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We compute the cosmological reduction of general string theories, including bosonic, heterotic, and type
II string theory to order α03, i.e., with up to eight derivatives. To this end, we refine recently introduced
methods that allow one to bring the reduced theory in one dimension to a canonical form with only first-
order time derivatives. The resulting theories are compatible with a continuous Oðd; d;RÞ invariance,
which in turn fixes the B-field couplings.
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I. INTRODUCTION

One of the fascinating features of string theory is its
invariance under dualities that, in the simplest case, send
the metric g to its inverse g−1. For string backgrounds with
d-dimensional translation invariance, such dualities belong
to the group Oðd; d;RÞ [1–3]. In particular, the theory for
cosmological string backgrounds, with fields depending
only on time, is invariant under Oð9; 9Þ in the case of
superstring theory and under Oð25; 25Þ in the case of
bosonic string theory. For Friedmann-Lemaitre-Robertson-
Walker backgrounds, this includes the transformation that
sends the scale factor of the Universe to its inverse, a fact
that immediately inspires ideas of how to apply string
theory in cosmology, see, e.g., [4–6]. It is challenging,
however, to upgrade such ideas to fully reliable string
cosmology proposals. One reason is that even classical
string theory restricted to the massless fields contains an
infinite number of higher-derivative α0 corrections which
contribute to the cosmological equations, and only very
little is known about these corrections. (See [7] for
applications of higher derivative corrections in string
cosmology.) In this paper, which is a continuation of our
recent letter [8], we determine the cosmological reduction
for all string theories up to and including α03 (i.e., with up to
eight derivatives) for metric, B field, and dilaton.

Our analysis is made possible by the results of [9,10],
which classify the α0 corrections in one dimension (cosmic
time) up to field redefinitions. This leads to a drastic
reduction of the number of possible terms arising in the
one-dimensional action. It has been known since the
seminal work in [11,12] that the Oðd; dÞ transformations
themselves receive α0 corrections when written in terms of
standard supergravity field variables, but in one dimension,
these corrections can be removed by suitable field redefi-
nitions, so that one can test directly for Oðd; dÞ invariance
by passing to a canonical field basis.1 The theory can then
be written in terms of conventionalOðd; dÞ covariant fields,
notably the generalized metric,

S ≡
�
bg−1 g − bg−1b

g−1 −g−1b

�
; ð1:1Þ

that takes values inOðd; dÞ. Here, g and b denote the spatial
components of the redefined metric and B field. The results
of [9] imply that the cosmological action for any string
theory can be brought to a manifestly Oðd; dÞ covariant
form that to order Oðα03Þ reads

S ¼
Z

dte−Φ
�
− _Φ2 −

1

8
Trð _S2Þ

þ α0c2;0Trð _S4Þ þ α02c3;0Trð _S6Þ

þ α03ðc4;0Trð _S8Þ þ c4;1Trð _S4Þ2Þ
�
: ð1:2Þ

In this paper, we develop a systematic procedure to bring
any action dimensionally reduced to one dimension to a
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1For dimensional reduction to a generic number of dimensions,
however, the Oðd; dÞ transformations receive nontrivial Green-
Schwarz-type α0 deformations [13], which has a precursor in
double field theory [14–17], see also earlier work in [18].
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form that contains only first-order time derivatives. We
ignore all B-field couplings in the dimensional reduction,
which is sufficient in order to determine the above
coefficients, but then Oðd; dÞ guarantees that the B-field
couplings will be as implied by the general action (1.2).
It is indeed guaranteed on general grounds thatOðd; dÞ is

preserved to all orders in α0 [3], and this will be confirmed
here. Even after truncating the B-field a Z2 symmetry is
left, which in turn poses strong constraints on the purely
gravitational couplings that can exist in higher dimensions.
In [8], we showed that the α03 corrections involving the
eight-derivative couplings known as t8t8R4 and ϵ10ϵ10R4

need to arise with a specific relative coefficient in order to
be compatible with Oðd; dÞ, which turns out to be the
coefficient previously determined by other methods [19].
Similarly, we find here that the Riemann-cube terms known
to arise in bosonic string theory at order α02 need to be
accompanied by a Gauss-Bonnet-type combination at the
same order, with a relative coefficient that again confirms
previous results in [20]. Apart from type II string theory,
whose corrections start only at order α03 and have been
analyzed in [8], we analyze here bosonic and heterotic
string theories but also the Hohm-Siegel-Zwiebach (HSZ)
theory constructed in [14]. We find for the four free
coefficients in (1.2) that are not fixed by Oðd; dÞ the
values in Table I.
We find it instructive to give this result in an alternative

form, in terms of three parameters ða; b; cÞ that encode the
α0 corrections of all string theories. Specifically, for the
theories considered here, these parameters encode α0 via
Table II.
The cosmological action of the form (1.2) that we find

here can then be written as

S ¼
Z

dte−Φ
�
− _Φ2 −

1

8
Trð _S2Þ þ ðaþ bÞ

27
Trð _S4Þ

−
ab

3 · 27
Trð _S6Þ þ abðaþ bÞ

213
Trð _S8Þ

þ
�

1

213
abðaþ bÞ − 15

219
ðaþ bÞ3

�
Trð _S4Þ2

þ c3
ζð3Þ
212

ð−3Trð _S8Þ þ Trð _S4Þ2Þ
�
: ð1:3Þ

This parametrization of the action is motivated by double
field theory [a reformulation of the target space theory that
is Oðd; dÞ covariant before dimensional reduction], which
permits a 2-parameter α0 deformation [15,16] that is
invariant under the Z2 that exchanges the two parameters
a, b and simultaneously sends the Oðd; dÞ metric η to −η.
The above parametrization has been chosen to reflect the
same symmetry [otherwise, we could add Oðα03Þ terms
proportional to aðaþ bÞða − bÞ, since this combination
vanishes for all of the above theories]. As an aside, we
emphasize that since the classification of [9,10] yields only
even powers of _S the cosmological reduction of any string
theory is Z2 invariant, and so Z2 odd contributions in
higher dimensions (as present in Green-Schwarz deforma-
tions) cannot survive cosmological reduction. Finally, the
third parameter c appearing above is expected to indicate
the presence of a new α0 deformation of double field
theory to incorporate the fourth powers of the Riemann
tensor with transcendental coefficient ζð3Þ (see [21] for the
challenges that arise when trying to define this new
deformation).
The remainder of this paper is organized as follows. In

Sec. II, we explain in detail the systematic procedure that is
used in order to bring the dimensionally reduced actions
into canonical form. This method is then be applied in
Sec. III to the various string theories. In Sec. IV, we close
with a brief outlook.

