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Using the formalism of the third quantization in canonical quantum gravity, the entropy of entanglement
of a pair of universes created in the multiverse from the vacuum has recently been calculated. Here, we
examine the differences between considering a scalar field as quantum or classical on the entanglement
entropy of three different pairs: de Sitter universes, flat stiff matter dominated universes, and closed
universes with a scalar field. We find that the entanglement entropy is unchanged, zero, or dependent on the
treatment of the scalar field, respectively.
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I. TWO DISTINCT WHEELER-DEWITT
EQUATIONS

One of the weak points of canonical quantum gravity
(CQG) [1] is the assumption that the ADM variables [2] can
be quantized à la Dirac without an experimental reason.
This also happens when we quantize the matter fields of the
minisuperspace. Yet, it may be perfectly admissible. Some
studies have been done about the difference of the classical
and the quantum dynamic of different models [3,4] where
different behaviors have been found for both considera-
tions. However, when a quantum description of gravity is
deployed, two choices emerge related to the scalar fields.
Taking into account scalar fields for FLRWuniverses, there
are two different ways to proceed: to keep the scalar field as
a quantum variable, or to treat it as classical fulfilling some
equation of state. The quantum treatment has been exten-
sively used [5–8] as much as the classical one [9–11]. The
choice is usually made without further explanations even
though the consideration of the classical scalar field keeps
the theory in the semiclassical regime. In the present work,
to see the effects of both choices, we will analyzed a
recently studied scenario, based on the third quantization
of CQG [12–15], where a pair of universes are created
[16–18] in this kind of multiverse as in analogy with pair
creation in quantum field theory.
The wave function of the universe Ψ is found using the

Hamiltonian constraint [1,19], known as Wheeler-DeWitt
equation

HΨ ¼ 0; ð1Þ

where H is the Hamiltonian for a specific model. Usually,
for simplicity, while solving the Wheeler-DeWitt equation,

the scalar field is kept classical. Accordingly, the degree of
freedom of the scalar field ϕ is derived into the barotropic
index ω when we consider its equation of state like
pϕ ¼ ωρϕ. The Wheeler-DeWitt equation and the wave
function of the universe are, then, just dependent on the
scale factor once we decide the value of ω.
The alternative way is to keep the scalar field as a

quantum field, defining its momentum operator as (ℏ ¼ 1)

p2
ϕ ¼ −

∂2

∂ϕ2
: ð2Þ

Hence the Wheeler-DeWitt equation contains the explicit
kinetic term of the field and its potential, and so the wave
function of the universe is dependent on the scalar field and
the scale factor.
For a universe with cosmological constant Λ and a scalar

field ϕ, the Hamiltonian reads [19]

H ¼ 1

2

�
−
p2
a

a
þ p2

ϕ

a3
− aK þ a3

�
Λ
3
þ 2VðϕÞ

��
; ð3Þ

where a is the scale factor, VðϕÞ is the potential of the
scalar field, K is the curvature index, and the canonical
momenta are pa ¼ −a _a, and pϕ ¼ a3 _ϕ. If the scalar field is
classical, we can write the Wheeler-DeWitt equation (1)
with the Hamiltonian in Eq. (3) by means of its density
ρϕ ¼ _ϕ2=2þ VðϕÞ like

� ∂2

∂α2 − e4αK þ e6α
�
Λ
3
þ 2ρϕðα;ωÞ

��
ΨCðαÞ ¼ 0; ð4Þ

where we quantized the scale factor using the ordering*samuel.barroso-bellido@usz.edu.pl
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p2
a ¼ −

1

a
∂
∂a

�
a
∂
∂a

�
; ð5Þ

the density of the scalar field is expressed in terms of the
scale factor as [20]

ρϕðα;ωÞ ¼ ρoe−3αð1þωÞ; ð6Þ

ρo is the density at a certain time, and we used the
parametrization α ¼ lnðaÞ. Here, the label C of the wave
function stands for classical.
On the contrary, if the scalar field is quantized as in

Eq. (2), then Eq. (3) is written like

� ∂2

∂α2 −
∂2

∂ϕ2
− e4αK þ e6α

�
Λ
3
þ 2VðϕÞ

��
ΨQðα;ϕÞ ¼ 0:

ð7Þ

In this case, the label Q stands for quantum.
These two treatments of the scalar field change the

outcome of the differential equation. The wave functions
for the classical and the quantum procedure are clearly
different, and so it will be for any derived variable.
In Sec. II, we will explain the formalism we use to

find the entanglement entropy of a pair of universes.
Later we will analyze different models in which the
entanglement entropy yields interesting outcomes. The
de Sitter case is given in Sec. III, it is followed by a stiff
matter dominated universe in Sec. IV, and finally, a closed
universe with a scalar field in Sec. V. The conclusions are
gathered in Sec. VI.

II. ENTANGLEMENT ENTROPY
OF A PAIR OF UNIVERSES

In the formalism of the third quantization which we
consider, the universes are treated like particles of a field.
This way, two universes can be born together like particle
and antiparticle [17], as in analogy to quantum field theory.
The initial ground state is j00i, where we use the notation
jU−Uþi for the combined universe-antiuniverse state.
During the evolution of the universes, the ground state
changes in this diagonal representation, which means that
the number of universes is not constant [21,22], in general.
Since our universe seems not to change from our point
of view, the most natural representation is the one in which
the number of universes is invariant, called the invariant
representation. It is found for systems that are analogous to
the time-dependent harmonic oscillator [23,24]. For a
scalar field whose potential energy VðϕÞ is constant, the
Wheeler-DeWitt equations (4) and (7) have the form [18]

� ∂2

∂α2 þ ω2ðα; Eϕ; K;ΛÞ
�
ΨðαÞ ¼ 0; ð8Þ

which reminds us of a time-dependent harmonic oscillator-
like equation. Here, Eϕ is the energy of the scalar field and
ωðα; Eϕ; K;ΛÞ is the frequency which depends on the scale
factor and the constants of the chosen model. The invariant
representation is found from the diagonal representation
through the Bogoliubov transformation [21,22,25] whose
coefficients are [26]

αB ¼ 1

2

�
1

R
ffiffiffiffi
ω

p þ R
ffiffiffiffi
ω

p
−

i _Rffiffiffiffi
ω

p
�
; ð9Þ

and

βB ¼ −
1

2

�
1

R
ffiffiffiffi
ω

p − R
ffiffiffiffi
ω

p
−

i _Rffiffiffiffi
ω

p
�
; ð10Þ

where1

R ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ2

ð1ÞðαÞ þΨ2
ð2ÞðαÞ

q
; ð11Þ

and Ψð1;2ÞðαÞ are two real solutions of the Wheeler-DeWitt
equation (8). The vacuum state j00ii in the invariant
representation can be expressed in terms of the diagonal
states jn−nþid, where n labels the modes of excitation of
both universes, as [22,27]

j00ii ¼
1

jαBj
X∞
n¼0

�jβBj
jαBj

�
n
jn−nþid: ð12Þ

Thus, from the density matrix ρ ¼ j00iih00j, we find
the reduced density matrix ρR tracing out the degrees of
freedom of one of the universes in the diagonal represen-
tation. Finally, we find the von Neumann entropy [28]

Sent ¼ −TrfρR lnðρRÞg; ð13Þ

which is considered the entanglement entropy of a bipartite
system like our pair.
The entanglement entropy is a measurement of the

departure from the purity of the bipartite system, that is
a nonentangled system. In this sense, we can identify the
entanglement entropy to be recognized as a measurement of
its quantumness.
As the universe increases in size, one can expect that

the quantum behavior disappears [29], that is, the entan-
glement entropy decreases. It was proved, though, that, at
the critical points of the classical evolution of the universe,
the entanglement entropy could behave differently, being
divergent in most of the cases [18].

