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We continue the study of supersymmetric domain wall solutions in six-dimensional maximal gauged
supergravity. We first give a classification of viable gauge groups with the embedding tensor in 57, 5+3,
107!, 2475, and 453 representations of the off-shell symmetry GL(5) c SO(5,5). We determine an
explicit form of the embedding tensor for gauge groups arising from each representation together with some
examples of possible combinations among them. All of the resulting gauge groups are of a non-semisimple
type with Abelian factors and translational groups of different dimensions. We find %— and %—supersymmetﬁ'c
domain walls with SO(2) symmetry in SO(2) X R® and SO(2) X R® gauge groups from the embedding
tensor in 247> representation and in CSO(2,0,2) X R*, CS0O(2,0,2) X R2, and CSO(2.0,1) X R*
gauge groups with the embedding tensor in 453 representations. These gauge groups are parametrized by a
traceless matrix and electrically and magnetically embedded in SO(5,5) global symmetry, respectively.
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I. INTRODUCTION

Domain wall solutions in gauged supergravities play an
important role in high-energy physics. In the AdS/CFT
correspondence [1-3] and a generalization to nonconformal
field theories called the DW/QFT correspondence [4-7],
these solutions give holographic descriptions of RG flows
in the dual conformal and nonconformal field theories at
strong coupling, see for example [8—13]. Domain walls are
also useful in studying cosmology [14-17], see also [18]
for a recent result. Most of the solutions are supersym-
metric and have been found within the framework of
gauged supergravities in various dimensions, see [19-37]
for an incomplete list.

In this paper, we are interested in supersymmetric
domain walls from the maximal N = (2,2) gauged super-
gravity in six dimensions constructed in [38], see [39] for
an earlier result. The result of [38] describes the most
general gaugings of N = (2,2) supergravity in six dimen-
sions using the embedding tensor formalism. The embed-
ding tensor lives in representation 144, of the global
symmetry SO(5,5) and determines a viable gauge group
Gy C SO(5,5). In general, there are a large number of
possible gauge groups. In this work, we will consider only
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gauge groups classified under GL(5) € SO(5,5) which is
an off-shell symmetry of the N = (2,2) supergravity
Lagrangian in a particular symplectic frame.

We will study various possible gaugings and explicitly
construct the corresponding embedding tensors for the
resulting gauge groups. We will also look for supersym-
metric domain wall solutions. According to the DW/QFT
correspondence, these solutions are dual to maximally
supersymmetric Yang-Mills theory (SYM) in five dimen-
sions which recently plays an important role in studying
dynamics of (conformal) field theories in higher and
lower dimensions via a number of dualities, see for
example [40—45]. The five-dimensional SYM could be
used to define N = (2,0) superconformal field theory
(SCFT) in six dimensions compactified on S'. Since the
latter is well-known to describe dynamics of strongly
coupled theory on M5-branes, we expect that supersym-
metric domain walls of the maximal gauged supergravity in
six dimensions could be useful in studying various aspects
of the maximal SYM in five dimensions as well as six-
dimensional SCFT and physics of MS5-branes at strong
coupling. In addition, five-dimensional maximal SYM and
compactifications on S' and S can lead to some insights to
S-duality of twisted gauge theories in four dimensions and
monopoles in Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory. Therefore, the resulting domain walls could also be
useful in this context as well. However, it should be pointed
out that all gaugings classified here currently have no known
higher dimensional origins.

Since N =4 superconformal symmetry in five
dimensions does not exist [46], see also a recent classi-
fication of maximally supersymmetric AdS vacua given in
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[47], there is no AdS¢/CFTs duality with 32 supercharges.
Accordingly, supersymmetric domain walls in N = (2, 2)
gauged supergravity are expected to play a prominent role
in holographic study in this case. A domain wall solution
with SO(5) symmetry in SO(5) gauging has been found in
[39] with the holographic interpretation given in [48,49].
Moreover, a large number of domain wall solutions has
been given recently in [25] with various gauge groups
obtained from the embedding tensor in 15~! and 407!
representations of GL(5). We will extend this investigation
by considering the embedding tensor in other representa-
tions of GL(5). These are given by 5+7, 573, 107!, 247,
and 45" representations. It turns out that most of the
resulting gauge groups are of non-semisimple type
without any compact subgroup. Due to the complexity
of working with the full 25-dimensional scalar manifold
SO(5,5)/S0(5) x SO(5), we mainly follow the method
introduced in [50] to reduce the number of scalar fields to
make the analysis more traceable. However, this approach
requires the existence of a nontrivial symmetry Hy C G. In
many of the gaugings classified here, the residual H|, is
absent, so there are too many scalars to take into account.
Accordingly, we will give domain wall solutions only for
gauge groups with at least SO(2) subgroup. As in [25],
there exist both - and I-supersymmetric domain wall
solutions in accord with the general classification of
supersymmetric domain walls given in [37].

The paper is organized as follows. In Sec. II, we briefly
review the construction of six-dimensional maximal
gauged supergravity in the embedding tensor formalism.
Gaugings in 517,573, 107!, 2475, and 453 representations
of GL(5) are classified in Sec. III. In Sec. IV, we explicitly
construct a number of supersymmetric domain wall sol-
utions. Conclusions and discussions are given in Sec. V,
and useful formulas are given in the Appendix.

II. N=(2,2) GAUGED SUPERGRAVITY IN
SIX DIMENSIONS

We first give a review of six-dimensional N = (2,2)
gauged supergravity in the embedding tensor formalism
constructed in [38]. We will mainly collect relevant for-
mulas for constructing the embedding tensor in order to
classify various gauge groups and find supersymmetric
domain wall solutions. For more details, the reader is
referred to the original construction in [38].

There is only one supermultiplet in N = (2,2) super-
symmetry in six dimensions, the graviton supermultiplet,
with the following field content

(eZ7 Bﬂpm? Aﬁ, VAad’ l//Jr;mv l//—;u'zv)(Jru('u){—il{l)' (1)

We note here all the conventions used throughout the paper.
These mostly follow those used in [38]. Curved and flat
space-time indices are respectively denoted by u,v, ... =

0,1,....,5 and f@,0,...=0,1,...,5. Lower and upper
m,n,...=1,...,5 indices label fundamental and anti-
fundamental representations of GL(5) € SO(5,5), respec-
tively. Indices A, B, ... = 1, ..., 16 describe Majorana-Weyl
spinors of the SO(35, 5) duality symmetry. We also note that
the electric two-form potentials B,,,,, appearing in the
ungauged Lagrangian, transform as 5 under GL(5) while
the vector fields A4 transform as 16, under SO(5,5).
Together with the magnetic duals B,," transforming in 5
representation of GL(5), the electric two-forms B,,,,, trans-
form in a vector representation 10 of the full global
symmetry group SO(5, 5) denoted by B,y = (Bym» B™)-
Therefore, only the subgroup GL(5) C SO(5,5) is a mani-
fest off-shell symmetry of the theory. Indices M, N, ... =
1,...,10 denote fundamental or vector representation of
SO(5,5). Finally, there are 25 scalar fields parametrizing the
coset space SO(5,5)/SO(5) x SO(5).

Fermionic fields, transforming under the local SO(5) x
SO(5) symmetry, are symplectic Majorana-Weyl (SMW)
spinors. Indices «,... =1,...,4 and a,... = i, ,4 are
respectively two sets of SO(5) spinor indices in
SO(5) x SO(5). Similarly, vector indices of the two SO(5)

factors are denoted by a, ... = 1,...,5and 4, ... = i, .55,
We use = to indicate space-time chiralities of the spinors.
Under the local SO(5) x SO(5) symmetry, the two sets of
gravitini y,, and y_, transform as (4, 1) and (1, 4) while
the spin-% fields v, ., and y_;, transform as (5, 4) and (4, 5),
respectively.

In chiral spinor representation, the coset manifold
SO(5.5)/S0O(5) x SO(5) is described by a coset repre-

sentative V4% transforming under the global SO(5, 5) and

local SO(5) x SO(5) symmetries by left and right multi-
plications, respectively. The inverse elements (V=") ;# will
be denoted by VAab satisfying the relations

V,PVE =85 and VVA =818 (2)
On the other hand, in vector representation, the coset
representative is given by a 10 x 10 matrix V)4 =
(V. Vy®) with A = (a,a). This is related to the coset
representative in chiral spinor representation by the follow-
ing relations

1 . .
Vu' = 6 VATy) ag (r) VP (3)

. 1 ; @y
VMa = - 1_6 VAaa (FM>AB (ya)m_l/)’ﬂ VBﬂﬂ (4)
N

aa

In these equations, (I'y;),z and (Fé)ad/’/’ = ((14)

(74)aa™”) are respectively SO(5,5) gamma matrices in non-
diagonal 77,,, and diagonal 7,  bases.

The inverse will be denoted by
following relations

YMA gatisfying the
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VMuvMb — (Sab’ VM&VME — 5&1;’ VMaVMiz =0
(5)
and
VMaVNa - VMdVNa - 5% (6)

In these equations, we have explicitly raised the
SO(5) x SO(5) vector index A = (a,a) resulting in a
minus sign in Eq. (6).