II. GENERAL APPROACH

In this section, we introduce the general algorithmic
procedure that brings the dimensionally reduced actions
into a canonical form, in which, in particular, only first-
order time derivatives appear. This is a refinement of the
methods introduced in [9,10]. In the subsequent sections,
this method is applied to the various string theories.
Concretely, for each string theory, we start with the low-
energy effective action in D ¼ 10 or D ¼ 26 dimensions
including higher derivative corrections up to and including
order α03, written schematically as

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−G

p
e−2ϕ

× ½Lð0Þ þ α0Lð1Þ þ α02Lð2Þ þ α03Lð3Þ�: ð2:1Þ

TABLE I. Coefficients of the cosmological classification for
different strings.

c2;0 c3;0 c4;0 c4;1

Bosonic 1
26

− 1
3:27

1
212

− 3
212

ζð3Þ 1
216

þ 1
212

ζð3Þ
HSZ 0 1

3:27
0 0

Heterotic 1
27

0 − 3
212

ζð3Þ − 15
219

þ 1
212

ζð3Þ
Type II 0 0 − 3

212
ζð3Þ 1

212
ζð3Þ

TABLE II. Values for the parameters a, b and c for different
strings.

a b c

Bosonic α0 α0 α0
HSZ −α0 α0 0
Heterotic 0 α0 α0
Type II 0 0 α0
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We simplify the analysis by setting the Kalb-Ramond B
field to zero, B ¼ 0. This is sufficient for our purposes—
precisely because the Oðd; dÞ duality, with d ¼ D − 1,
allows us to reconstruct the B-field couplings. Under this
assumption the leading term in the above action, which is
common to all string theories, is given by

Lð0Þ ¼ Rþ 4∇μϕ∇μϕ: ð2:2Þ

Let us then turn to the general procedure of cosmological
reduction. We take the D-dimensional metric Gμν or,
equivalently, the D-dimensional vielbein eμα and the
dilaton ϕ to depend only on time, making the ansatz

eμα ¼ diagðn; eiaÞ; Gμν ¼ diagð−n2; gijÞ;

ϕ ¼ 1

2
Φþ 1

2
logð ffiffiffi

g
p Þ; ð2:3Þ

in terms of spatial metric gij, the dilaton Φ, and the lapse
function n. This ansatz is used in the D-dimensional
action, truncating all derivatives but the time derivative.
The actions we consider in the following contain the
Riemann tensor, possibly Chern-Simons terms for the
Levi-Civita connection, and dilaton couplings. In contra-
distinction to any analysis at a fixed order in α0, here, in
principle, we have to keep track of couplings containing
Ricci tensors, Ricci scalars, and dilaton contributions.
However, once we reach order α03, the couplings containing
Ricci tensors and Ricci scalars can be eliminated by field
redefinitions, at the cost of introducing further dilaton
couplings. In [8], we showed, at order α03, that under
cosmological reduction, derivatives of the dilaton can either
be removed by field redefinitions or else violate Oðd; dÞ
duality invariance. Since here we assume Oðd; dÞ invari-
ance, we neglect all dilaton derivatives at order α03.
We use the following conventions for the Levi-Civita

connection, the Riemann tensor, and Chern-Simons terms:

ωμα
β ¼ eαν∇μeνβ ¼ eαν∂μeνβ − eανΓμν

ρeρβ;

Rρ
σμν ¼ ∂μΓνσ

ρ − ∂νΓμσ
ρ þ Γμλ

ρΓνσ
λ − Γνλ

ρΓμσ
λ;

Rμνα
βðωÞ ¼ ∂μωνα

β − ∂νωμα
β þ ωμα

γωνγ
β − ωνα

γωμγ
β

¼ −eασeρβRρ
σμν;

ΩμνρðωÞ ¼ Tr

�
ω½μ∂νωρ� þ

2

3
ω½μωνωρ�

�
; ð2:4Þ

where Γμν
ρ are the familiar Christoffel symbols. Inserting

the cosmological reduction ansatz (2.3) in here, one obtains
for the nonvanishing components,

Γ0i
j ¼ n

2
Li

j; Γij
0 ¼ 1

2n
Lij; Γ00

0 ¼ _n;

ωia
0̄ ¼ −

1

2
Lia; ω0a

b ¼ neaj _ejb −
n
2
La

b;

Rijkl ¼
1

2
Lk½iLj�l; R0i0j ¼ −

n2

2
_Lij −

n2

4
L2
ij;

Ω0i
jðωÞ ¼ n

6
_L½i

kLj�k; ∇0ϕ ¼ n
2
_Φþ n

4
ðLÞ; ð2:5Þ

where we split the flat index as α ¼ ð0̄; aÞ. Here, the dots
denote time derivatives _ψ ≡ 1

n ∂tψ that are reparametriza-
tion invariants, while parentheses () denote traces of d × d
matrices such as L≡ _gg−1. Internal indices are raised and
lowered with g, namely, Lij ≡ Li

kgkj, _Lij ≡ _Li
kgkj and

flattened with eia such that Lia ¼ Li
jgjkeak.

We now explain the step-by-step procedure of bringing
the dimensionally reduced action to the canonical form.
The first step, which may be technically tedious but is
conceptually straightforward, consists of inserting (2.5)
into the D-dimensional action in order to obtain the
cosmological reduction. This yields a one-dimensional
theory with an action of the form

S ¼
Z

dtne−Φ½Lð0Þ þ α0Lð1Þ þ α02Lð2Þ þ α03Lð3Þ�: ð2:6Þ

In here, the leading term is common to all string theories
and given by

Lð0Þ ¼ − _Φ2 þ 1

4
ðL2Þ: ð2:7Þ

The other terms depend on the string theory under con-
sideration. An important observation, which follows
from our above assumptions and the form of (2.5), is
that all these terms are built from traces of different
products of L and its time derivatives. In the next step,
one exploits all possible field redefinitions. We need to
compute the general variation of (2.6) that defines the
equations of motion,

δS ¼
Z

dtne−Φ
�
1

2
TrððEg þ Et

gÞδgÞ þ En
δn
n
þ EΦδΦ

�
:

ð2:8Þ

As for the action, the equations of motion have an α0
expansion. Denoting the fields collectively by

Ψ≡ fg; n;Φg; ð2:9Þ

we write the α0 expansion of the equations of motion as

EΨ ¼ Eð0Þ
Ψ þ α0Eð1Þ

Ψ þ α02Eð2Þ
Ψ þOðα03Þ ¼ 0: ð2:10Þ
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The terms of order α03 or higher are not needed in this
paper. Again, the lowest-order terms are the same for all
string theories and are given by

Eð0Þ
g ¼ 1

2
_ΦL −

1

2
_L;

Eð0Þ
n ¼ _Φ2 −

1

4
ðL2Þ;

Eð0Þ
Φ ¼ 2Φ̈ − _Φ2 −

1

4
ðL2Þ; ð2:11Þ

while the higher-order contributions depend on the string
theory under consideration. As long as we recall the
equations of motion for n (and the freedom to perform
field redefinitions of n), we can gauge fix reparametrization
invariance by setting n ¼ 1. In this case, the dot reduces to
the ordinary time derivative, _Ψ ¼ ∂tΨ. We may always
restore time reparametrization invariance simply by rein-
terpreting the dot as 1

n ∂t.
Let us now consider a general field redefinition,

Ψ → Ψ0 ¼ Ψþ δΨ; ð2:12Þ

which we take to be perturbative in α0, so that we can
expand

δΨ ¼ α0δð1ÞΨþ α02δð2ÞΨþ α03δð3ÞΨþ � � � : ð2:13Þ

The action expands as follows:

S0½Ψ0�≡ S½Ψþ δΨ�

¼ S½Ψ� þ Δ1S · δΨþ 1

2
Δ2S · ðδΨÞ2

þ 1

3!
Δ3S · ðδΨÞ3 þ � � � ; ð2:14Þ

where we use a symbolic notation in which the integral is
not displayed explicitly. This equation defines implicitly
the nth variational derivativesΔnS≡ δnS

δΨn, the first of which,
in agreement with our notation above, is also written as

