D 104, 106011 (2021)

106011-10



space all modes now have a very similar type of dynamics.
We must keep in mind that, when transforming back to χ to
define time-dependent observables, an analytic continuation
is needed to go from theEuclidean field defined in terms ofX
to the “Lorentzian field” defined in terms of the original χ.
This is similar to constructions in axiomatic quantum field
theory [29]; the field in momentum space is the primary
object, which can be transformed into either real or
imaginary time by applying two different types of Fourier
transformations, related by analytic continuation.
The total free GFT action can then be written as9

Sf ½φ; φ̄� ¼
X
J∈JC

Z
dp
2π

φ̄JðpÞðKð0Þ
J −Kð2Þ

J p2ÞφJðpÞ

þ
X
J∈JR

i
Z

dP
2π

φ̄Jð−PÞðKð0Þ
J þKð2Þ

J P2ÞφJðPÞ;

ð63Þ

and has, at least in the general case, a real and an imaginary
part. We now want to define a new GFT action similar to
what we did in Eq. (26) for Klein-Gordon theory, adding an
additional proper-time parameter τ to the arguments of the
GFT field. Our proposal is

S�½φ; φ̄; N� ¼
X
J∈JC

Z
dp
2π

dτ

�
i
2

�
φ̄J

∂φJ

∂τ − φJ
∂φ̄J

∂τ
�

þ NðKð0Þ
J −Kð2Þ

J p2ÞjφJj2
�

þ
X
J∈JR

Z
dP
2π

dτ

�
i
2

�
φ̄J

∂φJ

∂τ − φJ
∂φ̄J

∂τ
�

þ NðKð0Þ
J þKð2Þ

J P2ÞjφJj2
�
; ð64Þ

where we again stress that the fields, for each mode J, are
now functions of both p or P and τ. As for the Klein-
Gordon field, the equations of motion then require the τ
dependence to be trivial since the fields also need to satisfy
Eqs. (58) and (62). In this sense, the classical theory is
equivalent to the one defined by Eq. (53). However, again
as before, the “frozen GFT” action (64) admits a more
straightforward (Dirac) canonical quantization: the field
operators in the canonical formalism should satisfy the
timeless commutation relations Eq. (54) or

½φ̂JðpÞ; φ̂†
J0 ðp0Þ� ¼ 2πδJ;J0δðp − p0ÞðJ ∈ JCÞ;

½φ̂JðPÞ; φ̂†
J0 ðP0Þ� ¼ 2πδJ;J0δðP − P0ÞðJ ∈ JRÞ; ð65Þ

and thus again generate a kinematical Fock space, equiv-
alent to the one used in GFT in the timeless setting. The
constraint on a state jψi to be physical is then

ðKð0Þ
J −Kð2Þ

J p2Þφ̂†
JðpÞφ̂JðpÞjψi

¼ ðKð0Þ
J þKð2Þ

J P2Þφ̂†
JðPÞφ̂JðPÞjψi ¼ 0: ð66Þ

The fact that we impose these constraints strongly is our
departure from previous work in the timeless formalism.
Again, φ̂†

JðpÞφ̂JðpÞ and φ̂†
JðPÞφ̂JðPÞ are number densities

on the Fock space and these constraints imply that only
modes satisfying the constraints

ðKð0Þ
J −Kð2Þ

J p2Þ ¼ 0; ðKð0Þ
J þKð2Þ

J P2Þ ¼ 0 ð67Þ

can be excited for a state to be considered physical. With
the shorthands

μJ¼
ffiffiffiffiffiffiffiffiffi
Kð0Þ

J

Kð2Þ
J

vuut ðJ∈JCÞ; mJ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−Kð0Þ

J

Kð2Þ
J

vuut ðJ∈JRÞ; ð68Þ

these constraints become more simply μ2J − p2 ¼ 0 and
m2

J − P2 ¼ 0. It should then be clear that the entire
discussion of Sec. II C can be extended to the case of
GFT: there exists a map

φ̂JðpÞ ↦ PCφ̂JðpÞ; φ̂†ðpÞ ↦ PCφ̂†ðpÞ ð69Þ

and a similar map PR for the P modes, such that the
projected operators generate a physical Fock space whose
one-particle sector is the physical Hilbert space one would
construct through group averaging. If we define