The most general gaugings of six-dimensional N = (2, 2)
supergravity are described by the embedding tensor ®,MV
leading to the following covariant derivative

Dl‘ = 8” - gAﬁ@AMNtMN (7)

where g is a gauge coupling constant. The embedding tensor
identifies generators X, = ©,MN¢t),\ of the gauge group
Gy C SO(5,5) with particular linear combinations of the
SO(5,5) generators tyy. Supersymmetry requires the
embedding tensor to transform as 144, representation of
SO(5,5). Accordingly, ®,MN can be parametrized in terms
of a vector-spinor #*M of SO(5,5) as

0, = _HB[M(FN])BA = (FW@N])A (8)
with M subject to the constraint
(FM)ABHBM =0. 9)

The SO(5, 5) generators in vector and spinor representations
can be chosen as

(tun)p? = 4’7P[M51%] and  (tyy)® = (Tuw)a®  (10)

with 17,y being the off-diagonal SO(5, 5) invariant tensor
given by

0 Ts
=pyMN = 11
NMun =N <1]5 O> ( )

and

(Can)a® = % [(Ca)A“(Tw) e = (Cn)a“(Ta) Pl (12)
We also note that the notation 1, denotes an n x n identity
matrix. (I'y),? are chirally projected SO(5,5) gamma
matrices.

The corresponding gauge generators in these represen-
tations then take the forms

(Xa)u™ = 2(Cy0V)4 +2(TN0y), and
(XA)BC - (FMGN)A(FMN)BC' (13)

Furthermore, consistency requires the gauge generators to
form a closed subalgebra of SO(3,5) implying the quad-
ratic constraint

[XAsXB] = _(XA)BCXC' (14)

In terms of @M, the quadratic constraint reduces to the
following two conditions

GAMQBNWMN =0, (15)
MBIV (TP, = 0. (16)

It follows that any 0¥ € 144, satisfying this quadratic
constraint defines a consistent gauging.

In this work, we are only interested in the classification
of gauge groups under GL(5) € SO(5,5) and domain wall
solutions which only involve the metric and scalar fields.
Therefore, we will, from now on, set all vector and tensor
fields to zero with the bosonic Lagrangian of the maximal
N = (2,2) gauged supergravity given by

1 |
e‘lﬁzzR—RPﬁ“P’;&—V. (17)
We also need supersymmetry transformations of fermionic
fields which, for vanishing fermions and vector/tensor
fields, are given by

g. .

5w+y(z = Dy€+a + ZyﬂTaﬁe_ﬁ’ (18)
_ 9o 18

51//—;4('1 - Dye—[l - Zy;tT a€+p> (19)

1 NN 9 ra
5)(4»11& :ZP’;&}//I (7/ )d/}e_ﬁ +2g(Ta)ﬁix€+/i' _ET fl(ya)aﬂeJr/)’»
(20)

I, . - g,. . -
5)(—&{1 = szdyll (ya)aﬂ€+/5 + 2g(T&)(zﬂ€—ﬁ +§Taa(yil &ﬂe—ﬁ'
(21)

The covariant derivatives of supersymmetry parameters,
€., and e_;, are defined by

1 .
Dﬂ€+a = aﬂ€+a + Zwﬂypyvp€+a + Z Qﬂb (yab)aﬁeJrﬁ’ (22)

1 R 1 .. ;
Dﬂe—a't = aye—o't + Zwyw)yupe—d + Z sz(yl‘liy)dﬂe—/j (23)
with 7, = efﬁ;?ﬁ. 7, are space-time gamma matrices, and for
simplicity, we will suppress space-time spinor indices.

The scalar vielbein P;* and SO(5) x SO(5) composite
connections, Q% and Q4”, are given by
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| NG
Pﬁg _ Z (]/a)(l/}(ya){lﬁVA(zilaﬂ VA/J/.J’ (24)
1 L.
= LIV (9)
o1 Linaf
ab _— —Q"ﬂ(y“b)( f VAa('la,uVAﬂ/.f' (26)

o8

In these equations, Q% and Q% are the USp(4) symplectic
forms that satisfy the following relations

Qe =—Qup. QP =(Qup)". QuQ¥r=-6, (27)

and similarly for Q, ;. We will use the explicit form of €4
and Q, ; given by

Qaﬁ = Qd/.)' = ]]2 ® iO'2. (28)

We also note that the definitions (24), (25), and (26) can be
derived from the following relation

| 1
VAa('laﬂ VAﬂﬂ = sza (yu)aﬂ(yil)dﬁ + ZQZb (yub)aﬁgdﬁ
1 .
+ ZQZanﬁ(yal;)&[}" (29)

The scalar potential is given by

2
g a aa
V= E gAMeBNVM VNb [VA (}/a)(lﬂ(yb)ﬂyVBy&]

gz . .
= LT T = 2T, ) (30)

with the T-tensors defined by

(Ta)ad — VMaGAMVAad, (Til)aiz — _VMdGAMVAao't

(31)
and
T = () = ~(T . (2)
III. GAUGINGS OF N=(2,2)
SUPERGRAVITY UNDER GL(5)
In this section, we consider gaugings under

GL(5) € SO(5,5). The embedding tensor &M in 144,
representation of SO(5,5) decomposes under GL(5) as

144, 5553 @57 107 @15 ' 24540 @457,
(33)

The SO(5,5) spinor representation decomposes as

16, - 57 @107 @ 1. (34)

Accordingly, the gauge generators can be written in terms
of X", X,,,» and X, denoting respectively 53, 10!, and
17 as

Xy = Ty X" + T X + T X (35)

The decomposition matrices T,,,, T}", and T4, are given in
the Appendix.
By the decomposition of SO(5,5) vector representation

10 - 572 @ 572, (36)
we can write the embedding tensor as
oM = (94", 94). (37)

The two components #4" and @, contain the following
irreducible GL(5) representations

057 9107 @245 9407, (38)
0453 57 @107 @157 @45, (39)

As pointed out in [38], gaugings triggered by 04" are called
electric gaugings in the sense that only electric two-forms
participate in the gauged theory while gaugings triggered by
@}, are called magnetic gaugings involving magnetic two-
forms together with additional three-form tensor fields. The
decompositions in (38) and (39) imply that gaugings in
24 407" and 517 @ 15~ @ 453 representations are
respectively purely electric and purely magnetic while those
in 573 @ 107! representations correspond to dyonic gaug-
ings. Many possible dyonic gaugings can also arise from
combinations of various electric and magnetic components.
Finally, we note that the quadratic constraint (15) is
automatically satisfied for purely electric or purely magnetic
gaugings that involve only 4" or 64 components.

In accord with (38) and (39), we can parametrize the
embedding tensor as, see [25] for more detail,

1
HAm — 'ﬂ'AnSnm + 'ﬂ'zl;\p (Unp,m + 3\/§€mnpqrzqr>
2V2
2 TAJ™, (40)
5
Oy = T (Yo + Zu) + Thp (Wil + J80) + TAK,,.
(41)
Matrices T4™, T4, and T4 are inverses of the decom-

position matrices T,,, 14", and T,, given by complex
conjugations, T4 = (T,)~! = (T,)*.
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TABLE I. Gauge couplings between the sixteen vector fields
and SO(5,5) generators from various GL(5) components of the
embedding tensor.

®AMN 1_0—4 10 240 10+4
573 5+7 53 (5+45)"3 (10 + 40)~"
107 (5+45* 107" (10 + 15 + 40)"" 2475
1+ 10~ 245

We now look at various components in more detail. The
first representation 247> is described by a traceless 5 x 5
matrix S,” with §,,” = 0. The tensor U"?"" = ylwlm
satisfying U"7"] = 0 corresponds to 40~ representation.
The symmetric tensor Y,,, = ¥ ,,,) and antisymmetric one
Zyun = Zjyy respectively denote 157! and 107" represen-
tations. The 45" representation is written as the tensor

L satisfying W22 = 0. Finally, the last two 5+3
and 5%7 representations are parametrized by two GL(5)
vectors J” and K,,, respectively. The general structure of
gaugings under GL(5) € SO(5,5) is shown in Table I
taken from [38]. The left column represents the sixteen
vector fields in GL(5) representations while the top row
corresponds to the decomposition of SO(5,5) generators
under GL(5). The table shows the couplings between
SO(5,5) generators and vector fields by various compo-
nents of the embedding tensor.

The gaugings from the components 15~ and 40! have
been extensively studied in [25]. In the present work, we
will focus on the remaining representations and examples
of possible combinations shown in Table I. In the follow-
ing, we will determine an explicit form of the aforemen-
tioned GL(5) tensors by imposing the quadratic constraints
(15) and (16) on the embedding tensor under consideration.

A. Gaugings in 245 representation

We begin with gauge groups arising from the embedding
tensor in 247> representation. Gaugings in this representa-
tion are purely electric and triggered by

oA = TAnS,m, (42)

With @4, =0, the embedding tensor #4¥ = (T4"S,™, 0)
automatically satisfies the quadratic constraint. Therefore,
every traceless 5 x 5 matrix §,,” defines a viable gauge
group generated by the following gauge generators

X, = _\/ESmnTmn-
(43)

X"=0, Xun=S8u"8pn=51"S pm>

7", are SL(5) generators defined as

1
Tmn = tmn - _dazl (44)
5
with 7", = 0 and
d=t", =t ++ 5+, + 65 (45)

being the SO(1, 1) ~ R generatorin GL(5) ~ R x SL(5).
We also use s,,, =t,, to denote the generators corres-
ponding to shift symmetries on the scalar fields, see more
detail in the Appendix.