Δ1S≡ δS
δΨ

≡ EΨ; ð2:15Þ

with α0 expansion (2.10). Similarly, we write the α0
expansion of ΔnS as

ΔnS ¼ ΔnSð0Þ þ α0ΔnSð1Þ þ ðα0Þ2ΔnSð2Þ þ � � � : ð2:16Þ

The redefined action S0 can then be written as

S0 ¼ Sð0Þ þ α0ðSð1Þ þ Eð0Þ
Ψ · δð1ÞΨÞ

þ α02
�
Sð2Þ þ Eð1Þ

Ψ · δð1ÞΨþ Eð0Þ
Ψ · δð2ÞΨþ 1

2
Δ2Sð0Þ · ðδð1ÞΨÞ2

�

þ α03
�
Sð3Þ þ Eð2Þ

Ψ · δð1ÞΨþ Eð1Þ
Ψ · δð2ÞΨþ Eð0Þ

Ψ · δð3ÞΨ

þ 1

2
Δ2Sð1Þ · ðδð1ÞΨÞ2 þ Δ2Sð0Þ · δð1ÞΨ · δð2ÞΨþ 1

3!
Δ3Sð0Þ · ðδð1ÞΨÞ3

�
þ � � � : ð2:17Þ

The natural method of bringing the action into a canonical
form then proceeds order-by-order in α0: one first picks a
δð1ÞΨ to bring the action to first order in α0 to canonical

form, but this in turn induces new terms proportional to Eð1Þ
Ψ

and Δ2Sð0Þ into the action of second order in α0. These can
then be brought to a canonical form by picking a suitable
δð2ÞΨ. Both δð1ÞΨ and δð2ÞΨ then induce new terms into the
action of third order in α0, which finally can be brought to a
canonical form by picking a suitable δð3ÞΨ.
In principle, the above procedure requires that one keeps

track of the field redefinitions δð1ÞΨ, δð2ÞΨ, and δð3ÞΨ,
which can become rather tedious. We now show, however,
that for a large class of contributions to the redefined action
there is a simplified procedure for which one does not need
to keep track of the field redefinitions. These correspond
to the terms in (2.17) that are not underlined. For the

underlined terms, on the other hand, it is necessary to keep
track of the field redefinitions, which depend on the theory,
but we see below that only the explicit form of δð1ÞΨ is
needed, whose contribution takes a universal form for all
string theories.
In order to explain the procedure, let us first consider

only the terms in the redefined action that are not under-
lined and explain how they can be brought to a canonical
form upon choosing appropriate δΨ. In this case, field
redefinitions amount to the use of equations of motion in
the action, including contributions to higher order in α0. In
order to make this concrete, let us suppose that the action to
first order in α0 contains a term multiplying the lowest-order
equations of motion, i.e.,

Sð1Þ ¼ XðΨÞ · Eð0Þ
Ψ þ � � � ; ð2:18Þ
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where XðΨÞ is an arbitrary function of the fields Ψ (of
second order in derivatives), and the ellipsis denotes
the remaining terms in the action. Consider now a field
redefinition with

δð1ÞΨ ¼ −XðΨÞ: ð2:19Þ

From (2.17), we then infer that in the redefined action S0 the
term in (2.18) is eliminated. More precisely,

S0 ¼ −α0XðΨÞ · ðα0Eð1Þ
Ψ þ α02Eð2Þ

Ψ Þ þ � � � ; ð2:20Þ

where the ellipsis denotes the same terms as in (2.18),
which are unaffected by the redefinition, [and we recall that
we neglected the underlined terms in (2.17), to which we
return soon].
The upshot is that in the action (2.18) we may simply

use the equations of motion (2.10) in the form Eð0Þ
Ψ ¼

−α0Eð1Þ
Ψ − α02Eð2Þ

Ψ þ � � �, where the higher-order terms can
be ignored as we are only interested in contributions up to
and including α03. One can then proceed order-by-order in
α0 by freely using the equations of motion in the action at
each order in α0, as long as one keeps track of the terms
induced to next order in α0. To this end, we use the
equations of motion (EOM) in the form [cf. (2.11)]

_L ¼ _ΦLþ α0Δg; ð2:21aÞ

_Φ2 ¼ 1

4
ðL2Þ þ α0Δn; ð2:21bÞ

Φ̈ ¼ 1

2
_Φ2 þ 1

8
ðL2Þ þ α0ΔΦ; ð2:21cÞ

where α0ΔΨ denotes a generic correction starting at order
α0. Again, its particular form depends on the string theory
considered and is computed in the subsequent sections.
Next, we give a step-by-step procedure to use field

redefinitions in order to remove, at any given order in α0,
any appearance of _L; _Φ and ðL2Þ and their time derivatives,
at the expense of inducing new terms at higher order in α0.
In the following, we refer to terms containing _L; _Φ, and
ðL2Þ and their time derivatives as removable.
(1) Beginning with the first-order action α0Sð1Þ, the first

step is to use repeatedly (2.21a) and its derivatives to
eliminate _L and its derivatives. For instance, if the
action contains no higher derivatives than _L, this
yields a new action at order α0, with _ΦL substituted
for _L, and induced terms for the next two orders
involving α0Δg,

α0Sð1Þð _LÞ ¼ α0Sð1Þð _ΦLþ α0ΔgÞ
¼ α0Sð1Þð _ΦLÞ þOðα02Þ: ð2:22Þ

At this point, everything in Sð1Þ is written in terms of
traces of products of L and powers and derivatives of
_Φ. If, on the other hand, the action contains higher
derivatives than _L, the above procedure has to be
repeated until the action depends only on traces of
products of L (and dilaton terms).

(2) Next, we eliminate any higher power of _Φ by using
(2.21b) repeatedly. The result is the substitution of
1
4
ðL2Þ for _Φ2, at the current order, and some induced

terms which appear in the next orders,

α0Sð1Þð _Φ2Þ ¼ α0Sð1Þ
�
1

4
ðL2Þ

�
þOðα02Þ: ð2:23Þ

By this method, any even powers of _Φ can be
removed, so now Sð1Þ depends linearly on _Φ, its
higher derivatives, and traces of products of L.

(3) Next, we eliminate any higher derivative of _Φ by
using (2.21c) repeatedly, in each step, making the
replacement

α0Sð1ÞðΦ̈Þ ¼ α0Sð1Þ
�
1

2
_Φ2 þ 1

8
ðL2Þ

�

þOðα02Þ; ð2:24Þ
until we are left with only first-order time derivatives
of the dilaton. At the end of these iterations, this
generates powers of _Φ and possibly higher deriva-
tives of L. One can eliminate higher derivatives of L
and even powers of _Φ by repeating steps 1 and 2.
Since step 1 can also produce new Φ̈ terms, this
procedure might need to be iterated more than once.
Since in each step the number of derivatives of the
dilaton decreases, this procedure is guaranteed to
terminate. At the end, Sð1Þ contains at most a single
_Φ, together with products of traces of L, i.e.,

α0Sð1Þ ¼ α0
Z

dte−Φ½ _ΦXðLÞ þ YðLÞ�

þOðα02Þ; ð2:25Þ
where XðLÞ and YðLÞ depend on traces of powers of
L. In this case, the induced terms generally depend
on Δn, ΔΦ, and Δg.

(4) Now, we can eliminate the dilaton contribution. We
integrate by parts,

α0
Z

dte−Φ _ΦXðLÞ ¼ α0
Z

dte−Φ _XðLÞ; ð2:26Þ

and use (2.21a). At the current order, the _ΦL
contribution gives the first term back but with a
different coefficient. This yields an identity of the
form
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α0
Z

dte−Φ _ΦXðLÞ ¼ α02
Z

dte−ΦFðΔgÞ: ð2:27Þ

At this point, Sð1Þ does not contain any dilaton
contribution so it is built just from traces of powers
of L.

(5) We replace any appearance of ðL2Þ in the action of
the generic form α0

R
dte−ΦðL2ÞXðLÞ by the follow-

ing procedure: using (2.21b), we replace ðL2Þ →
4 _Φ2 − 4α0Δn, and we integrate by parts one _Φ factor
using e−Φ _Φ ¼ −∂tðe−ΦÞ. This creates terms with _L
and Φ̈ which can be traded for _Φ2 and ðL2Þ and
higher orders by using (2.21a) and (2.21c). Then,
one replaces _Φ2 using (2.21b). The final result
produces the original integral but with a different
coefficient, together with higher-order corrections
induced byΔg,Δn, andΔΦ. We thus obtain a relation
of the form

α0
Z

dte−ΦðL2ÞXðLÞ ¼ α02
Z

dte−ΦGðΔg;Δn;ΔΦÞ:

ð2:28Þ

At this point, the first-order action Sð1Þ is written in
the minimal basis proposed in [9].