1This expression can be generalized. For further details check
Refs. [24,26].
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III. DE SITTER UNIVERSE

The de Sitter universe [20] is a flat universe dominated
by a cosmological constant, or a scalar field which follows
the equation of state pϕ ¼ −ρϕ. This means that its energy

is purely potential energy and _ϕ ¼ 0. The kinetic term of
the scalar field is then removed, and the potential VðϕÞ is
found to be constant.
It is relevant to point out that the uncertainty principle

constraints any quantum system. A degree of freedom like a
scalar field is under the effects of this principle when it is
considered quantum. The inclusion of a quantum scalar
field that mimics the cosmological constant violates the
uncertainty principle. However, the de Sitter universe is
always treated as a universe with a cosmological constant
whose nature is not usually described. In this case, its
nature is relevant. We demand the cosmological constant
to be due to the potential of a scalar field whose kinetic
term vanishes. As a consequence, Eqs. (4) and (7) become
identical:

� ∂2

∂α2 þ e6α
Λ
3

�
ΨðαÞ ¼ 0; ð14Þ

with the relation

Λ ¼ 6ρϕ: ð15Þ

The solutions to Eq. (14), if Λ ≠ 0, go like (see, from
here on, for special functions, Ref. [30])

Ψ1ðαÞ ∝ J 0

�
1

3

ffiffiffiffi
Λ
3

r
e3α

�
; ð16aÞ

Ψ2ðαÞ ∝ Y0

�
1

3

ffiffiffiffi
Λ
3

r
e3α

�
; ð16bÞ

where J and Y are the Bessel functions of the first and
second kind, respectively.
To find the entanglement entropy, we need two real

functions as solutions. Both solutions in Eqs. (16) are real,
so we use them as inputs for the calculation. The normali-
zation constants of the solutions are not relevant here since
the behavior of the entanglement entropy is not going to
change. It can be seen by inspection of Eq. (12) and how the
normalization constants appear. Therefore, the results we
show in this section are just qualitative. The entanglement
entropy in Eq. (13), as a function of the scale factor and Λ,
is depicted in Fig. 1. In it, we find that the entanglement
entropy is a monotonically decreasing function as the scale
factor increases. It coincides with the expected vanishing
of the quantumness of the system. We also see that, as the
cosmological constant increases, the function is steeper.
Thus, the cosmological constant seems to control the

decoherence of the pair of the de Sitter universes, being
faster as Λ gets bigger.
At the initial singularity, we find a divergent entropy.

There is nothing strange about the divergent entropy since
the von Neumann entropy is bounded in the interval
½0; logðdimðHÞÞ�, where H is the Hilbert space involved
[31], and the dimension of our Hilbert space H is infinite,
that is, the invariant vacuum state of the pair j00ii is written,
in Eq. (12), as an infinite sum of diagonal states jn−nþid.
Hence, the entanglement entropy is not bounded from above.
The de Sitter universe does not distinguish between the

quantized scalar field or the classical one. This property
looks interesting when trying to analyze or work with the
entanglement entropy of a system and one does not want to
be mistaken due to the treatment of the scalar field.

IV. STIFF MATTER DOMINATED UNIVERSE

For a stiff matter dominated universe [32], the dominat-
ing field satisfies the equation of state pϕ ¼ ρϕ. The energy
of the field is, then, only kinetic, it is VðϕÞ ¼ 0. If the scalar
field is quantized as in Eq. (2), the Wheleer-DeWitt
equation from Eq. (3) is found to be

� ∂2

∂α2 −
∂2

∂ϕ2

�
ΨQðα;ϕÞ ¼ 0: ð17Þ

Following the classical procedure, the density (6), when
ω ¼ 1, is

ρϕ ¼ ρoe−6α: ð18Þ

Substitution of the density of the scalar field into Eq. (4)
yields

FIG. 1. Entanglement entropy of a de Sitter universe as a
function of the scale factor and the cosmological constant. The
entanglement entropy diverges when it goes closer to the initial
singularity and it decreases as the universe gets bigger as
expected by decoherence. Besides, Λ seems to control how fast
the entanglement entropy decreases.
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� ∂2

∂α2 þ 2ρo

�
ΨCðαÞ ¼ 0: ð19Þ

The only important difference between Eqs. (17) and (19)
is the number of variables of the wave function of the
universe. However, they essentially represent the same
scenario since, here, we have two systems that are analogous
to the time-independent harmonic oscillator. That means that
the diagonal and the invariant representations are the same,
and there will be no entanglement at all.
To check it, let us find the solutions of Eq. (17) defining a

separable ansatz

Ψðα;ϕÞ ¼ φðαÞχðϕÞ: ð20Þ

Thus, we divide Eq. (17) into two different differential
equations:

∂2

∂α2Ψðα;ϕÞ ¼ EαΨðα;ϕÞ; ð21Þ

−
∂2

∂ϕ2
Ψðα;ϕÞ ¼ EϕΨðα;ϕÞ; ð22Þ

where Eα and Eϕ are the energies associated to the
variables, and we find that Eϕ ¼ −Eα since HΨ ¼ 0.
Then, the solutions of Eq. (15) are

ΨQðα;ϕÞ ¼ eikQðα�ϕÞ; ð23Þ

where kQ ¼ ffiffiffiffiffiffi
Eϕ

p
. This is a two-dimensional plane wave,

as expected.
The solutions of Eq. (19), where the scalar field remains

classical, are

ΨCðαÞ ¼ e�ikCα; ð24Þ

where kC ¼ ffiffiffiffiffiffiffi
2ρo

p
. This is another plane wave, but a one-

dimensional one.
The two real solutions we need to find the entanglement

entropy can be taken as the real and the imaginary part of
any of the solution (23) and (24). Here, we need to find the
normalization constant to get the right result. To recover the
normalization, we impose on the wave function an asymp-
totic behavior close to the initial singularity ðα → −∞Þ,
where only incoming positive frequency plane waves of the
form [33]

ΨðαÞ ¼ 1ffiffiffi
k

p e−ikα; ð25Þ

are allowed. Thus, the entanglement entropy (13) is found
to be the zero function. Without the right normalization, the
result is a constant entropy. The vanishing of the entangle-
ment entropy proves that both representations are the same.

The stiff matter dominated universe seems to suffer the lack
of quantum correlations with its twin universe. This kind of
universe looks like the most natural system to avoid
entanglement in the multiverse.

V. CLOSED UNIVERSE WITH A SCALAR FIELD

To finish with our analysis, we consider a nontrivial
system. In this case, we have a scalar field in a closed
universe (K ¼ 1). The equation of state of the scalar field is
not known in general. If we consider it to be a perfect fluid,
we can be safe studying an interval for the barotropic index
ω ∈ ½−1; 1�, since

ω ¼
_ϕ2=2 − VðϕÞ
_ϕ2=2þ VðϕÞ ; ð26Þ

and we assume that the kinetic energy of the field is always
positive.
Keeping the scalar field as classical as in Eq. (4), it yields

the Wheeler-DeWitt equation

� ∂2

∂α2 − e4α þ 2ρoe3αð1−ωÞ
�
ΨCðαÞ ¼ 0; ð27Þ

whose solutions are not easily found. We performed a
numerical calculation, with the boundary condition in
Eq. (25), to find the solutions in terms of α and ω.
Using the real part and the imaginary part of a solution,

the entanglement entropy (13) is calculated. It is shown,
with ρo ¼ 1=2, in Fig. 2. The figure is a bit noisy due to
the numerical method and the derivatives of the fast

FIG. 2. Entanglement entropy of a closed universe with a scalar
field considered classical, as a function of the scale factor and the
barotropic index ω. Here, we used ρo ¼ 1=2. We see that there is
a decreasing behavior for the entanglement entropy when the
scale factor increases. The vertical lines are due to the numerical
method and the derivatives of the fast oscillating wave functions,
and should not be taken into account as part of the real
entanglement entropy.
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oscillations of the wave functions that are needed. One can
see that, as we approach the initial singularity, it increases
rapidly, and it happens for any value of ω. As the universe
gets bigger, the entanglement entropy starts to oscillate
slowly. How the entropy behaves for high values of a is
hard to say. The frequencies of the wave functions are
increasing with the scale factor, and it makes the numerical
method to break down. However, we only need the
behavior close to the singularity to see the difference with
the entanglement entropy due to the system with the
quantized scalar field.
Now, for a quantized scalar field, we inspect Eq. (7)

including any potential VðϕÞ:
� ∂2

∂α2 −
∂2

∂ϕ2
− e4α þ 2VðϕÞe6α

�
ΨQðα;ϕÞ ¼ 0: ð28Þ

It has not simple solutions for a nonvanishing potential, in
general. Our point here, is to analyse only the asymptotic
behavior, close to the initial singularity, of the entanglement
entropy. That means that the last term of Eq. (28), the one
which contains the potential of the scalar field, can be
neglected compared with the third term. The differential
equation is separable in that case. With the ansatz (20),
one finds