Commutation relations between the gauge generators
read

Ky Xpgl =0 and  [Xp, X.] = (X.),nP1X (46)

mn X pq
where the generators with two antisymmetric pairs of
GL(5) vector indices are defined as

(XA)mnpq = 2(XA>[m[péﬁ (47)
From Eq. (46), we readily see that the generators X,,, form
a translational group and transform nontrivially under a
one-dimensional group generated by X,, a particular linear
combination of SL(5) generators.
In vector or fundamental representation of SL(5), X,
generator takes the form

(X*)mn = _2\/§Smn' (48)

If S, is antisymmetric, X, will also be antisymmetric and
generates a compact SO(2) group. On the other hand, for
symmetric S,,”, X, generates a noncompact SO(I1,1)
group. The resulting gauge groups then take the form of
SO2) X R" and SO(1,1) X R" (49)
for 3 < n < 10. The values of n depend on the choices of
S,". It has been pointed out in [38] that this type of
gaugings is related to Scherk-Schwarz reductions from
seven-dimensional gauged supergravity, and gaugings in
247! representation correspond to choosing a generator
from the seven-dimensional symmetry group SL(5), see
also [51] for a general discussion on Scherk-Schwarz
reductions and gauged supergravities.
We end this case by giving an explicit example with X,
antisymmetric. By choosing

0 « 0 0 O
-« 0 0 0 O
S,*=1 0 0 0 0 0 |, (50)
0 0 0 0 -4
0 00 2 O
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we find the following nonvanishing gauge generators

Xix = Sijij - Sxysyiv X3 = S,JS]-3, Xy = Sxysy37

X, = —V2(kt'y — k12| — Mts + A7%y) (51)

in which i, j =1, 2 and x, y = 4, 5. It can be straightfor-
wardly verified that these gauge generators satisfy the
commutation relations given in (46). The resulting gauge
group is of the form

Go = 50(2) X R} (52)

in which SO(2) is generated by X,, and the shift transla-
tional group R is generated by X,,, X;3, and X 5.

B. Gaugings in 45*3 representation

We now consider the embedding tensor in 45 repre-
sentation. Gaugings in this case are purely magnetic and
related to reductions of eleven-dimensional supergravity on
twisted tori as pointed out in [38]. The linear constraint (9)
and the quadratic constraint (15) are both satisfied if we
parametrize the embedding tensor as

M = (0, T, Wol). (53)
In terms of W, the constraint (16) reduces to

mnyx7P4q —
wr W[S Edmnpg =

0. (54)
As noted in [38], this constraint is the duality of a similar
condition in gaugings from 407! representation
umrurtie,, . = 0), considered in [25]. To solve this
condition, we then follow the same procedure as in 40!
representation. We first write W, in the form of

WP =20y, P (55)

and impose the condition u,,” = 0 in order to satisfy the
traceless condition W = 0. This form of W,/ is sufficient
to solve the condition (54).

To give an explicit example, we will choose a basis in
which v = 6 and us™ = u,,’° = 0. As a result, consistent
gaugings satisfying the linear and quadratic constraints in
453 representation are now parametrized by a traceless
4 x 4 matrix u;/ with i,j=1,....4 and u;,/ = 0. In this
case, the gauge generators turn out to be X, = X;5 = 0 and
the remaining nonvanishing generators given by

Xij:\/igijklumkhlm’ Xi:—2uki1'k5, X5:2ukj1'kj.
(56)

We recall that A" = ™" are SO(S5, 5) generators associated
with the hidden symmetries that do not constitute

symmetries of the action. Commutation relations between
the gauge generators read

[Xijs Xu] = [Xy, X = [X', X/] = 0,

(X, X)) = (X)X, X, X' = (X)X (57)
As seen from these relations, X;; generate a six-dimen-
sional translational group RY associated with the hidden
symmetries while X’ generate another translational group
R* commuting with RY. The X> generator takes the same
form as X, in 24~! representation. We can similarly use the
unbroken SL(4) symmetry to fix u;/ in the form of

0 « O 0
. +x 0 O 0
u = (58)
0o 0 0 -1
0 0 24 O

With this explicit form of u;/, nonvanishing gauge gen-
erators are now given by

X5z = —V 255655 (upBF — uTh7), Xi = —2uyitks,
X° =2(kt!y, £ xt? — 17, F rty) (59)
where i = (i,x) with 7,j,... =1, 2 and %,y,... =3, 4.

Therefore, for arbitrary values of k and 4, the corresponding
gauge groups are given by

Gp=SO0(1,1) X (R* xR}) ~CSO(1,1,2) X R} (60)
or
Gy = SO(2) X (R* xR}) ~CSO(2,0,2) X R;  (61)

depending on the choices of the signs for x and 4, making
u;/ in (58) respectively symmetric or antisymmetric.

C. Gaugings in 5*7 representation

In this section, we look at the smallest representation
giving rise to purely magnetic gaugings. With 04" = 0, we
parametrize the embedding tensor, in this case, by a GL(5)
vector K,, as

Gaugings triggered by 6™ = (0,T4K,,) automatically
satisfy the linear and quadratic constraints. As pointed
out in [38], these gaugings might correspond to reductions
from eleven dimensions with nontrivial four-form fluxes.

Only gauge generators X are nonvanishing in this
representation. They are explicitly given in terms of the
generators of the hidden symmetry by
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X" = 5V2K,h". (63)
These generators commute with each other
(X", X"] = 0. (64)

However, due to the antisymmetric property of A", the
gauge generators satisfy the condition K,,X™ = 0.
Therefore, only four generators are linearly independent.
The resulting gauge group in 5% representation is then
given by a four-dimensional translational group Ri asso-
ciated with the hidden symmetries.

To explicitly parametrize this [Rﬁ gauge group, we will
use the SL(5) symmetry to fix K,, = &, with k € R. In
this case, the gauge group is generated by

X' = 5\ 2kh5 (65)
fori=1, 2, 3, 4.

D. Gaugings in 5*3 representation

We now consider dyonic gaugings involving both
electric and magnetic components of the embedding tensor.
We begin with gaugings in 53 representation. The embed-
ding tensor in this representation, satisfying the linear
constraint (9), is given by 0¥ = (4™, 94 with

TA/™ and 04 = TA,Js0. (66)

This form of the embedding tensor automatically satisfies
the quadratic constraints given in (15) and (16). Therefore,
any vectors J" define consistent gaugings in 53
representation.

In this case, we find nonvanishing gauge generators
given by

m n en 8 m 1 r
X" =3J"t n+§J d and X, = —ﬁsmnl,q,ﬂ’hq
(67)
with the following commutation relations
[an,qu] =0, [vaan] = <Xm)npquqrv
[xm, X" = 3(xm) "xe. (68)

To write down the explicit form of gauge generators, we
can use SL(5) symmetry to fix J” = k62 as in the previous
case. With this choice, nonvanishing gauge generators are
given by

K
ki
& jklh )

ij:_\/i

X =«(t' + 7% + 75 + 14 + 475) (69)

X X' = 3xt's,

with i, j,... = 1,...,4. In vector representation of SL(5),
the generator X takes the form

(X3)," = 2xdiag(1,1,1,1,4). (70)

Commutation relations between these gauge generators
become

(Xij Xu] = X', X7 = [X', X ] =0,
(X2, X = =3(X°),'X/, X7, X3 = (X)X (71)

These imply the gauge group of the form
Go=SO0(1,1) X (R* x R) ~CSO(1,1,2) X RS (72)

in which the noncompact factor SO(1,1) is generated
by X°.

E. Gaugings in 10~! representation

In addition to gaugings from 53 representation, gaug-
ings in 10~ representation also require both 64" and 6%,
to be nonvanishing in order to satisfy the linear constraint.
Thus, gaugings in this representation are dyonic and
triggered by

1
aAm -
3v2

with Z,,, = Z,,. With this embedding tensor, the quad-
ratic constraints in (15) and (16) reduce to

TA,e"PZ, and 04 =T*Z,, (73)

ZynZ pg€""P1" = 0. (74)

As pointed in [38], this condition can be solved by Z,,, of
the form

Zpp = U Up) (75)

with u,, and v, being arbitrary GL(5) vectors.
In this case, the corresponding gauge generators are
given by

X, =— Zu[mvn]hm", (76)

V2
X" = —Tem””q’u[nvp]s (77)

qr>

4
an = (M[ml)p]’l'pn - u[nvp]rpm) =+ _u[mvn]d (78)

5

[OSAIE
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with the commutation relations

[wam] [ m Xn] —
[an’X ] ( ) *7 [Xm ] - 2( ) qu’
Ko Xpa) = 11 = () X (79)

To determine the explicit form of possible gauge groups,
we repeat the same procedure as in the previous cases by
considering a particular parametrization of the two vectors
u, and v,, in the form of

=(0,0,0,xy,k,) and w, =(0,0,0,4;,4,). (80)

The gauge generators in this case become

X, = \/5(}(2/11 - K]ﬂz)h%, (81)
X' = T<K2/11 - K1/12)€l]ksjk, (82)
1 :
Xiy = 6 (uyvy — uw,)e%;, (83)
1 A 5 12
X5 = € (k1A —kady) | Tha + 705 + ?d (84)

with m = (i,x) for i,j,... =1, 2, 3 and x,y,... =4, 5.
The commutation relations read

(X X = [X.. X;] = [X'. X] = [X". X,] = [Xir. X ] =0,
[X45, ] (X45),’X [X457 ]:—2(X45) X7,
X Xudl =3 (X)X (55)

giving rise to the gauge group of the form

Gy = SO(1,1) X (R® x R} x R;,)
~CSO(1,1,3) X (R} x Ry). (86)

The noncompact subgroup SO(1,1) is generated by the
gauge generator X5 whose explicit form in GL(5) vector
representation is given by

1 .
(Xas)w" = 3 (k1dy — ko4 )diag(2,2,2,3,3).  (87)

The three commuting translational groups R®, R3, and R,

are respectively generated by X;,, X', and X,.