After completing this procedure to first order in α0, we
can apply the algorithm to second order in α0, taking as the
starting point the dimensionally reduced action but sup-
plemented by the terms that were induced by the field
redefinitions of the previous iteration of the algorithm. This
will yield an action including only traces of powers of L
[excluding ðL2Þ]. Finally, we apply the algorithm to the
action to third order in α0, including the induced terms to
this order. In this final step, we do not have to keep track of
the induced ΔΨ terms such as in (2.28), as these contribute
only to fourth order in α0.
The previous analysis showed how to bring the terms in

the redefined action (2.17) that are not underlined to a
canonical form, which did not need the explicit form of δΨ.
We must now discuss how to bring the underlined terms to
a canonical form, which are seen to depend on the δΨ.
Importantly, however, we show that one only needs to
determine δð1ÞΨ explicitly and that this takes a universal
form. We first observe that the nonlinear variations only
emerge from Sð0Þ and Sð1Þ, which take a universal form for
all string theories. Indeed, Sð0Þ is the same for all string
theories, while the first-order Lagrangian for the metric
alone is given by

Lð1Þ ¼ γ

4
RμνρσRμνρσ; ð2:29Þ

with the values in Table III.

This fact permits a unified treatment of the underlined
terms. The direct cosmological reduction of the Lagrangian
to this order is given by

Lð0Þ þ α0Lð1Þ ¼ − _Φ2 þ 1

4
ðL2Þ

þ γ
α0

4

�
1

8
ðL4Þ þ 1

8
ðL2Þ2 þ ðL2 _LÞ þ ð _L2Þ

�
;

ð2:30Þ
and the first-order redefinitions required to remove the last
three terms are given by

δð1Þn ¼ γ

32
ðL2Þ; ð2:31aÞ

δð1ÞΦ ¼ 3γ

32
ðL2Þ; ð2:31bÞ

Gð1Þ ≡ δð1Þgg−1 ¼ γ

�
−
1

4
_ΦLþ 1

2
_L −

1

4
L2

�
: ð2:31cÞ

Importantly, these are all contributions to δð1ÞΨ.
Let us now see what the contributions of the underlined

terms in (2.17) are. We start with the terms with a single
underline, which are of order α03. The important observa-
tion is that all these terms can be verified to be entirely
removable [i.e., they contain _Φ, _L and ðL2Þ or their time
derivatives], and this is true for generic δð2ÞΨ. Thus, these
terms do not contribute to the final canonical action to order
α03, since by removing them by field redefinitions (upon
choosing an appropriate δð3ÞΨ) one only induces terms of
higher order than α03.
The only contribution that can affect the coefficients in

the final canonical action is then the term Δ2Sð0Þ · ðδð1ÞΨÞ2
with a double underline in (2.17), which takes the form

1

2
Δ2Sð0Þ · ðδð1ÞΨÞ2 ¼ −

3

4
ð _Gð1Þ2Þ − ðGð1ÞG̈ð1ÞÞ

þ ðGð1Þ _Gð1ÞÞ _Φþ � � � : ð2:32Þ

In here, all terms on the right-hand side can be verified to be
removable to order α02, where the dots denote terms whose
removal leads to terms at order α03 that are also removable
at that order, so that they can be neglected completely. In
contrast, the removal of the three terms explicitly written in
(2.32) induces nontrivial contributions to order α03. It may
be verified that one then induces a universal nonremovable
third-order contribution,

TABLE III. Coefficient of Riemann-square coupling in differ-
ent string effective actions.

Bosonic HSZ Heterotic Type II

γ 1 0 1
2

0
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ΔLð3Þ ¼ γ3

211
ðL4Þ2: ð2:33Þ

As a result, the only effect of the underlined terms to order
α03 is to shift the effective action by this quantity. One can
then follow the procedure outlined above based on using
α0-corrected equations of motion, and add this single term
at the end. Note that this will have no effect for type II
nor HSZ.
Once the field redefinition procedure has been completed,

the action to order α03 is written in terms of the minimal
basis containing the structures: ðL4Þ; ðL6Þ; ðL8Þ; ðL4Þ2 plus
terms containing traces of odd powers of L. The latter terms
must, however, be absent as a consequence of duality
invariance, cf. below.
The final step is to write the theory, if possible, in terms

of Oðd; dÞ covariant objects, using the following relation
between Li

j and the generalized metric SM
N :

S ¼
�

0 g

g−1 0

�
;

_S2m ¼
� ð−1ÞmL2m 0

0 ð−1Þm½L2m�t
�
; ð2:34Þ

which implies

Trð _S2mÞ ¼ ð−1Þm2TrðL2mÞ: ð2:35Þ

We see that Oðd; dÞ invariance requires that odd powers
such as ðL3Þ2 and ðL3ÞðL5Þ are actually absent, which
in turn poses constraints on the D-dimensional higher-
derivative corrections.

III. COSMOLOGICAL REDUCTION

A. Type II strings

In this section we revisit the cosmological reduction of
type II strings up to order α03 [8] (see [22] for the reduction
of these corrections to four dimensions). The action
contains no order α0 nor α02 deformations. The corrections
to order α03 were computed from four-point scattering
amplitudes in [23] and later from the sigma-model beta
function in [19,24,25]. Given the general form of the action
(2.1), we have,2

Lð1Þ
II ¼ Lð2Þ

II ¼ 0;

Lð3Þ
II ¼ ζð3Þ

3.211
Jð1Þ

¼ −
ζð3Þ
32

½RαβμνRμν
γδRαγ

ρσRρσβδ

− 4Rαβ
γδRδμ

ανRνρ
βσRσγ

μρ�; ð3:1Þ

for which we wrote the order α03 contribution in terms of
the following function:

JðcÞ ¼
�
t8t8R4 þ c

8
e10e10R4

�
þ Ricci terms; ð3:2Þ

where t8 and e10 follow the same conventions as in [8]. The
point of introducing such a function is the following: the
term containing t8 can be calculated from four-point
scattering amplitudes, whereas the Gauss-Bonnet term with
e10 starts at the fifth order in a field expansion. The
cosmological reduction of JðcÞ in (3.2) gives

JðcÞ ¼ 1

4
ð9 − 45cÞðL8Þ þ 1

16
ð51þ 45cÞðL4Þ2

− 6ð1 − cÞðL3ÞðL5Þ þ Lð3Þ
II ; ð3:3Þ

where Lð3Þ
II contains removable terms that depend on _L; _Φ

or ðL2Þ and terms that contribute total derivatives in the
action. We then see that the requirement of Oð9; 9Þ
symmetry fixes the coefficient c to its expected value
c ¼ 1, as it forbids the presence of the interaction ðL3ÞðL5Þ.
In the subsequent subsections, dedicated to other theories,
this phenomenon reappears: the couplings contributing to
the lowest-order scattering amplitudes, plus the require-
ment of duality invariance predicts the coefficient of the
Gauss-Bonnet-type term.
The cosmological reduction of (3.1) in the form (2.6) is

then given by

Lð1Þ
II ¼ Lð2Þ

II ¼ 0;

Lð3Þ
II ¼ ζð3Þ

211
½−3ðL8Þ þ 2ðL4Þ2� þ Lð3Þ

II : ð3:4Þ

The corrections to the EOM are zero up to order α02, so we
have Eð1Þ

Ψ ¼ Eð2Þ
Ψ ¼ 0, and the leading order contribution

(2.11) can be used to remove Lð3Þ
II entirely, as explained in

Sec. II. The final action can then be written in terms of the
generalized metric by using (2.35) to arrive at [8]

SII ¼
Z

dte−Φ
�
− _Φ2 −

1

8
Trð _S2Þ

þ α03
ζð3Þ
212

½−3Trð _S8Þ þ Trð _S4Þ2�
�
: ð3:5Þ

2Here, we rescaled α0 in order to match conventions with the
other strings. More precisely, we send α0 in [8] to 2α0 here. After
some change of conventions for t8 and α0, this result is in
agreement with [26]. Without any change of conventions, (3.1) is
in agreement with [19] up to a sign. It was explained in [27] that
this sign should be a misprint (see discussion around Eq. (5.10) in
[27]), so the correct value should be the one in (3.1).

