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Three-point functions of a superspin-2 current multiplet
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We consider N' = 1 superconformal field theories in three dimensions possessing a conserved current
multiplet (4, 4,a;q,)» Which we refer to as the superspin-2 current multiplet. At the component level it
contains a conserved spin-2 current different from the energy-momentum tensor and a conserved fermionic
higher-spin current of spin 5/2. Using a superspace formulation, we calculate correlation functions
involving F, focusing particularly on the three-point function (FJFF). After imposing the constraints
arising from conservation equations and invariance under permutation of superspace points, we find that
the parity-even and parity-odd sectors of this three-point function are each fixed up to a single coefficient.
The presence of the parity-odd contribution is rather nontrivial, as there is an apparent tension between
supersymmetry and the existence of parity-odd structures.
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I. INTRODUCTION

A peculiar feature of three-dimensional conformal field
theories is the presence of parity violating, or parity-odd,
structures in the three-point functions of conserved currents
such as the energy-momentum tensor and vector currents
[1]. These structures were not considered in the systematic
studies of [2,3], which utilized a group-theoretic approach
to solve for the correlation functions of conserved currents
in a generic number of spacetime dimensions.' Parity-odd
structures are not present in free theories but have been
shown to arise in Chern-Simons theories interacting with
parity violating matter. In various approaches and contexts
they were studied in [14-25].

In general, besides the energy-momentum tensor and
vector currents, conformal field theories also possess cur-
rents of higher spin. In [17] Maldacena and Zhiboedov
proved under certain assumptions (see below) that all
correlation functions of higher-spin currents in three-
dimensional conformal field theory are equal to that of a
free theory. In particular, it implies that they do not have
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parity-odd contributions. This theorem was later general-
ized to higher-dimensional cases in [26—28]. These results
can be viewed as the analog of the Coleman-Mandula
theorem [29] for conformal field theories.

In this paper we will be interested in N =1 super-
conformal field theories in three dimensions. The general
formalism to construct the two- and three-point functions of
conserved currents in three-dimensional superconformal
field theories was developed in [30-33] (a similar formal-
ism in four dimensions was developed in [34-36] and in six
dimensions in [37]). In supersymmeric theories, conserved
currents are contained within supermultiplets. The energy-
momentum tensor lies in the supercurrent multiplet [38],
which in three dimensions also contains a fermionic
supersymmetry current. On the other hand, a vector current
becomes a component of the flavor current multiplet. As
was pointed out in [31,39] there is an apparent tension
between supersymmetry and the existence of parity violat-
ing structures in the three-point functions of conserved
currents. In particular, three-point functions containing
the supercurrent and flavor current multiplets admit
only parity-even contributions. Combining this with the
Maldacena-Zhiboedov theorem, it follows that supersym-
metric conformal field theories do not admit parity-odd
contributions to the three-point functions of conserved
currents for any spin unless the assumptions of the theorem
are violated.

The strongest assumption of the Maldacena-Zhiboedov
theorem 1is that the conformal field theory under consid-
eration possesses a unique conserved spin-2 current—the
energy-momentum tensor. However, in the same article
[17] Maldacena and Zhiboedov showed that the existence
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of a conserved fermionic higher-spin current implies that
there is more than one conserved current of spin 2. In
supersymmetric theories conserved currents belong to
supermultiplets that contain both bosonic and fermionic
currents. This implies that a supersymmetric conformal
field theory possessing a bosonic higher-spin current also
possesses a fermionic higher-spin current (and vice versa);
thus it is conceivable that there exists another conserved
current of spin 2. This, in turn, implies that in three-
dimensional superconformal field theories the assumptions
of [17] might be violated and the properties of correlation
functions of higher-spin currents might be more subtle.
In this paper, we will assume that the A/ =1 super-
conformal field theory under consideration possesses
a spin-2 conserved current different from the energy-
momentum tensor. It naturally sits in the supermultiplet

= Fa) (1.1)

= f(a1a2a3a4)

F a3y
and satisfies the conservation equation

DU F 4 anasa; = O- (1.2)
The superfield F 4 contains two independent conserved
currents (see Sec. III)

