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The shrinking of the bottomonium spectral function towards narrow quasiparticle states in a cooling
strong-interaction medium at finite baryon density is followed within a holographic bottom-up model. The
five-dimensional Einstein-dilaton-Maxwell background is adjusted to the lattice-QCD results of sound
velocity and susceptibilities. The zero-temperature bottomonium spectral function is adjusted to the
experimentalϒ ground state mass and the first radial excitations. At baryo-chemical potential μB ¼ 0, these
two pillars let emerge the narrow quasiparticle state of the ϒ ground state at a temperature of about
150 MeV. Excited states are consecutively formed at lower temperatures by about 10 (20) MeV for the
2S (3S) vector states. The baryon density, i.e., μB > 0, pulls that formation pattern to lower temperatures.
At μB ¼ 200 MeV, we find a shift by about 15 MeV.
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I. INTRODUCTION

The observation of sequential bottomonium suppression
[1–5] in relativistic heavy-ion collisions at LHC has
sparked a series of dedicated investigations, e.g., [6–14].
Such heavy-quark flavor degrees of freedom receive
currently some interest as valuable probes of hot and dense
strong-interaction matter produced in heavy-ion collisions
at LHC energies. The information encoded, e.g., in heavy
quarkonia (Q̄Q ¼ cc̄ or bb̄) observables, supplements
penetrating electromagnetic probes and hard (jet) probes
and the rich flow observables, thus complementing each
other in characterizing the dynamics of quarks and gluons
up to the final hadronic states (cf. contributions in [15] for
the state of the art). Heavy quarks emerge essentially in
early, hard processes, that is, they witness the course of a
heavy-ion collision—either as individual entities or as
subjects of dissociating and regenerating bound states.
Accordingly, the heavy-quark physics address such issues
as charm (c, c̄) and bottom (b, b̄) dynamics related to
transport coefficients [14,16–21] in the rapidly evolving
and highly anisotropic ambient quark-gluon medium
[22,23] as well as Q̄Q states as open quantum systems
[24–27]. The wealth of experimental data from LHC, and
also from RHIC, enables a tremendous refinement of our
understanding of heavy-quark dynamics. For a recent

survey on quarkonium physics we refer the interested
reader to [28].
The yields of various hadron species, light nuclei and

antinuclei emerging from heavy-ion collisions at LHC
energies are well described by the thermostatistical hadro-
nization model [29,30] over an interval of nine orders of
magnitude. The final hadrons and nuclear clusters are
determined by two parameters: the freeze-out temperature
Tfo ≈ 155 MeV and a freeze-out volume depending on the
system size or centrality of the collision. Due to the near-
perfect matter-antimatter symmetry at top LHC energies,
the baryo-chemical potential μB is exceedingly small,
μB=Tfo ≪ 1. While the authors of [31] see a delicate
interplay of elastic and inelastic hadron reactions as a
governing principle of the hadrochemical freeze-out, it is
argued in [30] that the freeze-out of color-neutral objects
happens just in the demarcation region of hadron matter to
quark-gluon plasma, i.e., confined vs deconfined strong-
interaction matter. In fact, lattice-QCD results report a
pseudocritical temperature of Tpc ¼ ð156� 1.5Þ MeV
[32] and ð158.0� 0.6Þ MeV [33]—values agreeing with
the disappearance of the chiral condensates and the maxi-
mum of some susceptibilities. The key is the adjustment of
physical quark masses and the use of 2þ 1 flavors [34,35],
in short QCD2þ1(phys). Details of the coincidence of
deconfinement and chiral symmetry restoration are matters
of debate [36]. Reference [37] advocates flavor-dependent
freeze-out temperatures. Note that at Tpc no phase transition
happens, rather the thermodynamics are characterized by a
crossover accompanied by a pronounced nearby minimum
of the sound velocity. This situation continues to nonzero
baryon density as long as the baryo-chemical potential μB is
small, μB=Tpc ≪ 1.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 106005 (2021)

2470-0010=2021=104(10)=106005(10) 106005-1 Published by the American Physical Society

https://orcid.org/0000-0002-3544-6622
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.106005&domain=pdf&date_stamp=2021-11-11
https://doi.org/10.1103/PhysRevD.104.106005
https://doi.org/10.1103/PhysRevD.104.106005
https://doi.org/10.1103/PhysRevD.104.106005
https://doi.org/10.1103/PhysRevD.104.106005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Among the tools for describing hadrons as composite
strong-interaction systems is holography. Anchored in the
famous AdS=CFT correspondence, holographic bottom-up
approaches have facilitated a successful description of mass
spectra, coupling strengths/decay constants etc. of various
hadron species. While the direct link to QCD by a holo-
graphic QCD-dual or rigorous top-down formulations are
still missing, one has to restrict the accessible observables
to explore certain frameworks and scenarios. We consider
here a framework which merges for the first time
(i) QCD2þ1(phys) thermodynamics described by a dynami-
cal holographic gravity-dilaton-Maxwell background and
(ii) holographic probe quarkonia. We envisage a scenario
which embodies QCD thermodynamics of QCD2þ1(phys)
and the emergence of hadron states at Tc at the same time.
One motivation of our work is the exploration of a
holographic model which is in agreement with the above
hadron phenomenology in heavy-ion collisions at LHC
energies. Early holographic studies [38–40] to hadrons at
finite temperatures faced the problem of meson melting at
temperatures significantly below the deconfinement tem-
perature Tpc. Several proposals have been made [41–43] to
find rescue avenues which accommodate hadrons at and
below Tpc. Otherwise, a series of holographic models of
hadron melting without reference to realistic QCD thermo-
dynamics, e.g., [44–52]—mostly with emphasis on quar-
konium melting—finds quarkonia states well above, at and
below Tpc in agreement with lattice-QCD results [53–56]. It
is therefore tempting to account for the proper QCD-related
background.
In the temperature region T ¼ OðTpcÞ, the impact of

charm and bottom degrees of freedom on the quark-gluon
hadron thermodynamics is minor [57]. Thus, we consider
quarkonia, in particular bottomonium, as test particles. We
follow [58–61] and model the holographic background by a
gravity-dilaton setup supplemented by a Maxwell field
[62,63], i.e., without adding further fundamental degrees
of freedom to the dilaton. That is, the dilaton potential
and its coupling to the Maxwell field are adjusted to
QCD2þ1(phys) lattice data. Our emphasis is here on the
formation of bottomonium in a cooling strong-interaction
environment. Thereby, the bottomonium properties are
described by a spectral function. The primary aim of the
present paper is to study the impact of a finite baryon
density of the strong-interaction medium, thus comple-
menting [64,65]. Finite baryon effects become relevant at
smaller beam energies, e.g., at RHIC, and are systemati-
cally accessible in the beam energy scans [66–68]. We
restrict ourselves to equilibrium and leave nonequilibrium
effects, e.g., [69,70], for future work.
Such μB > 0 effects on holographic bottomonium spec-

troscopy have been considered, e.g., in [44,51,71]. Our
present investigation is distinguished by choosing a holo-
graphic bottom-up background which is adjusted to QCD-
lattice data of sound velocity and susceptibilities in the

temperature range 100 MeV < T < 600 MeV. That is, the
gravity-dilaton-Maxwell fields are dynamically determined
by solutions of the Einstein equations consistent with the
equations of motion of dilaton and Maxwell fields. We do
not touch the large-μB region or a conjectured critical point
[62,63,72–76] since the experimental access to botto-
monium physics is expected to be feasible at not too small
beam energies, i.e., at low values of μB in the central
rapidity region.
Our paper is organized as follows. In Sec. II, the

dynamics of the probe quarkonia is formulated, and the
coupling to the thermodynamics-related background is
explained in Sec. III. Both ingredients are joined in
Sec. IV for the calculation of the spectral functions. The
numerical results for the bottomonium states ϒð1S; 2S; 3SÞ
are presented in Sec. V. We summarize in Sec. VI.
Appendix A details the field equations for the Einstein-
dilaton-Maxwell model with the radial bulk coordinate z.
Appendix B considers some options for UV-IR matching to
generate the ϒðnSÞIGðJPCÞ ¼ 0−ð1−−Þ spectrum within
holography.

