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We consider N ¼ 1 superconformal field theories in three dimensions possessing a conserved current
multiplet F ðα1α2α3α4Þ, which we refer to as the superspin-2 current multiplet. At the component level it
contains a conserved spin-2 current different from the energy-momentum tensor and a conserved fermionic
higher-spin current of spin 5=2. Using a superspace formulation, we calculate correlation functions
involving F , focusing particularly on the three-point function hFFF i. After imposing the constraints
arising from conservation equations and invariance under permutation of superspace points, we find that
the parity-even and parity-odd sectors of this three-point function are each fixed up to a single coefficient.
The presence of the parity-odd contribution is rather nontrivial, as there is an apparent tension between
supersymmetry and the existence of parity-odd structures.

DOI: 10.1103/PhysRevD.104.106004

I. INTRODUCTION

A peculiar feature of three-dimensional conformal field
theories is the presence of parity violating, or parity-odd,
structures in the three-point functions of conserved currents
such as the energy-momentum tensor and vector currents
[1]. These structures were not considered in the systematic
studies of [2,3], which utilized a group-theoretic approach
to solve for the correlation functions of conserved currents
in a generic number of spacetime dimensions.1 Parity-odd
structures are not present in free theories but have been
shown to arise in Chern-Simons theories interacting with
parity violating matter. In various approaches and contexts
they were studied in [14–25].
In general, besides the energy-momentum tensor and

vector currents, conformal field theories also possess cur-
rents of higher spin. In [17] Maldacena and Zhiboedov
proved under certain assumptions (see below) that all
correlation functions of higher-spin currents in three-
dimensional conformal field theory are equal to that of a
free theory. In particular, it implies that they do not have

parity-odd contributions. This theorem was later general-
ized to higher-dimensional cases in [26–28]. These results
can be viewed as the analog of the Coleman-Mandula
theorem [29] for conformal field theories.
In this paper we will be interested in N ¼ 1 super-

conformal field theories in three dimensions. The general
formalism to construct the two- and three-point functions of
conserved currents in three-dimensional superconformal
field theories was developed in [30–33] (a similar formal-
ism in four dimensions was developed in [34–36] and in six
dimensions in [37]). In supersymmeric theories, conserved
currents are contained within supermultiplets. The energy-
momentum tensor lies in the supercurrent multiplet [38],
which in three dimensions also contains a fermionic
supersymmetry current. On the other hand, a vector current
becomes a component of the flavor current multiplet. As
was pointed out in [31,39] there is an apparent tension
between supersymmetry and the existence of parity violat-
ing structures in the three-point functions of conserved
currents. In particular, three-point functions containing
the supercurrent and flavor current multiplets admit
only parity-even contributions. Combining this with the
Maldacena-Zhiboedov theorem, it follows that supersym-
metric conformal field theories do not admit parity-odd
contributions to the three-point functions of conserved
currents for any spin unless the assumptions of the theorem
are violated.
The strongest assumption of the Maldacena-Zhiboedov

theorem is that the conformal field theory under consid-
eration possesses a unique conserved spin-2 current—the
energy-momentum tensor. However, in the same article
[17] Maldacena and Zhiboedov showed that the existence
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1For earlier work concerning correlation functions of con-
served currents in conformal field theory, the reader may consult
Refs. [4–13].
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of a conserved fermionic higher-spin current implies that
there is more than one conserved current of spin 2. In
supersymmetric theories conserved currents belong to
supermultiplets that contain both bosonic and fermionic
currents. This implies that a supersymmetric conformal
field theory possessing a bosonic higher-spin current also
possesses a fermionic higher-spin current (and vice versa);
thus it is conceivable that there exists another conserved
current of spin 2. This, in turn, implies that in three-
dimensional superconformal field theories the assumptions
of [17] might be violated and the properties of correlation
functions of higher-spin currents might be more subtle.
In this paper, we will assume that the N ¼ 1 super-

conformal field theory under consideration possesses
a spin-2 conserved current different from the energy-
momentum tensor. It naturally sits in the supermultiplet

F α1α2α3α4 ¼ F ðα1α2α3α4Þ ¼ F αð4Þ ð1:1Þ

and satisfies the conservation equation

Dα1F α1α2α3α4 ¼ 0: ð1:2Þ

The superfield F αð4Þ contains two independent conserved
currents (see Sec. III)

Jα1α2α3α4ðxÞ ¼ F α1α2α3α4ðzÞj;
Qα1α2α3α4;αðxÞ ¼ DαF α1α2α3α4ðzÞj; ð1:3Þ

where, as usual, bar projection means setting all Grassmann
odd variables to zero. We will refer to F αð4Þ as to the
“superspin-2 current multiplet.” The component current
Jαð4Þ is a conserved spin-2 current different from the energy
momentum tensor, though it satisfies similar properties (the
latter belongs to the supercurrent multiplet J αð3Þ), while
Qα1α2α3α4;α5 ¼ Qαð5Þ is a conserved fermionic current of
spin 5=2. We will not discuss here particular realizations of
superconformal theories possessing a conserved superspin-
2 multiplet; our interest here is to explore how the N ¼ 1
superconformal symmetry constrains the three-point cor-
relation functions involving F αð4Þ.
Our main result is that the three-point function,

hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi; ð1:4Þ

is fixed by the N ¼ 1 superconformal symmetry up to one
parity-even and one parity-odd structure. Our analysis is
technically quite involved; the analytic superfield consid-
eration turns out to be quite intractable and we were
required to complete both superfield and component
analysis with the aid of the xAct package [40] for
Mathematica, which contains an advanced suite of tools
designed for tensor analysis. The three-point function (1.4)
contains two independent component correlators [all others

can be found in terms of these two by virtue of the
conservation law (1.2)],

hJαð4Þðx1ÞJβð4Þðx2ÞJγð4Þðx3Þi;
hQαð5Þðx1ÞJβð4Þðx2ÞQγð5Þðx3Þi: ð1:5Þ

These two correlators were analyzed analytically; however,
to provide a complete check that all the necessary con-
ditions are satisfied, we had to also perform some numeri-
cal analysis. We also discuss some basic mixed three-point
functions involving F αð4Þ.

2 In particular, we analyze the
three-point function hOðz1ÞF αð4Þðz2ÞOðz3Þi, whereOðzÞ is
a scalar superfield of dimension Δ. We found that it is fixed
up to a single parity-even tensor structure. We also compute
the three-point function

hF αð4Þðz1ÞLā
βðz2ÞLb̄

γ ðz3Þi; ð1:6Þ

where Lā
αðzÞ is the non-Abelian flavor current multiplet. We

found that this three-point function is also fixed up to a
single parity-even tensor structure, which is in disagree-
ment with the result previously reported in [20], which
used a different approach (see Sec. V B for details). In our
approach the analysis of this correlation function is
relatively straightforward as it can be studied analytically,
so we are confident in our result.
The paper is organized as follows. In Sec. II we introduce

the superconformal building blocks that are essential to the
construction of two- and three-point correlation functions
of primary operators. In Sec. III we analyze the structure of
the supermultiplet F ; in particular, we define the compo-
nent fields in the multiplet and determine the constraints on
them resulting from the superfield conservation equations.
Section IV is devoted to studying the three-point function
hFFF i. First, we impose the constraints resulting from the
conservation of F and invariance under permutation of
superspace points z1 and z2; we show that these constraints
are sufficient to fix the parity-even and parity-odd sectors
each up to a single coefficient. Next we check invariance
under permutation of superspace points z1 and z3, which is
technically quite involved and involves a combination of
both analytic and numerical methods. As a result, we show
that the three-point function is fixed by the N ¼ 1 super-
conformal symmetry up to two independent tensor struc-
tures: one is parity even while the other is parity odd.
Section V is devoted to the study of mixed correlation
functions involving the superfield F . We compute the
three-point function of F with two scalar superfield
insertions, and the three-point function of F with two
non-Abelian flavor current multiplets. In Sec. VI we

2A more detailed study of the mixed three-point functions
involving the superspin-2 multiplet, the supercurrent, and the
flavor current multiplet will be presented elsewhere.
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provide a brief summary of the work and some future
directions. Appendixes A, B, and C are devoted to our con-
ventions, technical details, and some consistency checks.

II. SUPERCONFORMAL BUILDING BLOCKS

In this section we will review the pertinent details of the
group theoretic formalism used to compute correlation
functions of primary superfields. For a more detailed
review of our conventions the reader may consult [31,39].

A. Superconformal transformations

Consider three-dimensional (3D), N ¼ 1 Minkowski
superspace M3j2, parametrized by coordinates zA ¼
ðxa; θαÞ, where a ¼ 0, 1, 2 and α ¼ 1, 2 are Lorentz
and spinor indices, respectively. Under infinitesimal super-
conformal transformations, the superspace coordinates
transform as

δzA ¼ ξzA ⇔ δxa ¼ ξaðzÞ þ iðγaÞαβξαðzÞθβ; δθα ¼ ξαðzÞ;
ð2:1Þ

where ξaðzÞ is a conformal Killing supervector

ξ ¼ ξAðzÞ∂A ¼ ξaðzÞ∂a þ ξαðzÞDα; ð2:2Þ

which satisfies the master equation ½ξ; Dα� ∝ Dβ. From the
master equation we find

ξα ¼ i
6
Dβξ

αβ; ð2:3Þ

which, in particular, implies the conformal Killing equation

∂aξb þ ∂bξa ¼
2

3
ηab∂cξ

c: ð2:4Þ

The solutions to the master equation are called the
conformal Killing supervector fields of Minkowski super-
space [41,42], which span a Lie algebra isomorphic to the
superconformal algebra ospð1j2;RÞ.
Now consider a generic tensor superfield ΦAðzÞ trans-

forming in a representation T of the Lorentz group with
respect to the index A.3 Such a superfield is called primary
with dimension q if its superconformal transformation law is

δΦA ¼ −ξΦA − qσðzÞΦA þ λαβðzÞðMαβÞABΦB; ð2:5Þ

where ξ is the superconformal Killing vector and the matrix
Mαβ is the Lorentz generator. The z-dependent parameters
σðzÞ and λαβðzÞ associated with ξ are defined as follows:

λαβðzÞ ¼ −DðαξβÞ; σðzÞ ¼ Dαξ
α: ð2:6Þ

B. Two-point and three-point building blocks

1. Two-point building blocks

Given two superspace points z1 and z2, we can define the
two-point functions

xαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1 θ
βÞ
2 − iθα12θ

β
12; θα12 ¼ θα1 − θα2:

ð2:7Þ

Note that xαβ21 ¼ −xβα12 . It is convenient to split the two-point
function (2.7) into symmetric and antisymmetric parts as
follows:

xαβ12 ¼ yαβ12 þ
i
2
εαβθ212; θ212 ¼ θα12θ12α; ð2:8Þ

where yαβ12 is the symmetric part of xαβ12 ,

yαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1 θ
βÞ
2 : ð2:9Þ

It can also be represented by the three-vector ym12 ¼
− 1

2
ðγmÞαβyαβ12 . Next we introduce the two-point objects

x212 ¼ −
1

2
xαβ12x12αβ; ð2:10aÞ

x̂αβ12 ¼ xαβ12ffiffiffiffiffiffi
x212

p ; x̂12αγ x̂12γβ ¼ δα
β: ð2:10bÞ

Hence, we find

ðx−112 Þαβ ¼ −
xβα12
x212

: ð2:11Þ

These objects are essential in the construction of correlation
functions of primary superfields. We also have the useful
differential identities

Dð1Þγx
αβ
12 ¼ −2iθβ12δαγ ; Dð1Þαx

αβ
12 ¼ −4iθβ12; ð2:12Þ

where DðiÞα is the standard covariant spinor derivative
(A16) acting on the superspace point zi.

2. Three-point building blocks

Given three superspace points zi, i ¼ 1, 2, 3, one can
define the following three-point building blocks,

X1αβ ¼ −ðx−121 Þαγxγδ23ðx−113 Þδβ; ð2:13aÞ

Θ1α ¼ ðx−121 Þαβθβ12 − ðx−131 Þαβθβ13; ð2:13bÞ

and, similarly, ðX2;Θ2Þ and ðX3;Θ3Þ, which can be found
from (2.13) by cyclic permutation. Next we define3We assume that the representation T is irreducible.
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X2
1 ¼ −

1

2
Xαβ
1 X1αβ ¼

x223
x213x

2
12

; Θ2
1 ¼ Θα

1Θ1α: ð2:14Þ

We also define the normalized building block, X̂1, and the
inverse of X1,

X̂1αβ ¼
X1αβffiffiffiffiffiffi
X2
1

p ; ðX−1
1 Þαβ ¼ −

Xβα
1

X2
1

: ð2:15Þ

There are also useful identities involving Xi and Θi at
different superspace points, e.g.,

xαα
0

13 X3α0β0x
β0β
31 ¼ −ðX−1

1 Þβα; ð2:16aÞ

Θ1γx
γδ
13X3δβ ¼ Θ3β: ð2:16bÞ

The three-point objects (2.13a) and (2.13b) have many
properties similar to those of the two-point building blocks.
Now if we decompose X1 into symmetric and antisym-
metric parts similar to (2.8), we have

X1αβ ¼ X1αβ −
i
2
εαβΘ2

1; X1αβ ¼ X1βα; ð2:17Þ

where the symmetric spinor X1αβ can be equivalently
represented by the three-vector X1m ¼ − 1

2
ðγmÞαβX1αβ.