Ja,(12a3a4 ()C) = falazaym (Z) | ’
Q(1|(12a3a4,a(x) = Dafa]uza;m‘ (Z) |,

(1.3)

where, as usual, bar projection means setting all Grassmann
odd variables to zero. We will refer to F,4) as to the
“superspin-2 current multiplet”” The component current
Ja(4) 1s a conserved spin-2 current different from the energy
momentum tensor, though it satisfies similar properties (the
latter belongs to the supercurrent multiplet 7 3)), while
Qo arasasas = Qa(s) 18 a conserved fermionic current of
spin 5/2. We will not discuss here particular realizations of
superconformal theories possessing a conserved superspin-
2 multiplet; our interest here is to explore how the V' = 1
superconformal symmetry constrains the three-point cor-
relation functions involving JF 4.
Our main result is that the three-point function,
(Fa@)(20) Fpay(22) Fyay(23)), (1.4)
is fixed by the N' = 1 superconformal symmetry up to one
parity-even and one parity-odd structure. Our analysis is
technically quite involved; the analytic superfield consid-
eration turns out to be quite intractable and we were
required to complete both superfield and component
analysis with the aid of the xAct package [40] for
Mathematica, which contains an advanced suite of tools
designed for tensor analysis. The three-point function (1.4)
contains two independent component correlators [all others

can be found in terms of these two by virtue of the
conservation law (1.2)],

<Ja(4) (x )]p(4) (xz)Jy(4) (x3)),

(Qa(s)(X1) () (x2) Oy 5 (x3)). (1.5)
These two correlators were analyzed analytically; however,
to provide a complete check that all the necessary con-
ditions are satisfied, we had to also perform some numeri-
cal analysis. We also discuss some basic mixed three-point
functions involving F a(4).2 In particular, we analyze the
three-point function (O(z;)F 4(4)(22)O(z3)), where O(z) is
a scalar superfield of dimension A. We found that it is fixed
up to a single parity-even tensor structure. We also compute
the three-point function

(Fa (21)L§(22)L7 (23)). (1.6)
where LZ(z) is the non-Abelian flavor current multiplet. We
found that this three-point function is also fixed up to a
single parity-even tensor structure, which is in disagree-
ment with the result previously reported in [20], which
used a different approach (see Sec. V B for details). In our
approach the analysis of this correlation function is
relatively straightforward as it can be studied analytically,
so we are confident in our result.

The paper is organized as follows. In Sec. II we introduce
the superconformal building blocks that are essential to the
construction of two- and three-point correlation functions
of primary operators. In Sec. III we analyze the structure of
the supermultiplet F; in particular, we define the compo-
nent fields in the multiplet and determine the constraints on
them resulting from the superfield conservation equations.
Section IV is devoted to studying the three-point function
(FFF). First, we impose the constraints resulting from the
conservation of F and invariance under permutation of
superspace points z; and z,; we show that these constraints
are sufficient to fix the parity-even and parity-odd sectors
each up to a single coefficient. Next we check invariance
under permutation of superspace points z; and z3, which is
technically quite involved and involves a combination of
both analytic and numerical methods. As a result, we show
that the three-point function is fixed by the A" =1 super-
conformal symmetry up to two independent tensor struc-
tures: one is parity even while the other is parity odd.
Section V is devoted to the study of mixed correlation
functions involving the superfield 7. We compute the
three-point function of F with two scalar superfield
insertions, and the three-point function of F with two
non-Abelian flavor current multiplets. In Sec. VI we

A more detailed study of the mixed three-point functions
involving the superspin-2 multiplet, the supercurrent, and the
flavor current multiplet will be presented elsewhere.
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provide a brief summary of the work and some future
directions. Appendixes A, B, and C are devoted to our con-
ventions, technical details, and some consistency checks.

I1I. SUPERCONFORMAL BUILDING BLOCKS

In this section we will review the pertinent details of the
group theoretic formalism used to compute correlation
functions of primary superfields. For a more detailed
review of our conventions the reader may consult [31,39].

A. Superconformal transformations

Consider three-dimensional (3D), A/ =1 Minkowski
superspace  MPP, parametrized by coordinates z# =
(x4,60%), where a=0, 1, 2 and a =1, 2 are Lorentz
and spinor indices, respectively. Under infinitesimal super-
conformal transformations, the superspace coordinates
transform as

= & e r = () H () e (P, 0" = E(2),

(2.1)
where £4(z) is a conformal Killing supervector

£=842)0s

which satisfies the master equation [£, D,] o Dy. From the
master equation we find

£(2)0, + &(2)Dg, (2.2)

é:a = iDﬁgaﬁa

: (2.3)

which, in particular, implies the conformal Killing equation

2
0 éb + 81)541 = naba é (24)

The solutions to the master equation are called the
conformal Killing supervector fields of Minkowski super-
space [41,42], which span a Lie algebra isomorphic to the
superconformal algebra 08p(1 ).