II. BOTTOM-UP MODEL FOR QUARKONIA

In thermal equilibrium, the admixture of equilibrated
heavy quarks in strong-interaction matter at T < 250 MeV
is small [57,77]. Rather, initial hard parton interactions
(essentially gluon fusion) create heavy quarks in heavy-ion
collisions. Thus, heavy-quark pairs serve as test particles
and do not need to be back-reacted. In particular, quarkonia
constituents are decoupled from the ambient quark content,
with the exception of the gluon component. In a model with
minimalistic field content one would prefer to keep the
effective gravity-dilaton background (extended by the
Maxwell field B for mimicking μB > 0) to catch QCD
thermodynamics and attribute to the test particles solely
one vector field A. A Uð1Þ gauge field AðzÞ in the bulk is
supposed to be the dual of the vector meson current
operator Q̄γμQ at the boundary. The string-frame action
is accordingly

SVm¼ 1

kV

Z
d4xdz

ffiffiffiffiffi
g5

p 1

4
e−ϕmF2

A; ϕm ≔ϕ− logGmðϕÞ;

ð1Þ

where FA stands for the Abelian field-strength tensor of A
and kV ¼ Nc

24π2
with number Nc ¼ 3 of colors. The metric

determinant g5 is related to the ansatz of the infinitesimal
line element

ds2 ¼ gMNdxMdxN

≔ expfAðz; zHÞg
�
fðz; zHÞdt2 − dx⃗2 −

dz2

fðz; zHÞ
�
; ð2Þ

R. ZÖLLNER and B. KÄMPFER PHYS. REV. D 104, 106005 (2021)

106005-2



with warp function A with AdS asymptotics (see
Appendix A for details) and blackening function f which
steers the temperature of the system by encoding a dual
black hole.
In contrast to common previous practices, the back-

ground quantities g5 as well as ϕ (dilaton field) and B
(Maxwell field) are universal for any test particle,
therefore, Gm encodes solely the essential properties of
the respective test particle. We attribute the quarkonia
masses to the considered test particle. Rather than including
the heavy-quark masses explicitly, we encode them in the
following manner in Gm. From the the ansatz Aμ ¼
ϵμφðzÞ expfipνxνg with μ; ν ¼ 0;…; 3, which uniformly
separates the z dependence of the gauge field by the
bulk-to-boundary propagator φ for all components of A,
and the constant polarization vector ϵμ and gauges Az ¼ 0

and ∂μAμ ¼ 0, the equation of motion follows from the
action (1) as

φ00 þ
�
1

2
A0 þ ð∂ϕ logGm − 1Þϕ0 þ ðlog fÞ0

�
φ0

þ pμpμ

f2
φ ¼ 0; ð3Þ

which is cast in the form of a one-dimensional Schrödinger
equation with the tortoise coordinate ξ,

½∂2
ξ − ðUðzðξÞÞ −m2

nÞ�ψnðξÞ ¼ 0; n ¼ 0; 1; 2;…; ð4Þ

by the transformation ψðξÞ ¼ φðzðξÞÞ expf1
2

R ξ
0 dzSðξÞg

and pμpμ → m2
n. One has to employ zðξÞ from

solving ∂ξ ¼ ð1=fÞ∂z. The Schrödinger-equivalent poten-
tial in (4) is

U ≔
�
1

2
S0 þ 1

4
S2

�
f2 þ 1

2
Sff0 ð5Þ

as a function of ξðzÞ with

S ≔
1

2
A0 − ϕ0 þ ∂z logGmðϕðzÞÞ: ð6Þ

A prime means the derivative with respect to the bulk
coordinate z.
At T ¼ 0, we have f ¼ 1 and ξ ¼ z, and mn in Eq. (4) is

the quarkonium mass spectrum to be used as input.
Therefore, the Schrödinger-equivalent potential UðzÞ must

be chosen in such a manner to deliver the wanted values of
mn. With given UðzÞ, the Ricatti equation (5) must be
solved for S, which in turn determines the heavy-quark
mass-specific function GmðϕÞ via Eq. (6). This GmðϕÞ is
assumed as independent of temperature and baryo-
chemical potential, i.e., is ready for direct use at T > 0
and μB > 0 as well.
In the described chain of operations for getting Gm, the

zero-temperature background quantities AðzÞ and ϕðzÞ are
needed. They are determined by the temperature indepen-
dent dilation potential VðϕÞ, which is adjusted to lattice-
QCD thermodynamics data, briefly recalled in the next
section.

III. BACKGROUND GENERATED BY THE
EINSTEIN-DILATON-MAXWELL

BOTTOM-UP MODEL

We closely follow here the Einstein-dilaton-Maxwell
(EdM) model of [75], see also [73,74,76]. The EdM action
reads

SEdm ¼ 1

2κ25

Z
d4xdz

ffiffiffiffiffi
g5

p �
R −

1

2
∂Mϕ∂Mϕ − VðϕÞ

−
1

4
F ðϕÞF2

B

�
þ SGH; ð7Þ

where R is the Einstein-Hilbert part, FMN
B ¼ ∂MBN −

∂NBM stands for the field-strength tensor of Abelian gauge
field B à la Maxwell with BMdxM ¼ ΦðzÞdt defining the
electrostatic potential, and ϕ is a real scalar (dilatonic) field
with self-interaction described by the potential VðϕÞ. The
bulk Maxwell field is sourced by the conserved light-quark
baryon current q̄γμq at the boundary. In such a manner, this
field is related to baryon density effects, parametrized by
μB. The Maxwell field and dilaton are coupled by the
dynamical strength function F ðϕÞ [62,63] (note the analog
structures 1

4
e−ϕmF2

A and 1
4
F ðϕÞF2

B in the actions (1) and (7)
describing the coupling of the dilaton background to the
respective vector fields). The Gibbons-Hawking term SGH
for a consistent formulation of the variational problem is
not needed explicitly in our context. The numerical value of
the “Einstein constant” κ25 ¼ 8πGN is irrelevant in our
context. We relegate the field equations following from the
action (7) in the coordinates (2) to Appendix A, but
mention here the employed parametrizations

L2VðϕÞ ¼
(
−12 expf1

2
a1ϕ2 þ 1

4
a2ϕ4gfor ϕ < ϕx;

a10 cosh½a4ðϕ − a5Þ�a3=a4 expfa6ϕþ a7
a8
tanh½a8ðϕ − a9Þ�gfor ϕ > ϕx;