PCφ̂†
JðpÞ¼

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð0Þ

J Kð2Þ
J

4

q ðδðp−μJÞâ†JþδðpþμJÞb̂†JÞ ð70Þ

for J ∈ JC and

PRφ̂†
JðPÞ ¼

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Kð0Þ

J Kð2Þ
J

4

q ðδðP −mJÞÂ†
J þ δðPþmJÞB̂†

JÞ

ð71Þ

for J ∈ JR where âJ; â
†
J and the three other canonical pairs

satisfy the usual algebra of creation and annihilation
operators, i.e.,

½âJ; â†J0 � ¼ δJ;J0 ; ð72Þ

then the inner product between physical single-particle
Fock states associated with a J ∈ JC mode defined by

9The imaginary part does not have any obvious boundedness
properties so that the sign of the Wick rotation and hence the sign
of the imaginary part are somewhat arbitrary.

FROZEN FORMALISM AND CANONICAL QUANTIZATION IN … PHYS. REV. D 104, 106011 (2021)

106011-11



jψphi ¼
Z

dp
2π

ψðpÞPCφ̂†
JðpÞj0iph ð73Þ

is

hϕphjψphi¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð0Þ

J Kð2Þ
J

q ðϕðμJÞψðμJÞþϕð−μJÞψð−μJÞÞ

¼
Z

dp
2π

δðKð0Þ
J −Kð2Þ

J p2ÞϕðpÞψðpÞ; ð74Þ

in agreement with group averaging. The same is true for the
modes J ∈ JR corresponding to real exponential solutions;
the calculation is the same up to a minus sign.
Things become more interesting if we consider the

dependence of physical states and observables on χ. We
can again insert a time evolution factor eipχ into the map
(70) to obtain physical states defined in the Schrödinger
picture at arbitrary χ. This yields

PC
χ φ̂

†
JðpÞ ¼

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð0Þ

J Kð2Þ
J

4

q ðeiμJχδðp − μJÞâ†J

þ e−iμJχδðpþ μJÞb̂†JÞ; ð75Þ

in analogy to Eq. (42) in the case of Klein-Gordon theory.
For the P modes we must remember the need for analytic
continuation: the evolution operator is of the form
eiPX ¼ ePχ , a real exponential when expressed in terms
of χ. Hence the χ-dependent version of Eq. (71) is

PR
χ φ̂

†
JðPÞ ¼

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Kð0Þ

J Kð2Þ
J

4

q ðemJχδðP −mJÞÂ†
J

þ e−mJχδðPþmJÞB̂†
JÞ; ð76Þ

in accordance with the classical solutions to the GFT field
equations for these modes, which are real (growing and
decaying) exponentials. Since we require φ̂ and φ̂† to be
Hermitian conjugates for real χ arguments the correspond-
ing projection for φ̂ is

PR
χ φ̂JðPÞ ¼

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Kð0Þ

J Kð2Þ
J

4

q ðemJχδðP −mJÞÂJ

þ e−mJχδðPþmJÞB̂JÞ; ð77Þ

so that, unlike for the p modes, the χ-dependent exponen-
tial factors do not switch sign between φ̂J and φ̂

†
J. This is as

it should be: for the oscillatory pmodes, for each of the two
(positive or negative frequency) solutions φ̂†

Jφ̂J should be
time independent for each mode, given that the classical
solutions are plane waves for which jφJj2 is a constant. For

the P modes, this is not the case and so the combination
φ̂†
Jφ̂J should not be time independent.
We can now look at GFT observables. On the kinemati-

cal Hilbert space, one class of Dirac observables is of the
form

Ôf ¼
X
J∈JC

Z
dp
2π

fJðpÞφ̂†
JðpÞφ̂JðpÞ

þ
X
J∈JR

Z
dP
2π

FJðPÞφ̂†
JðPÞφ̂JðPÞ; ð78Þ

these observables preserve the space of physical states since
they do not excite any unphysical modes. If we again define
these as time-dependent operators in the Heisenberg
picture, the required projection for bilinear operators is

PC
χ ðφ̂†

JðpÞφ̂JðpÞÞ ¼ 2πðδðp − μJÞâ†JâJ þ δðpþ μJÞb̂†Jb̂JÞ
ð79Þ

for p modes, where the normalization is again fixed by
requiring these to count particles in integer amounts.
However, for P modes corresponding to J ∈ JR we have

PR
χ ðφ̂†

JðPÞφ̂JðPÞÞ ¼ 2πðe2mJχδðP −mJÞÂ†
JÂJ

þ e−2mJχδðPþmJÞB̂†
JB̂JÞ; ð80Þ

again by demanding that expectation values in the
Heisenberg and Schrödinger picture agree. Therefore, on
the physical Hilbert space the total number of particles in
the P modes takes the form