Now let us introduce analogs of the covariant spinor
derivative and supercharge operators involving the three-
point objects,

Dð1Þα ¼
∂

∂Θα
1

þ iðγmÞαβΘβ
1

∂
∂Xm

1

;

Qð1Þα ¼ i
∂

∂Θα
1

þ ðγmÞαβΘβ
1

∂
∂Xm

1

; ð2:18Þ

which obey the standard anticommutation relations

fDðiÞα;DðiÞβg ¼ fQðiÞα;QðiÞβg ¼ 2iðγmÞαβ
∂

∂Xm
i
: ð2:19Þ

Some useful identities involving (2.18) are

Dð1ÞγX1αβ ¼ −2iεγβΘ1α; Qð1ÞγX1αβ ¼ −2εγαΘ1β: ð2:20Þ

We must also account for the fact that various primary
superfields obey certain differential equations. Using (2.12)
we arrive at the following:

Dð1ÞγX3αβ ¼ 2iðx−113 ÞαγΘ3β; Dð1ÞαΘ3β ¼−ðx−113 Þβα; ð2:21aÞ

Dð2ÞγX3αβ ¼ 2iðx−123 ÞβγΘ3β; Dð2ÞαΘ3β ¼ ðx−123 Þβα: ð2:21bÞ

Now given a function fðX3;Θ3Þ, there are the following
differential identities that arise as a consequence of (2.20),
(2.21a), and (2.21b):

Dð1ÞγfðX3;Θ3Þ ¼ ðx−113 ÞαγDα
ð3ÞfðX3;Θ3Þ; ð2:22aÞ

Dð2ÞγfðX3;Θ3Þ ¼ iðx−123 ÞαγQα
ð3ÞfðX3;Θ3Þ: ð2:22bÞ

These identities are essential for imposing differential
constraints on correlation functions.

3. Building blocks in components

For future reference we will also review the nonsuper-
symmetric conformal blocks detailed in [2]. These objects
will appear in component reduction of superspace corre-
lation functions. The two-point and three-point structures
are defined as follows:

xij ¼ xi − xj; Xij ¼
xik
x2ik

−
xjk
x2jk

; i; j; k ¼ 1; 2; 3: ð2:23Þ

These objects may be obtained by bar projection of the
superspace variables defined in Sec. II as follows:

ðxijÞm ¼ −
1

2
ðγmÞαβðxijÞαβj; ðXijÞm ¼ −

1

2
ðγmÞαβðXkÞαβj:

ð2:24Þ
Here ði; j; kÞ is a cyclic permutation of (1, 2, 3). That is,

X12 ¼
x13
x213

−
x23
x223

; ðX12Þm ¼ −
1

2
ðγmÞαβðX3Þαβj; etc:

ð2:25Þ
In addition, we introduce the inversion tensor, Ia1a2 , and its
representation acting on rank-2 symmetric traceless ten-
sors, Ia1a2;m1m2

,

Ia1a2ðXÞ ¼ ηa1a2 −
2Xa1Xa2

X2
; ð2:26aÞ

Ia1a2;m1m2
ðXÞ ¼ Ia1n1ðXÞIa2n2ðXÞEn1n2

m1m2
; ð2:26bÞ

where we have introduced the projection operator

Em1m2;n1n2 ¼
1

2
ðηm1n1ηm2n2 þ ηm1n2ηm2n1Þ −

1

3
ηm1m2

ηn1n2 :

ð2:27Þ

C. Correlation functions of primary superfields

The two-point correlation function of a primary super-
field ΦA and its conjugate Φ̄B is fixed by the super-
conformal symmetry as follows:

hΦAðz1ÞΦ̄Bðz2Þi ¼ c
TA

Bðx̂12Þ
ðx212Þq

; ð2:28Þ

where c is a constant coefficient. The denominator of
the two-point function is determined by the conformal
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dimension q of ΦA, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.
Concerning the three-point functions, let Φ, Ψ, and Π be

primary superfields with conformal dimensions q1, q2, and
q3, respectively. The three-point function may be con-
structed using the general expression

hΦA1
ðz1ÞΨA2

ðz2ÞΠA3
ðz3Þi

¼ Tð1Þ
A1

A0
1ðx̂13ÞTð2Þ

A2

A0
2ðx̂23Þ

ðx213Þq1ðx223Þq2
HA0

1
A0

2
A3
ðX3;Θ3; U3Þ;

ð2:29Þ

where the tensor HA1A2A3
is highly constrained by the

superconformal symmetry as follows:
(i) Under scale transformations of superspace zA ¼

ðxa; θαÞ ↦ z0A ¼ ðλ−2xa; λ−1θαÞ, the three-point
building blocks transform as Z ¼ ðX;ΘÞ ↦ Z0 ¼
ðλ2X; λΘÞ. As a consequence, the correlation func-
tion transforms as

hΦA1
ðz01ÞΨA2

ðz02ÞΠA3
ðz03Þi

¼ ðλ2Þq1þq2þq3hΦA1
ðz1ÞΨA2

ðz2ÞΠA3
ðz3Þi; ð2:30Þ

which implies that H obeys the scaling property

HA1A2A3
ðλ2X; λΘ; UÞ

¼ ðλ2Þq3−q2−q1HA1A2A3
ðX;Θ; UÞ; ∀ λ ∈ Rnf0g:

ð2:31Þ

This guarantees that the correlation function trans-
forms correctly under conformal transformations.

(ii) If any of the fields Φ, Ψ, Π obey differential
equations, such as conservation laws in the case
of conserved current multiplets, then the tensor H is
also constrained by differential equations. Such
constraints may be derived with the aid of identities
(2.22a) and (2.22b).

(iii) If any (or all) of the superfieldsΦ,Ψ,Π coincide, the
correlation function possesses symmetries under
permutations of superspace points, e.g.,

hΦA1
ðz1ÞΦA2

ðz2ÞΠA3
ðz3Þi

¼ ð−1ÞϵðΦÞhΦA2
ðz2ÞΦA1

ðz1ÞΠA3
ðz3Þi; ð2:32Þ

where ϵðΦÞ is the Grassmann parity of Φ. As a
consequence, the tensor H obeys constraints that
will be referred to as “point-switch identities.”

The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
parameters. Hence, the procedure described above reduces

the problem of computing three-point correlation functions
to deriving the tensor H subject to the above constraints.

III. COMPONENT STRUCTURE OF A
SUPERSPIN-2 CURRENT MULTIPLET

In this paper we will be interested in three-point
functions of a superspin-2 current multiplet described by
the totally symmetric superfield F αð4Þ ≔ F α1α2α3α4ðzÞ, sat-
isfying the conservation equation

Dα1F α1α2α3α4ðzÞ ¼ 0: ð3:1Þ

In three dimensions this superfield admits the following
Taylor expansion:

F α1α2α3α4ðzÞ ¼ Jα1α2α3α4ðxÞ þQα1α2α3α4;αðxÞθα
þ θðα1Sα2α3α4ÞðxÞ þ θ2Bα1α2α3α4ðxÞ: ð3:2Þ

It can be convenient to express some of these fields in
vector notation as follows:

Jα1α2α3α4ðxÞ ¼ ðγa1Þα1α2ðγa2Þα3α4Ja1a2ðxÞ; ð3:3Þ

where Ja1a2 is symmetric and traceless; a similar treatment
follows for the other fields in the multiplet. Imposing the
conservation equation is then tantamount to the following
constraints on the component fields:

∂a1Ja1a2 ¼ 0; ∂a1Qa1a2;α ¼ 0; ðγa1ÞδαQa1a2;α ¼ 0;

ð3:4aÞ

Ba1a2 ¼
i
2
ϵða1

mn∂mJa2Þn; Sα1α2α3 ¼ 0: ð3:4bÞ

Hence, we see this multiplet contains only two independent
component currents: a conserved spin-2 field Ja1a2 satisfy-
ing the same properties as the energy momentum tensor,
and a conserved spin-5=2 field Qa1a2;α which is conserved
and gamma traceless (the latter guarantees that Q is totally
symmetric in spinor notation). Let us stress that Ja1a2 is
different from the energy-momentum tensor Ta1a2, the latter
is a component of the supercurrent multiplet J αð3Þ. The
independent components of F αð4Þ may be extracted by bar
projection,

Jα1α2α3α4ðxÞ ¼ F α1α2α3α4ðzÞj;
Qα1α2α3α4;αðxÞ ¼ DαF α1α2α3α4ðzÞj: ð3:5Þ

In addition, under infinitesimal superconformal transfor-
mations, the superfield F transforms as
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δF α1α2α3α4ðzÞ ¼ −ξF α1α2α3α4ðzÞ − qσðzÞF α1α2α3α4ðzÞ
þ 4λðα1

δðzÞF α2α3α4ÞδðzÞ; ð3:6Þ

where q is the scaling dimension of F . The conservation
equation (3.1) then uniquely fixes the dimension of the field
as follows: if we compute δDα1Fα1α2α3α4ðzÞ and use the
definitions (2.5) and (2.6), we obtain

δðDα1F α1α2α3α4ðzÞÞ ¼
1

2
ðq − 3ÞD2ξδF δα2α3α4ðzÞ: ð3:7Þ

Hence, we see that we require q ¼ 3 for covariant con-
servation of F .

IV. CORRELATION FUNCTION hFFF i
In this section we will derive an explicit solution

for the three-point function hFFF i. In Sec. IVA we
impose the constraints that arise due to the superfield
conservation equations and invariance under permutation
of superspace points z1 and z2. This is already too
sufficient to fix the three-point function up to one parity-
even and one parity-odd structure. In Sec. IV B we
computationally analyze the constraints arising from
the invariance of the three-point function under permu-
tation of superspace points z1 and z3; this is done by
considering the independent component correlators con-
tained within hFFF i: hJJJi and hQJQi. This is
followed by a numerical analysis of the point-switch
identity for consistency. Most of the tensor expressions
are too large to be manipulated efficiently by hand, so we
make use of Mathematica to do most of the lengthy
calculations.

A. Superfield analysis

The ansatz for the correlation function hFFF i is

hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi

¼
Q

4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ; ð4:1Þ

where the tensor H is independently totally symmetric in
the αi, βi, and γi, and is required to satisfy covariant
constraints which arise due to conservation equations and
invariance under permutations of superspace points. The
constraints are summarized below:

(i) Homogeneity constraint
Covariance of the correlation function under scale

transformations of superspace results in the follow-
ing constraint on H:

Hαð4Þβð4Þγð4Þðλ2X; λΘÞ ¼ ðλ2Þ−3Hαð4Þβð4Þγð4ÞðX;ΘÞ;
ð4:2Þ

which implies that H is a homogeneous tensor field
of degree −3. This constraint ensures conformal
covariance of the three-point function.

(ii) Differential constraints
The conservation equation (3.1) implies that

the correlation function must satisfy the following
constraint:

Dσ
ð1ÞhF σαð3Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi ¼ 0: ð4:3Þ

Application of the identities (2.22a) results in the
following differential constraint on H:

DσHσαð3Þβð4Þγð4ÞðX;ΘÞ ¼ 0: ð4:4Þ

(iii) Point-switch identities
Invariance under permutation of the superspace

points z1 and z2 results in the following constraint on
the correlation function:

hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi
¼ hF βð4Þðz2ÞF αð4Þðz1ÞF γð4Þðz3Þi; ð4:5Þ

which results in the condition

Hαð4Þβð4Þγð4ÞðX;ΘÞ ¼ Hβð4Þαð4Þγð4Þð−XT;−ΘÞ: ð4:6Þ

There is an additional point-switch identity obtained
from imposing invariance under permutation of the
points z1 and z3; however, it is considerably more
complicated so we will discuss it in detail later.

To make subsequent calculations more tractable, it is often
convenient to expressH in terms of its vector equivalent by
factoring out gamma matrices as follows:

Hα1α2α3α4β1β2β3β4γ1γ2γ3γ4ðX;ΘÞ
¼ ðγa1Þα1α2ðγa2Þα3α4ðγb1Þβ1β2ðγb2Þβ3β4
× ðγc1Þγ1γ2ðγc2Þγ3γ4Ha1a2b1b2c1c2ðX;ΘÞ: ð4:7Þ

This equality holds provided that H (in vector notation)
is symmetric and traceless in the pairs ai, bi, and ci,
respectively. This is seen by requiring that the com-
ponents antisymmetric in α2 and α3 (and other combina-
tions involving βi and γi) vanish. Further, since H is
Grassmann even it admits the Taylor expansion

Ha1a2b1b2c1c2ðX;ΘÞ ¼Fa1a2b1b2c1c2ðXÞþΘ2Ga1a2b1b2c1c2ðXÞ:
ð4:8Þ

At this step it is more convenient to view F and G as
functions of the three-vector Xm rather than of Xαβ. The
point-switch identity (4.6) then implies the following
constraints on F and G:
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Fa1a2b1b2c1c2ðXÞ ¼ Fb1b2a1a2c1c2ð−XÞ; ð4:9aÞ

Ga1a2b1b2c1c2ðXÞ ¼ Gb1b2a1a2c1c2ð−XÞ: ð4:9bÞ

On the other hand, the differential constraint (4.4)
results in4

∂a1Fa1a2b1b2c1c2 ¼ 0;

Ga1a2b1b2c1c2 ¼
i
2
ϵða1

mn∂mFna2Þb1b2c1c2 : ð4:10Þ

In the next subsections we will computationally solve for
the tensor H subject to the constraints listed above using
the xAct package.