ð8Þ
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F ðϕÞ ¼ c0 þ c1 tanh½c2ðϕ − c3Þ� þ c4 expf−c5ϕg; ð9Þ

and refer the interested reader to [75] for listings of the
parameters a1;…;10, ϕx, c0;…;5 etc. Figures 1 and 2 in [75]
exhibit the excellent agreement with lattice-QCD data in
the interval T ∈ ½100; 500� MeV and remaining uncertain-
ties due to limited precision, in particular of the sound
velocity in the interval T ∈ ½100; 160� MeV and the sus-
ceptibility χ4. The scale setting is accomplished by
L−1 ¼ 5.148 GeV.1 The locus of the minimum sound
velocity squared is described in leading order by

Tminfv2sgðμBÞ¼Tv2s ðμB¼ 0Þ
�
1−κ

�
μB

Tv2s ðμB¼ 0Þ
�

2
�
; ð10Þ

with Tv2s ðμB ¼ 0Þ ¼ 145 MeV and κ ¼ 0.0178 MeV. Note
that Tv2s ðμB ¼ 0Þ < Tpc. Despite the direct relation to an
observable, the location of minfv2sg is not so precisely
constrained by lattice-QCD data as that of the maximum of
chiral susceptibility which determines quite accurately the
pseudocritical deconfinement temperature TpcðμB ¼ 0Þ
[32,33]. In so far, the curves Tminfv2sgðμBÞ and TpcðμBÞ
need not coincide.
The EdM model with these input data is then ready to

transport the thermodynamic information from μB ¼ 0 to
μB > 0, thus uncovering the T − μB plane. This is very
much the spirit of the quasiparticle model [78,79], where a
flow equation facilitates such a transport.

IV. SPECTRAL FUNCTIONS

The equation of motion (3) of φ can also be employed to
compute quarkonia spectral functions, cf. [38,47–
49,80,81]. For ω2 ¼ pμpμ > 0 fixed, the asymptotic
boundary behavior facilitates two linearly independent
solutions by considering the leading-order terms on both
sides of the interval ½0; zH�: (i) for z → 0þ, one has the
general solution φðz → 0Þ → AðωÞφ1 þ BðωÞφ2, due to
the AdS asymptotic at the boundary, with two ω-dependent
complex constants A and B, and φ1ðz → 0Þ → 1 and
φ2ðz → 0Þ → ðz=zHÞ2, and (ii) near the horizon, z → z−H,
the asymptotic behavior of solutions of (3) is steered by the
poles of 1=f and 1=f2. The two linearly independent
solutions are φ�ðz → zHÞ → ð1 − z

zH
Þ�iω=jf0ðzHÞj, where φ�

represent out-going and in-falling solutions, respecti-
vely. The general near-horizon solution is given by
φðz → zHÞ → CðωÞφðzÞ þ þDðωÞφ−ðzÞ, again with com-
plex constants C and D which depend on ω. The side
conditions for the bulk-to-boundary propagator are
φð0Þ ¼ 1, which means AðωÞ ¼ 1, and φðz → zHÞ ¼
φ−ðz → zHÞ (purely an in-falling solution at the black hole
horizon), yielding CðωÞ ¼ 0. Due to the bilinear mapping
ðA;BÞ ↦ ðC;DÞ, the value of B for getting the desired in-
falling solution can be determined by solving the above
equations twice, once with A ¼ 1, B ¼ 0 and once with
A ¼ 0, B ¼ 1, and comparing the result with φ− to dig out
the proper coefficients.
The corresponding retarded Green function GR of the

dual current operator Q̄γμQ, defined within the framework
of the holographic dictionary via a generating functional by
GR ¼ δ2

δA0μð−ωÞδA0
μðωÞ hexpfi

R
d4xA0

νQ̄γνQgi, is given by

GRðωÞ ¼ δ2SV;on−shellm

δA0μð−ωÞδA0
μðωÞ

¼ 1

kV
lim
z→0

1

z
φ�ðzÞφ0ðzÞ

¼ 2

kVz2H
BðωÞ; ð11Þ

with A0
μ ≡ ϵμ expfipνxνg for μ ∈ f1; 2; 3g [81]. The quan-

tity SV;on−shellm denotes here the action (1) with the solution φ
from (3). Finally, the spectral function ρ follows from
ρðωÞ ¼ ImGRðωÞ ¼ 2

kVz2H
ImBðωÞ. It has the dimension of

energy squared, suggesting to use L2ρ or ρ=ω2 as con-
venient representations.

V. NUMERICAL RESULTS

The spectral function ρðω; T; μBÞ is accessible by
numerical means by the following chain of operations:
(i) solving the equations of motion (A1)–(A4) following
from the action (7) with boundary conditions (A5)–(A10)
for the background encoded in A0ðzÞ, f0ðzÞ ¼ 1, ϕ0ðzÞ
with the prescribed Vðϕ0Þ from Eq. (8) yields the input for
Eqs. (5) and (6) for the determination of GmðϕÞ at T ¼ 0
(highlighted by the subscript “0,” using U0 from
Appendix B; for parameter values, see Appendix B 2),
(ii) using afterwards that GmðϕÞ in Eqs. (3) and (11) but
with Aðz; zHÞ, fðz; zHÞ, ϕðz; zHÞ determined again by VðϕÞ
via the equations of motion (A1)–(A4) following from the
action (7) with boundary conditions (A5)–(A10) and F ðϕÞ
from Eq. (9), see Appendix A. Some care is needed in that
numerical treatment.
Our results are exhibited in Fig. 1 for the ϒ meson. We

emphasize that neither an explicit quark-mass dependence
enters our approach (instead, quark masses are implicitly
accounted for viaU0ðzÞ for enteringGm) nor a confinement
criterion (instead, narrow spectral functions as quasiparticle
states are considered as confined JPC ¼ 1−− b̄b states). In
so far, the emergence of such narrow quasiparticle ground

1References [64,65] use the dilaton potential L2VðϕÞ ¼
−12 coshðγϕÞ þ ϕ2ϕ

2 þ ϕ4ϕ
4 which delivers for ðγ;ϕ2;ϕ4Þ ¼

ð0.568;−1.92;−0.04Þ, i.e., ΔV ¼ 3.9 also a good description of
lattice-QCD data of v2sðTÞ by L−1 ¼ 1.99 GeV. The difference of
these scale settings can be traced back to the sensibility of internal
model quantities, such as the dilaton profile ϕðz; zHÞ, while
observables remain stable, since effects of different model
parametrizations cancel out when considering observables. Note
that the parametrization (8) implies the conformal dimension
ΔV ¼ 2.76.
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states at a temperature around the deconfinement temper-
ature Tpc is astonishing. The higher the excitation, the later
the excited-state formation happens when considering the
cooling due to expansion. The net effect of the finite baryo-
chemical potential μB is a lowering of the formation
temperature.
The density of low mass color carriers increases by a