F. Gaugings in (5+45)*3

We now consider dyonic gaugings arising from combin-
ing two components of the embedding tensor in 53 and
4573 representations. These gaugings are also dyonic since
the embedding tensor in 53 representation contains both

representation

electric and magnetic parts. The linear constraint (9)
requires these components to take the form

2
Am — \[vAJm and 64 =T4,(JS + Wiy, (88)
This is just a trivial combination between the embedding
tensor from each representation given in (53) and (66).
With this form of the embedding tensor, the quadratic

constraints (15) and (16) become

wanjr =0, (89)
r 3 r
Wi Wisepiarst 5 Wit €npgrs = 0. (90)

To solve these conditions, we first fix the explicit form of
the GL(5) vector J” = k62 with k € R, leading to a split of
a GL(5) index m = (i,5) with i,j,... =1, 2, 3, 4 as in
Sec. [II D. With J” of this form, the condition (89) implies
Wi = 0, so only Wff and st are nonvanishing. Note also
that the condition W} =0 imposes a traceless condi-
tion W;.j =0. B

With only WY/, W;S, and J° =k nonvanishing, the
condition (90) splits into

Wi‘dw;nngklmn = 07 (91)

3
2WIWES + WEWI e + 5 KWie g, = 0. (92)

li 2
The first condition takes the same form as the quadratic
constraint (54) in 453 representation and can be similarly
solved by choosing

W = 20w,/ (93)

with a GL(4) vector v' and a traceless 4 x 4 matrix w;/.

At this point, we can further use SL(4) C GL(5)
symmetry to rotate v’ such that o' = A8;. We will also
split the index i = (x,4) with x =1, 2, 3. Moreover, the
traceless condition W’ = 0 requires that w,’ = 0. For
simplicity, we will also set w;* = 0 since these components
do not appear in the resulting embedding tensor. The
remaining components w,” can be described by a traceless
3 x 3 matrix satisfying w,* = 0. Among various compo-
nents of Wij = (W2, Wf{, 4") only the last components
are nonvanishing and given by

WY = aw,. (94)
With all these, the condition (92) splits into

IWPw e, =0, (95)

3
2[thWf;‘ + Wawy e + = 0. (96)

2

watgyzt =
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The first condition can be solved by setting W3> = 0. The
remaining component W"5 can be written in terms of a
3 X 3 matrix u,”* as st = zu,* with 7 € R. The condition
(96) then gives rise to

and quadratic constraints. Therefore, this vector is

unconstrained.
With all these, nonvanishing gauge generators are given by

X,y = V2e,,.(Aw/ R — v,k —2kh*),  (99)
21[<Wxtuya + Wytuxa)ezta - (Wxtuza + Wztuxa)gyta} ’
+ 3kw, e, = 0. 97
v ( ) XxS = _7wxy€yzthnv (100)
With the Schouten identity, wy,'e, ., = 0, this condition can V2
be solved if and only if z=—% and u,” = 6. In con-
clusion, the quadratic constraint determines the embedding X' = Akt's — 20w, Ty, (101)
tensor (88) in terms of J™ and W}" given by
. . X4 = 2dw 15, + 20,75, 102
Jm=xsn,  WI—wi=—wP=—wg =0, ! ’ (102)
Yy _ y Sx — _ T ¢ 45 _ 2
W =dwl, W 5>” We=uv.  (98) X0 = dic(thy + s+ 2d) — 20,25 (103)
5
We note that W% written in terms of a three-dimensional
vector v, in the last relation do not appear in the linear  with the following commutation relations
|
[XX}’XU} = [ xy» ] = [XXS’X}'S] = [Xx’Xy] = [XX’XyS] = O’
(X, X,] = 16k X 35, (X4, X = (X*)," X,
[X4’Xx5} = ( ) erS’ [X4’Xxy] = _(X4)nyth + 81}[ny]57
(X3, X*] = —8kX*, [X°,X,s] =0,
(X3 Xyy] = 8kX,,, (X4, X3] = 40, X" (104)

We find that the only possible compact subgroup is SO(2)
generated by the gauge generator X* with w ¥ antisymmetric
for any value of v,. If the matrix w,” is symmetric, the
generator X* gives a noncompact SO(1,1) group. For
simplicity, we will set v, =0 and restrict ourselves
to the compact SO(2) case since we are mainly interested
in domain wall solutions preserving some symmetry. For
definiteness, we choose the matrix w,” to be

0 0
wo =1 -0 0 (105)
0
0 42 0 0 O
-4 0 0 0 O
xH, =] o 0o 00 o
0 0 0 0 0
0 0 0 0 0

with ¢ € R. Together with v, = 0, the above gauge gen-
erators reduce to

Xp = =2V 2kh3*, Xu = —\/_s--(ﬂwv-vhZS 2xh’),
= —V2w; ey :h, X* = 4xtts — 20w 7,
x5 5 y
X3 = dktis, =2o(t', — %)),

2
X3 :4K<1’44+TS5 +§d> (106)

with x = (%,3),x =1, 2.
In vector representation, we can explicitly see that X*
and X° are antisymmetric and symmetric

000 0 0
000 0 0

x,"=]0 0 0 0 0 (107)
000 8 0
000 0 8

generating SO(2) and SO(1, 1) subgroups, respectively. The gauge generators satisfy the following commutation relations
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[ xy» zt] [ xys ] = [X)?SvXS)S] = [Xx’Xy} = [XxvxyS} =0,
(X', X15] = X2]5, [X*, X55] =0,
[ X53] = —8kXss, [X3,X12} =0,
[X“,X =X, [X4X]=0,
[X4’ 3] = _(X4)x3y X}3 [X4’X12] =0,
(X%, X55] = =(X*): X35
(X3, X¥] = —8kX~, [XS, X:s] =0,
(X5, X,y] = 8kX,,, [X*, X3 = 0. (108)
From these relations, we see that (X* X;s) and Y, = diag(l,...,1,-1,...,-1,0,...,0)  (113)
(X3, X3, X,,) form two commuting non-semisimple groups ; y v

ISO(2) and ISO(1, 1), respectively. The remaining gen-
erators (X*, X3;) generate a four-dimensional translational
group transforming nontrivially under /1SO(2) x ISO(1,1).
The gauge group is then given by

Gy = (ISO(2) x ISO(1,1)) X R*. (109)

For a simpler case of 4 = 0, the nonvanishing compo-
nents WS)‘ still generate a nontrivial subgroup. In this case,
we find X* = X35 = 0 giving rise to the following gauge
group

SO(1,1) X (R? x R}). (110)
The three factors SO(1,1), R3, and R} are respectively
generated by X>, Xy, and X*. We also note that another
possibility of setting k = 0 is not possible since this choice
leads to vanishing J".

G. Gaugings in (10+15)"

For gaugings with the embedding tensor in (10 + 15)~!
representation, there are both electric and magnetic com-
ponents #4™ and @4, given by

1 representation

m__'ﬂ'A
o Vi

nlnpqrzqr and 9;?1 = —I]—An(Ynm + an)-

(111)

We recall that Y, = Y,y and Z,,,,,
and antisymmetric tensors corresponding to 157! and 10!
representations, respectively. In terms of Y,,,,, and Z,,,,,, the
quadratic constraints (15) and (16) reduce to

= Z|;y) are symmetric

ey, Z..=0 and "PUZ, 7, =0.

mq np&qr (112)

We can use the SL(5) € GL(5) symmetry to bring Y, to a
diagonal form

where p + g + r = 5. We will split the GL(5) index m =
(i,x) and Y,, into Y;; = diag(1,....1,~1,...,—1) with
Y,, = 0. Solving the first condition in (112) using (113),
we find only two possible solutions with both Y,,, and Z,,,
nonvanishing for ranks of Y,,, equal to 1 and 2.