GENERAL STRING COSMOLOGIES AT ORDER Α … PHYS. REV. D 104, 106007 (2021)

106007-7



B. Bosonic strings

For the bosonic string, the 26-dimensional action for the
purely metric sector up to and including order α02 was
obtained in [20], based on the string 3- and 4-point
amplitude calculations. It was later extended to include
the dilaton contribution in [28] from the 3-loop metric beta
function and a consistency condition proposed in [29].
Finally, the α03 action for the purely metric sector was
determined in [27] from the 4-loop beta function.
In [27], two different schemes were used. Even though

the order α03 action was obtained only for the metric sector,
both schemes contain terms involving the dilaton, Ricci
tensors, and Ricci scalars at intermediate orders. Therefore,
we found it useful to present the result in an alternative
scheme in which those contributions can be redefined away
at the expense of changing the α03 couplings. In the main
scheme used in [27], the Lagrangians are given by

L0ð1Þ
B ¼ 1

4
RμνρσRμνρσ; ð3:6Þ

L0ð2Þ
B ¼ 1

16
Rμν

αβRαβ
ρσRρσ

μν−
1

12
Rμν

αβRαρ
μσRβ

ρν
σ

þ3

4
ðRμνþ2∇μ∇νϕÞRμρσλRν

ρσλ

þ1

2

�
∇μϕ∇μϕ−∇μ∇μϕ−

1

4
R

�
RνρσλRνρσλ; ð3:7Þ

L0ð3Þ
B ¼ 1

32
RαβμνRμν

γδRαγ
ρσRρσβδ þ

5

16
RμναβRμναλRλδρσRβδρσ

−
1

32
RμναβRμναβRρσγδRρσγδ þLð3Þ

II ; ð3:8Þ

where the terms Lð3Þ
II are exactly those of type II string

theory, with a coefficient proportional to the transcendental
ζð3Þ that is the same for all string theories.
Next, we perform D-dimensional field redefinitions to

clean all Ricci and dilaton terms at second order by
inducing new contributions at order α03. To do so, one
needs the corrected EOM that can be rewritten in the
following equivalent form:

Rμν þ 2∇μ∇νϕ ¼ −α0
1

2
Rμ

ρσλRνρσλ þ…;

∇μϕ∇μϕ −∇μ∇μϕ −
1

4
R ¼ α0

1

16
RμνρσRμνρσ þ…; ð3:9Þ

where … stands for higher-order contributions as well as
for dilaton terms at order α0. Note that the effect of
nonlinear variations due to the second-order field redefi-
nitions start at order α04 and so can be ignored here. In our
case, by using (3.9) in (3.7), dilaton terms appear just at

order α03. Since L0ð3Þ
B was obtained just for the metric sector,

it would be inconsistent to keep induced dilaton terms.

In any case, at this order, dilaton contributions cannot shift
the coefficients of the duality invariant action, as was
explained in [8]. By applying (3.9) in (3.7), we can get rid
of the dilaton and Ricci terms at the expense of inducing at
order α03 two pure Riemann structures together with dilaton
terms that we omit. The resulting action in this new scheme
is given by

Lð1Þ
B ¼ 1

4
RμνρσRμνρσ; ð3:10Þ

Lð2Þ
B ¼ 1

16
Rμν

αβRαβ
ρσRρσ

μν −
1

12
Rμν

αβRαρ
μσRβ

ρν
σ; ð3:11Þ

Lð3Þ
B ¼ 1

32
RαβμνRμν

γδRαγ
ρσRρσβδ −

1

16
RμναβRμναλRλδρσRβδρσ

þ Lð3Þ
II : ð3:12Þ

At this stage, we compactify the action to obtain

Lð1Þ
B ¼ 1

32
ðL4Þ þ 1

32
ðL2Þ2 þ 1

4
ðL2 _LÞ þ 1

4
ð _L2Þ; ð3:13Þ

Lð2Þ
B ¼ 1

192
ðL6Þ þ 1

16
ð _L3Þ − 1

768
ðL2Þ3 þ 3

32
ðL2 _L2Þ

þ 1

16
ðL4 _LÞ þ 1

256
ðL2ÞðL4Þ − 1

64
ðL3ÞðL _LÞ

−
1

64
ðL _LÞ2 þ 1

64
ðL _LL _LÞ; ð3:14Þ

Lð3Þ
B ¼ 1

211
½ðL8Þ − ðL4Þ2� − ζð3Þ

211
½3ðL8Þ − 2ðL4Þ2�

þ Lð3Þ
B ; ð3:15Þ

where Lð3Þ
B contains removable terms that depend on _L; _Φ,

or ðL2Þ. The EOM then read order-by-order,

Eð1Þ
g ¼ 1

4
½ _Φ2 − Φ̈�½L2 þ 2 _L�

þ 1

8
_Φ½L3 þ 2L _L − 8L̈ − 6 _LLþ ðL2ÞL� ð3:16Þ

−
1

8
½L2 _Lþ L _LLþ _LL2� þ 1

2
½L̈Lþ ⃛L − LL̈�

−
1

4
ðL _LÞL −

1

8
ðL2Þ _L;

Eð2Þ
g ¼ Eð2Þ

g ; ð3:17Þ

Eð1Þ
n ¼ −

3

32
ðL4Þ − 3

32
ðL2Þ2 − 1

4
ð _L2Þ þ 1

2
ðLL̈Þ

−
1

4
_ΦðL3Þ − 1

2
_ΦðL _LÞ; ð3:18Þ

Eð2Þ
n ¼ −

5

192
ðL6Þ þ Eð2Þ

n ; ð3:19Þ
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Eð1Þ
Φ ¼ −

1

32
ðL4Þ − 1

32
ðL2Þ2 − 1

4
ð _L2Þ − 1

4
ðL2 _LÞ; ð3:20Þ

Eð2Þ
Φ ¼ −

1

192
ðL6Þ þ Eð2Þ

Φ ; ð3:21Þ

where the Eð2Þ collectively denote removable terms that
depend on _L; _Φ, and ðL2Þ. Using these EOM, we can do
field redefinitions to bring the action to its minimal form as
explained on general grounds in Sec. II. Since this is the
first nontrivial example in which higher-order EOM are
needed for this purpose, we provide an intermediate step
for clarification. When the EOM are used to implement
replacements in the first- and second-order Lagrangians
(3.13) and (3.14), higher-order contributions are induced,

Z
dte−Φ½α0Lð1Þ

B þ α02Lð2Þ
B �

¼
Z

dte−Φ
�
α0

1

32
ðL4Þ þ α02

1

192
ðL6Þ

þ α03
1

214
ðL4Þ2 þ α03L̃B

ð3Þ
�
; ð3:22Þ

where in L̃B
ð3Þ we collected all removable terms that

depend on _L; _Φ, and ðL2Þ. Note the appearance of a
new ðL4Þ2 term at order α03. This term combines with
the terms already present in (3.15) and the one that comes
from nonlinear variations (2.33) with γ ¼ 1. At this stage,
any appearance of _L; _Φ, and ðL2Þ is removed by the lowest-
order EOM. The resulting action is written in terms of
traces of even powers of L, so it can be cast in terms of the
generalized metric using (2.35). The manifestly Oð25; 25Þ
invariant expression is given by