nonzero baryo-chemical potential μB or baryon density. For
instance, adding simply the leading-order net baryon
density term ∝ T2μB to the total number density at μB ¼
0 (which is ∝ T3), one gets the estimate ∝ T3 þ ½·�T2μB in
leading order of small μB and species-dependent positive
constant ½·�. Otherwise, estimating the total number density
in a fugacity expansion in massless Stefan-Boltzmann
approximation would result in a term ∝ T3 plus a term
∝ Tμ2B. In either case of such rough estimates, the number
density of color charges increases. In the spirit of the
Matsui-Satz conjecture [82], the color charge screening
becomes stronger, and therefore the formation of bound
states as sharp quasiparticles is delayed (suppressed) in a
cooling medium. This is consistent with the finding in the

holographic approach [83] with D7-branes embedded in the
AdS-Schwarzschild black hole background, where the
nonzero baryon density also facilitates a broadening of
the probe vector meson spectral function. A closer look at
the contour curves at T ¼ 140…160 MeV suggests
ρðω; T − 15 MeV; μB ¼ 0Þ ≈ ρðω; T; μB ¼ 200 MeVÞ,
meaning that the ϒ formation pattern is shifted down by a
temperature of about 15 MeV by the impact of the baryo-
chemical potential μB ¼ 200 MeV. Otherwise, the mini-
mum sound velocity, Tminfv2sgðμBÞ, drops only by about
5 MeV when going from μB ¼ 0 to μB ¼ 200 MeV. While
being rather semiquantitative and restricted to ϒ, this
finding may be interpreted as a hint to a gap between
freeze-out and deconfinement temperature, i.e., TfoðμBÞ ≠
TpcðμBÞ at μB > 0.
Focusing on the crucial temperature region near Tpc or

Tv2s , one observes how rapidly the ground state evolves
toward a sharp quasiparticle within this narrow interval of T
at μB ¼ 0, see the left sharp peak in the left panel in Fig. 2.
The first excitation (the middle peak) becomes clearly
visible, with peak position noticeably shifting up upon

FIG. 2. ϒ spectral function L2ρðω; T; μBÞ as a function of scaled frequency L2ω2 for μB ¼ 0 (left), 100 MeV (middle) and 200 MeV
(right) at 155 MeV (red), 150 MeV (green) and 145 MeV (blue). These plots arise from Fig. 1 as cross sections at constant temperature.

FIG. 1. Contour plots of the ϒ spectral function L2ρðω; T; μBÞ over the temperature vs scaled frequency L2ω2 plane for μB ¼ 0 (left),
100 MeV (middle) and 200 MeV (right); blue, green, red and magenta contour curves correspond to L2ρ ¼ 1, 3, 10 and 30. The dashed
orange curves mark the maximum positions of L2ρðω; T; μBÞ with respect to ω. At large temperatures, such local maxima disappear and
the respective state can be considered as completely molten. At lower temperatures, sharp quasiparticles have been formed, i.e., the
contours are squeezed and are hidden behind the dashed orange curves.
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dropping temperature. In contrast, the second excitation is
identifiable at T ¼ 145 MeV but not so clearly at higher
temperatures. These trends continue at μB > 0, see middle
and right panels in Fig. 2. At μB ¼ 200 MeV, the second
excitation is not identifiable as a clear peak down to
T ¼ 145 MeV, while the first excitation sticks out only at
T ≤ 150 MeV. Let us emphasize that, at μB ¼ 0, the first
and (weakly) the second excitations are identifiable as peak
structures, in contrast to [52], where these excitations appear
as molten, while the ground state persists up to high
temperatures since it is kept by a narrow deep well potential.
To highlight the μB dependence, we exhibit in Fig. 3 the

same spectral functions arranged in reversed order, i.e.,
various values of μB at a given temperature. Such a
representation evidences the impact of the baryo-chemical
potential in a clear manner. Note that in an adiabatically
cooling strong-interaction system one should employ the
isentropic curves TðμBÞ to follow the evolution of the
spectral function. Figure 3 provides some guidance for that.
The relation of the spectral function to the resulting μþμ−

spectrum from ϒ → μþμ− may be elaborated as in previous

studies, e.g., by superimposing the thermal yield (which
needs a model of the space-time evolution of the fireball)
and the post-freeze-out contribution (which is directly
related to the ϒðnSÞ yields and feedings) and the various
background sources. This is beyond the scope of our
paper. Nevertheless, the emerging picture of our model
(see μB ¼ 0 curves in Fig. 3) appears at first glance
qualitatively consistent with experimental observations
[1–4]. The strengths of excited states, ϒð2S; 3SÞ, are
gradually suppressed with respect to the ground state
ϒð1SÞ in heavy-ion collisions with participant numbers
Npart > 100, most notably the 3S state, while in pp
collisions one clearly identifies ϒð2S; 3SÞ as prominent
peaks, albeit with decreasing strengths. One could imagine
that convoluting our spectral functions with a finite
(fiducial) resolution leads to a picture better resembling
the observations, e.g., Fig. 1 in [1]. In fact, applying a
Gaussian resolution function according to the scheme

ρ̄σðωÞ ¼
R
∞
0 dω̄ ρ̄ðω̄Þ 1ffiffiffiffiffiffiffi

2πσ2
p expf− ðω̄−ωÞ2

2σ2
g with ρ̄ðωÞ ≔

ρðωÞ=ω2 and selecting the ad hoc value σ ¼ 0.1 GeV
generates a pattern closer to the observation, see Fig. 4.

FIG. 3. Scaled ϒ spectral function ρðω; T; μBÞ=ω2 as a function of energy ω for T ¼ 145 MeV (left, i.e., at T=Tv2s ¼ 1), 150 MeV
(middle) and 155 MeV (right, i.e., at T ≈ Tpc) at μB ¼ 0 (blue), 100 MeV (green) and 200 MeV (red). The data of Fig. 2 is rearranged to
highlight the μB dependence and to furnish a comparison with experimental results which use Mμþμ− as abscissa.

FIG. 4. The same data as in Fig. 2 is used but convoluted with a resolution function with a width of 100 MeV (see the text) to enable a
comparison with experimental results which use linear scales. An adaptive ω̄ grid with the minimum spacing of 10−8L is employed.
Note that feeding is not included.
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While the underlying soft-wall holographic potential cap-
tures approximately the mass spectrum of radial excitations
at T ¼ 0, it facilitates, also in the present background,
decay constants increasing with (or independent of) the
radial quantum number n, in contrast to experimental data.
This imperfection seems to continue to T > 0: the strengths
of (i.e., yields from) excitations become too large.
Therefore, we do not introduce a continuum or background
subtraction, as discussed in [52], and leave further refine-
ments (e.g., the options offered in Appendix B 3 with
respect to decay constants) and feeding corrections to
follow-up work.