N̂P
ph ¼

X
J∈JR

ðe2mJχÂ†
JÂJ þ e−2mJχB̂†

JB̂JÞ; ð81Þ

in contrast with the total number of p particles

N̂p
ph ¼

X
J∈JC

ðâ†JâJ þ b̂†Jb̂JÞ; ð82Þ

which is independent of time, as it was in the previous case
of conventional Klein-Gordon theory, cf. Eq. (38).
Conversely, observables can be time dependent for p

modes but time independent for P modes. Indeed, in
analogy with Eq. (43) consider

Q̂f ¼
X
J∈JC

Z
dp
2π

fJðpÞφ̂†
JðpÞφ̂Jð−pÞ

þ
X
J∈JR

Z
dP
2π

FJðPÞφ̂†
JðPÞφ̂Jð−PÞ ð83Þ

[with fJðpÞ ¼ fJð−pÞ and FJðpÞ ¼ FJð−pÞ] as observ-
ables on the kinematical Hilbert space; again these do not
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excite any unphysical modes and thus preserve the physical
Hilbert space. The relevant (time-dependent) map acting on
the bilinears appearing in Eq. (83) is

PC
χ ðφ̂†

JðpÞφ̂Jð−pÞÞ ¼ 2πðe−2iμJχδðp − μJÞâ†Jb̂J
þ e2iμJχδðpþ μJÞb̂†JâJÞ; ð84Þ

but

PR
χ ðφ̂†

JðPÞφ̂Jð−PÞÞ ¼ 2πðδðP −mJÞÂ†
JB̂J

þ δðPþmJÞB̂†
JÂJÞ; ð85Þ

so that, for fJðpÞ ¼ 0, one obtains a time-independent
observable on the physical Hilbert space:

PχQ̂f ¼
X
J∈JR

ðFJðmJÞÂ†
JB̂J þ FJðmJÞB̂†

JÂJÞ: ð86Þ

These constructions define a physical Hilbert space for
GFT, obtained from a frozen formalism and Dirac-type
quantization as previously defined for the Klein-Gordon
field, together with a set of physical observables.
The physical Hilbert space is a Fock space in which each

Peter-Weyl mode J is associated with two creation oper-
ators, either â†J and b̂†J or Â

†
J and B̂†

J, and thus two types of
excitations which one may consider as analogous to particle
and antiparticle. This Fock space is the direct sum of two
copies of the Fock space constructed in the deparametrized
setting of Ref. [15] and further studied, e.g., in Ref. [17].
This doubling of degrees of freedom is due to the fact that
we are considering a complex GFT field whereas the
previous works in the deparametrized setting focused on
the case of a real field. It is a curious feature of the frozen
formalism we have introduced that it only straightforwardly
applies to complex fields, due to the need for two basic
operators to be defined as canonically conjugate on the
kinematical Hilbert space.
The physical Hilbert space of this GFT quantization is

much smaller than the kinematical Hilbert space generated
by the initial field operators defined by Eq. (65). We have
identified maps from the kinematical to the physical Hilbert
space, which remove all p and P modes apart from the
ones satisfying Eqs. (58) or (62). These constraints were
imposed strongly, not weakly as previously in the timeless
quantization of GFT.

IV. RELATIONAL OBSERVABLES AND
EFFECTIVE COSMOLOGY

The main application of the operator formalism for GFT
has been the derivation of effective cosmological dynamics
from the fundamental theory [13,14]. This derivation
makes crucial use of relational observables whose expect-
ation values are computed for a particular class of states,

leading to effective dynamics written in terms of these
observables. Effective cosmological dynamics have been
derived in the timeless setting in a mean-field approxima-
tion, but also in the deparametrized approach [15,17]. The
effective cosmology obtained in both settings has similar
properties: the dynamics reduce to the classical Friedmann
equations at large volume but there are high-curvature
corrections which lead to a bounce interpolating between
the classical collapsing and expanding solutions. The
details of these corrections are slightly different between
the different approaches.
The most important relational observable in the timeless