1. Parity-even sector

In the parity-even sector, we begin by constructing a
solution for F that is an even function of X; hence,
Eq. (4.9a) implies

Fa1a2b1b2c1c2ðXÞ ¼ Fb1b2a1a2c1c2ðXÞ: ð4:11Þ

A general expansion for F consistent with the symmetry
property (4.11) may be obtained by introducing the
symmetric and traceless basis tensors found in [2].
Explicit expressions for the elements of the tensor basis
fϒig, i ¼ 1;…; 8, are as follows:

ϒ1
a1a2ðX̂Þ ¼ X̂a1X̂a2 −

1

3
ηa1a2 ; X̂a ¼

Xaffiffiffiffiffiffi
X2

p ; ð4:12aÞ

ϒ2
a1a2b1b2

ðX̂Þ ¼ X̂a1X̂b1ηa2b2 þ ða1 ↔ a2; b1 ↔ b2Þ

−
4

3
X̂a1X̂a2ηb1b2 −

4

3
X̂b1X̂b2ηa1a2

þ 4

9
ηa1a2ηb1b2 ; ð4:12bÞ

ϒ3
a1a2b1b2

¼ ηa1b1ηa2b2 þ ηa1b2ηa2b1 −
2

3
ηa1a2ηb1b2 ; ð4:12cÞ

ϒ4
a1a2b1b2c1c2

ðX̂Þ¼ϒ3
a1a2b1c1

X̂b2X̂c2 þðb1↔b2;c1↔c2Þ

−
2

3
ηb1b2ϒ

2
a1a2c1c2ðX̂Þ−

2

3
ηc1c2ϒ

2
a1a2b1b2

ðX̂Þ

−
8

9
ηb1b2ηc1c2ϒ

1
a1a2ðX̂Þ; ð4:12dÞ

ϒ5
a1a2b1b2c1c2

¼ ηa1b1ηa2c1ηb2c2

þ ða1 ↔ a2; b1 ↔ b2; c1 ↔ c2Þ

−
4

3
ηa1a2ϒ

3
b1b2c1c2

−
4

3
ηb1b2ϒ

3
a1a2c1c2

−
4

3
ηc1c2ϒ

3
a1a2b1b2

−
8

9
ηa1a2ηb1b2ηc1c2 :

ð4:12eÞ
These tensors each possess a variety of symmetry

properties; in particular, they are symmetric and traceless
in pairs of indices. Using this basis we can construct the
following set of rank-6 tensors

t1a1a2b1b2c1c2ðX̂Þ ¼ ϒ5
a1a2b1b2c1c2

; ð4:13aÞ

t2a1a2b1b2c1c2ðX̂Þ ¼ ϒ4
c1c2a1a2b1b2

ðX̂Þ; ð4:13bÞ

t3a1a2b1b2c1c2ðX̂Þ ¼ ϒ4
a1a2b1b2c1c2

ðX̂Þ þϒ4
b1b2a1a2c1c2

ðX̂Þ;
ð4:13cÞ

t4a1a2b1b2c1c2ðX̂Þ ¼ ϒ3
a1a2b1b2

ϒ1
c1c2ðX̂Þ; ð4:13dÞ

t5a1a2b1b2c1c2ðX̂Þ ¼ ϒ3
b1b2c1c2

ϒ1
a1a2ðX̂Þ þϒ3

a1a2c1c2ϒ
1
b1b2

ðX̂Þ;
ð4:13eÞ

t6a1a2b1b2c1c2ðX̂Þ ¼ ϒ2
a1a2b1b2

ðX̂Þϒ1
c1c2ðX̂Þ; ð4:13fÞ

t7a1a2b1b2c1c2ðX̂Þ ¼ ϒ2
a1a2c1c2ðX̂Þϒ1

b1b2
ðX̂Þ

þϒ2
b1b2c1c2

ðX̂Þϒ1
a1a2ðX̂Þ; ð4:13gÞ

t8a1a2b1b2c1c2ðX̂Þ ¼ ϒ1
a1a2ðX̂Þϒ1

b1b2
ðX̂Þϒ1

c1c2ðX̂Þ: ð4:13hÞ

The tia1a2b1b2c1c2 each possess the symmetry property
(4.11); hence, the ansatz for the tensor F is a linear
combination of these tensor structures,

Fa1a2b1b2c1c2ðXÞ ¼
1

X3
ta1a2b1b2c1c2ðX̂Þ;

ta1a2b1b2c1c2ðX̂Þ ¼
X8
i¼1

kitia1a2b1b2c1c2ðX̂Þ; ð4:14Þ

where we have used the homogeneity constraint (4.2). It
now remains to impose the differential constraint (4.4),
which results in the following relations:

k3 ¼ −2k1 − k2; k5 ¼ k4; k6 ¼ 15k1 þ 5k2 − 5k4;

ð4:15aÞ

k7 ¼ −7k1 − k2 þ 3k4; k8 ¼ 28k1 þ 14k2 − 7k4:

ð4:15bÞ4The underlined indices are excluded from the symmetrization.
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Hence, we see that the differential constraint immediately
fixes the parity-even sector down to three independent
coefficients. It is at this step where the linear dependence
of the first five tensor structures can be noticed, as the k1
dependence can be removed by shifting the variables as
follows: k2 → k2 − k1, k3 → k3 − k1, k4 → k4 þ 2k1,
k5 → k5 þ 2k1. Alternatively it may be shown that the
following linear dependence relation holds:

t1a1a2b1b2c1c2ðX̂Þ − t2a1a2b1b2c1c2ðX̂Þ − t3a1a2b1b2c1c2ðX̂Þ
þ 2t4a1a2b1b2c1c2ðX̂Þ þ 2t5a1a2b1b2c1c2ðX̂Þ ¼ 0: ð4:16Þ

It is now clear that the k1 term is redundant; hence, it can be
completely removed from our analysis. This reduces our
system of equations to

k3 ¼ −k2; k5 ¼ k4; k6 ¼ 5k2 − 5k4; ð4:17aÞ

k7 ¼ −k2 þ 3k4; k8 ¼ 14k2 − 7k4: ð4:17bÞ

Therefore, the parity-even sector of the three-point function
is fixed at this stage up to two independent coefficients, k2
and k4, and the explicit solution for F is

Fa1a2b1b2c1c2ðXÞ

¼ k2
X3

ft2a1a2b1b2c1c2ðX̂Þ− t3a1a2b1b2c1c2ðX̂Þþ 5t6a1a2b1b2c1c2ðX̂Þ
− t7a1a2b1b2c1c2ðX̂Þþ 14t8a1a2b1b2c1c2ðX̂Þg

þ k4
X3

ft4a1a2b1b2c1c2ðX̂Þþ t5a1a2b1b2c1c2ðX̂Þ− 5t6a1a2b1b2c1c2ðX̂Þ
þ 3t7a1a2b1b2c1c2ðX̂Þ−7t8a1a2b1b2c1c2ðX̂Þg: ð4:18Þ

The tensor G is then determined in terms of F using (4.10).
However, we have not yet imposed the condition (4.9b).
Since G is an odd function of X by virtue of (4.10), the
constraint (4.9b) implies

Ga1a2b1b2c1c2ðXÞ ¼ −Gb1b2a1a2c1c2ðXÞ: ð4:19Þ

After some calculations one can show that this results in an
additional relation between the coefficients k2 and k4:

k2 ¼ −2k4: ð4:20Þ

Thus, the conservation equations and the proper trans-
formation under the z1 ↔ z2 exchange fix the parity-even
sector up to a single overall coefficient. Note that so far we
have not imposed the z1 ↔ z3 point-switch identity. It will
be imposed later.

2. Parity-odd sector

Let us now construct the parity-odd sector of the
correlation function, where we begin by assuming that
the tensor F̃ is an odd function of X. Due to (4.9a), this
implies that F̃ must satisfy

F̃a1a2b1b2c1c2ðXÞ ¼ −F̃b1b2a1a2c1c2ðXÞ: ð4:21Þ

Now let us construct an explicit solution for the tensor F; it
must be an odd function of X, and each termmust contain at
most one instance of the Levi-Civita tensor (as products of
the latter may be expressed in terms of the metric). We may
decompose F̃ as follows:

F̃a1a2b1b2c1c2ðXÞ ¼
1

X3
fϵa1b1mP1

m;a2b2c1c2
ðX̂Þ þ ϵa1b2

mP2
m;a2b1c1c2

ðX̂Þ
þ ϵa2b1

mP3
m;a1b2c1c2

ðX̂Þ þ ϵa2b2
mP4

m;a1b1c1c2
ðX̂Þg; ð4:22Þ

where each Pi must have the symmetry property Pi
m;a1a2b1b2

ðXÞ ¼ Pi
m;ða1a2Þðb1b2ÞðXÞ. Requiring that the expansion (4.22) is

consistent with the properties of pairwise index symmetry and (4.21) implies that the Pi must be identical. Hence, we need
to find a general expansion for a tensor Pm;a1a2b1b2, which is homogeneous degree 0 and is composed solely of X̂ and the
metric tensor. Using Mathematica we can generate an ansatz consistent with the symmetry properties:

Pm;a1a2b1b2ðX̂Þ ¼ c1X̂
a1X̂a2X̂b1X̂b2X̂m þ c2X̂

b1X̂b2X̂mηa1a2 þ c3X̂
a1X̂a2X̂mηb1b2

þ c4fX̂a2X̂b1X̂b2ηa1m þ X̂a1X̂b1X̂b2ηa2mg þ c5fX̂a1X̂a2X̂b2ηb1m þ X̂a1X̂a2X̂b1ηb2mg
þ c6fX̂a2X̂b2X̂mηa1b1 þ X̂a2X̂b1X̂mηa1b2 þ X̂a1X̂b2X̂mηa2b1 þ X̂a1X̂b1X̂mηa2b2g
þ c7X̂

mηa1a2ηb1b2 þ c8fX̂mηa1b2ηa2b1 þ X̂mηa1b1ηa2b2g
þ c9fX̂b2ηa1mηa2b1 þ X̂b1ηa1mηa2b2 þ X̂b2ηa1b1ηa2m þ X̂b1ηa1b2ηa2mg
þ c10fX̂a2ηa1mηb1b2 þ X̂a1ηa2mηb1b2g þ c11fX̂b2ηa1a2ηb1m þ X̂b1ηa1a2ηb2mg
þ c12fX̂a2ηa1b2ηb1m þ X̂a1ηa2b2ηb1m þ X̂a2ηa1b1ηb2m þ X̂a1ηa2b1ηb2mg: ð4:23Þ
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Only nine of these structures contribute when substituted into (4.22); in particular, the terms with c9, c4, and c10 may
be neglected. Imposing tracelessness on each pair of indices is tantamount to the following constraints on the
coefficients:

c5 ¼ c6; c12 ¼ c8; c1 ¼ −6c6 − 3c3; ð4:24aÞ

c7 ¼ −
2

3
c8 −

2

3
c11 −

1

3
c2: ð4:24bÞ

It remains to impose the differential constraint for F̃ in (4.10), from which we find the additional relations

c8 ¼ −
1

4
c6; c3 ¼ 0; c11 ¼

1

2
c6; c2 ¼ −2c6: ð4:25Þ

Hence, the solution for F̃ is fixed up to a single coefficient, b ¼ c6.
5 The solution for F̃ becomes

F̃a1a2b1b2c1c2ðXÞ ¼
b
X3

fϵa1b1mPm;a2b2c1c2ðX̂Þ þ ϵa1b2
mPm;a2b1c1c2ðX̂Þ

þ ϵa2b1
mPm;a1b2c1c2ðX̂Þ þ ϵa2b2

mPm;a1b1c1c2ðX̂Þg; ð4:26Þ

where the explicit solution for P is

Pm;a1a2b1b2ðX̂Þ ¼ −6X̂a1X̂a2X̂b1X̂b2X̂m − 2X̂b1X̂b2X̂mηa1a2 þ X̂a2X̂b2X̂mηa1b1 þ X̂a2X̂b1X̂mηa1b2 þ X̂a1X̂b2X̂mηa2b1

þ X̂a1X̂b1X̂mηa2b2 þ X̂a1X̂a2X̂b1ηb2m þ X̂a1X̂a2X̂b2ηb1m −
1

4
X̂mηa1b1ηa2b2 þ

1

2
X̂mηa1a2ηb1b2

−
1

4
X̂mηa1b2ηa2b1 þ

1

2
X̂b2ηa1a2ηb1m −

1

4
X̂a2ηa1b2ηb1m −

1

4
X̂a1ηa2b2ηb1m þ 1

2
X̂b1ηa1a2ηb2m

−
1

4
X̂a2ηa1b1ηb2m −

1

4
X̂a1ηa2b1ηb2m: ð4:27Þ

The tensor G̃ is found using Eq. (4.10). However, we still need to impose the symmetry property (4.9b). Since G̃ is an even
function of X, Eq. (4.9b) implies

G̃a1a2b1b2c1c2ðXÞ ¼ G̃b1b2a1a2c1c2ðXÞ: ð4:28Þ

After some calculations we find that Eq. (4.28) is satisfied automatically and does not result in any restrictions on b. Thus,
the conservation equations and the proper transformation under the z1 ↔ z2 exchange fix the parity-odd sector up to a
single overall coefficient.