VI. CONCLUSION AND SUMMARY

Using a bottom-up holographic model with minimalistic
field content, we investigate the impact of the finite baryo-
chemical potential μB on bottomonium formation at tem-
peratures in the order of the hadron chemical freeze-out in
relativistic heavy-ion collisions. The model has two pillars:
(i) the vector meson part which employs the bottomonium
masses of ground state and radial excitations as input to
adjust a suitable Schrödinger-equivalent potential, and
(ii) the Einstein-dilaton-Maxwell background which is
adjusted independently to lattice-QCD thermodynamics
(sound velocity and light-quark susceptibilities). The field
content is as follows: (i) a bottomonium-specific function
GmðϕÞ, which encodes implicitly the b quark masses via
the Schrödinger-equivalent potential U0ðzÞ and is essential
for the bulk-to-boundary propagator φðzÞ, and (ii) the
gravity-dilaton-Maxwell part, determined dynamically by
the dilaton potential VðϕÞ and the dilaton-Maxwell cou-
pling F ðϕÞ. Since there is neither a confinement criterion
nor a chiral condensate as the order parameter in such an
approach, we consider the shrinking of the spectral function
ρ (determined by φ) to a narrow quasiparticle state as
bottomonium formation in a cooling strong-interaction
medium. Despite a simple two-parameter Schrödinger-
equivalent potential U0, we find the bottomonium ground
state formation at about a temperature of 150 MeV at
μB ¼ 0. Increasing μB drops the formation temperature.
Excited states are consecutively formed at lower temper-
atures, or the spectral strengths are not yet concentrated
completely at the T ¼ 0 quasiparticle energy at a given
temperature. This fits well in the experimental observation
that the ϒð2SÞ and ϒð3SÞ states are hardly identifiable in
the dilepton spectra in heavy-ion collisions at LHC, while
the ground state is clearly visible [1]. In contrast,
ϒð1S; 2S; 3SÞ are clearly seen in proton-proton collisions
at the same beam energies per nucleon.
Our approach assumes rapid thermalization and equili-

bration, since the cooling of the medium is handled as a
sequence of equilibrium states. Off-equilibrium phenomena
up to dynamical freeze-out need to be considered in
refined investigations. A closer contact to string theory
would be highly desirable to overcome the deployed

phenomenological parametrizations steering our two pil-
lars, background thermodynamics and the vacuum mass
spectrum.
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APPENDIX A: USING THE BULK
COORDINATE z IN THE EdM MODEL

The equations of motion for the dilaton ϕðzÞ, the
Maxwell field ΦðzÞ with the coupling function F ðϕÞ,
following from the action (7), read in the coordinates (2)
with warp factor expfAðzÞg and blackening function fðzÞ

ϕ00 ¼−
�
3

2
A0 þ ðlogfÞ0

�
ϕ0−

1

f

�
eA

∂VðϕÞ
∂ϕ þ1

8

∂F ðϕÞ
∂ϕ Φ02

�
;

ðA1Þ

Φ00 ¼ −
�
1

2
A0 þ 1

4

logF ðϕÞ
∂ϕ ϕ0

�
Φ0; ðA2Þ

A00 ¼ 1

2
A02 −

1

3
ϕ02; ðA3Þ

f00 ¼ −
3

2
A0f0 −

1

4
F ðϕÞe−AΦ02: ðA4Þ

The leading-order initial conditions are (i) near the boun-
dary, i.e., z → 0þ,

lim
z→0

ϕ ¼ 0; lim
z→0

ϕ0 ¼ 0; ðA5Þ

lim
z→0

Φ ¼ μBL; ðA6Þ

lim
z→0

A ¼ −2 log
z
L
þ � � � ; lim

z→0
A0 ¼ −

2

z
þ � � � ; ðA7Þ

lim
z→0

f ¼ 1; ðA8Þ

and (ii) near the horizon, i.e., z → z−H,

lim
z→zH

Φ ¼ 0; ðA9Þ

lim
z→zH

f ¼ 0: ðA10Þ

Equations (A9) and (A10) make these equations a
mixed boundary problem. The Hawking temperature is
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determined by TðzHÞ ¼ − 1
4π fðz; zHÞ0jz¼zH with a freely

chosen value of the horizon position zH and free choice of
μB. For completeness, we note also entropy density
sðT;μBÞ¼ 2π

κ2
5

expf3
2
AðzHÞg and baryon density nBðT; μBÞ ¼

− 1
κ2
5

Φ2 with Φ2 from the small-z expansion Φ ¼
μBLþΦ2ðz=LÞ2 þ � � �.
References [73–76] use essentially the coordinates

originally employed in [62,63] with special gauging of
the radial coordinate. These solutions can be parametrized
by the double ðϕðzHÞ;ΦðzHÞÞ and need a posteriori the
determination of the (screwed) T − μB mesh. The advan-
tage of Eqs. (A1)–(A10) is in the boundary conditions (A8)
and (A9), which make the scan of the T − μB plane easier.

APPENDIX B: UV-IR MATCHING

1. Generalities

In the zero-temperature limit, T → 0 at μB ¼ 0, one has
f → 1, ξ → z and U → U0 in Eq. (4). The primary request
to any useful Schrödinger-equivalent potential U0ðzÞ is to
get the proper level spacing via

y00 − ðU0 − ÊL−2Þy ¼ 0: ðB1Þ

A constant common shift of U0 → Ub
0 ¼ U0 þ 4b=L2 can

be absorbed in Ê→ Êb ¼ Êþ4b to accomplish the wanted

meson ground state mass squared, L2mðbÞ2
0 ¼ Ê0 þ 4b,

independent of U0ðzÞ. Here, we suppose that Eq. (B1)
delivers a set of discrete eigenvalues Ên ≡ L2m2

n, n ¼
0; 1; 2;… by the requirement of square-integrable solu-
tions yn.
We emphasize again that U0ðzÞ is an independent input

in our approach which determines S0, via S0
0
2 þ 1

2
S2
0 −

2U0 ¼ 0 from Eq. (5), and Gmðϕ0Þ, via ðlogGmÞ0 − S0 þ
1
2
A0
0 − ϕ0

0 ¼ 0 from Eq. (6). The needed holographic back-
ground quantities A0ðzÞ and ϕ0ðzÞ are determined inde-
pendently by the dilaton potential VðϕÞ ¼ Vðϕ0Þ, where
the quantities at T ¼ 0 and μB ¼ 0 are labeled by the
subscript “0.” The identification GmðϕÞ ¼ Gmðϕ0Þ deter-
mines via Eqs. (3) and (11) the spectral function. In so far,
the choice of U0 deserves some special attention.

2. Approximately uncovering the ϒ mass spectrum

The famous soft-wall (SW) model [84] employs USW
0 ¼

UUV
0 þ UIR

0 ¼ 3
4
z−2 þ ða=LÞ2ðz=LÞ2 with the leading-

order asymptotic parts

lim
z→0

U0 → UUV
0 ðzÞ ≔ α2

z2
; α2 ≡ 3

4
; ðB2Þ

lim
z→∞

U0 → UIR
0 ðzÞ ≔ a2

L2

�
z
L

�
2

: ðB3Þ

It has one free parameter, a, and, in general, cannot
accommodate independently the ground state mass and
level spacing at the same time. Nevertheless, it delivers via
L2m2

n ¼ 4aðnþ 1Þ, n ¼ 0; 1; 2 � � �, the Regge type mass
spectrum—in [84], termed “linear confinement.” Despite
the imperfection, it has been used in [47,48] for an
investigation of the thermal behavior of the J=ψ spectral
function. Supplemented with the shift parameter b, i.e.,
USW

0 → USW;b
0 ¼ USW

0 þ 4b=L2, however, the ground state
mass and uniform level spacing can be tuned separately and
may be used as a minimum parameter model with