GFT setting defines the total volume (of space) at a given
value of “relational time” χ. This observable was intro-
duced in Ref. [14] and mimics the analogous observable
used to characterize the dynamics of the Universe in loop
quantum cosmology [30].
In the notation used in this paper, this relational volume

observable on the kinematical Hilbert space is

V̂ðχÞ ¼
X
J

vJφ̂
†
JðχÞφ̂JðχÞ; ð87Þ

where vJ is the volume eigenvalue (“volume per GFT
quantum”) associated with the representation J. The mean-
ing of such an observable on the kinematical GFT Hilbert
space is somewhat murky, given that this Hilbert space does
not contain a subspace of modes at fixed χ; normalizable
states must be, e.g., wave packets containing different
values of χ. As a result V̂ðχÞ should really be considered as
a density to be “smeared” over a finite χ range, as already
discussed in Ref. [14] and in more detail in Refs. [26–28].
This does not necessarily affect the resulting cosmology
expressed in terms of expectation values of V̂ðχÞ, but
causes issues when higher moments, i.e., quantum fluctua-
tions are considered.
A second observable used in Ref. [14] is given by

π̂χ ¼
X
J

−
i
2
ðφ̂†

JðχÞ∂χφ̂JðχÞ − ð∂χφ̂
†
JðχÞÞφ̂JðχÞÞ ð88Þ

and identified with the conjugate momentum to the scalar
field χ, in analogy with usual arguments in quantum
mechanics (thinking of the canonical momentum as a
generator of translations in χ). πχ is conserved in the
classical and timeless quantum theory; however its con-
servation is due to a global U(1) symmetry of the theory
and at least a priori unrelated to translations in χ [14]
(see also Ref. [31] for why πχ is not the conjugate
momentum to χ). The conservation law for π̂χ is important
in the cosmological interpretation of the theory since it
justifies identifying this quantity with a conserved momen-
tum in cosmology, but it seems one should define a smeared
momentum and perhaps a smeared conservation law, which
has not been done.
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The conceptual issues with Eqs. (87) and (88) are
connected to the fact that one has defined these observables
on the kinematical Hilbert space generated by Eq. (54);
they are defined in relational terms but evaluated in the
kinematical inner product. Using the projection maps
acting on operators on the kinematical Hilbert space we
can now define the equivalent of such observables on a
physical Hilbert space. This is where observables are
defined in a Dirac-quantized theory such as, e.g., in loop
quantum cosmology [30].
The first observable defining a relational volume is

obtained straightforwardly from the general expression
(78) by setting fJðpÞ ¼ FJðpÞ ¼ vJ, i.e., by choosing
the corresponding kinematical observable to be the total
volume of all particles. Applying the maps (79) and (80) to
this operator we find the corresponding observable on the
physical Hilbert space:

V̂ph¼
X
J∈JC

vJðâ†JâJþ b̂†Jb̂JÞ

þ
X
J∈JR

vJðe2mJχÂ†
JÂJþe−2mJχB̂†

JB̂JÞ; ð89Þ

which is essentially of the form of the relational volume
observable defined in Eq. (87). Rather than defining “by
hand” relational observables at a fixed value of χ, in the
frozen formalism all observables are naturally of this form
since one can think of the physical Hilbert space as defined
at a given value of χ. This is perhaps most explicit in the
Heisenberg picture in which one can think of (Dirac)
observables as evolving in χ. Equation (89) shows that
the total volume of the oscillatory modes is constant in χ
whereas the volume of the real exponential modes has an
exponentially growing and an exponentially decaying
piece, in line with the behavior of classical solutions.
To obtain an observable analogous to the U(1) charge

(88), we integrate the classical version of Eq. (88) over χ
and apply the Fourier transform defined in Sec. III B.
The corresponding operator on the kinematical Hilbert
space is then

Π̂¼
X
J∈JC

Z
dp
2π

pφ̂†
JðpÞφ̂JðpÞ− i

X
J∈JR

Z
dP
2π

Pφ̂†
JðPÞφ̂Jð−PÞ;

ð90Þ

this is mapped to an observable on the physical Hilbert
space that is conserved for each mode separately,

Π̂ph¼
X
J∈JC

μJðâ†JâJ− b̂†Jb̂JÞ− i
X
J∈JR

mJðÂ†
JB̂J− B̂†

JÂJÞ: ð91Þ

Equation (91) corresponds to a quantization of classically
conserved quantities: writing a classical oscillatory solution
as φ ¼ αeiμχ þ βe−iμχ and a real exponential solution as