SB ¼
Z

dte−Φ
�
− _Φ2 −

1

8
Trð _S2Þ þ α0

1

26
Trð _S4Þ

− α02
1

3.27
Trð _S6Þ þ α03

1

212
Trð _S8Þ þ α03

1

216
Trð _S4Þ2

þ α03
ζð3Þ
212

½−3Trð _S8Þ þ Trð _S4Þ2�
�
: ð3:23Þ

We conclude this section with a side remark. Notice that
we could have deformed the second-order contribution
(3.11) as follows:

Lð2Þ
B ¼ 1

48
I1 þ

c
24

ðI1 − 2I2Þ; ð3:24Þ

with

I1 ¼ Rμν
αβRαβ

ρσRρσ
μν;

I2 ¼ Rμν
αβRαρ

μσRβ
ρν

σ; ð3:25Þ

such that (3.11) is recovered for c ¼ 1. Here, I1 is the
contribution from three-point scattering amplitudes, and
I1 − 2I2 is the cubic Gauss-Bonnet combination arising at
quartic powers in a field expansion[20]. Allowing for this
freedom, one encounters the following cosmological action
to order α02:

SB ¼
Z

dte−Φ
h
− _Φ2 þ 1

4
ðL2Þ þ α0

32
ðL4Þ

þ α02

768
ðð1þ 3cÞðL6Þ þ ð1 − cÞðL3Þ2Þ

i
: ð3:26Þ

The interaction ðL3Þ2 is not duality invariant, so we must
take c ¼ 1 in order to cancel it. We recognize here the same
behavior found in the type II action, namely, that lowest-
order scattering amplitudes plus the requirement of duality
invariance fix the coefficient of the Gauss-Bonnet terms.

C. HSZ theory

The gravitational action of HSZ theory [14] to order α03
only contains a second-order contribution,

Lð1Þ
HSZ ¼ 0;

Lð2Þ
HSZ ¼ −

3

4
λΩðΓÞ2 − 1

48
I1 −

c
24

ðI1 − 2I2Þ þ � � � ;

Lð3Þ
HSZ ¼ 0; ð3:27Þ

where the dots represent terms with Ricci tensors, Ricci

scalars, and dilaton couplings. The first term in Lð2Þ
HSZ

containing the square of the Chern-Simons three-form,

ΩμνρðΓÞ ¼ Γδ
½μσ∂νΓσ

ρ�δ þ
2

3
Γδ
½μσΓ

σ
νλΓλ

ρ�δ; ð3:28Þ

was predicted in [30], and here, we weight it with a
coefficient λ that should be fixed to 1 in order to keep
track of the terms that it gives rise to in the reduced action.
Without this contribution, the action would be equal to the
quadratic bosonic action (3.11) up to an overall minus sign.
The interactions I1 and I2 were defined in (3.25). The
second term was computed in [31] through three-point
scattering amplitudes, and the cubic Gauss-Bonnet term
was computed in [32]. We weight this contribution with a
coefficient c as before, to confirm later that the cosmo-
logical reduction will fix its value to c ¼ 1, as expected.
HSZ theory follows an interesting pattern. Modulo field

redefinitions, terms of order Oðα0nÞ with n odd (even),
contain odd (even) powers of the two form [32]. For this
reason, purely gravitational and dilaton terms only appear
in orders with even values of n. There are then no quadratic
nor quartic Riemann interactions in this theory.
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The reduced action takes the form (2.6) with

Lð1Þ
HSZ ¼ 0;

Lð2Þ
HSZ ¼ −

1

768
ðð1þ 3cÞðL6Þ þ ð1 − cÞðL3Þ2Þ þ Lð2Þ

HSZ;

Lð3Þ
HSZ ¼ 0; ð3:29Þ

where Lð2Þ
HSZ contains terms that depend on _L; _Φ, or ðL2Þ.

The interaction ðL3Þ2 is neither duality invariant nor can
be eliminated through field redefinitions, so again duality
invariance fixes the coefficient of the Gauss-Bonnet term to
its expected value c ¼ 1. Both the action and the equations
of motion contain only second-order deformations. For this

reason, the terms Lð2Þ
HSZ appearing at second order can be

removed to order α03 by using the leading-order EOM
(2.11), as explained in Sec. II.
Cast in a manifestly duality invariant form, the effective

action to order α03 then reads

SHSZ ¼
Z

dte−Φ
�
− _Φ2 −

1

8
Trð _S2Þ þ α02

384
Trð _S6Þ

�
: ð3:30Þ

Curiously, the absence of λ indicates that the Chern-Simons
terms leave no trace in the effective cosmological action to
this order, a fact that is only partially explained by the Z2

invariance of the cosmological action, cf. the discussion in
the Introduction.

D. Heterotic strings

The 10-dimensional low-energy effective action for the
Heterotic string up to and including order α03 is given by

Lð1Þ
H ¼ 1

8
RμνρσRμνρσ; ð3:31Þ

Lð2Þ
H ¼ −

3

16
ΩμνρΩμνρ; ð3:32Þ

Lð3Þ
H ¼ 1

26
½18ΩμνρTrðωμ∂νΩρ þ Ωμ∂νωρ þ 2ΩμωνωρÞ

þ 18RμνρσΩρμ
λΩνσλ þ 18∇½μΩν�ρσ∇μΩνρσ

− RμαβγRναβγRμρσλRνρσλ − Rμν
ρσRρσ

αβRαβ
γδRγδ

μν

−2Rμσ
αβRνραβRμνγδRγδ

ρσ� þ Lð3Þ
II ; ð3:33Þ

where Lð3Þ
II is defined in (3.1). Up to order α02, (3.31) and

(3.32) coincide with the action calculated in [20] by 3- and

4-point amplitude methods. Excluding Lð3Þ
II , we are using

the cubic order Lð3Þ
H obtained in [33] by supersymmetry.

However, the α03 action, including Lð3Þ
II , was first found by

4-point scattering amplitude methods in [26,34].

In a cosmological background, the theory reduces to

Lð1Þ
H ¼ 1

64
ðL4Þ þ 1

64
ðL2Þ2 þ 1

8
ðL2 _LÞ þ 1

8
ð _L2Þ; ð3:34Þ

Lð2Þ
H ¼ 3

128
ðL2 _L2Þ − 3

128
ðL _LL _LÞ; ð3:35Þ

Lð3Þ
H ¼−

1

212
ðL4Þ2þζð3Þ

211
½−3ðL8Þþ2ðL4Þ2�þLð3Þ

H ; ð3:36Þ

where again we are using the L notation to indicate terms
that are removable by the leading-order EOM. To order α02,
the deformations to the EOM are

Eð1Þ
g ¼ 1

8
½ _Φ2 − Φ̈�½L2 þ 2 _L�

þ 1

16
_Φ½L3 þ 2L _L − 8L̈ − 6 _LLþ ðL2ÞL�

−
1

16
½L2 _Lþ L _LLþ _LL2� þ 1

4
½L̈Lþ ⃛L − LL̈�

−
1

8
ðL _LÞL −

1

16
ðL2Þ _L; ð3:37Þ

Eð2Þ
g ¼ Eð2Þ

g ; ð3:38Þ

Eð1Þ
n ¼ −

3

64
ðL4Þ − 3

64
ðL2Þ2 − 1

8
ð _L2Þ þ 1

4
ðLL̈Þ − 1

8
_ΦðL3Þ

−
1

4
_ΦðL _LÞ; ð3:39Þ

Eð2Þ
n ¼ Eð2Þ

n ; ð3:40Þ

Eð1Þ
Φ ¼ −

1

64
ðL4Þ − 1

64
ðL2Þ2 − 1

8
ð _L2Þ − 1

8
ðL2 _LÞ; ð3:41Þ

Eð2Þ
Φ ¼ Eð2Þ

Φ : ð3:42Þ

Using these α0-corrected EOM, we can perform field
redefinitions and integration by parts to bring the cosmo-
logical action to the minimal form. We must not forget the
contribution (2.33) arising from nonlinear variations in the
field redefinitions, where now γ ¼ 1