B. Point-switch identity

The last constraint to be imposed on the correlation function hFFF i is invariance under the permutation of points z1 and
z3; i.e., we must have

hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi ¼ hF γð4Þðz3ÞF βð4Þðz2ÞF αð4Þðz1Þi: ð4:29Þ

This results in the following constraint on H:

Hαð4Þβð4Þγð4ÞðX3;Θ3Þ ¼
1

x613X
6
3

Y4
i¼1

x̂13αi
α0i x̂13γi

γ0i x̂13β
0
iδiX̂3δiβiHγ0ð4Þβ0ð4Þα0ð4Þð−XT

1 ;−Θ1Þ: ð4:30Þ

5To account for linear dependence of the tensor structures, each constraint is checked by computationally analyzing every element of
the tensor for an arbitrary building block vector X ¼ ðX0; X1; X2Þ.
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It is clear that direct calculation of (4.30) is inefficient due to (i) the large number of tensor structures in the solution forH,
and (ii) the linear dependence between the structures. Therefore, we will need to consider some alternative approaches,
which will be explored in the next subsections.
The superfield correlator hFFF i contains only two independent component correlators,

hJa1a2ðx1ÞJb1b2ðx2ÞJc1c2ðx3Þi; hQa1a2;αðx1ÞJb1b2ðx2ÞQc1c2;γðx3Þi: ð4:31Þ

These may be obtained by bar projection of the three-point function hFFF i as follows6:

hJαð4Þðx1ÞJβð4Þðx2ÞJγð4Þðx3Þi ¼ hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þij; ð4:32aÞ

hQαð4Þ;αðx1ÞJβð4Þðx2ÞQγð4Þ;γðx3Þi ¼ Dð3ÞγDð1ÞαhF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þij: ð4:32bÞ

All correlators involving the components Sαð3Þ and Bαð4Þ in Eq. (3.2) either vanish or are expressed in terms of (4.31) by
virtue of (3.4b). From Eq. (4.29) it follows that the component correlators (4.31) satisfy the following point-switch
identities:

hJa1a2ðx1ÞJb1b2ðx2ÞJc1c2ðx3Þi ¼ hJc1c2ðx3ÞJb1b2ðx2ÞJa1a2ðx1Þi; ð4:33aÞ

hQa1a2;αðx1ÞJb1b2ðx2ÞQc1c2;γðx3Þi ¼ −hQc1c2;γðx3ÞJb1b2ðx2ÞQa1a2;αðx1Þi: ð4:33bÞ

These relations will be studied analytically (though with extensive use of Mathematica) in Secs. IV B 1 and IV B 2.
However, proving Eqs. (4.33) is not sufficient to prove Eq. (4.29). The reason is that we cannot use Eqs. (3.4b) because we
have not yet proven that the conservation law on the third point is satisfied. In fact, it will follow once we prove Eq. (4.29).
Hence, to prove Eq. (4.29) at the component level we must consider all component correlators obtained from (4.29) by
the action of the superspace covariant derivatives followed by bar projection. This is, clearly, impractical. Therefore,
our approach will be to study Eq. (4.29) at higher orders in θi numerically, which we do in IV B 3. For this we will
keep θi arbitrary but use various numeric values for the spacetime points x1, x2, x3. Then the components of
hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi will be polynomials in θi with numeric coefficients. Since these polynomials are quite
complicated, we are confident in our results despite the proof not being fully analytic.

1. Component correlator hJJJi
The computation of the component correlator hJJJi is relatively straightforward, explicitly we have

hJαð4Þðx1ÞJβð4Þðx2ÞJγð4Þðx3Þi ¼ hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þij

¼
Q

4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þj:

Since bar projections of any objects involving Θ vanish, combined with the result

Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þj ¼ Fα0ð4Þβ0ð4Þγð4ÞðX12Þ; ð4:34Þ

we obtain

hJαð4Þðx1ÞJβð4Þðx2ÞJγð4Þðx3Þi ¼
Q

4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Fα0ð4Þβ0ð4Þγð4ÞðX12Þ: ð4:35Þ

If we convert this result into vector notation by combining pairs of spinor indices and apply the identity

Ia1a01ðxÞ ¼ −
1

2
ðγa1Þα1α2ðγa01Þα

0
1
α0
2 x̂α1α01 x̂α2α02 ; ð4:36Þ

6To express each of these correlators in the form (4.31), we combine symmetric pairs of spinor indices into a vector index as in (4.7)
and use Eq. (2.24).
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we obtain the result

hJa1a2ðx1ÞJb1b2ðx2ÞJc1c2ðx3Þi ¼
Ia1a2;a01a

0
2
ðx13ÞIb1b2;b01b

0
2
ðx23Þ

ðx213Þ3ðx223Þ3
Fa0

1
a0
2
b0
1
b0
2
c1c2ðX12Þ: ð4:37Þ

If we now use (4.14), then this component correlator can be put in the covariant canonical form

hJa1a2ðx1ÞJb1b2ðx2ÞJc1c2ðx3Þi ¼
Ia1a2;a01a

0
2
ðx13ÞIb1b2;b01b

0
2
ðx23Þ

x313x
3
23x

3
12

ta0
1
a0
2
b0
1
b0
2
c1c2ðX12Þ: ð4:38Þ

It then follows that the constrained tensors ta0
1
a0
2
b0
1
b0
2
c1c2ðX12Þ

appearing in hJJJi satisfy all the same properties as those
present in the energy-momentum tensor three-point func-
tion hTTTi, so we can simply use the known results.
It was shown in [2] that the parity-even contribution to

the three-point function hTTTi in general dimensions is
fixed up to three independent coefficients. However, in
three-dimensional theories there is linear dependence
between the tensor structures due to the identity (4.16).
This reduces the number of independent structures down to
two. The solution for ta1a2b1b2c1c2ðXÞ found in [2] is the
same as given in our Eqs. (4.14) and (4.18). It was also
shown in [2] that this solution satisfies the z1 ↔ z3 point-
switch identity. Since the solution for the correlator hJJJi is
identical to that of hTTTi, it follows that the three-point

function hJJJi in (4.35) with Fαð4Þβð4Þγð4Þ defined in (4.18)
is compatible with the point-switch identity (4.33a) for
arbitrary k2 and k4. In this case there is a further relation
between k2 and k4 in Eq. (4.20); however, it does not affect
the z1 ↔ z3 point-switch identity.
The parity-odd sector of the energy-momentum tensor

three-point function was obtained in [1]. It was shown that it
is fixed up to one independent structure given in Eqs. (4.26)
and (4.27).7 Hence, Eqs. (4.26) and (4.27) are also compat-
ible with the point-switch identity (4.33a). In the remaining
subsections we will consider the relation (4.29) at higher
orders in θi.

2. Component correlator hQJQi
The correlator hQJQi can be computed as follows:

hQαð4Þ;αðx1ÞJβð4Þðx2ÞQγð4Þ;γðx3Þi ¼ Dð3ÞγDð1ÞαhF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þij

¼ Dð3ÞγDð1Þα

�Q4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ

�����
¼ Aþ B: ð4:39Þ

After evaluating the derivatives, one finds that the calcu-
lation is broken up into two relevant parts: the A contri-
bution is due to the derivatives hitting the prefactor,

A¼Dð3ÞγDð1Þα

�Q
4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
�
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ

����;
ð4:40Þ

while the B contribution arises due to the derivatives
hitting H,

B¼
Q

4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Dð3ÞγDð1ÞαfHα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þgj:

ð4:41Þ

Other combinations in which either derivative acts on
the prefactor and H result in terms that are at least linear
in θ1, θ3, or Θ3, which vanish upon bar projection, so they
may be neglected. The A contribution can be written in the
form

A ¼ 1

ðx213Þ7=2ðx223Þ3
x̂13αα

0
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

× x̂23β1
β0
1 x̂23β2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4T A

α0;α0ð4Þβ0ð4Þγ;γð4ÞðX12Þ;
ð4:42Þ

with T A defined as

T A
α;αð4Þβð4Þγ;γð4ÞðXÞ ¼ −10iεγðαFα1α2α3α4Þβð4Þγð4ÞðXÞ: ð4:43Þ

Similarly if we evaluate the B contribution, we find it can
be written in the form

7We use a different approach and notation than the authors in
[1]; however, our results agree.
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B ¼ 1

ðx213Þ7=2ðx223Þ3
x̂13αα

0
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4 x̂23β1

β0
1 x̂23β2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4T B

α0;α0ð4Þβ0ð4Þγ;γð4ÞðX12Þ; ð4:44Þ

with T B given by the expression

T B
α;αð4Þβð4Þγ;γð4ÞðXÞ ¼ −iðγmÞασXσ

γ∂mFαð4Þβð4Þγð4ÞðXÞ − 2XαγGαð4Þβð4Þγð4ÞðXÞ: ð4:45Þ
Hence, we see that the correlation function hQJQi may be written in the following covariant canonical form:

hQαð4Þ;αðx1ÞJβð4Þðx2ÞQγð4Þ;γðx3Þi ¼
1

ðx213Þ7=2ðx223Þ3
x̂13αα

0
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

× x̂23β1
β0
1 x̂23β2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4T α0;α0ð4Þβ0ð4Þγ;γð4ÞðX12Þ; ð4:46Þ

with

T α;αð4Þβð4Þγ;γð4ÞðXÞ ¼ T A
α;αð4Þβð4Þγ;γð4ÞðXÞ þ T B

α;αð4Þβð4Þγ;γð4ÞðXÞ: ð4:47Þ
Additional details regarding this calculation are contained in Appendix B. It is worth commenting that it is not immediately
obvious that T is totally symmetric in the α indices; indeed, it may be shown by direct calculations that this symmetry is
manifest by virtue of (4.3) [and by extension (4.10)].8 To make subsequent calculations more tractable, we convert this
entire expression into vector notation. The component three-point function may then be written in the following form:

hQa1a2;αðx1ÞJb1b2ðx2ÞQc1c2;γðx3Þi ¼
x̂m13

ðx213Þ7=2ðx223Þ3
Ia1a2;a01a

0
2
ðx13ÞIb1b2;b01b

0
2
ðx23Þ

× T m;a0
1
a0
2
b0
1
b0
2
c1c2;αγðX12Þ: ð4:48Þ

It is convenient to decompose the tensor T into the symmetric and antisymmetric parts

T m;a1a2b1b2c1c2;αγðXÞ ¼ εαγAm;a1a2b1b2c1c2ðXÞ þ ðγnÞαγSnm;a1a2b1b2c1c2ðXÞ: ð4:49Þ

We find the following expressions for the tensors A and S:

Am;a1a2b1b2c1c2ðXÞ ¼ iϵmpqXq∂pFa1a2b1b2c1c2ðXÞ þ 2XmGa1a2b1b2c1c2ðXÞ
− 2iΠm;a1a2m1m2

Fm1m2
b1b2c1c2ðXÞ; ð4:50Þ

Snm;a1a2b1b2c1c2ðXÞ ¼ iDn
mFa1a2b1b2c1c2ðXÞ þ 2ϵnmpXpGa1a2b1b2c1c2ðXÞ

− 2iΞn
m;a1a2m1m2

Fm1m2
b1b2c1c2ðXÞ: ð4:51Þ

The differential operator D and the constant “projection” tensors Π and Ξ naturally arise when expressing hQJQi in the
covariant form (4.48). They have the following definitions:

Dnm ¼ Xn∂m − Xm∂n þ ηnmXp∂p − ηnm; ð4:52Þ

Πm;a1a2;b1b2 ¼
1

2
ϵa2b2nηa1b1 þ

1

2
ϵa2b1nηa1b2 þ

1

2
ϵa1b2nηa2b1 þ

1

2
ϵa1b1nηa2b2 ; ð4:53Þ

Ξnm;a1a2b1b2 ¼
1

2
ηa1nηa2b2ηb1m þ 1

2
ηa1b2ηa2nηb1m −

1

2
ηa1mηa2b2ηb1n −

1

2
ηa1b2ηa2mηb1n

þ 1

2
ηa1nηa2b1ηb2m þ 1

2
ηa1b1ηa2nηb2m −

1

2
ηa1mηa2b1ηb2n −

1

2
ηa1b1ηa2mηb2n

− ηa1b2ηa2b1ηmn − ηa1b1ηa2b2ηmn þ
2

3
ηa1a2ηb1b2ηmn: ð4:54Þ

8Recall that in (3.4b) it was shown that the component field Q is totally symmetric after imposing conservation of F . Since we have
already imposed conservation of hFFF i at z1, the fact that hQJQi is totally symmetric in α is implicit.