1. Rank Y =2
With Y, = diag(1,4+1) for i,j,...=1, 2 and
X, y,...=3,4,5, only Z;, =k with k € R is allowed to

be nonvanishing. This automatically solves the other
condition in (112) and gives rise to the following gauge
generators

X, = —V2xh'?, (114)
2
X¥ = —gke"ﬂsﬂ, (115)
X, =2Y 7/ 2 J 116
ix = [Ty —g’“?j[if ] (116)
i Ko 2 4
X12:2Yi[11'2]+§(’l'1+’l' 2)+§Kd (117)

Commutation relations between these generators are
given by

(X X = X X = X5 X0 = (X, X | = [Xi. X (3] =0,
1

[XIZ’X*}:E(XIZ)mmX*’ [Xlz,Xx]:_2(X12)yXXy7

[XIZinx}:_(Xlz)ikxjx_z(xl2)xyxiy' (118)

The generators X,, X*, and X;, generate three transla-
tional groups Ry, R3, and RS commuting with each other.
For Y;; = diag(1, —1), the generator X/, can only generate
a noncompact SO(1, 1) group giving rise to the following
gauge group
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Gy = SO(1,1) X (R® x R} x R;,)

~CSO(1,1,3) X (R3 x Ry,). (119)

For Y;; = 6;;, X, can become compact SO(2), noncom-
pact SO(] 1), or nilpotent generators depending on the

3 X

5 12
is nilpotent and will be denoted by 7 resulting in
7 X (R® x R} x R,,) gauge group. For —\/g <K< \/é

andK<—\/§or1<>

noncompact. Accordingly, the corresponding gauge group
is given by

values of k. For particular values of x = +

%, X, is respectively compact and

Go=S50(2) X (RO xR3 xR,,) ~CSO(2,0,3) X (R3 xRy,

(120)

or the gauge group given in (119).

2. Rank Y =1

In this case, we will choose only Y;; nonvanishing with
Y} =k = £1. All components Z,, with x, y =2, 3,4, 5
need to be zero in order to solve the quadratic constraint
(112). Therefore, only the remaining four components
Z,, = z, give rise to the following gauge generators

V2 2

7_\/§th]x7 XX:TE‘WUZ}'SZH Xxy:_gz[x‘[ly‘]’

1 4
Xlx:mlx+§(zyryx+zxrl1)+§zxd (121)
with the commutation relations

X X = [X, X = [X7.00] = [X7.X,.] = [Xy. X =0,
1 ! !
[Xlx’X*] :E(Xlx)mmx*’ {Xlx’Xy] :_2(X1x>ZyXZ’
1 m 4
[XLWXyZ] :§<X1x>yz Xtav [Xlxvxly] :_gz[xxy]l _ZKXxy'
(122)

To proceed further, we will choose 7z, =¢ and
73 = z4 = z5 = 0. The above gauge generators simplify to

—V20h'?, X' =l
1
Xox = _55715“ Xz = KTlx "’—CTZ;C,
1 1 2 1 4
X12:K12+§C(12+Tl)+§éd (123)

with X,¥,... =3, 4, 5. The corresponding commutation
relations read

X X = X Xiy] = X7, X5 = X%, X ] = X35, X55] =0,
1 i .
(X 12, X,]= 2<X12) "X (X2, X ==2(X10)5" X7,
1 2
[X12.X0z] = 5(X12)2x 7 Xoy, [X127X12]:§§X12_2KX2)?
(124)
withi,7,... = 1, 2.

We also note that the generator X, does not commute
with other generators. This generator generates an SO(1, 1)
group while the remaining generators form three commut-
ing translational groups. Accordingly, the resulting gauge
group is given by

Gy =SO(1,1) X (RS x R} x Ry,) (125)
in which the translational groups R®, R, and R, are
respectively generated by X;;, X, and X,.

H. Gaugings in (10+40)"~

We now move to the next case with the embedding tensor

in 10! and 40! representations. These two components
are labelled respectively by Z,, = Z,, and U™’ =

Ulmr with Ul = 0. The embedding tensor solving
the linear constraint (9) takes the form

1 representation

1
=T}, (U"P-m e Z > and ¢} =T"'Z
n 3\/2 qr m nm
(126)

The quadratic constraint (15) imposes the following
conditions

umrz,, =0, (127)
Pz, Zgr =0 (128)

while the other condition in (16) gives
3,grt U USP + 2022, U = 0. (129)

The condition (128) is similar to that given in the case of
10! representation. Therefore, we will use the same ansatz
for Z,,,, as given in (75). Moreover, as in Sec. Il E, we will
further fix each GL(5) vector in the ansatz Z,,,, = u,,v,) in

order to see the corresponding gauge group explicitly.
However, instead of using u,, = (k,k,0,0,0) and
Uy = (41,42,0,0,0), we equivalently set Z,, =k with
other components vanishing. The condition (128) is then
automatically satisfied while the condition (127) can be
solved if and only if

Ui = U»i = (.

Uzm = (130)
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We have split the GL(5) index as m = (i,x) with
i,j,...=1,2and x,y,... =3,4,5.

At this point, only U™ and U™ remain in terms of
which the last condition in (129) leads to

€1j€0a UMY UI** = 0, (131)

3618200 (UFSUMY 4 UIRYUY) 427,055 = 0. (132)

These conditions can be readily solved by setting U™ = 0.
This is very similar to gaugings from (15 +40)~! repre-
sentation with rank Y = 2 studied in [25]. Therefore, in
order to solve the quadratic constraints for gaugings in
(10 +40)~" representation, we are left with only the
following nonvanishing components

1
Z;; =ke; and UYWE = ——Wiy 2, 133
j j 2\/5 t ( )

We have parametrized the components U** in terms of a
traceless 3 x 3 matrix u,” with u,* = 0.
The corresponding gauge generators are given by

X, = —V2xh'?, (134)
1 2V2
X* — __zé.xyzuztsyl _ T\/_Kgxyzsyz’ (135)
X e 4 e 136
iv = 75 Eijl Ty+§K8ijT X0 (136)
1 K 4
X12 :Euxyfx}' —|—§(1,'22+1'11) +§Kd (137)

with the following commutation relations
[X*va] = [X*’Xix] = [XX’X)V] = {Xx’Xi}'] = {XiﬂXj)‘] :O’
1 ,
(X12.X,] :z(XIZ)mmX*’ (X2, X"]= (XIZ)yxX} —4KX*,

[XIZ’Xix]:_2(X12>ixjyxjy +4KXix- (138)

The gauge generator X, given in (137) generates either
SO(1,1) or SO(2) group for symmetric and antisymmetric
u,”, respectively. The corresponding gauge group is
given by

Gy = SO(1,1) X (R® x R} x R;,)

~CSO(1,1,3) X (R x R,,) (139)

or

Go=S50(2) X (RO xR3 xR;,) ~CSO(2,0,3) X (R3 xRy,
(140)

in which X;,, X*, and X, respectively generate the trans-
lational groups R®, R}, and R,,.

I. Gaugings in (10+15+40) ! representation

As a final example, we consider gaugings from
(10 + 15 + 40)! representation in which the embedding
tensor takes the form of

1
gAm — Tﬁp <Unp.m + ﬁemnpqrzqr> and

9‘3: = 'H'An(an + Ymn)' (141)
The quadratic constraints in (15) and (16) give
22
U™™4(3Z,py + ¥ pg) + ;—fsm”q” Y, Zes =0, (142)
V2
U™ (Z 4 3Y ) = T(SE, e”]q”’Zq,Zs, =0 (143)
together with
ynamy mnqrsy -z 1 yar-mystn
P4 te pg&rs 2\/§ ' Epgrst
1 Mmyr)gr
+3l@Uren — Uz, + a5y um Tz,
1
+—— (Mt — 550N Z .2, = 0. 144
% ﬁ( / pe" 12y L (144)

To solve these conditions, we repeat the same procedure as
in the previous case by setting all Z,,,, components to zero
except Z,, = k together with Y,,, = diag(1,-1,0,0,0).
With this choice together with the index splitting m = (i, x)
fori,j,...=1,2and x,y,... = 3,4, 5, we can solve all the
above conditions with all U™"? components vanishing
except

1
U= 5 e’ (145)

This is the same ansatz (133) as used in the previous case.
These lead to the gauge generators

X, = —V/2kh"2, (146)
X* = _72€xyzuztsyz - Tkgxyzsyz’ (147)
X, — Y. 1 Vi 1 J 148
0= jiTX_Eeijux Ty+§K€ijT X ( )
i Lver K2 ! :
X12=2Yi[11'2}+5”xTy+§<12+11)+§Kd (149)
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with the same commutation relations as given in (138). The
corresponding gauge group is again given by (139) or (140)
depending on the values of k and the form of u,” as in the
previous case. It could be useful to look for more
complicated solutions leading to new gauge groups.

IV. SUPERSYMMETRIC DOMAIN
WALL SOLUTIONS

In this section, we will find supersymmetric domain
wall solutions from six-dimensional gauged supergravities
constructed from the embedding tensors given in the
previous section. We begin with a general procedure of
finding supersymmetric domain walls. The analysis has
already been performed in [25], so we will only review
relevant formulas and refer to [25] for more detail. The
metric ansatz for domain wall solutions take the general
form of

dst = ey dx dx” + dr? (150)
with i, v =0,1,...,4.