2
. The resulting action

contains traces of only even powers of L, so it can be
written in a manifestly Oð9; 9Þ form using (2.35). The final
result is

SH ¼
Z

dte−Φ
�
− _Φ2 −

1

8
Trð _S2Þ

þ α0
1

27
Trð _S4Þ − α03

15

219
Trð _S4Þ2

þ α03
ζð3Þ
212

½−3Trð _S8Þ þ Trð _S4Þ2�
�
: ð3:43Þ
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IV. CONCLUSIONS

In this paper, we have determined the first four coef-
ficients arising in theOðd; dÞ invariantα0 expansion of string
cosmologies for bosonic, heterotic, and type II string
theories as well as for HSZ theory, completing the result
for type II recently announced in [8]. To this end, we took
the α0 corrections to the low-energy effective actions that
can be found in the literature and performed a cosmological
reduction, i.e., assumed that all fields depend only on time,
and then brought these actions to a canonical field basis. Not
for all string theories are the complete higher-dimensional
corrections known for metric, B field, and dilaton including
up to eight derivatives, but upon using theOðd; dÞ symmetry
we were able to determine the complete duality invariant
cosmological actions to order α03. For instance, the complete
couplings for the NS-NS fields at order α03 remained
unknown until the recent proposal in [35], which sub-
sequently has been tested in [36] by confirming that the
full cosmological reduction agrees with the result obtained
in [8] from the purely gravitational couplings.
It would be important to cross-check our results by

different methods. For instance, one might compute these
coefficients by demanding vanishing of the higher-loop
beta functions of a worldsheet theory that is directly
adapted to dimensional reduction, either using a conven-
tional sigma model or an Oðd; dÞ invariant one [37–39].
Alternatively, one may compute string scattering ampli-
tudes in a setup with d-dimensional translation invariance,
which must beOðd; dÞ invariant (although the extraction of
the cosmological parameters would be somewhat indirect
as there is no scattering in one dimension).

The general classification in [9] characterizes the “space
of string cosmologies” to all orders in α0, but since at each
order in α0 there remain a finite number of parameters that
are not determined by Oðd; dÞ, it remains an open question
to which points in this theory space actual string theories
belong. By determining all free parameters up to and
including α03, we have further restricted the possible
subspaces of this theory space in which the known string
theories must live. The general framework of [9] has
already been employed for some investigations of string
inspired cosmology, see, e.g., [40–48], and it would be
interesting to see if the results presented here might be
useful for such scenarios.
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Note added.—Recently, Ref. [49] appeared, in which the
coefficient c3;0 for the bosonic string is computed including
all B-field and dilaton couplings, in perfect agreement with
the value for c3;0 found here.

[1] K. A. Meissner and G. Veneziano, Symmetries of cosmo-
logical superstring vacua, Phys. Lett. B 267, 33 (1991).

[2] K. A. Meissner and G. Veneziano, Manifestly O(d,d)
invariant approach to space-time dependent string vacua,
Mod. Phys. Lett. A 06, 3397 (1991).

[3] A. Sen, OðdÞ ×OðdÞ symmetry of the space of cosmologi-
cal solutions in string theory, scale factor duality and two-
dimensional black holes, Phys. Lett. B 271, 295 (1991).

[4] R. H. Brandenberger and C. Vafa, Superstrings in the early
universe, Nucl. Phys. B316, 391 (1989).

[5] A. A. Tseytlin and C. Vafa, Elements of string cosmology,
Nucl. Phys. B372, 443 (1992).

[6] G. Veneziano, Scale factor duality for classical and quantum
strings, Phys. Lett. B 265, 287 (1991).

[7] S. R. Green, E. J. Martinec, C. Quigley, and S. Sethi,
Constraints on string cosmology, Classical Quant. Grav.
29, 075006 (2012).

[8] T. Codina, O. Hohm, and D. Marques, String Dualities at
Order α03, Phys. Rev. Lett. 126, 171602 (2021).

[9] O. Hohm and B. Zwiebach, Duality invariant cosmology to
all orders in α0, Phys. Rev. D 100, 126011 (2019).

[10] O. Hohm and B. Zwiebach, T-duality constraints on higher
derivatives revisited, J. High Energy Phys. 04 (2016) 101.

[11] A. A. Tseytlin, Duality and dilaton, Mod. Phys. Lett. A 06,
1721 (1991).

[12] K. A. Meissner, Symmetries of higher order string gravity
actions, Phys. Lett. B 392, 298 (1997).

[13] C. Eloy, O.Hohm, andH. Samtleben,Green-SchwarzMecha-
nism forStringDualities, Phys.Rev.Lett.124, 091601 (2020).

[14] O. Hohm, W. Siegel, and B. Zwiebach, Doubled
α0-geometry, J. High Energy Phys. 02 (2014) 065.

[15] O. Hohm and B. Zwiebach, Double field theory at order α0,
J. High Energy Phys. 11 (2014) 075.

[16] D. Marques and C. A. Nunez, T-duality and α0-corrections,
J. High Energy Phys. 10 (2015) 084.

[17] W. H. Baron, J. J. Fernandez-Melgarejo, D. Marques, and
C. Nunez, The odd story of α0-corrections, J. High Energy
Phys. 04 (2017) 078.

GENERAL STRING COSMOLOGIES AT ORDER Α … PHYS. REV. D 104, 106007 (2021)

106007-11

https://doi.org/10.1016/0370-2693(91)90520-Z
https://doi.org/10.1142/S0217732391003924
https://doi.org/10.1016/0370-2693(91)90090-D
https://doi.org/10.1016/0550-3213(89)90037-0
https://doi.org/10.1016/0550-3213(92)90327-8
https://doi.org/10.1016/0370-2693(91)90055-U
https://doi.org/10.1088/0264-9381/29/7/075006
https://doi.org/10.1088/0264-9381/29/7/075006
https://doi.org/10.1103/PhysRevLett.126.171602
https://doi.org/10.1103/PhysRevD.100.126011
https://doi.org/10.1007/JHEP04(2016)101
https://doi.org/10.1142/S021773239100186X
https://doi.org/10.1142/S021773239100186X
https://doi.org/10.1016/S0370-2693(96)01556-0
https://doi.org/10.1103/PhysRevLett.124.091601
https://doi.org/10.1007/JHEP02(2014)065
https://doi.org/10.1007/JHEP11(2014)075
https://doi.org/10.1007/JHEP10(2015)084
https://doi.org/10.1007/JHEP04(2017)078
https://doi.org/10.1007/JHEP04(2017)078


[18] E. Bergshoeff, B. Janssen, and T. Ortin, Solution generating
transformations and the string effective action, Classical
Quant. Grav. 13, 321 (1996).

[19] M. T. Grisaru and D. Zanon, Sigma-model superstring
corrections to the Einstein-Hilbert action, Phys. Lett. B
177, 347 (1986).

[20] R. R. Metsaev and A. A. Tseytlin, Curvature cubed terms in
string theory effective actions, Phys. Lett. B 185, 52 (1987).

[21] S. Hronek and L.Wulff,OðD;DÞ and the string α0 expansion:
An obstruction, J. High Energy Phys. 04 (2021) 013.