EVGENY I. BUCHBINDER and BENJAMIN J. STONE PHYS. REV. D 104, 106004 (2021)

106004-12



The point-switch identity on hQJQi, Eq. (4.33b) can be
written in terms of the following two equations involving
only vector indices:

Ib1b2
b0
1
b0
2ðXÞAm;a1a2b01b

0
2
c1c2ðXÞ þ Am;c1c2b1b2a1a2ð−XÞ ¼ 0;

ð4:55aÞ

Ib1b2
b0
1
b0
2ðXÞSnm;a1a2b01b

0
2
c1c2ðXÞ − Snm;c1c2b1b2a1a2ð−XÞ ¼ 0:

ð4:55bÞ

To recall, here the tensors A and S are given by Eqs. (4.50)
and (4.51), where the tensor F is given by Eq. (4.18) in the
parity-even case and in Eqs. (4.26) and (4.27) in the parity-
odd case, and the tensor G in both cases is obtained from F
using Eq. (4.10).
Now the task is to substitute F andG into Eqs. (4.50) and

(4.51) in the parity-even and in the parity-odd cases
separately to determine if there are additional, different
from Eq. (4.20) constraints on the coefficients k2, k4, and b
in Eqs. (4.18) and (4.26). Since A and S have rather
complicated definitions, it is futile to attempt to impose
them by hand; however, computation of these identities is
possible in Mathematica using the xAct package [40]. The
package allows for symbolic manipulation of tensors using
index notation and contains a suite of “canonicalization”
functions which can essentially manipulate tensor struc-
tures down to their simplest form. In this way the
computations are completely symbolic and are exactly
the same as if they were done “by hand.” Once a given
tensor is canonicalized, we can then convert the expression
into an array using in-built functions.

Parity-even sector.—Evaluating (4.55a) using definitions
(4.50) and the solution (4.18) results in ≈400 terms after
canonicalization. On the other hand, Eq. (4.55b) results in
≈800. The tensor structures in each identity should cancel

among each other for some relation between the coeffi-
cients k2 and k4. However, if we naively just collect all of
the tensor structures, one would find that k2 ¼ k4 ¼ 0, as
there is a hidden linear dependence between the terms. A
way around this is to go into a coordinate basis and check
every component of the left-hand sides (LHS) of (4.55a)
and (4.55b). If we carry out this computation, the identities
are satisfied for the choice k2 ¼ −2k4. Hence, we do not get
any new relations in the parity-even sector, and it is still
fixed up to an overall coefficient.

Parity-odd sector.—We now carry out an identical analysis
for the parity-odd solution (4.26), which turns out to be
more computationally intensive. In this case there are ≈800
tensor structures after canonicalization of the LHS of
(4.55a), while there are ≈1600 for (4.55b). If one goes
into a coordinate basis, the identities are satisfied for an
arbitrary choice of the coefficient b. Hence, the parity-odd
sector is also fixed up to a single tensor structure.

3. Numerical analysis

To supplement the results above, we will carry out a
numerical analysis of the point-switch identity by sub-
stituting in various configurations of points. To do this, first
we convert the ansatz (4.1) into vector notation. This can be
done by introducing the following N ¼ 1 object:

Iabðx12Þ ¼ −
1

2
ðγaÞα1α2ðγbÞα01α02ðx̂12Þα1α01ðx̂12Þα2α02

¼ Iabðy12Þ − iϵabmŷm12
θ2

y12
: ð4:56Þ

To recall, x12 is given in Eq. (2.8), the vector y12 is given in
(2.9) and ŷm12 ¼ ym12=y12. Iabðx12Þ may be thought of as the
supersymmetric generalization of (2.26b). It obeys some
useful properties such as

Iamðx12ÞImbð−x12Þ ¼ ηab; Iamðx12ÞImbðx12Þ ¼ ηab − 2iϵabmŷm12
θ2

y12
: ð4:57Þ

Using this new object, the ansatz (4.1) can be written in the form

hF a1a2ðz1ÞF b1b2ðz2ÞF c1c2ðz3Þi ¼
Ia1a01ðx13ÞIa2a02ðx13ÞIb1b01ðx23ÞIb2b02ðx23Þ

ðx213Þ3ðx223Þ3
Ha0

1
a0
2
b0
1
b0
2
c1c2ðX3;Θ3Þ: ð4:58Þ

Now to check the point-switch identity, we will introduce null vectors λ1, λ2, λ3, and contract them with the ansatz to obtain

hF ðz1ÞF ðz2ÞF ðz3Þi ¼ hF a1a2ðz1ÞF b1b2ðz2ÞF c1c2ðz3Þiλa11 λa21 λb12 λb22 λc13 λ
c2
3 : ð4:59Þ

Essentially our approach is to pick a configuration of points x1, x2, x3 and null vectors λ1, λ2, λ3, and then expand out (4.59)
to all orders and combinations of the fermionic superspace coordinates θ1, θ2, θ3. This simplifies the point-switch identity

THREE-POINT FUNCTIONS OF A SUPERSPIN-2 CURRENT … PHYS. REV. D 104, 106004 (2021)

106004-13



hF ðz1ÞF ðz2ÞF ðz3Þi ¼ hF ðz3ÞF ðz2ÞF ðz1Þi ð4:60Þ

to a polynomial expression in the fermionic coordinates. We then check whether the point-switch identity is satisfied for
both the parity-even and parity-odd solutions that we found in Sec. IVA. To carry out these computations we must make
use of the following expansions for the fermionic two-point (three-point) functions, which follow from the definitions (2.8)
and (2.13b):

θ213 ¼ θ21 þ θ23 − 2θ1 · θ3; ð4:61aÞ

Θ2
3 ¼

θ213
y213

þ θ223
y223

þ 2

y213y
2
23

ym13y
n
23fηmnθ13 · θ23 − ϵmncðθ13 · γ · θ23Þcg; ð4:61bÞ

where we have used the notation

θi · θj ¼ θαi θjα; ðθij · γ · θjkÞa ¼ ðγaÞαβθαijθβjk: ð4:62Þ

Expansions for the other building blocks are obtained by cyclic permutations of superspace points. Hence, we see that the
resulting polynomial from (4.59) will be a function of θ2i , θi · θj, ðθij · γ · θjkÞa, and combinations/products of these objects.9

All the θ expansions and numerical calculations are done computationally. We performed a numeric analysis for various
configurations of points and null vectors and always found the same result. Below we present one example when the
polynomials are relatively simple.
Let us pick the following points and null vectors:

x1 ¼ ð0;−1; 0Þ; x2 ¼ ð0; 1; 0Þ; x3 ¼ ð0; 0; 1Þ; ð4:63aÞ

λ1 ¼ ð1; 0; 1Þ; λ2 ¼ ð1; 1; 0Þ; λ3 ¼ ð1;−1; 0Þ: ð4:63bÞ

We now substitute the above values into (4.60). For the parity-even solution (denoted by subscript E) we obtain

hF ðz1ÞF ðz2ÞF ðz3ÞiE − hF ðz3ÞF ðz2ÞF ðz1ÞiE ¼
�

k2
128

þ k4
64

�
θ21θ

2
2 þ

�
k2
128

þ k4
64

�
θ21θ

2
3 þ

�
k2
128

þ k4
64

�
θ22θ

2
3

þ i

�
k2
64

þ k4
32

�
θ1 · θ3 þ i

�
k2
64

þ k4
32

�
θ2 · θ3 − i

�
k2
64

þ k4
32

�
ðθ13 · γ · θ23Þ1

þ
�
k2
32

þ k4
16

�
θ1 · θ3ðθ13 · γ · θ23Þ1 −

�
k2
16

þ k4
8

�
θ2 · θ3ðθ13 · γ · θ23Þ1

þ θ21

�
−

ik2
128

−
ik4
64

−
�
k2
64

þ k4
32

�
θ2 · θ3 −

�
k2
64

þ k4
32

�
ðθ13 · γ · θ23Þ1

�

þ θ22

�
−

ik2
128

−
ik4
64

−
�
k2
64

þ k4
32

�
θ1 · θ3 þ

�
k2
32

þ k4
16

�
ðθ13 · γ · θ23Þ1

�

þ θ23

�
−
ik2
64

−
ik4
32

−
�
k2
64

þ k4
32

�
θ1 · θ2 þ

�
k2
64

þ k4
32

�
ðθ13 · γ · θ23Þ1

�
:

ð4:64Þ

Clearly, this expression vanishes at each order of θ for the choice k2 ¼ −2k4, which is the same condition as found
previously in Eq. (4.20). Hence, the numerical evaluations agree with our previous calculations and do not give any new
relations.
Next we perform the same calculation for the parity-odd solution (denoted by O). Explicit evaluation of

hF ðz1ÞF ðz2ÞF ðz3ÞiO yields the following polynomial:

9Not all these objects are linearly independent since θi are Grassmann odd but one can choose a convenient basis.
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hF ðz1ÞF ðz2ÞF ðz3ÞiO ¼ −
15

64
bθ21θ

2
2 −

15

64
bθ21θ

2
3 −

15

64
bθ22θ

2
3

þ 3i
16

bθ1 · θ3 −
3i
32

bθ2 · θ3 −
9i
32

bðθ13 · γ · θ23Þ1

−
3

16
bθ1 · θ3ðθ13 · γ · θ23Þ1 þ

3

4
bθ2 · θ3ðθ13 · γ · θ23Þ1

þ θ21

�
−
3i
32

bþ 15

32
bθ2 · θ3 þ

3

32
bðθ13 · γ · θ23Þ1

�

þ θ22

�
3i
64

bþ 15

32
bθ1 · θ3 −

3

8
bðθ13 · γ · θ23Þ1

�

þ θ23

�
−
3i
64

bþ 15

32
bθ1 · θ2 −

9

32
bðθ13 · γ · θ23Þ1

�
: ð4:65Þ

When we similarly compute hF ðz3ÞF ðz2ÞF ðz1ÞiO, we find
the same result. Hence, we observe cancellation at every
order, and therefore the odd solution also satisfies the point-
switch identity for an arbitrary coefficient b.
Note that the polynomials in both parity-even and parity-

odd cases are quite nontrivial even for a simple choice of
the points and null vectors. We performed a similar numeric
analysis for various other choices and obtained the same
result as above. However, in all other cases the polynomials
are quite large so we will not present them here. The
complexity of the polynomials makes any accidental
cancellations highly unlikely. Hence, we are confident that
the point-switch identity is satisfied for k2 ¼ −2k4 and
arbitrary b.

C. Summary of results

Since our analysis is rather technical and involves
analytic and numeric computations of the superfield and
component expressions, we will collect all the pieces
together and summarize our results. We found that the
correlation function hFFF i contains two independent
tensor structures after imposing all of the constraints;
one of them is parity even, while the other is parity odd.
In particular, we found that the parity-odd contribution is
present unlike in all cases of three-point functions involv-
ing the supercurrent and flavor current multiplets [31,39].
The correlation function found above has the following

structure:

hF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þi ¼
Q

4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ; ð4:66Þ

where H can also be written as follows:

Hα1α2α3α4β1β2β3β4γ1γ2γ3γ4ðX;ΘÞ ¼ ðγa1Þα1α2ðγa2Þα3α4ðγb1Þβ1β2ðγb2Þβ3β4
× ðγc1Þγ1γ2ðγc2Þγ3γ4Ha1a2b1b2c1c2ðX;ΘÞ: ð4:67Þ

The tensor H in vector notation then may be split into parity-even and parity-odd sectors

Ha1a2b1b2c1c2ðX;ΘÞ ¼ Ha1a2b1b2c1c2ðX;ΘÞE þHa1a2b1b2c1c2ðX;ΘÞO; ð4:68Þ

where each solution admits the following expansion:

Ha1a2b1b2c1c2ðX;ΘÞE ¼ Fa1a2b1b2c1c2ðXÞ þ Θ2Ga1a2b1b2c1c2ðXÞ; ð4:69aÞ

Ha1a2b1b2c1c2ðX;ΘÞO ¼ F̃a1a2b1b2c1c2ðXÞ þ Θ2G̃a1a2b1b2c1c2ðXÞ; ð4:69bÞ

with G, G̃ determined in terms of F, F̃ by Eqs. (4.10). After imposing all the constraints, we find that the solution for the
tensor F in the even sector is
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Fa1a2b1b2c1c2ðXÞ ¼
a
X3

f−2t2a1a2b1b2c1c2ðX̂Þ þ 2t3a1a2b1b2c1c2ðX̂Þ þ t4a1a2b1b2c1c2ðX̂Þ
þ t5a1a2b1b2c1c2ðX̂Þ − 15t6a1a2b1b2c1c2ðX̂Þ
þ 5t7a1a2b1b2c1c2ðX̂Þ − 35t8a1a2b1b2c1c2ðX̂Þg; ð4:70Þ

where we have relabeled k4 → a and tiðX̂Þ are given by Eqs. (4.12) and (4.13).
On the other hand, we find the solution in the odd sector to be

F̃a1a2b1b2c1c2ðXÞ ¼
b
X3

fϵa1b1mPm;a2b2c1c2ðX̂Þ þ ϵa1b2
mPm;a2b1c1c2ðX̂Þ

þ ϵa2b1
mPm;a1b2c1c2ðX̂Þ þ ϵa2b2

mPm;a1b1c1c2ðX̂Þg; ð4:71Þ

with P defined as in (4.27).