We then consider an explicit parametrization of the scalar
fields in SO(5,5)/SO(5) x SO(5) coset space. These
scalars correspond to 25 noncompact generators of
SO(5,5) that decompose under GL(5) as

25-1+14+ 10 .
——

t'
ab

(151)

Smn

The generators i:i; are noncompact generators of GL(5)
defined as

i L

abh 7 (M MMY + MY MY Yy

(152)

where M, = (M,™,M;") is a transformation matrix
whose explicit form is given by

1 /15 1
M = —< >0 >
V2\15 ~1s
This matrix is used to relate the SO(5,5) metric in
nondiagonal (17,y) and diagonal (174 p) forms as

(153)

NMaB = MAMMQN”IMN (154)
with 4 g = diag(1,1,1,1,1,-1,-1,-1,-1,-1).
In accord with (151), we will denote all 25 scalar fields

as @I:{(p,¢l,,,,,¢14,gl,...,g10} with I:1,,25
The scalar ¢ is the dilaton corresponding to the

SO(1,1) generator

__ 7t 7+ ++ 2+ +
d=15+1;+i;+1, +15 (155)

This SO(1,1) ~R* symmetry is identified with the
SO(1,1) factor of GL(5) ~ SL(5) x SO(1,1). The other
fourteen linear combinations of generators i:l; correspond to

the fourteen scalar fields {¢, ..., ¢4} in the SL(5)/SO(5)
coset. The remaining ten scalars {¢, ..., 1o} correspond to
the shift generators s,,, and will be called shift scalars. By
this decomposition of the scalar fields, we can rewrite the
kinetic terms of the scalar fields in (17) and obtain the
following bosonic Lagrangian

eIL = %R - Gp,0,9'0r®’ -V (156)
with G;; being a symmetric scalar-dependent matrix.

In order to find supersymmetric domain wall solutions,
we consider first-order Bogomol’nyi-Prasad-Sommerfield
(BPS) equations derived from the supersymmetry trans-
formations of fermionic fields. We begin with the variations
of the gravitini from (18) and (19) which give

O i ATresq+ 30T ; =0, (157)

oW e A'fey - ggd TP, =0.  (158)
Throughout the paper, we use the notation ' to denote an
r-derivative. Multiply Eq. (157) by A’7, and use Eq. (158)
or vice-versa, we find the following consistency conditions

2 .
A28,) = —%QWTWQ T =Wl (159)

. 2 , . .
AP = —%Qwrmaﬁﬂ/f = W2%,P (160)

in which we have introduced the “superpotential” V. We
then obtain the BPS equations for the warped factor
Al =4W. (161)

With this result, Eqgs. (157) and (158) lead to the following
projectors on the Killing spinors

B g T

i}r€+(1 = - E Q{l/)’ 7 E_ﬁ, ?re—('l = 5 Qdﬁ 7 €ia-

(162)

It should be noted that these projectors are not independent.
The conditions éy,, = 0 and dy_,, = 0 will determine
the Killing spinors as functions of the radial coordinate r as
usual. We will give the corresponding expressions in
explicit solutions obtained in subsequent analyses.

Using the 7, projectors in &y, ., =0 and dy_;, =0
equations, we eventually obtain the BPS equations for
scalar fields of the form
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q)l/ =T 2GIJ aW

o (163)

in which G' is the inverse of the scalar metric G,;. In
addition, the scalar potential can also be written in terms of
W as

o OV OW >
V=2G 50! 9D SWe. (164)

We are now in a position to find explicit domain wall
solutions. As mentioned before, the complexity of working
with all 25 scalars prohibits any traceable analysis. We will
consider only solutions preserving a nontrivial residual
symmetry. The solutions invariant under this symmetry are
characterized by a smaller set of singlet scalars. Among the
gauge groups classified in the previous section, only five gauge
groups, SO(2) X R8, SO(2) X R®, CSO(2,0,2) X R*,
CS0(2,0,2) X R?, and CSO(2,0,1) X R*, contain a
compact SO(2) subgroup that can be used to reduce the
number of scalar fields and result in consistent sets of BPS
equations. Accordingly, in the following, we will consider
only domain wall solutions for these gauge groups. We should
also remark here that for (ISO(2) x ISO(1,1)) X R* and
CS0(2,0,3) X R* gauge groups given in (109), (120), and
(140), we are not able to find consistent sets of BPS equations.
The supersymmetry conditions from (8 .. 6y _,;) and
(0¥ yai» OX—iq) are not compatible with each other.
Therefore, we argue that no supersymmetric domain walls
with SO(2) symmetry exist in these gauge groups.

A. Supersymmetric domain walls from
SO(2) X R?® and SO(2) X R® gauge groups

We now consider supersymmetric domain walls from
SO(2) X R® and SO(2) X R® gauge groups with the
embedding tensor given in (42) and the traceless matrix
S,," in (50). We first consider SO(2) X R® gauge group.
There are five SO(2) singlet scalars corresponding to the
following noncompact generators commuting with X,

Y, =00 i it ] (165)
Y, =1+ -2, (166)

Yy =1+, - 205, (167)

Y, = s, (168)

Y5 = su5. (169)

It should be noted that the first noncompact generator
corresponds to the SO(1, 1) factor defined in (155). This
scalar is actually a singlet under the full compact subgroup
SO(5) € GL(5). The scalar field corresponding to this

generator will be called the dilaton ¢. Additionally, there

are two SL(5)/SO(5) scalars and two shift scalars invariant

under the SO(2) symmetry. These are associated with Y 3
and Y, s, respectively.

The coset representative can be written as

V = Y1t Yot Yst+6 Yot Ys (170)

Using this coset representative, we find that the scalar

potential vanishes identically, and only the dilaton appears
in the T-tensors which take the form of

(1) = meswsba(i’b)aﬁéﬁ,
L 1 L
(T4 = ——=e58;4(yP)ePse. (171)
2V2 “

In these equations, we have written S, = § bf’ =S,,". With
S,." given in (50), the T-tensors become

; 1
Ta/i — _eS(p yi 45\aff _ K 12\ap 5/3 172
7 (4(r*) (=)o  (172)
or explicitly
A+k 0 0 0
; 1 0 A—kK 0 0
T = —_ 50 (173)
2 0 0 A+kK 0
0 0 0 21—«

There are two possible superpotentials

and W, = —_e50(x — 1)

Wl — —ES(P(K_i_/I) 2\/§

(174)
Both of them give a valid superpotential in terms of which

the scalar potential can be written as (164) using the matrix
G" of the form

Lo oo B om

0 23_0 _110 35i _2%
G'=10 -L 3 el s (175)

oo 21448 0

B 0 1+4g3

for ® = {p, 1, P».¢1, ¢} with I = 1,2, 3,4, 5. It should
be noted that for 1 = 0, the two superpotentials are equal
leading to half-supersymmetric domain walls. For 4 # 0,
one choice of the superpotentials gives rise to %—BPS
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domain walls since only the supersymmetry along the
directions of this choice is unbroken.

We now consider the cases of A# +x and 1#0
corresponding to SO(2) X R® gauge group. In this case,
choosing one of the two superpotentials corresponds to
imposing an additional projector on the Killing spinors of
the form

YeL =€, or peL=—e, (176)
for W = W, or W = W,, respectively. Together with the
7, projector in (162), the resulting solutions will preserve
only eight supercharges or % of the original supersymmetry.
With all these, we obtain the following BPS equations

Al =—¢ :%ew(mz), (177)
¢, =5 =0, (178)

¢ =49'c) = —gV2e¥ (k£ A)gy. (179)
¢h = 49/cy = —gV2e (k £ Mgy (180)

It should be noted that although the superpotential does not
depend on ¢; and ¢,, there are nontrivial BPS equations for
these scalars due to the cross terms between these scalars
and the dilaton in G%.

The plus/minus signs in the BPS equations are correlated
with the plus/minus sign of the y* projector (176). The
solution is given by

1 5
A=—p=-1 +1)-CJ, 181
o= | ) (1s1)
Clp=e* 4 gg (182)

for constants C and ggo% The remaining two scalars ¢; and

¢, are constant. It turns out that in this case, all the

composite connections Q% and Q,‘fl; vanish. The BPS
equations from éy,,, and oy _,, then give the following

Killing spinors

(183)

with the constant SMW spinors €9, satisfying the projectors
(162) and (176). In this solution, an integration constant for
A has been neglected by rescaling the coordinates x*. Note
that the integration constant C and €(1(2 can also be removed
by shifting the radial coordinate r and scalars ¢ ,, but we
keep it here for generality. We also note that from the BPS
equations, we can consistently set ¢ = ¢, =¢; = ¢, = 0.
Indeed, it can be verified that redefining the shift scalars as

Glo = &1a = e, results in a set of BPS equations
with &}, = 0.

For 1 = +« or A = 0, the translational group R reduces
to RS. In the former case, X4 = £X,5 and X5 =F Xy,
while in the latter X34 and X35 vanish. In these two cases,
there are more SO(2) singlet scalars. For 1 = +x, there are
four additional singlet scalars corresponding to noncom-
pact generators

a4t o
Yo = Ly itzé’ Y; = Ly F iy

Ys =514 £515, Yo =515 F 524 (184)

The upper/lower signs in these generators are related to the
upper/lower sign in 1 = £x. For 4 = 0, we find six addi-
tional singlets given by

.
4 Y7_t34’

ot
Yo _t4é’

V. 3t _ V., — 3+
Yo=1/ -1, Yy =1,

Y10 = 834, ?11 = §3s. (185)

It turns out that even with all these extra SO(2) singlet
scalars, the scalar potential still vanishes identically.
Moreover, the T-tensors depend only on the dilaton and
take the same form as given in (171). The resulting BPS
equations for scalars from SL(5)/SO(5) associated with
Y7 and Y6,7,8.9 give constant scalars. Similar to the
previous case, the shift scalars associated with Ygo and
?10’ 11 can be redefined such that the corresponding BPS
equations give constant scalars. All these constant scalars
can in turn be consistently set to zero. Therefore, the
solutions for these two special cases are given by the above
solution with the substitution A = +x and A = 0. However,
as mentioned before, solutions with 4 =0 is %—supersym—
metric since in this case the two superpotentials ¥V; and
W, are equal. On the other hand, solutions with 4 = 4+«
preserve }1 of the original supersymmetry as in the more
general case of 4 # £«. Each choice of 1 = £« makes one
of the superpotentials vanish rendering the supersymmetry
along the directions of this superpotential broken.