ÊðbÞ
n ≡ L2mðbÞ2

n ¼ 4bþ 4aðnþ 1Þ. The decay constants
are less perfectly reproduced, as stressed in [49] for J=ψ
and ψ 0. Nevertheless, due to its transparency we stay
with this variant in our study of the ϒ spectral
function. The parameters a ¼ 0.2006 and b ¼ 0.6436,
together with the scale setting L−1 ¼ 5.148 GeV used in

Sec. V, result in mðbÞ
0 ¼mϒð1SÞ¼9.460GeV, mðbÞ

1 ¼
10.524GeV (¼mϒð2SÞþ5%) and mðbÞ

2 ¼ 11.490 GeV
(¼ mϒð3SÞ þ 11%). A readjustment a → 0.1035 and
b → 0.7407 would lead also to the exact experimental

mass of mðbÞ
1 ¼ mϒð2SÞ ¼ 10.0233 GeV as well as mðbÞ

2 ¼
10.556 GeV (¼ mϒð3SÞ þ 2%) to be compared to
mϒð3SÞ ¼ 10.3553 GeV, but reduced somewhat the forma-
tion temperature, as discussed in [65]. The dependencies on
additional parameters discussed below can be used for fine-
tuning by breaking the uniform level spacing Ênþ1 − Ên ¼
4a of the soft-wall model.
The relation a ≪ b suggests a separation of scales.

The level spacing, m2ðϒððnþ 1ÞSÞÞ −m2ðϒððnSÞÞ ≪
1
2
ðm2ðϒððnþ 1ÞSÞÞ þm2ðϒððnSÞÞÞ for n ¼ 0, 1, 2 may

be attributed to QCD dynamics, while the mass gap or
average hadron masses squared may be related to the
heavy-quark mass. This calls for a separate consideration of
the level spacing as part of fine-tuning in Subsec. B 3.
In attempting fine-tuning, one may proceed in a two-step

approach by (i) first accomplishing the level spacing only,
and (ii) eventually shifting the whole spectrum to accom-
plish the wanted values of mðbÞ

n . Applied to USW;b
0 , step

(i) would fix a, and b is obtained in step (ii). While such a
two-step fine-tuning procedure looks promising, it could be
hampered by a problem which we faced, e.g., in [64,65]:
unfavorable parametrizations of U0ðzÞ can lead to forma-
tion temperatures that are too low, such that at Tpc

quasiparticles are not yet formed, in contrast to the
common understanding of hadron formation in
relativistic heavy-ion collisions discussed in the introduc-
tion. The origin of the affair can be qualitatively
explained within the transparent model USW;b

0 . At finite
temperatures, U0ðzÞ → UTðz; zHðTÞÞ. Since UTðz; zHÞ ∝
fðz; zHÞ according to Eq. (5), one can imagine
UTðz; zHÞ ≈U0ðzÞΘðzH − zÞ. To accommodate the ground
state in such a potential, the IR turning point (t.p., in the
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spirit of WKB) zIRt:p: ≈ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

p
=a must obey

zIRt:p: < zH ≈ 1=ð4πTÞ. In other words, to allow for an
“unmolested” state at given temperature T, the parameter a
must be sufficiently large to get small zIRt:p·. This is the
reasoning of considering the quark-mass effect encoded in
m0 as primary quantity and a less strict parameter adjust-
ment for the level spacing, as deployed in the above
parameter setting. (In stark contrast, [85] puts emphasis
on the correct decay constants and is less restrictive to the
bottomonium mass spectrum with the advantage of rather
persistent states up to high temperatures T > Tpc.)

3. Fine-tuning of U0 to recover ϒð1S;2S;3SÞ
masses by proper level spacing

The asymptotic parts at small z (UV), Eq. (B2), and large
z (IR), Eq. (B3), can be joined in many different ways to a
common Schrödinger-equivalent potentialU0ðzÞ to be used
in Eqs. (4) and, in vacuum, (B1) to accomplish the wanted

fine-tuning. Here we mention only one with a minimum set
of parameters. An easy choice would be

Udip
0 ¼

8>><
>>:

UUV
0 ðzÞ þ bUVL−2for z < z0;

Ũ0for z0 ≤ z ≤ λz0;

UIR
0 ðzÞ þ bIRL−2for z > λz0;

ðB4Þ

with constant parameters bUV;IR, Ũ0, λ and the scale setting
parameter L. The options λ ¼ 1 (dip related to discontinuity
at x0), λ → 1 (mimicking a Dirac delta dip at x0 when
Ũ0 ∝ 1=ðλ − 1Þ) and λ > 1 (boxlike dip within x0 � � � λx0)
with respect to fine-tuning of the mass spectrum are
discussed in the Supplemental Material to this article in
[86]. We finish this paper with the expectation that the
tendency of the μB dependence of spectral functions is not
obstructed by the details of approximately or accurately
adjusting parameters of U0 to the ϒ mass spectrum.

[1] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett.
109, 222301 (2012); 120, 199903(E) (2018).

[2] A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. Lett.
120, 142301 (2018).

[3] A. M. Sirunyan et al. (CMS Collaboration), Phys. Lett. B
790, 270 (2019).

[4] S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 790,
89 (2019).

[5] S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 822,
136579 (2021).

[6] S. Aronson, E. Borras, B. Odegard, R. Sharma, and I. Vitev,
Phys. Lett. B 778, 384 (2018).

[7] X. Du, R. Rapp, and M. He, Phys. Rev. C 96, 054901
(2017).

[8] J. Hoelck, F. Nendzig, and G. Wolschin, Phys. Rev. C 95,
024905 (2017).

[9] G. Wolschin, Int. J. Mod. Phys. A 35, 2030016 (2020).
[10] X. Yao and B. Müller, Phys. Rev. D 100, 014008 (2019).
[11] X. Yao, W. Ke, Y. Xu, S. A. Bass, and B. Müller, J. High

Energy Phys. 01 (2021) 046.
[12] X. Yao, W. Ke, Y. Xu, S. A. Bass, and B. Müller, Proc. Sci.,

HardProbes2020 (2021) 064 [arXiv:2009.05658].
[13] M. Strickland, Proc. Sci., High-pT2019 (2020) 020

[arXiv:1906.00888].
[14] N. Brambilla, M. Escobedo, M. Strickland, A. Vairo, P.

Vander Griend, and J. H. Weber, J. High Energy Phys. 05
(2021) 136.

[15] F. Liu, E. Wang, X.-N. Wang, N. Xu, and B.-W. Zhang,
Nucl. Phys. A1005, 122081 (2021).

[16] F. Prino and R. Rapp, J. Phys. G 43, 093002 (2016).
[17] R. Rapp et al., Nucl. Phys. A979, 21 (2018).
[18] Y. Xu et al., Phys. Rev. C 99, 014902 (2019).
[19] S. Cao et al., Phys. Rev. C 99, 054907 (2019).

[20] N. Brambilla, M. A. Escobedo, A. Vairo, and P. Vander
Griend, Phys. Rev. D 100, 054025 (2019).

[21] T. Song, P. Moreau, J. Aichelin, and E. Bratkovskaya, Phys.
Rev. C 101, 044901 (2020).

[22] C. Chattopadhyay and U.W. Heinz, Phys. Lett. B 801,
135158 (2020).