V. MIXED CORRELATORS

In this section we will discuss some basic examples of
three-point functions of F with other fields such as a scalar
superfield O of dimension Δ, and the non-Abelian flavor
current superfield Lā

α of dimension 3=2. The calculations
are straightforward compared to the hFFF i case, so we
will not require computational methods here. These three-
point functions were also previously studied in [20];
however, our method is different and more explicit.

A. Correlation function hOFOi
Let us now compute the correlation function hOFOi,

which admits the general ansatz

hOðz1ÞF αð4Þðz2ÞOðz3Þi ¼
Q

4
i¼1 x23αi

α0i

ðx213ÞΔðx223Þ3
Hα0ð4ÞðX3;Θ3Þ:

ð5:1Þ

As usual, the tensor H is required to satisfy covariant
constraints arising from conservation equations and point-
switch identities. They are summarized below:

(i) Homogeneity constraint
Covariance of the correlation function under scale

transformations of superspace results in the follow-
ing constraint on H:

Hαð4Þðλ2X; λΘÞ ¼ ðλ2Þ−3Hαð4ÞðX;ΘÞ; ð5:2Þ

which implies that H is a homogeneous tensor field
of degree −3.

(ii) Differential constraints
The conservation equation (3.1) implies that the

correlation function must satisfy the following con-
straint:

Dσ
ð2ÞhOðz1ÞF σαð3Þðz2ÞOðz3Þi ¼ 0: ð5:3Þ

Application of the identities (2.22a) results in the
following differential constraint on H:

QσHσαð3ÞðX;ΘÞ ¼ 0: ð5:4Þ

(iii) Point-switch identity
Invariance under permutation of the superspace

points z1 and z3 results in the following constraint on
the correlation function:

hOðz1ÞF αð4Þðz2ÞOðz3Þi ¼ hOðz3ÞF αð4Þðz2ÞOðz1Þi;
ð5:5Þ

which results in the following constraint on H:

Hαð4ÞðX3;Θ3Þ ¼
Q

4
i¼1 x̂

α0iδi
13 X̂3δiαi

x613X
6
3

Hα0ð4Þð−XT
1 ;−Θ1Þ:

ð5:6Þ

Now we must construct an explicit solution; analogous
to the hFFF i case, we combine symmetric pairs of spinor
indices into vector ones as follows:

Hα1α2α3α4ðX;ΘÞ ¼ ðγa1Þα1α2ðγa2Þα3α4Ha1a2ðX;ΘÞ; ð5:7Þ

where it is required that H in vector notation is both
symmetric and traceless. It has the expansion

Ha1a2ðX;ΘÞ ¼ Fa1a2ðXÞ þ Θ2Ga1a2ðXÞ: ð5:8Þ

The component fields F and G are both required to be
symmetric and traceless. If we now impose (5.3), we obtain
the constraints

∂a1Fa1a2 ¼ 0; Ga1a2 ¼
i
2
ϵða1

mn∂nFa2Þm: ð5:9Þ

Therefore we need only solve for the field F. A general
expansion consistent with the tensor symmetries and
homogeneity is
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Fa1a2 ¼
c
X3

�
ηa1a2 −

3Xa1Xa2

X2

�
: ð5:10Þ

Note that no parity violating structures are permitted as
there is simply not enough indices on the tensor F to allow
for such contributions. Substituting this solution into (5.9)
shows that it is satisfied for any value of c, while G ¼ 0.
The final solution for the tensor H in spinor notation is

Hα1α2α3α4ðX;ΘÞ

¼ c

�
−

1

X3
ðεα1α3εα2α4 þ εα1α4εα2α3Þ −

3

X5
Xα1α2Xα3α4

−
3i
2
ðεα1α2Xα3α4 þ εα3α4Xα1α2Þ

Θ2

X5

�
: ð5:11Þ

Indeed, substitution of this solution into (5.6) demonstrates
that it is compatible with the point-switch identity. Hence,
this correlation function is determined up to a single parity-
even tensor structure. A similar result was obtained in [20].

B. Correlation function hFLLi
In this subsection we will compute the correlation

function hFLLi, where L is the non-Abelian flavor current
superfield of dimension 3=2, which obeys the conservation
equation

DαLā
α ¼ 0: ð5:12Þ

The correlation function admits the general ansatz

hF αð4Þðz1ÞLā
βðz2ÞLb̄

γ ðz3Þi

¼ δā b̄
ðQ4

i¼1 x̂13αi
α0iÞx̂23ββ0

ðx213Þ3ðx223Þ3=2
Hα0ð4Þβ0γðX3;Θ3Þ: ð5:13Þ

The constraints on this three-point function are summa-
rized below:

(i) Homogeneity constraint
Covariance under scale transformations of super-

space results in the following constraint on H:

Hαð4Þβγðλ2X; λΘÞ ¼ ðλ2Þ−3Hαð4ÞβγðX;ΘÞ; ð5:14Þ

which implies that H is a homogeneous tensor field
of degree −3.

(ii) Differential constraints
The conservation equations (3.1) and (5.12) imply

the following constraints:

Dσ
ð1ÞhF σαð3Þðz1ÞLā

αðz2ÞLb̄
γ ðz3Þi ¼ 0; ð5:15aÞ

Dβ
ð2ÞhF αð4Þðz1ÞLā

βðz2ÞLb̄
γ ðz3Þi ¼ 0: ð5:15bÞ

Application of the identities (2.22a) then gives

DσHσαð3ÞβγðX;ΘÞ ¼ 0; ð5:16aÞ

QβHαð4ÞβγðX;ΘÞ ¼ 0: ð5:16bÞ

(iii) Point-switch identity
Invariance under permutation of the superspace

points z2 and z3 is equivalent to the condition

hF αð4Þðz1ÞLā
βðz2ÞLb̄

γ ðz3Þi
¼ −hF αð4Þðz1ÞLb̄

γ ðz3ÞLā
βðz2Þi; ð5:17Þ

which results in the following constraint on H:

Hαð4ÞβγðX3;Θ3Þ ¼
x̂23ββ

0
x̂23γγ

0 Q4
i¼1 x̂

α0iδi
23 X̂3αiδi

x623X
6
3

×Hα0ð4Þγ0β0 ð−XT
2 ;−Θ2Þ: ð5:18Þ

As before we combine symmetric pairs of spinor indices
into vector ones as follows:

Hα1α2α3α4βγðX;ΘÞ ¼ ðγa1Þα1α2ðγa2Þα3α4Ha1a2;βγðX;ΘÞ:
ð5:19Þ

The above decomposition holds provided that Ha1a2;βγ is
symmetric and traceless in a1, a2.

10 We then expand this in
irreducible components as follows:

Ha1a2;βγðX;ΘÞ ¼ εβγAa1a2ðX;ΘÞ þ ðγcÞβγSa1a2;cðX;ΘÞ;
ð5:20Þ

with

Aa1a2ðX;ΘÞ ¼ A1
a1a2ðXÞ þ Θ2A2

a1a2ðXÞ; ð5:21aÞ

Sa1a2;cðX;ΘÞ ¼ S1a1a2;cðXÞ þ Θ2S2a1a2;cðXÞ: ð5:21bÞ

Here the Ai and Si are both symmetric and traceless in a1,
a2. Imposing the differential relation (5.16) results in the
following constraints on the tensors Ai and Si:

∂mA1
ma2ðXÞ ¼ 0; A2

a1a2ðXÞ ¼ −
i
2
ϵða1

mn∂mA1
a2ÞnðXÞ;
ð5:22aÞ

∂mS1ma2;cðXÞ ¼ 0; S2a1a2;cðXÞ ¼ −
i
2
ϵða1

mn∂mS1a2Þn;cðXÞ;
ð5:22bÞ

10In the right-hand side we require that the antisymmetric part
in α2, α3 vanishes. Using Eq. (A7a), it can be seen thatHmust be
symmetric and traceless in a1 and a2.
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while (5.16b) gives the additional relations

A2
a1a2ðXÞ ¼

i
2
∂mS1a1a2;mðXÞ; ð5:23aÞ

S2a1a2;cðXÞ ¼ −
i
2
f∂cA1

a1a2ðXÞ þ ϵc
mn∂mS1a1a2;nðXÞg:

ð5:23bÞ

Hence, we may treat A1 and S1 as independent. The only
solution for the tensor A1 compatible with the symmetries is

A1
a1a2ðXÞ ¼

c
X3

�
ηa1a2 −

3Xa1Xa2

X2

�
; ð5:24Þ

while for S we have the general ansatz

S1a1a2;cðXÞ ¼ k1
Xa1Xa2Xc

X6

þ k2

�
ϵa1c

mXmXa2

X5
þ ϵa2c

mXmXa1

X5

�

þ k3

�
ηca1Xa2

X4
þ ηca2Xa1

X4

�
þ k4

ηa1a2Xc

X4
:

ð5:25Þ

Imposing tracelessness in a1, a2 on this expansion results in
the constraint

k3 ¼ −
3

2
k4 −

1

2
k1: ð5:26Þ

The solution then becomes

S1a1a2;cðXÞ ¼ k1

�
Xa1Xa2Xc

X6
−
1

2

ηca2Xa1

X4
−
1

2

ηca1Xa2

X4

�

þ k2

�
ϵa1c

mXmXa2

X5
þ ϵa2c

mXmXa1

X5

�

þ k4

�
ηa1a2Xc

X4
−
3

2

ηca2Xa1

X4
−
3

2

ηca1Xa2

X4

�
:

ð5:27Þ

It remains to impose the differential constraints. In par-
ticular, Eqs. (5.22a) and (5.22b) result in

k1 ¼ k4 ¼ 0; ð5:28Þ

while A2 vanishes. After making the replacement k2 → c̃,
the solutions for the tensors Ai and Si now become

A1
a1a2ðXÞ ¼

c
X3

�
ηa1a2 −

3Xa1Xa2

X2

�
; A2

a1a2ðXÞ ¼ 0;

ð5:29aÞ

S1a1a2;cðXÞ ¼ c̃

�
ϵa1c

mXmXa2

X5
þ ϵa2c

mXmXa1

X5

�
; ð5:29bÞ

S2a1a2;cðXÞ ¼ c̃

�
−
5i
2

Xa1Xa2Xc

X7
þ i
2

ηca2Xa1

X5
þ i
2

ηca1Xa2

X5

þ i
2

ηa1a2Xc

X5

�
: ð5:29cÞ

These solutions are consistent with the remaining con-
straints (5.23a) and (5.23b) for the choice c̃ ¼ −3c. It can
also be shown by direct substitution that this solution is
consistent with the point-switch identity (5.18). Hence, this
correlator is determined up to a single tensor structure.
Let us comment on the absence of parity-odd contribu-

tions.11 They could only potentially come from the follow-
ing terms contained in S1:

S1ðoddÞa1a2;cðXÞ ¼ k1
Xa1Xa2Xc

X6
þ k3

�
ηca1Xa2

X4
þ ηca2Xa1

X4

�

þ k4
ηa1a2Xc

X4
; ð5:30Þ

which are odd under Xm → −Xm. However, this expression
cannot be at the same time traceless and transverse for any
choice of the coefficient k1, k3, k4, which can easily be
checked.
This result is contrary to the computation carried out

using the polarization spinor formalism in [20], where it
was shown that a parity violating contribution can exist.
A direct comparison with the results obtained in [20] is
difficult as our approach and notation are quite dif-
ferent. Our formalism, however, has the benefit that it is
analytic and rather explicit.12 As a consistency check, in
Appendix C we reformulate this problem and use the
hLLF i ansatz. The evaluation procedure is slightly differ-
ent but the same conclusion is obtained.

VI. CONCLUSION

In this paper we analyzed various correlation functions
involving a conserved superspin-2 current multiplet F αð4Þ.
The case of hFFF i is particularly challenging due to the
proliferation of tensor structures in the solution; indeed, we
found that it could only be studied efficiently using

11In our formalism, the presence of the antisymmetric ϵ tensor
in the tensor H does not necessarily imply it is parity odd.
Instead, one must count the overall number of γ matrices
contained in both H and the prefactor after performing super-
space reduction, and then make use of identities such as
ϵmnp ¼ − 1

2
TrðγmγnγpÞ. This approach was applied to the study

of mixed correlators of the supercurrent and flavor current
multiplets [39].