φ ¼ Aemχ þ Be−mχ , the conserved quantities associated
with the U(1) symmetry of the theory are μðjαj2 − jβj2Þ
for the first and −imðĀB − B̄AÞ for the second (see, e.g.,
Ref. [18]). This is obviously also the expression one finds
when evaluating Eq. (88) in a mean-field approximation.
Π̂ph is relational in the sense that one can think of it as a
χ-dependent observable which happens to be a constant of
motion. Notice that the expectation value of Eq. (90) would
either be zero or divergent on any physical state, just as
classically the integral of a conserved quantity over time is
either zero or diverges.
It is clear that one can similarly define observables on the

physical Hilbert space from any well-defined (Dirac)
observable on the kinematical Hilbert space. The resulting
physical observables are generally time dependent (in
the Heisenberg picture) but their fluctuations and higher
n-point functions are regular functions in χ and do not
encounter the divergences seen in Refs. [26,27]. They can
then be used to define an effective cosmology in analogy
with previous work in GFT [14,15,17].
We can illustrate this by focusing on the simplest case in

which one considers only a single J mode with real
exponential solutions; then from Eq. (89) we have

�
1

hV̂phi
dhV̂phi
dχ

�2

¼ 4m2
J

�
1 − 4

v2JhÂ†
JÂJihB̂†

JB̂Ji
hV̂phi2

�
ð92Þ

as our effective Friedmann equation. The effective cosmol-
ogy has the general features previously found both in the
timeless and deparametrized settings [14,15,17]: if the GFT
couplings are such that m2

J ¼ 3πG with G the low-energy
Newton’s constant, at large volumes the dynamics reduce to
the classical Friedmann equation:

�
1

VGR

dVGR

dχ

�
2

¼ 12πG: ð93Þ

The correction to the the classical Friedmann equation
appearing in Eq. (92) scales as 1=V2 and hence can be
written as −ρ=ρc if one identifies ρ ¼ M=V2, where M is a
positive constant, with the classical energy density of a
massless scalar field and where ρc is a constant. Such a term
leads to a bounce when the energy density reaches ρ ¼ ρc,
just as it does in loop quantum cosmology. (To make this
identification more precise we would need to identify a
specific relation between the occupation numbers hÂ†

JÂJi
and hB̂†

JB̂Ji and the constant M.) Only very special initial
conditions such that hÂ†

JÂJi ¼ 0 or hB̂†
JB̂Ji ¼ 0 do not

feature such a bounce; indeed, from Eq. (89) it is clear that
such states follow exactly either the classical contracting or
the expanding solution. We do not see a second correction
term scaling as 1=V, as found in Ref. [14], which can be
traced back to the fact that dynamics were not imposed
strongly in Ref. [14].
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Operators on the kinematical Hilbert space that are not
well defined on physical states cannot be given a clear
definition within the frozen formalism. The most important
example of this is a would-be operator corresponding to the
massless scalar field χ, which after Fourier transform
becomes

χ̂¼ i
X
J∈JC

Z
dp
2π

φ̂†
JðpÞ

dφ̂JðpÞ
dp

þ
X
J∈JR

Z
dP
2π

φ̂†
Jð−PÞ

dφ̂JðPÞ
dP

:

ð94Þ

There seems to be no straightforward way to make sense of
the derivative of a field operator on the physical Hilbert
space, given that for each J only two isolated values of p or
P correspond to physical states. This observation is not
surprising: it is the GFT equivalent of the statement that
there is no time observable in quantum mechanics or
quantum field theory, which goes back to Pauli [32].
Pauli’s statement relies on having a Hamiltonian that is
bounded from below, which may not exist in GFT;
Hamiltonians constructed in the deparametrized setting
are unbounded [15]. The observation does not imply that
there is no useful notion of “time” observable in the frozen
formalism for GFT. Indeed, given that Eq. (94) does not
work, one could try to construct more general notions of
time observable, e.g., by using the sophisticated machinery
of positive operator valued measures [5]. It would be
interesting to find an explicit construction of this type
in GFT.

V. CONCLUSIONS

We have proposed a new perspective on the canonical
quantization of quantum field theories: we have suggested
an action for a complex scalar field in which fields depend
on a parameter τ, which can be seen as the analog of proper
time for a relativistic particle. Dynamical equations force
the fields to be independent of τ. We call this a frozen
formalism in analogy with the quantum dynamics of a
relativistic particle for which reparametrization invariance
forces states and observables to be independent of τ. Dirac
quantization of this new action leads to a kinematical Fock
space and, after the imposition of constraints, a physical
Hilbert space equivalent to the usual Fock space. We
have introduced projection maps from states and (Dirac)
observables on the kinematical to those on the physical
Hilbert space.
We then applied this frozen formalism to group field