[23] D. Bazow, U.W. Heinz, and M. Strickland, Phys. Rev. C 90,
054910 (2014).

[24] R. Katz and P. B. Gossiaux, Ann. Phys. (Amsterdam) 368,
267 (2016).

[25] J. P. Blaizot and M. A. Escobedo, J. High Energy Phys. 06
(2018) 034.

[26] J. P. Blaizot and M. A. Escobedo, Phys. Rev. D 98, 074007
(2018).

[27] N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, Phys.
Rev. D 97, 074009 (2018).

[28] A. Rothkopf, Phys. Rep. 858, 1 (2020).
[29] P. Braun-Munzinger and B. Dönigus, Nucl. Phys. A987,

144 (2019).
[30] A. Andronic, P. Braun-Munzinger, K. Redlich, and J.

Stachel, Nature (London) 561, 321 (2018).
[31] T. Reichert, G. Inghirami, and M. Bleicher, Eur. Phys. J. A

56, 267 (2020).
[32] A. Bazavov et al. (HotQCD Collaboration), Phys. Lett. B

795, 15 (2019).
[33] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P.

Parotto, A. Pasztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 125, 052001 (2020).

[34] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D.
Katz, S. Krieg, and K. K. Szabo, Phys. Lett. B 730, 99
(2014).

[35] A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D
90, 094503 (2014).

HOLOGRAPHIC BOTTOMONIUM FORMATION IN A COOLING … PHYS. REV. D 104, 106005 (2021)

106005-9

https://doi.org/10.1103/PhysRevLett.109.222301
https://doi.org/10.1103/PhysRevLett.109.222301
https://doi.org/10.1103/PhysRevLett.120.199903
https://doi.org/10.1103/PhysRevLett.120.142301
https://doi.org/10.1103/PhysRevLett.120.142301
https://doi.org/10.1016/j.physletb.2019.01.006
https://doi.org/10.1016/j.physletb.2019.01.006
https://doi.org/10.1016/j.physletb.2018.11.067
https://doi.org/10.1016/j.physletb.2018.11.067
https://doi.org/10.1016/j.physletb.2021.136579
https://doi.org/10.1016/j.physletb.2021.136579
https://doi.org/10.1016/j.physletb.2018.01.038
https://doi.org/10.1103/PhysRevC.96.054901
https://doi.org/10.1103/PhysRevC.96.054901
https://doi.org/10.1103/PhysRevC.95.024905
https://doi.org/10.1103/PhysRevC.95.024905
https://doi.org/10.1142/S0217751X20300161
https://doi.org/10.1103/PhysRevD.100.014008
https://doi.org/10.1007/JHEP01(2021)046
https://doi.org/10.1007/JHEP01(2021)046
https://arXiv.org/abs/2009.05658
https://arXiv.org/abs/1906.00888
https://doi.org/10.1007/JHEP05(2021)136
https://doi.org/10.1007/JHEP05(2021)136
https://doi.org/10.1016/j.nuclphysa.2020.122081
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1103/PhysRevC.99.014902
https://doi.org/10.1103/PhysRevC.99.054907
https://doi.org/10.1103/PhysRevD.100.054025
https://doi.org/10.1103/PhysRevC.101.044901
https://doi.org/10.1103/PhysRevC.101.044901
https://doi.org/10.1016/j.physletb.2019.135158
https://doi.org/10.1016/j.physletb.2019.135158
https://doi.org/10.1103/PhysRevC.90.054910
https://doi.org/10.1103/PhysRevC.90.054910
https://doi.org/10.1016/j.aop.2016.02.005
https://doi.org/10.1016/j.aop.2016.02.005
https://doi.org/10.1007/JHEP06(2018)034
https://doi.org/10.1007/JHEP06(2018)034
https://doi.org/10.1103/PhysRevD.98.074007
https://doi.org/10.1103/PhysRevD.98.074007
https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1016/j.physrep.2020.02.006
https://doi.org/10.1016/j.nuclphysa.2019.02.006
https://doi.org/10.1016/j.nuclphysa.2019.02.006
https://doi.org/10.1038/s41586-018-0491-6
https://doi.org/10.1140/epja/s10050-020-00273-y
https://doi.org/10.1140/epja/s10050-020-00273-y
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.90.094503


[36] H. Suganuma, T. M. Doi, K. Redlich, and C. Sasaki, J. Phys.
G 44, 124001 (2017).

[37] R. Bellwied, J. Noronha-Hostler, P. Parotto, I. Portillo
Vazquez, C. Ratti, and J. M. Stafford, Phys. Rev. C 99,
034912 (2019).

[38] P. Colangelo, F. Giannuzzi, and S. Nicotri, J. High Energy
Phys. 05 (2012) 076.

[39] P. Colangelo, F. Giannuzzi, and S. Nicotri, Phys. Rev. D 80,
094019 (2009).

[40] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, and S.
Nicotri, Phys. Rev. D 78, 055009 (2008).

[41] R. Zöllner and B. Kämpfer, Phys. Rev. C 94, 045205 (2016).
[42] R. Zöllner and B. Kämpfer, J. Phys. Conf. Ser. 878, 012023

(2017).
[43] R. Zöllner and B. Kämpfer, J. Phys. Conf. Ser. 1024,

012003 (2018).
[44] N. R. F. Braga and R. Da Mata, Phys. Lett. B 804, 135381

(2020).
[45] N. R. F. Braga, M. A. Martin Contreras, and S. Diles,

Europhys. Lett. 115, 31002 (2016).
[46] N. R. F. Braga, M. A. Martin Contreras, and S. Diles, Eur.

Phys. J. C 76, 598 (2016).
[47] M. Fujita, K. Fukushima, T. Misumi, and M. Murata, Phys.

Rev. D 80, 035001 (2009).
[48] M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, and M.

Murata, Phys. Rev. D 81, 065024 (2010).
[49] H. R. Grigoryan, P. M. Hohler, and M. A. Stephanov, Phys.

Rev. D 82, 026005 (2010).
[50] N. R. F. Braga, L. F. Ferreira, and A. Vega, Phys. Lett. B

774, 476 (2017).
[51] N. R. F. Braga and L. F. Ferreira, Phys. Lett. B 773, 313

(2017).
[52] M. A. Martin Contreras, S. Diles, and A. Vega, Phys. Rev. D

103, 086008 (2021).
[53] A. Bazavov, F. Karsch, Y. Maezawa, S. Mukherjee, and P.

Petreczky, Phys. Rev. D 91, 054503 (2015).
[54] S. Kim, P. Petreczky, and A. Rothkopf, J. High Energy Phys.

11 (2018) 088.
[55] A. L. Kruse, H. T. Ding, O. Kaczmarek, H. Ohno, and H.

Sandmeyer, MDPI Proc. 10, 45 (2019), arXiv:1901.04226.
[56] R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky, Phys.

Lett. B 800, 135119 (2020).
[57] S. Borsanyi et al., Nature (London) 539, 69 (2016).
[58] S. S. Gubser and A. Nellore, Phys. Rev. D 78, 086007

(2008).
[59] S. I. Finazzo, R. Rougemont, H. Marrochio, and J. Noronha,

J. High Energy Phys. 02 (2015) 051.
[60] S. I. Finazzo and J. Noronha, Phys. Rev. D 89, 106008

(2014).