[22] F. Moura, Type II and heterotic one loop string effective
actions in four dimensions, J. High Energy Phys. 06 (2007)
052.

[23] D. J. Gross and E. Witten, Superstring modifications of
Einstein’s equations, Nucl. Phys. B277, 1 (1986).

[24] M. T. Grisaru, A. van de Ven, and D. Zanon, Four-loop
β-function for the N ¼ 1 and N ¼ 2 supersymmetric non-
linear sigma model in two dimensions, preprints HUTP-86/
A020, HUTP-86/A027 (1986).

[25] M. D. Freeman, C. N. Pope, M. F. Sohnius, and K. S. Stelle,
Supersymmetry in compactifications of the heterotic string,
Phys. Lett. B 178, 199 (1986).

[26] D. J. Gross and J. H. Sloan, The quartic effective action for
the heterotic string, Nucl. Phys. B291, 41 (1987).

[27] I. Jack, D. R. T. Jones, and N. Mohammedi, A four loop
calculation of the metric beta function for the bosonic σ
model and the string effective action, Nucl. Phys. B322, 431
(1989).

[28] I. Jack, D. R. T. Jones, and D. A. Ross, On the relationship
between string low-energy effective actions and O (α03) σ
model beta functions, Nucl. Phys. B307, 130 (1988).

[29] G. Curci and G. Paffuti, Consistency between the string
background field equation of motion and the vanishing of
the conformal anomaly, Nucl. Phys. B286, 399 (1987);
A. A. Tseytlin, σ model Weyl invariance conditions and
string equations of motion, Nucl. Phys. B294, 383 (1987).

[30] O. Hohm and B. Zwiebach, Green-Schwarz mechanism
and α0-deformed Courant brackets, J. High Energy Phys. 01
(2015) 012.

[31] U. Naseer and B. Zwiebach, Three-point functions in
duality-invariant higher-derivative gravity, J. High Energy
Phys. 03 (2016) 147.

[32] E. Lescano and D. Marques, Second order higher-derivative
corrections in double field theory, J. High Energy Phys. 06
(2017) 104.

[33] E. A. Bergshoeff and M. de Roo, The quartic effective
action of the heterotic string and supersymmetry, Nucl.
Phys. B328, 439 (1989).

[34] Y. Cai and C. A. Nunez, Heterotic string covariant ampli-
tudes and low-energy effective action, Nucl. Phys. B287,
279 (1987).

[35] M. R. Garousi, Effective action of type II superstring
theories at order α03: NS-NS couplings, J. High Energy
Phys. 02 (2021) 157.

[36] M. R. Garousi, Oð9; 9Þ symmetry of NS-NS couplings at
order α03, Phys. Rev. D 104, 066013 (2021).

[37] A. A. Tseytlin, Duality symmetric closed string theory
and interacting chiral scalars, Nucl. Phys. B350, 395 (1991).

[38] R. Bonezzi, F. Diaz-Jaramillo, and O. Hohm, Old dualities
and new anomalies, Phys. Rev. D 102, 126002 (2020).

[39] R. Bonezzi, T. Codina, and O. Hohm, Beta functions for the
duality-invariant sigma model, arXiv:2103.15931.

[40] P. Wang, H. Wu, H. Yang, and S. Ying, Non-singular string
cosmology via α0 corrections, J. High Energy Phys. 10
(2019) 263.

[41] H. Bernardo, R. Brandenberger, and G. Franzmann, Oðd; dÞ
covariant string cosmology to all orders in α0, J. High
Energy Phys. 02 (2020) 178.

[42] I. Basile and A. Platania, Cosmological α0-corrections from
the functional renormalization group, J. High Energy Phys.
06 (2021) 045.

[43] H. Bernardo, R. Brandenberger, and G. Franzmann, String
cosmology backgrounds from classical string geometry,
Phys. Rev. D 103, 043540 (2021).

[44] J. D. Edelstein, D. Vázquez Rodríguez, and A. Vilar López,
Aspects of geometric inflation, J. Cosmol. Astropart. Phys.
12 (2020) 040.

[45] C. A. Núñez and F. E. Rost, New non-perturbative de Sitter
vacua in α0-complete cosmology, J. High Energy Phys. 03
(2021) 007.

[46] C. Jonas, J. L. Lehners, and J. Quintin, Cosmological
consequences of a principle of finite amplitudes, Phys.
Rev. D 103, 103525 (2021).

[47] M. Gasperini, From pre- to post-big bang: An (almost) self-
dual cosmological history, arXiv:2106.12865.

[48] J. Quintin, H. Bernardo, and G. Franzmann, Cosmology
at the top of the α0 tower, J. High Energy Phys. 07 (2021)
149.

[49] M. R. Garousi,Oð25; 25Þ symmetry of bosonic string theory
at order α02, Eur. Phys. J. C 81, 711 (2021).

TOMAS CODINA, OLAF HOHM, and DIEGO MARQUES PHYS. REV. D 104, 106007 (2021)

106007-12

https://doi.org/10.1088/0264-9381/13/3/002
https://doi.org/10.1088/0264-9381/13/3/002
https://doi.org/10.1016/0370-2693(86)90765-3
https://doi.org/10.1016/0370-2693(86)90765-3
https://doi.org/10.1016/0370-2693(87)91527-9
https://doi.org/10.1007/JHEP04(2021)013
https://doi.org/10.1088/1126-6708/2007/06/052
https://doi.org/10.1088/1126-6708/2007/06/052
https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1016/0370-2693(86)91495-4
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/0550-3213(89)90422-7
https://doi.org/10.1016/0550-3213(89)90422-7
https://doi.org/10.1016/0550-3213(88)90525-1
https://doi.org/10.1016/0550-3213(87)90447-0
https://doi.org/10.1016/0550-3213(87)90588-8
https://doi.org/10.1007/JHEP01(2015)012
https://doi.org/10.1007/JHEP01(2015)012
https://doi.org/10.1007/JHEP03(2016)147
https://doi.org/10.1007/JHEP03(2016)147
https://doi.org/10.1007/JHEP06(2017)104
https://doi.org/10.1007/JHEP06(2017)104
https://doi.org/10.1016/0550-3213(89)90336-2
https://doi.org/10.1016/0550-3213(89)90336-2
https://doi.org/10.1016/0550-3213(87)90106-4
https://doi.org/10.1016/0550-3213(87)90106-4
https://doi.org/10.1007/JHEP02(2021)157
https://doi.org/10.1007/JHEP02(2021)157
https://doi.org/10.1103/PhysRevD.104.066013
https://doi.org/10.1016/0550-3213(91)90266-Z
https://doi.org/10.1103/PhysRevD.102.126002
https://arXiv.org/abs/2103.15931
https://doi.org/10.1007/JHEP10(2019)263
https://doi.org/10.1007/JHEP10(2019)263
https://doi.org/10.1007/JHEP02(2020)178
https://doi.org/10.1007/JHEP02(2020)178
https://doi.org/10.1007/JHEP06(2021)045
https://doi.org/10.1007/JHEP06(2021)045
https://doi.org/10.1103/PhysRevD.103.043540
https://doi.org/10.1088/1475-7516/2020/12/040
https://doi.org/10.1088/1475-7516/2020/12/040
https://doi.org/10.1007/JHEP03(2021)007
https://doi.org/10.1007/JHEP03(2021)007
https://doi.org/10.1103/PhysRevD.103.103525
https://doi.org/10.1103/PhysRevD.103.103525
https://arXiv.org/abs/2106.12865
https://doi.org/10.1007/JHEP07(2021)149
https://doi.org/10.1007/JHEP07(2021)149
https://doi.org/10.1140/epjc/s10052-021-09518-6