theory models for quantum gravity coupled to a massless
scalar field χ, showing how the kinematical Hilbert space of
the frozen formalism is equivalent to the Hilbert space
proposed in a timeless quantization in the literature.
Imposing the constraints strongly and not weakly as
was done previously, we obtain a physical Hilbert space
which is equivalent to one found through a different,

deparametrized canonical quantization. Thus the frozen
formalism links between the timeless and deparametrized
approaches and shows in particular how physical observ-
ables can be defined on the physical Hilbert space, taking
into account the fact well known from Dirac quantization
that the inner products on kinematical and physical Hilbert
spaces cannot be assumed to be the same. This more careful
construction avoids some of the pathologies encountered
for the timeless formalism in previous work. It does not
alter the main results for effective cosmology, which are
based on expectation values only.
In this paper, we restricted ourselves to quadratic GFT

actions, which made it straightforward to implement a
Dirac quantization and construct the physical Fock space.
Models of physical interest for quantum gravity include
higher-order terms which make an explicit construction of
the physical Hilbert space for such theories very difficult. In
this more general case, it may then be necessary to accept
that the dynamics are solved only approximately, such as
in expectation values, as often suggested for GFT in the
timeless formalism [12,13]. Also the inner product and
physical observables may then only be known approxi-
mately. This situation for the canonical quantization of
GFT can be compared to canonical LQG, where imple-
menting group averaging to construct a physical inner
product from the full Hamiltonian constraint of general
relativity is not straightforwardly possible and serious
efforts have focused on developing novel techniques,
e.g., Ref. [33]. While the relatively simple scalar field
theory structure of GFT may make the task look easier than
for LQG, only future work can show whether there are any
prospects for achieving an exact Dirac quantization for an
interacting GFT. Nevertheless, it seems that the general
lessons drawn from the quadratic case have to hold also in
this situation: physical and kinematical Hilbert space
cannot be identified and not all Hermitian operators on
the kinematical Hilbert space are physical observables. The
meaning of calculations done on the kinematical Hilbert
space can be obscure, as in LQG [34]. It would be
important to understand how the constructions in this
paper can be extended to a more general setting in an
approximate sense. Effective methods such as developed
in Ref. [35], which do not require knowledge of the full
Hilbert space but use expectation values and higher
moments, may also be useful. In contrast, the deparame-
trized approach can be extended more straightforwardly to
interacting models, given that the scalar χ remains a good
clock also in this more general case. A simple interaction
term has been studied in Ref. [17]. However, it is unclear
whether the deparametrized approach can be generally
covariant, as is already apparent when multiple scalars are
coupled [31].
Some peculiarities of the frozen formalism are

related to general properties of the Dirac quantization of
relativistic systems. The formalism we defined can only be

FROZEN FORMALISM AND CANONICAL QUANTIZATION IN … PHYS. REV. D 104, 106011 (2021)

106011-15



straightforwardly applied to complex scalar fields; the
physical Fock space then always contains both particle
and antiparticle excitations. The underlying reason for this
can be understood from the Dirac quantization of a single
relativistic particle, in which the physical Hilbert space
constructed through group averaging contains positive and
negative frequency solutions, associating a positive norm
with both. This is in contrast to the standard treatment of a
real Klein-Gordon field, which only treats positive fre-
quency modes as physical excitations. Of course, one can
decide to work only with particles or antiparticles, and
reduce the physical Hilbert space to that of a real field
theory by hand. It is not clear how one would define a Dirac
quantization directly for real fields, just as it is not clear
how to construct a group averaging procedure that uses
only one of the two classical solutions to the constraint for
the relativistic particle. In GFT, both the general perspective
of Sec. III A and the deparametrized quantization of
Ref. [15] allow for real fields; the interpretation of GFT
Feynman amplitudes as spin foam amplitudes only requires
real fields [11]. When complex fields are used, one ends up
with two copies of the Hilbert space that would seem
required from the perspective of LQG. As we mentioned
below Eq. (42), an interaction between particle and

antiparticle sectors might lead to unphysical results, so
one would have to study whether a GFT that couples these
two sectors has a good interpretation from the perspective
of LQG. One might decide that such interactions are
forbidden.
The frozen formalism proposed here is in principle more

generally applicable to quantum systems which do not have
any “time parameter” with respect to which evolution could
be defined, such as GFT models without a massless scalar
field, but also more general combinatorial approaches to
quantum gravity such as matrix and tensor models [36]. It
would be very interesting to study further applications in
this direction.
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