B. Supersymmetric domain walls from
CS0(2,0,2) X R4, CS0O(2,0,2) X R?, and
CS0(2,0.1) X R* gauge groups

We now move to another class of solutions in
CS0(2,0,2)XR*, CSO(2,0,2) X R?, and CSO(2,0,1)X
R* gauge groups obtained from the embedding tensor in
4573 with the traceless matrix u;/ given in (58). Since in
this case, the three possibilities with 4 # +«, 4 = *«, and
A =0 are different in many aspects, we will separately
consider these three cases.
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1. SO(2) symmetric domain walls from
CS0(2,0.2) X R* gauge group
With 4 # £k, the gauge group is given by
CS0(2,0,2) X R* as in (61). For convenience, we note
the explicit form of the matrix u,/ of the gauge group (61)

0 « 0 O
) -« 0 0 O
u/ = ( 1 86)
0 0 0 -4
0 0 4 O

where k and A are nonvanishing and 1 # +«. There are five
SO(2) singlet scalars containing the dilaton, two scalars
from SL(5)/SO(5), and two shift scalars corresponding to
the following noncompact generators

Y, =t H i (187)
Y, =1/ +i 1 i -4 (188)
Y =t +i —1 —1, (189)
Y4 =812, (190)

Ys = s34 (191)

The first noncompact generator corresponds to the dilaton
@ as in the previous section. The scalar field corresponding
to Y, is another dilaton coming from further decomposition
of SL(5) - SO(1,1) x SL(4) and will be denoted by ¢y.
With the split of GL(5) index m = (i,5) for i =1, ...,4,
the SL(5)/SO(5) coset also decomposes into SO(1,1) x
SL(4)/SO(4) with the noncompact generator Y; corre-
sponding to an SO(2) singlet from the SL(4)/SO(4) coset.
With the coset representative given by
V = ?Y i+ YotdYste Yot ¥s , (192)
the scalar potential vanishes identically as in the previous
section. The T-tensor is more complicated due to the
dependence on the shift scalars with the following form

TP = e=30-8h 2(Jg, — k) ) Q¥ + 2(ke) — Acr)(7°)¥
+(A+4kgi16) (r'?)* + (k + 4ﬂ€1€2)(734)aﬂ]5§-
(193)

This gives rise to

Q, T7Q, T = —¢=00=1600 (1 4+ 43)(1 + 4¢3)

X [(k* 4+ 22)8,F + 2xA(y?) 7], (194)

Qi T9Quy T = =071 (1 + 4c})(1 + 4))

x (2 4+ 2)8,7 + 2kA(r°), ") (195)
In this case, the two shift scalars ¢; and ¢, cannot be
removed by a redefinition of scalar fields, and the

composite connections Q,‘jb and Ql‘}i’ are nonvanishing.
Therefore, as in [25], we need to modify the ansatz for the
Killing spinors to

A(r)
€+ = e(T+B<r)712€(3L

and e =T B0rised  (196)
in which B(r) is an r-dependent function. We now impose
the y° projector
Ye. =€, or pe.=—€, (197)
which implies y,e. =F y34€, and yi;6_ =7F y3;6_. The
latter two conditions are sufficient to solve the conditions
Wi =0 and Sy_,=0 with €} being constant
SMW spinors making e, satisfy the projectors (162)
and (197).
With the projector (197), the two conditions in (194) and
(195) give

Qa},Tde&/}TﬁﬁGJrﬁ = —e_6‘ﬂ—16¢0(1 +4€%>

X (1+4¢3) (k+2)%€e g, (198)
QT 5T e_y = —e~00=19h0(1 + 4})
x (1 +4¢3) (k£ 2)%e_;  (199)

in which the plus/minus signs correspond to the sign
chosen in the y° projector. Therefore, the superpotential
is then given by

9 s
W =L (i +2),/1 4460 /1 +48. (200)

With all these, we find the following BPS equations

A= ge_3‘/’_8¢0 (k + /1)\/1 + 4g%\/1 +482,  (201)
/o ge—3<ﬁ—8¢o (K + ’1) [3 - 4(€% + g%) B 80@%5] (202)
10/1 +4¢3/1 + 42 ’

=080 (x £ A)[1 + 4(¢} + &3

ge K ¢t
¢6 _ ( )[ ( 12 2)] , (203)

5V 1+463/1+ 483

g =207 e A)(G — ) (204)

VI+4g/1+43
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¢ = =297 (k £ 2)g \/ 1+ 4€%\/ I+4g, (205
¢h = —2ge307 8% (x £+ N)¢, \/1 + 4g%\/1 + 4¢3, (206)
g = 207 (£ 4) (61 — 6 — 4ot +4aigd) (207)

V1+43/ 1+ 46

The domain wall solution to these equations can be written
in terms of the shift scalar ¢; by

1
A:—Zlngl, ¢ = Cigy, (208)
1 2 1 22

1 1 1
o = C3 ——Ing; +—1In (1 +4¢]) +—In (1 4 4Cig}).

10 40 40
(210)
— - +i1n(1+4 2)+i1n(1+4(:2 2)
P =Ly 20 ¢1 10 €1 10 161)»
(211)
| |
B = C;s —5tan (2¢1) + o tan (2Cig1)  (212)
in which C;, i = 1, ..., 5, are integration constants. Using

the new radial coordinate p defined by % = ¢ 38 e
find the solution for ¢, given by

B sech[2g(k £ 4)p — C]
24/CPtanh?2g(k £ A)p - C] = 1

Si (213)

It is also interesting to consider a domain wall solution
with vanishing shift scalars. From the above solution, we
find a constant B function giving rise to the same Killing
spinors (183) up to a constant phase. For ¢; = ¢, = 0, the
BPS equations (201) to (206) reduce to

A =

(k & 2)e 3080, (214)

NSNS

/

¢ =gk A)e 308, (215)

3
10
By =2 (k+ 2)e0Sh (216)

together with ¢/ = ¢} = ¢, = 0. Setting ¢ =¢; = ¢, =0,
we readily find the solution

5 1 5 8
A :Ed’o’ @ Igln [5 [Q(Kil)VJFC]] —5450,

¢ = Cy —l—gln [g(k £ )r+ C].

= (217)

Since the solutions are subject to two projectors (162) and
(197), all the domain walls, with and without the shift
scalars, are %—supersymmetric.

2. SO(2) symmetric domain walls from
CS0(2,0,2) X R?* gauge group
For 1= 4k, we find that the gauge generators

X3 = £Xo4 and X4 =F X,3. This reduces the transla-
tional group R} to R7 resulting in the gauge group of the
form
Gy = SO(2) X (R* xR?) ~CSO(2,0,2) X RZ.  (218)
Apart from the five singlet scalars corresponding to non-
compact generators in (187) to (191), there are additional
four scalars invariant under the SO(2) subgroup generated
by X3 with A = +«. These extra scalars correspond to the
following noncompact generators

Vot oo 3t

Yo =1 F 1y

g+
Y7_t14it23’

Ys =513 F 524, Yo = 514 £523. (219)
Using the coset representative
V = e‘/]Yl+¢0Y2+¢2Y6+¢3Y7+¢Y3+§1?4+§2Y5+§3Y8+§4Y9, (220)

we again find that the scalar potential vanishes identically.
Using the y° projector given in (197), we find that the
superpotential is given by

W = ge 05\ 463 + 4¢3 + 166363 + 326160(S + &) + (1 + 4 +463)°.

Consistency of the BPS equations requires either ¢z = ¢, =
0 or ¢, = ¢;. The former gives the same solution as in the
previous case with (x £ 1) replaced by 2«, so we will not
consider this choice any further.

(221)

[

For the other choice of ¢, = ¢;, the superpotential (221)
becomes

W = ge3¢8bok(1 + 4¢3 + 4¢3 + 4¢7).  (222)
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In this case, the composite connections ,“/’ and Q,‘Zb
vanish. We can then use the ansatz for the Killing spinors
as given in (183) and end up with the following BPS

equations

Al = ge30 8box(1 +4g? + 4¢3 +4¢%),  (223)

o = ge—3w—8¢o;<<3 —20¢7 —20¢3 —20¢3),  (224)
# = %6—31/1—8(/)0 . (225)

¢h = —4ge30Bboke (1 + 4¢3 + 4¢3 +4¢3),  (226)
¢ = —4ge730 Bk, (1 + 4¢3 + 463 +4¢3),  (227)
¢, = —4ge=30 8ok, (1 + 433 + 42 +4¢2)  (228)

together with ¢ = ¢, = ¢4 = 0. Solving these equations
gives a domain wall solution

1
A:—Zlngl, ¢3 = Cigy, ¢y = Cyey,

3 1 )
¢=C3—%lng1+gln[l+4g1( +C? + C3)),
¢ho=Cy— 1Olngl+201n[1+4g1(1+C%+C§)},

1
g1 = N =T e e (229)

in which p is a new radial coordinate defined by the relation
% — ¢=3¢=8_ In this solution, we also consistently set the

constant scalars ¢, ¢,, and ¢ to zero.