12The corresponding result in [20] is listed in Table 2 with few
details provided. To our knowledge it is based mostly on
numerical methods, whereas our result is obtained analytically.
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computational methods. We obtained that the three-point
function hFFF i contains one parity-even and one parity-
odd structure.
The appearance of a single parity-even structure can be

understood intuitively and is somewhat expected. Indeed,
the superfield F αð4Þ contains a conserved spin-2 current
Jαð4Þ as the lowest component which, though being differ-
ent from the energy-momentum tensor, satisfies the same
conservation equation. Its three-point function has two
parity-even structures which can be attributed to contribu-
tions from a free boson and a free fermion. Since super-
symmetry relates bosons and fermions, it is reasonable to
expect that these structures become related, giving rise to a
single independent contribution. On the other hand, the
existence of the parity-odd structure in hFFF i is rather
nontrivial because, as was pointed out in the Introduction,
there is an apparent tension between parity-odd structures
and supersymmetry: all three-point functions involving the
energy-momentum tensor and vector currents admit parity-
odd structures in the nonsupersymmetric case [1] but not in
the supersymmetric one [31,39].
Let us now clarify a possibly confusing point. The three-

point function of the energy-momentum tensor T does not
allow parity-odd structures in the supersymmetric case,
whereas the three-point function of the similar spin-2
current J does. This might look paradoxical because T
and J have the same symmetry properties and satisfy the
same conservation equation. However, it is important to
remember that T and J belong to different supermultiplets
and, hence, transform differently under supersymmetry.
Therefore, restrictions on their correlation functions due to
supersymmetry are different.
Anatural extensionof our results is to study the three-point

functions of higher-spin current multiplets of (arbitrary)
higher (super)spin. For nonsupersymmetric conformal field
theories, the three-point functions of bosonic higher-spin
currents were found in [43–45]. In four-dimensional super-
symmetric conformal field theories correlation functions of
higher-spin spinor currents were recently studied in [46] (see
also [47]). Deriving explicit solutions becomes increasingly
difficult for fields with higher spins. It is possible that other
approaches, for example, based on supersymmetric gener-
alizations of the embedding formalism [48–51] or of the
spinor-helicity formalism [24,52,53], can be more efficient.
It would be interesting to explore them as well.
Another natural question is to find explicit realizations

of superconformal field theories possessing a conserved
superspin-2 current multiplet. Since this multiplet also
contains a higher-spin current, one should expect that these
theories possess infinitely many conserved higher-(super)
spin currents [54].
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APPENDIX A: THREE-DIMENSIONAL
CONVENTIONS AND NOTATION

For the Minkowski metric we use the “mostly plus”
convention: ηmn ¼ diagð−1; 1; 1Þ. Spinor indices are then
raised and lowered with the SLð2;RÞ invariant antisym-
metric ε-tensor

εαβ ¼
�
0 −1
1 0

�
; εαβ ¼

�
0 1

−1 0

�
; εαγε

γβ ¼ δα
β;

ðA1Þ

ϕα ¼ εαβϕ
β; ϕα ¼ εαβϕβ: ðA2Þ

The γ matrices are chosen to be real and are expressed in
terms of the Pauli matrices σ as follows:

ðγ0Þαβ ¼ −iσ2 ¼
�
0 −1
1 0

�
; ðγ1Þαβ ¼ σ3 ¼

�
1 0

0 −1

�
;

ðA3aÞ

ðγ2Þαβ ¼ −σ1 ¼
�

0 −1
−1 0

�
; ðA3bÞ

ðγmÞαβ ¼ εβδðγmÞαδ; ðγmÞαβ ¼ εαδðγmÞδβ: ðA4Þ

The γ matrices are traceless and symmetric

ðγmÞαα ¼ 0; ðγmÞαβ ¼ ðγmÞβα; ðA5Þ

and also satisfy the Clifford algebra

γmγn þ γnγm ¼ 2ηmn: ðA6Þ

Products of γ matrices are then

ðγmÞαρðγnÞρβ ¼ ηmnδα
β þ ϵmnpðγpÞαβ; ðA7aÞ

ðγmÞαρðγnÞρσðγpÞσβ ¼ ηmnðγpÞαβ − ηmpðγnÞαβ þ ηnpðγmÞαβ
þ ϵmnpδα

β; ðA7bÞ

where we have introduced the 3D Levi-Civita tensor ϵ, with
ϵ012 ¼ −ϵ012 ¼ 1. It satisfies the following identities:

ϵmnpϵm0n0p0 ¼ −ηmm0 ðηnn0ηpp0 − ηnp0ηpn0 Þ
− ðn0 ↔ m0Þ − ðm0 ↔ p0Þ; ðA8aÞ
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ϵmnpϵ
m
n0p0 ¼ −ηnn0ηpp0 þ ηnp0ηpn0 ; ðA8bÞ

ϵmnpϵ
mn

p0 ¼ −2ηpp0 ; ðA8cÞ

ϵmnpϵ
mnp ¼ −6: ðA8dÞ

We also have the orthogonality and completeness relations
for the γ matrices

ðγmÞαβðγmÞρσ ¼−δαρδβσ−δα
σδβ

ρ; ðγmÞαβðγnÞαβ¼−2ηmn:

ðA9Þ

Finally, the γ matrices are used to swap from vector to
spinor indices. For example, given some three-vector xm, it
can be expressed equivalently in terms of a symmetric
second-rank spinor xαβ as follows:

xαβ ¼ ðγmÞαβxm; xm ¼ −
1

2
ðγmÞαβxαβ; ðA10Þ

detðxαβÞ ¼
1

2
xαβxαβ ¼ −xmxm ¼ −x2: ðA11Þ

The same conventions are also adopted for the spacetime
partial derivatives ∂m,

∂αβ ¼ ∂mðγmÞαβ; ∂m ¼ −
1

2
ðγmÞαβ∂αβ; ðA12Þ

∂mxn ¼ δnm; ∂αβxρσ ¼ −δαρδβσ − δα
σδβ

ρ; ðA13Þ

ξm∂m ¼ −
1

2
ξαβ∂αβ: ðA14Þ

We also define the supersymmetry generators QI
α,

Qα ¼ i
∂
∂θα þ ðγmÞαβθβ

∂
∂xm ; ðA15Þ

and the covariant spinor derivatives

Dα ¼
∂
∂θα þ iðγmÞαβθβ

∂
∂xm ; ðA16Þ

which anticommute with the supersymmetry generators,
fQα; Dβg ¼ 0, and obey the standard anticommutation
relations

fDα; Dβg ¼ 2iðγmÞαβ∂m: ðA17Þ

APPENDIX B: COMPONENT REDUCTION:
hFFF i → hQJQi

In this appendix we will provide some additional details
regarding the component reduction from hFFF i to hQJQi.
We recall from Sec. IV B that the component correlation
function hQJQi is obtained from hFFF i as follows:

hQαð4Þ;αðx1ÞJβð4Þðx2ÞQγð4Þ;γðx3Þi ¼ Dð3ÞγDð1ÞαhF αð4Þðz1ÞF βð4Þðz2ÞF γð4Þðz3Þij

¼ Dð3ÞγDð1Þα

�Q4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ

�����
¼ Aþ B: ðB1Þ

The calculation is broken up into two relevant parts: the A contribution is due to the derivatives hitting the prefactor,

A ¼ Dð3ÞγDð1Þα

�Q
4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
�
Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þj; ðB2Þ

while the B contribution arises due to the derivatives hitting H,

B ¼
Q

4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
Dð3ÞγDð1ÞαfHα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þgj: ðB3Þ

Let us start with the A term. After distributing the derivatives we obtain

Dð3ÞγDð1Þα

�Q
4
i¼1 x̂13αi

α0i x̂23βi
β0i

ðx213Þ3ðx223Þ3
�

¼ Dð3ÞγDð1Þα

�
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

ðx213Þ3
�

×
x̂23β1

β0
1 x̂23β2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4

ðx223Þ3
; ðB4Þ
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where we have used the fact that Dð3Þ hitting the objects x23 result in θ linear terms; hence, they do not contribute. We then
find

Dð3ÞγDð1Þα

�
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

ðx213Þ3
����� ¼ 2i

ðx213Þ5
fεαα1δγα

0
1x13α2

α0
2x13α3

α0
3x13α4

α0
4 þ εαα2δγ

α0
2x13α1

α0
1x13α3

α0
3x13α4

α0
4

þ εαα3δγ
α0
3x13α1

α0
1x13α2

α0
2x13α4

α0
4 þ εαα4δγ

α0
4x13α1

α0
1x13α2

α0
2x13α3

α0
3g

þ 10i
ðx213Þ6

x13αγx13α1
α0
1x13α2

α0
2x13α3

α0
3x13α4

α0
4 :

Finally, after repeated application of the identity

εαα1εγα01 ¼
x13αα0

1
x13γα1 − x13αγx13α1α01

x213
; ðB5Þ

we obtain the result

Dð3ÞγDð1Þα

�
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

ðx213Þ3
����� ¼ 2i

ðx213Þ6
fx13αα01x13γα1x13α2α

0
2x13α3

α0
3x13α4

α0
4 þ x13αα

0
2x13γα2x13α1

α0
1x13α3

α0
3x13α4

α0
4

þ x13αα
0
3x13γα3x13α1

α0
1x13α2

α0
2x13α4

α0
4 þ x13αα

0
4x13γα4x13α1

α0
1x13α2

α0
2x13α3

α0
3

þ x13αγx13α1
α0
1x13α2

α0
2x13α3

α0
3x13α4

α0
4g:

After some additional minor manipulations we obtain

A ¼ 1

ðx213Þ7=2ðx223Þ3
x̂13αα

0
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4 × x̂23β1

β0
1 x̂23α2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4T A

α0α0ð4Þβ0ð4Þγγð4ÞðX12Þ: ðB6Þ

Now consider the B term: in particular, we need to evaluate

Dð3ÞγDð1ÞαHα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ: ðB7Þ

Using the identities (2.22a) we obtain

Dð3ÞγDð1ÞαHα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ ¼ Dð3Þγ

�
−
x13αα

0

x213
Dð3Þα0Hα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þ

�
: ðB8Þ

Evaluating the derivative within the brackets gives

Dα0Hα0ð4Þβ0ð4Þγð4ÞðX;ΘÞ ¼ iðγmÞα0δΘδ∂mFα0ð4Þβ0ð4Þγð4ÞðXÞ þ 2Θα0Gα0ð4Þβ0ð4Þγð4ÞðXÞ: ðB9Þ

Now in order to compute

Dð3ÞγDð1ÞαHα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þj; ðB10Þ

we note that contributions in which the spinor derivative acts on x13 or X12 produce terms that are linear in θ, so they may be
neglected as they vanish after bar projection. On the other hand, the following identity holds:

Dð3Þα0Θδ
3j ¼ X12α0

δ: ðB11Þ

Hence, we obtain

Dð3ÞγDð1ÞαHα0ð4Þβ0ð4Þγð4ÞðX3;Θ3Þj ¼ −
x13αα

0

x213
fiðγmÞα0δXδ

12γ∂mFα0ð4Þβ0ð4Þγð4ÞðX12Þ þ 2X12α0γGα0ð4Þβ0ð4Þγð4ÞðX12Þg: ðB12Þ
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Therefore the B contribution may be expressed in the form

B ¼ 1

ðx213Þ7=2ðx223Þ3
x̂13αα

0
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

× x̂23β1
β0
1 x̂23β2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4T B

α0;α0ð4Þβ0ð4Þγ;γð4ÞðX12Þ; ðB13Þ

with T B given by the expression

T B
α;αð4Þβð4Þγ;γð4ÞðXÞ ¼ −iðγmÞασXσ

γ∂mFαð4Þβð4Þγð4ÞðXÞ − 2XαγGαð4Þβð4Þγð4ÞðXÞ: ðB14Þ

Combining both the A and B terms we obtain the component correlation function

hQαð4Þ;αðx1ÞJβð4Þðx2ÞQγð4Þ;γðx3Þi ¼
1

ðx213Þ7=2ðx223Þ3
x̂13αα

0
x̂13α1

α0
1 x̂13α2

α0
2 x̂13α3

α0
3 x̂13α4

α0
4

× x̂23β1
β0
1 x̂23β2

β0
2 x̂23β3

β0
3 x̂23β4

β0
4T α0;α0ð4Þβ0ð4Þγ;γð4ÞðX12Þ; ðB15Þ

with

T α;αð4Þβð4Þγ;γð4ÞðXÞ ¼ T A
α;αð4Þβð4Þγ;γð4ÞðXÞ þ T B

α;αð4Þβð4Þγ;γð4ÞðXÞ: ðB16Þ

APPENDIX C: CONSISTENCY CHECKS

1. Correlator hLLOi
In this sub-appendix we derive the general form of the

correlation function hLLOi. We also demonstrate that our
solution is consistent with the results of [20] in terms of the
number of independent tensor structures. The ansatz for
hLLOi is

hLā
αðz1ÞLb̄

βðz2ÞOðz3Þi ¼ δā b̄
x̂13αα

0
x̂23ββ

0

ðx213Þ3=2ðx223Þ3=2
Hα0β0 ðX3;Θ3Þ:

ðC1Þ
The constraints on this three-point function are summa-
rized below:

(i) Homogeneity constraint
Covariance under scale transformations of super-

space results in the following constraint on H:

Hαβðλ2X; λΘÞ ¼ ðλ2Þ−τHαβðX;ΘÞ; ðC2Þ

which implies that H is homogeneous degree
τ ¼ 3 − Δ.