[61] R. Zöllner and B. Kämpfer, Eur. Phys. J. Plus 135, 304
(2020).

[62] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 83,
086005 (2011).

[63] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 84,
126014 (2011).

[64] R. Zöllner and B. Kämpfer, Eur. Phys. J. Special Topics 229,
3585 (2020).

[65] R. Zöllner and B. Kämpfer, Particles 4, 159 (2021).
[66] G. Odyniec (STAR Collaboration), Proc. Sci., CORFU2018

(2019) 151.
[67] M. Abdallah et al. (STAR Collaboration), Phys. Rev. C 104,

024902 (2021).
[68] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N.

Xu, Phys. Rep. 853, 1 (2020).
[69] L. Bellantuono, P. Colangelo, F. De Fazio, F. Giannuzzi, and

S. Nicotri, Phys. Rev. D 96, 034031 (2017).
[70] X. Yao and B. Müller, Phys. Rev. C 97, 014908 (2018); 97,

049903(E) (2018).
[71] N. R. F. Braga and R. da Mata, Phys. Rev. D 101, 105016

(2020).
[72] R. Rougemont, A. Ficnar, S. Finazzo, and J. Noronha,

J. High Energy Phys. 04 (2016) 102.
[73] J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C.

Ratti, and R. Rougemont, Phys. Rev. D 104, 034002
(2021).

[74] R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C.
Ratti, and R. Rougemont, Phys. Rev. D 96, 096026 (2017).

[75] J. Knaute, R. Yaresko, and B. Kämpfer, Phys. Lett. B 778,
419 (2018).

[76] J. Knaute and B. Kämpfer, Phys. Rev. D 96, 106003
(2017).

[77] R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor,
C. Ratti, and K. K. Szabo, Phys. Rev. D 92, 114505
(2015).

[78] A. Peshier, B. Kämpfer, and G. Soff, Phys. Rev. C 61,
045203 (2000).

[79] A. Peshier, B. Kämpfer, and G. Soff, Phys. Rev. D 66,
094003 (2002).

[80] P. M. Hohler and Y. Yin, Phys. Rev. D 88, 086001 (2013).
[81] D. Teaney, Phys. Rev. D 74, 045025 (2006).
[82] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[83] J. Erdmenger, M. Kaminski, P. Kerner, and F. Rust, J. High

Energy Phys. 11 (2008) 031.
[84] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.

Rev. D 74, 015005 (2006).
[85] N. R. F. Braga and L. F. Ferreira, J. High Energy Phys. 01

(2019) 082.
[86] R. Zöllner and B. Kämpfer, arXiv:2109.05824.

R. ZÖLLNER and B. KÄMPFER PHYS. REV. D 104, 106005 (2021)

106005-10

https://doi.org/10.1088/1361-6471/aa8e2f
https://doi.org/10.1088/1361-6471/aa8e2f
https://doi.org/10.1103/PhysRevC.99.034912
https://doi.org/10.1103/PhysRevC.99.034912
https://doi.org/10.1007/JHEP05(2012)076
https://doi.org/10.1007/JHEP05(2012)076
https://doi.org/10.1103/PhysRevD.80.094019
https://doi.org/10.1103/PhysRevD.80.094019
https://doi.org/10.1103/PhysRevD.78.055009
https://doi.org/10.1103/PhysRevC.94.045205
https://doi.org/10.1088/1742-6596/878/1/012023
https://doi.org/10.1088/1742-6596/878/1/012023
https://doi.org/10.1088/1742-6596/1024/1/012003
https://doi.org/10.1088/1742-6596/1024/1/012003
https://doi.org/10.1016/j.physletb.2020.135381
https://doi.org/10.1016/j.physletb.2020.135381
https://doi.org/10.1209/0295-5075/115/31002
https://doi.org/10.1140/epjc/s10052-016-4447-4
https://doi.org/10.1140/epjc/s10052-016-4447-4
https://doi.org/10.1103/PhysRevD.80.035001
https://doi.org/10.1103/PhysRevD.80.035001
https://doi.org/10.1103/PhysRevD.81.065024
https://doi.org/10.1103/PhysRevD.82.026005
https://doi.org/10.1103/PhysRevD.82.026005
https://doi.org/10.1016/j.physletb.2017.10.013
https://doi.org/10.1016/j.physletb.2017.10.013
https://doi.org/10.1016/j.physletb.2017.08.037
https://doi.org/10.1016/j.physletb.2017.08.037
https://doi.org/10.1103/PhysRevD.103.086008
https://doi.org/10.1103/PhysRevD.103.086008
https://doi.org/10.1103/PhysRevD.91.054503
https://doi.org/10.1007/JHEP11(2018)088
https://doi.org/10.1007/JHEP11(2018)088
https://arXiv.org/abs/1901.04226
https://doi.org/10.1016/j.physletb.2019.135119
https://doi.org/10.1016/j.physletb.2019.135119
https://doi.org/10.1038/nature20115
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1007/JHEP02(2015)051
https://doi.org/10.1103/PhysRevD.89.106008
https://doi.org/10.1103/PhysRevD.89.106008
https://doi.org/10.1140/epjp/s13360-020-00106-3
https://doi.org/10.1140/epjp/s13360-020-00106-3
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.84.126014
https://doi.org/10.1103/PhysRevD.84.126014
https://doi.org/10.1140/epjst/e2020-000031-9
https://doi.org/10.1140/epjst/e2020-000031-9
https://doi.org/10.3390/particles4020015
https://doi.org/10.22323/1.347.0151
https://doi.org/10.22323/1.347.0151
https://doi.org/10.1103/PhysRevC.104.024902
https://doi.org/10.1103/PhysRevC.104.024902
https://doi.org/10.1016/j.physrep.2020.01.005
https://doi.org/10.1103/PhysRevD.96.034031
https://doi.org/10.1103/PhysRevC.97.014908
https://doi.org/10.1103/PhysRevC.97.049903
https://doi.org/10.1103/PhysRevC.97.049903
https://doi.org/10.1103/PhysRevD.101.105016
https://doi.org/10.1103/PhysRevD.101.105016
https://doi.org/10.1007/JHEP04(2016)102
https://doi.org/10.1103/PhysRevD.104.034002
https://doi.org/10.1103/PhysRevD.104.034002
https://doi.org/10.1103/PhysRevD.96.096026
https://doi.org/10.1016/j.physletb.2018.01.053
https://doi.org/10.1016/j.physletb.2018.01.053
https://doi.org/10.1103/PhysRevD.96.106003
https://doi.org/10.1103/PhysRevD.96.106003
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevC.61.045203
https://doi.org/10.1103/PhysRevC.61.045203
https://doi.org/10.1103/PhysRevD.66.094003
https://doi.org/10.1103/PhysRevD.66.094003
https://doi.org/10.1103/PhysRevD.88.086001
https://doi.org/10.1103/PhysRevD.74.045025
https://doi.org/10.1016/0370-2693(86)91404-8
https://doi.org/10.1088/1126-6708/2008/11/031
https://doi.org/10.1088/1126-6708/2008/11/031
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1007/JHEP01(2019)082
https://doi.org/10.1007/JHEP01(2019)082
https://arXiv.org/abs/2109.05824