3. SO(2) symmetric domain walls from
CS0(2,0,1) X R* gauge group

For 1 = 0, we find X* = X* = 0 reducing R* to R? in
the gauge group (61). The resulting gauge group then takes
the form of
Gy =S0(2) X (R*x R}) ~CS0O(2,0,1) X R;.  (230)
In this case, the y° projector (197) is not needed, so unlike
the previous two cases, the solutions will be %—super—
symmetric. There are additional scalars invariant under
the SO(2) subgroup generated by X> with 1 = 0. These are
given by two scalars parametrizing the SL(4)/SO(4) coset,
two nilpotent, and two shift scalars corresponding to the
following noncompact generators

?6 - i+ t+

o ay o
44 Y; = Ly Yy = Ly

?9 — i+~

" (231)

YlO = 8§35, Yll = 845.
Following [25], we will call the four scalars associated with

i;, for i =1, 2, 3, 4, nilpotent scalars. It turns out that the
two nilpotent scalars associated with i; and 215 need to

vanish in order to find a consistent set of BPS equations in
this case.

As in all the previous cases, it turns out that the scalar
potential vanishes. The superpotential is still given by (200)
for 1 =0. This gives rise to the same set of BPS
equations (201) to (206) with all additional scalar fields
constant. The ansatz for the Killing spinors, in this case,
takes the form of

A
e, =Bl D1t (Nl and e = SB(Nyis=Ba(r)r3i g0

(232)
The BPS equations for B; and B, are given by
PR Ll IARRLE SR
! V1+438
2ge=30 8boxey\ /1 + 4¢3
and B, =9 KoV AT o3y

V1448

All these equations lead to the same solution given in (208)
to (211) and (213) for 1 = 0 together with

1
Bl = C6 - Etan_l(2g1) (235)

and B, = C7—Etan 12Ci¢))

(236)
in which C¢ and C; are integration constants. For a
particular case of ¢; = ¢, =0, we find the domain wall
solution given in (217) with 4 =0 and the Killing spin-
ors (183).

V. CONCLUSIONS AND DISCUSSIONS

We have classified a number of gauge groups in
six-dimensional maximal gauged supergravity with the
embedding tensor in 57, 53, 107!, 247, and 45"
representations of GL(5) c SO(5,5). All these gauge
groups are non-semisimple and consist mostly trans-
lational groups of various dimensions. We have also found
supersymmetric domain wall solutions in SO(2) X RS,
S0(2) X RS, CS0(2,0,2) X R*, CSO(2,0,2) X R?, and
CS0O(2,0,1) X R* gauge groups. These solutions are
either %— or i—supersymmetﬁc preserving SO(2) symmetry.
Some of the resulting gauge groups could have higher
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dimensional origins in terms of Scherk-Schwarz reductions
from seven dimensions or truncations of eleven-dimen-
sional supergravity on twisted tori (possibly) with fluxes.
The consistent gaugings identified in this paper to some
extent enlarge the known gauge groups pointed out in [38]
and those constructed in [25]. These would hopefully be
useful in the context of DW/QFT correspondence and
related aspects. The domain wall solutions given here are
exhaustive for all the gaugings under consideration at least
for domain walls with any residual symmetry. These could
also be added to the known classification of supersym-
metric domain walls. It would be useful to find more
general and more complicated solutions without any
residual symmetry.

Constructing truncation ansatze for embedding the
domain wall solutions found here in string/M-theory using
SO(5,5) exceptional field theory given in [52] is of
particular interest. This would provide a complete frame-
work for a holographic study of five-dimensional maximal
SYM. It is also interesting to perform a similar analysis for
gaugings under SO(4,4) C SO(5,5) and construct the
corresponding embedding tensors together with possible
supersymmetric domain walls. These gaugings can be
truncated to gaugings of half-maximal N = (1, 1) super-
gravity coupled to four vector multiplets in which super-
symmetric AdSg vacua are known to exist [5S3-55]. In this
case, the results could be useful in the study of both
DW¢/QFTs duality and AdSs/CFTs correspondence
as well.

Finally, generalizing the standard domain wall solutions
in this paper and [25] to curved domain walls with
nonvanishing vector and tensor fields could also be worth
considering. This type of solutions describes conformal
defects or holographic RG flows from five-dimensional
N =4 super Yang-Mills theories to lower-dimensional
(conformal) field theories via twisted compactifications.
A number of similar solutions in seven dimensions have
been given in [56,57] while examples of holographic
solutions dual to surface defects in five-dimensional
N =2 SCFTs from N = (1, 1) gauged supergravity have
appeared recently in [58].
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APPENDIX: USEFUL FORMULAS

In this Appendix, we collect some formulas and relations
used in the main text, see [25] for more detail. We begin
with SO(5,5) — GL(5) branching rules used throughout
the paper. With the branching rule for an SO(5,5) vector
representation

10 - 572 @ 572, (A1)
we can decompose the SO(5,5) generators as
tMN - (tmn’tmn’tm”) (Az)

with ¢, = —¢",,.
In vector representation, SO(5,5) generators tyy =
tyn) can be chosen as

(twn)p? = 4’7P[M51(T)/] (A3)
satisfying the Lie algebra
[tyn-trol = 4(mptoiy — viptoim)- (A4)

With the generators of the shift and hidden symmetries
respectively denoted by s, =¢,, and B =", the
SO(5,5) generators can be written as

= (7 7Y,

A5
Smn _tnm ( )
In this form, we can see that the GL(5) subgroup generated
by t," is embedded diagonally.
The branching rules for spinor and conjugate spinor
representations of SO(5,5)

16,557 @10 @175 and 16, -5 @10 @1+

(A6)
are realized respectively by the following relations
V) = T4, Y+ TV, + TA Y, (A7)
with ¥, = ¥},,,) and
YA = TAmY, + T4, 9™ + T4, (A8)
The transformation matrices are defined by
1 B Oap
Tam = 2—\/§<Fm)ABpaﬁQ : (A9)
1
=1/ (1) 42 Q. (A10)
1 m B,

—H—A* = E(F m)A Pp Qaﬂ (All)
with the inverse matrices of T, are simply given by their
complex conjugation TA = (T,)~' = (T,)* satisfying the
relations
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TA™T,, = &0,
TTA’”TA”,, =0,

T T4 = 85,
T4"T,, =0,

Tl =1,

T4, T4 =0 (A12)
together with
TA" Ty, + T4, TH + T4T,, = 5. (A13)

The transformation matrices pf{ﬁ and inverse matrices p;‘ﬂ
are given by

pZﬁ — 5Z6ﬁ +5a+45ﬂ +5a+86§ +5a+125ﬂ’

péﬁ = 51351 + 5A+452 =+ 5u+853 + 5(1+1254‘ <A14)
These matrices satisfy the relations
piply =35 and pgph =858 (A1S)

and can be used to express a spinor index of SO(5,5),
A,B, ..., in terms of a pair of USp(4) fundamental or
SO(5) spinor indices (af).

The matrices (I",,) 45 appearing in the SO(5,5) gamma
matrices 'y, = (T,,,I") are related to SO(5) x SO(5)
gamma matrices I'y = (I',,T;) as

(FM)AB = MMA(FA)AB (A16)
with

(Ca)as = (Ta)accp- (A17)
The charge conjugation matrix c,p is given by

CAB =P2{“"p§ﬂ9aﬂ9a/; (A18)

in which p”“ and P?;& are defined in parallel with (A14). For
convenience, we also note the transformation matrix M here

1 1 1
M:—( > 5).
V2 \1s —Ts

The SO(5) x SO(5) gamma matrices can be written as

(Ta)a® = ((ra)a® (ra)a®)

(A19)

(A20)

in which (y,),% and (y;),? are explicitly given by

(ra)a® = P ()Pl = P () 5Pl (A21)
(ra)a® = Pﬁd(m)aaﬁ ﬁ Pg/; = I’f(d‘nga)aﬂ Pgl-}- (A22)

With all these, the matrices (I',,),p can be explicitly
defined in terms of the SO(5) gamma matrices as

(Un) ag (A23)

1 . ; . .
= Pl rn)o 0 Sl 10 50

Finally, (I'""),8 and (I'",,),8 matrices are given by
() 7 %[(Fm) AP = (M) (A24)
and
(I")4° = % [(C")A (T c® = (Cu)a“(M") Pl (A25)
with
(Ta® = S0P, ) . (426)
()48 = Sl = ) ety (420

In this paper, we use the following representation for SO(5)
gamma matrices

r3 =1, ® o3,
(A28)

71 =—02 Q 0y, rn=1Qo0,

74 =01 Q 02, Y5 =03 @ 0

in which ¢, 6, and o5 are the usual Pauli matrices given by

/01 (0 =i /10
1 \10) 2"\ o) 2 \o 1)

(A29)
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