(ii) Differential constraints
The conservation equations (3.1) imply the fol-

lowing constraints:

Dα
ð1ÞhLā

αðz1ÞLb̄
βðz2ÞOðz3Þi ¼ 0: ðC3Þ

Application of the identities (2.22a) to (C3) gives

DαHαβðX;ΘÞ ¼ 0: ðC4Þ

(iii) Point-switch identity
Invariance under permutation of the superspace

points z1 and z2 is equivalent to the condition

hLā
αðz1ÞLb̄

βðz2ÞOðz3Þi ¼ −hLb̄
βðz2ÞLā

αðz1ÞOðz3Þi;
ðC5Þ

which results in the following constraint on H:

HαβðX;ΘÞ ¼ −Hαβð−XT;−ΘÞ: ðC6Þ

An irreducible expansion for H is

HαβðX;ΘÞ ¼ εαβAðX;ΘÞ þ ðγaÞαβSaðX;ΘÞ; ðC7Þ

with

AðX;ΘÞ ¼ A1ðXÞ þ Θ2A2ðXÞ; ðC8aÞ

SaðX;ΘÞ ¼ S1aðXÞ þ Θ2S2aðXÞ: ðC8bÞ

The point-switch identity (C6) implies

A1ðXÞ ¼ A1ð−XÞ; A2ðXÞ ¼ A2ð−XÞ; ðC9aÞ

S1aðXÞ ¼ −S1að−XÞ; S2aðXÞ ¼ −S2að−XÞ: ðC9bÞ

Imposing the differential relation (C4) results in the
following constraints on the tensors Ai and Si:
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A2ðXÞ ¼ i
2
∂mS1mðXÞ; ðC10aÞ

S2aðXÞ ¼ −
i
2
f∂aA1ðXÞ þ ϵa

mn∂mS1nðXÞg: ðC10bÞ

Hence, we may treat A1 and S1 as independent. Explicit
solutions for the tensors A1 and S1 are

A1ðXÞ ¼ a
Xτ ; S1aðXÞ ¼ b

Xa

Xτþ1
: ðC11Þ

These solutions are trivially compatible with (C9a) and
(C9b). Using (C10a) and (C10b) we obtain expressions for
A2 and S2

A2ðXÞ ¼ ib
2
ð2 − τÞ 1

Xτþ1
; S2aðXÞ ¼

ia
2
τ
Xa

Xτþ2
: ðC12Þ

Following [20] we set Δ ¼ 1 (τ ¼ 2) and obtain the set of
solutions

A1ðXÞ ¼ a
X2

; A2ðXÞ ¼ 0; ðC13aÞ

S1aðXÞ ¼ b
Xa

X3
; S2aðXÞ ¼ ia

Xa

X4
: ðC13bÞ

The solution for H in spinor notation is then

HαβðX;ΘÞ ¼ a

�
εαβ
X2

þ iXαβΘ2

X4

�
þ b

�
Xαβ

X3
þ i
2

εαβΘ2

X3

�
;

ðC14Þ

which clearly contains both parity-even and parity-odd
contributions. Our notation is quite different so it is difficult
to make a direct comparison; however, we agree on the
number of independent tensor structures.

2. Correlator hFLLi—alternative ansatz

In this subsection we investigate an alternative formu-
lation of the correlation function hFLLi, it serves as a
consistency check of our result in Sec. V B. The starting
point is the alternative ansatz hLLOi:

hLā
βðz1ÞLb̄

γ ðz2ÞF αð4Þðz3Þi

¼ δā b̄
x̂13ββ

0
x̂23γγ

0

ðx213Þ3=2ðx223Þ3=2
Hβ0γ0αð4ÞðX3;Θ3Þ: ðC15Þ

The constraints on this three-point function are summa-
rized below:

(i) Homogeneity constraint
Covariance under scale transformations of super-

space results in the following constraint on H:

Hβγαð4Þðλ2X; λΘÞ ¼ Hβγαð4ÞðX;ΘÞ; ðC16Þ

which implies that H is homogeneous degree 0.
(ii) Differential constraints

The conservation equations (3.1) imply the
following constraints:

Dβ
ð1ÞhLā

βðz1ÞLb̄
γ ðz2ÞF αð4Þðz3Þi ¼ 0; ðC17aÞ

Dσ
ð3ÞhLā

βðz1ÞLb̄
γ ðz2ÞF σαð3Þðz3Þi ¼ 0: ðC17bÞ

Application of the identities (2.22a) to (C17a) gives

DβHβγαð4ÞðX;ΘÞ ¼ 0: ðC18Þ

Imposing (5.15b) is rather nontrivial, and it will be
handled later in this section.

(iii) Point-switch identity
Invariance under permutation of the superspace

points z1 and z2 is equivalent to the condition

hLā
βðz1ÞLb̄

γ ðz2ÞF αð4Þðz3Þi
¼ −hLb̄

γ ðz2ÞLā
βðz1ÞF αð4Þðz3Þi; ðC19Þ

which results in the following constraint on H

Hβγαð4ÞðX;ΘÞ ¼ −Hγβαð4Þð−XT;−ΘÞ: ðC20Þ

First we combine symmetric pairs of spinor indices into
vector ones as follows:

Hβγα1α2α3α4ðX;ΘÞ ¼ ðγa1Þα1α2ðγa2Þα3α4Hβγ;a1a2ðX;ΘÞ;
ðC21Þ

where it is required thatHa1a2;βγ is symmetric and traceless
in a1, a2. We then expand this in irreducible components as
follows:

Hβγ;a1a2ðX;ΘÞ ¼ εβγAa1a2ðX;ΘÞ þ ðγcÞβγSa1a2;cðX;ΘÞ;
ðC22Þ

with

Aa1a2ðX;ΘÞ ¼ A1
a1a2ðXÞ þ Θ2A2

a1a2ðXÞ; ðC23aÞ

Sa1a2;cðX;ΘÞ ¼ S1a1a2;cðXÞ þ Θ2S2a1a2;cðXÞ: ðC23bÞ

Here the Ai and Si are both symmetric and traceless in a1,
a2. The point-switch identity (C20) implies

A1
a1a2ðXÞ ¼ A1

a1a2ð−XÞ; A2
a1a2ðXÞ ¼ A2

a1a2ð−XÞ;
ðC24aÞ
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S1a1a2;cðXÞ ¼ −S1a1a2;cð−XÞ; S2a1a2;cðXÞ ¼ −S2a1a2;cð−XÞ:
ðC24bÞ

Imposing the differential relation (C18) results in the
following constraints on the tensors Ai and Si:

A2
a1a2ðXÞ ¼

i
2
∂mS1a1a2;mðXÞ; ðC25aÞ

S2a1a2;cðXÞ ¼ −
i
2
f∂cA1

a1a2ðXÞ þ ϵc
mn∂mS1a1a2;nðXÞg:

ðC25bÞ

Hence, we may treat A1 and S1 as independent. The only
solution for the tensor A1 compatible with the symmetries is

A1
a1a2ðXÞ ¼ c

�
ηa1a2 −

3Xa1Xa2

X2

�
; ðC26Þ

while for S we have the general ansatz

S1a1a2;cðXÞ¼k1
Xa1Xa2Xc

X3
þk2

�
ϵa1c

mXmXa2

X2
þϵa2c

mXmXa1

X2

�

þk3

�
ηca1Xa2

X
þηca2Xa1

X

�
þk4

ηa1a2Xc

X
: ðC27Þ

Imposing tracelessness on a1, a2 on this expansion, along
with the conditions (C24a) and (C24b) results in the
constraints

k3 ¼ −
3

2
k4 −

1

2
k1; k2 ¼ 0: ðC28Þ

The solution then becomes

S1a1a2;cðXÞ¼ k1

�
Xa1Xa2Xc

X3
−
1

2

ηca2Xa1

X
−
1

2

ηca1Xa2

X

�

þk4

�
ηa1a2Xc

X
−
3

2

ηca2Xa1

X
−
3

2

ηca1Xa2

X

�
: ðC29Þ

The expressions for A2 and S2 are

A2
a1a2ðXÞ ¼

iðk1 þ k4Þ
2

�
ηa1a2
X

−
3Xa1Xa2

X3

�
; ðC30aÞ

S2a1a2;cðXÞ¼−3ic
�
Xa1Xa2Xc

X4
−
1

2

ηca2Xa1

X2
−
1

2

ηca1Xa2

X2

�

þ ik1
4

�
ϵa1c

mXmXa2

X3
þ ϵa2c

mXmXa1

X3
g

−
3ik4
4

�
ϵa1c

mXmXa2

X3
þ ϵa2c

mXmXa1

X3

�
: ðC30bÞ

Imposing the symmetry conditions (C24a) and (C24b) on
these solutions results in the constraint k1 ¼ 3k4. After
making the replacement k4 → c̃, the solutions for the
tensors Ai and Si become

A1
a1a2ðXÞ ¼ c

�
ηa1a2 −

3Xa1Xa2

X2

�
; ðC31aÞ

A2
a1a2ðXÞ ¼ 2ic̃

�
ηa1a2
X

−
3Xa1Xa2

X3

�
; ðC31bÞ

S1a1a2;cðXÞ ¼ c̃

�
3Xa1Xa2Xc

X3
þ ηa1a2Xc

X
−
3ηca2Xa1

X

−
3ηca1Xa2

X

�
; ðC31cÞ

S2a1a2;cðXÞ ¼ −3ic
�
Xa1Xa2Xc

X4
−
1

2

ηca2Xa1

X2
−
1

2

ηca1Xa2

X2

�
;

ðC31dÞ

where we note that the correlation function is presently
determined up to two coefficients. However, it remains to
impose the final relation (C17b). To provide a comparison
with our results in Sec. V B it is sufficient to analyze
conservation on one of the component correlators to see
whether this reduces the number of tensor structures. First,
let us define the component fields by bar projection13

ψ ā
αðxÞ ¼ Lā

αðzÞj;

Ja1a2ðxÞ ¼
1

4
ðγa1Þα1α2ðγa2Þα3α4F α1α2α3α4ðzÞj: ðC32Þ

The three-point function hψψJi is then defined as follows:

hψ ā
βðx1Þψ b̄

γ ðx2ÞJa1a2ðx3Þi ¼ hLā
βðz1ÞLb̄

γ ðz2ÞF a1a2ðz3Þij;
ðC33Þ

where bar projection denotes switching off the fermionic
variables at each superspace point. Using (C15), this three-
point function has the general form

hψ ā
βðx1Þψ b̄

γ ðx2ÞJa1a2ðx3Þi

¼ δā b̄
x̂13ββ

0
x̂23γγ

0

ðx213Þ3=2ðx223Þ3=2
Hβ0γ0;a1a2ðX12Þ; ðC34aÞ

Hβγ;a1a2ðXÞ¼ εβγA1
a1a2ðXÞþðγcÞβγS1a1a2;cðXÞ; ðC34bÞ

13There are three component fields contained within the flavor
current multiplet, and they are fψα; Vαβ; χαg. The superfield
conservation equation (5.12) then implies that V satisfies
∂aVa ¼ 0, while χ is auxiliary. The calculations are similar to
those in Sec. III.
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where A1 and S1 are the solutions given above. We will then
impose conservation by transforming the three-point func-
tion such that it is represented in the following way:

hψ ā
βðx1Þψ b̄

γ ðx2ÞJa1a2ðx3Þi ⇒ hJa1a2ðx3Þψ b̄
γ ðx2Þψ ā

βðx1Þi:
ðC35Þ

Using the explicit expressions for A1 and S1, after some
calculation it may be shown that

hJa1a2ðx3Þψ b̄
γ ðx2Þψ ā

βðx1Þi ¼ δā b̄
Ia1a2;a01a

0
2
ðx̂31Þx̂21γγ0

ðx231Þ3ðx221Þ3=2
× H̃a0

1
a0
2
;γ0βðX32Þ; ðC36Þ

H̃a1a2;γβðXÞ ¼ εβγÃ
1
a1a2ðXÞ þ ðγcÞβγS̃1a1a2;cðXÞ; ðC37Þ

where H̃ is homogeneous degree −3 and the tensors Ã1 and
S̃1 are found to be

Ã1
a1a2ðXÞ ¼

c̃
X3

�
ηa1a2 −

3Xa1Xa2

X2

�
; ðC38Þ

S̃1a1a2;cðXÞ ¼ c

�
3Xa1Xa2Xc

X6
−
ηa1a2Xc

X4

�

− 3c̃

�
ϵa1cmX

mXa2

X5
þ ϵa2cmX

mXa1

X5

�
: ðC39Þ

At this stage we note that the c̃ terms exactly match the
solutions (5.29a) and (5.29b); however, we have picked up
an extra tensor structure (the c terms). If we now relabel the
points in the hJψψi ansatz such that x3 → x1, x1 → x3, then
the tensors Ã1 and S̃1 must satisfy the constraints (5.22a)
and (5.22b). The solutions above are compatible with these
constraints provided that c ¼ 0. Hence, we have found that
this correlator is fixed up to a single tensor structure and
fully agrees with what we found in Sec. V B.
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