χðϕÞ ¼ e�i
ffiffiffiffi
Eϕ

p
ϕ; ð29Þ

where Eϕ is the energy associated to ϕ, and

φðαÞ ¼ I
�i

ffiffiffiffi
Eϕ

p
2

�
1

2
e2α

�
; ð30Þ

where IνðzÞ is the modified Bessel function of the first
kind. Thus, the solutions of Eq. (28) are

Ψðα;ϕÞ ¼ I
�i

ffiffiffiffi
Eϕ

p
2

�
1

2
e2α

�
e�i

ffiffiffiffi
Eϕ

p
ϕ: ð31Þ

The real and the imaginary part of any of those solutions
can be used as the inputs for the calculation of the
entanglement entropy. We found and displayed it, using
Eϕ ¼ 1, in Fig. 3. It is clear that this entropy is not the
associated to the pair of universes following Eq. (28) unless
the potential is null. There, we see that the entropy
decreases as the universe gets bigger, which coincides
with our expectations. However, when it gets closer to
a ¼ 1, it diverges since it is a critical point [18] of the
universe that follows Eq. (28) with VðϕÞ ¼ 0 along its
entire evolution.
But for a pair of universes described by Eq. (28), the

entanglement entropy shown in Fig. 3 is only correct when
α → −∞. The difference between Figs. 2 and 3, when we
look close to the initial singularity, is that the entanglement
entropy diverges in the former case, and it is finite in the

latter case. For us to prove that there is a difference when
we treat the scalar field differently, it is enough.

VI. CONCLUSIONS

The importance of considering a scalar field as classical
or quantum has been analyzed. In order to check how it
makes a difference, we have calculated the entanglement
entropy of a pair of universes in both cases for three
different models: de Sitter universes, flat stiff matter
dominated universes, or a close universe with a general
scalar field.
For the de Sitter universes, we found, independently of

the treatment of the scalar field, that the entanglement
entropy is unchanged. The pair of de Sitter universes is
found to be a good option not to make any mistake when
treating the scalar field as classical.
The trivial case is the stiff matter dominated universe,

where the entanglement entropy vanishes along the entire
evolution, and for any value of the scalar field. The reason
is that the diagonal and the invariant representations are the
same in this scenario.
Those two first cases demonstrate that there could be

systems for which both considerations are irrelevant.
However, in the last case where we considered a closed
universe with a scalar field, we can see what the effect
of the treatment of the scalar field on the entanglement
entropy is comparing Fig. 2 with Fig. 3. To make such
comparison, we must focus our attention at the smallest
values of the scale factor, because of the restriction we
made in Sec. V simplifying Eq. (28). For the universes
where the scalar field is considered as classical, it diverges
rapidly. On the other hand, it is finite when we keep a
quantum scalar field. It proves that anything we get using
different treatments of the scalar field will yield, perhaps,

FIG. 3. Entanglement entropy of a closed universe with a
quantized scalar field. It is represented the entanglement entropy
of a universe with a scalar field whose potential is vanishing. The
divergence at a ¼ 1 appears because it is the maximum size of the
universe. At the initial singularity, the entropy is finite and
decreasing.
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different results. It is evident since considering a classical
scalar field forces the theory into a semiclassical theory
of gravity.
Finally, we would like to point out some other interesting

ideas. If one imagines the universe to start completely
empty except for a cosmological constant, given by the
vacuum energy density or any other reason, that is, a
de Sitter universe, the entanglement between the pair of
universes exists and it is, at the very beginning, of the form
we found in Sec. III.
Furthermore, after the result found in Sec. IV for the stiff

matter dominated universe, where there is no entanglement

at all, the comparison with other methodologies (see,
e.g., [34,35]) could be an interesting avenue for further
research, since it seems to be a fast way to check the mutual
consistency of the models.
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