Now consider a generic tensor superfield @ 4(z) trans-
forming in a representatlon T of the Lorentz group with
respect to the index A2 Such a superfield is called primary
with dimension g if its superconformal transformation law is

SO 4 = —E@ 4 — qo(2)@ 4 + 27 (2) (M) " P, (2.5)
where ¢ is the superconformal Killing vector and the matrix
M, is the Lorentz generator. The z-dependent parameters
o(z) and A%(z) associated with ¢ are defined as follows:
}“a/}(z) = _D(a‘fﬂ)’

0(z) = D &% (2.6)

*We assume that the representation 7 is irreducible.

B. Two-point and three-point building blocks

1. Two-point building blocks

Given two superspace points z; and z,, we can define the
two-point functions

£ = (n =) 20000 — 0000, 0, = 07— 65,
(2.7)
Note that x2 1= x/fg . It is convenient to split the two-point

function (2. 7) into symmetric and antisymmetric parts as
follows:

x‘fg = y12 2 (1/19%2’ 922 _ 9 912(11 (28)
where y’l”g is the symmetric part of x‘fg ,
Vi = (x) = x) + 2i0\6). (2.9)

It can also be represented by the three-vector y{, =

-3 (y’")aﬂy‘lxg . Next we introduce the two-point objects

1
x%Z = _ExtlxgxIZa/}v (2103.)
cap _ XD s ys P V]
xlz = xz s xlzayxuy :5(1 . (210]3)
12
Hence, we find

x
) = -T2, (2.11)

12

These objects are essential in the construction of correlation
functions of primary superfields. We also have the useful
differential identities

Dyxfy = =2i00,8. Dy = —4i6,.  (2.12)

where D(;, is the standard covariant spinor derivative
(A16) acting on the superspace point z;.

2. Three-point building blocks

Given three superspace points z;, i = 1, 2, 3, one can
define the following three-point building blocks,

Xigp = —(x3 )ayxZB (73 )sp- (2.13a)

— (x3] >aﬂ‘9[f3’

and, similarly, (X,, ®,) and (X3, ®;), which can be found
from (2.13) by cyclic permutation. Next we define

®1a = (xgll)aﬂafZ (213b)
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1, x3
X% - —EXllﬂXlaﬁ - 23

B =09, (2.14)

X13X72

We also define the normalized building block, X 1, and the
inverse of X,

R Xlaﬂ e X/]ia
1aﬂ:\/XT%’ (Xll)ﬁ:_X_% (215)

There are also useful identities involving X; and ©®; at
different superspace points, e.g.,
ad!

C ' —1\fa
X3 X3a’ﬁ’x§1/ - _(Xl l)ﬁ s (216&)

0,,X70 X355 = O3p. (2.16b)
The three-point objects (2.13a) and (2.13b) have many
properties similar to those of the two-point building blocks.
Now if we decompose X; into symmetric and antisym-
metric parts similar to (2.8), we have

i

2 Saﬂ(’a%,

Xla/i = Xla/} - Xla/i = Xl/}a’ (217)

where the symmetric spinor X;,; can be equivalently
represented by the three-vector Xi,, = =% (7)) X 5.
Now let us introduce analogs of the covariant spinor

derivative and supercharge operators involving the three-
point objects,

0 m 0
Dy = 8—@? +i(y )a/;’@/fﬁ
B
Q(l)(l = 1%_((11 + (7/ )a/}®1 ﬁ’ (218)

which obey the standard anticommutation relations

{Dias Diinp} = {Q(iyar Lrinp} = 21(r™ ) up (2.19)

0
oxm’
Some useful identities involving (2.18) are
D(l)yXIaﬁ = _2i€yﬂ®lm Q(l)yXlaﬁ = _28}/(1@1/3' (220)

We must also account for the fact that various primary
superfields obey certain differential equations. Using (2.12)
we arrive at the following:

D(l)yXSa/)’ = 21()61_31 )a}/®3ﬁa D(])(l®3/3 = —(x1‘31 )ﬂa’ (221&)
D(2)7X3a/3 = 21(x531 )/}y®3/3’ D(2)a®3/)’ = (x531 )/}a' (221b)

Now given a function f(X3,®j3), there are the following
differential identities that arise as a consequence of (2.20),
(2.21a), and (2.21b):

D1y, f(X3.03) = (x13) 4, Dy f (X3, ©3), (2.22a)
D), f(X3,03) = i(x33)4, Q5 f(X3.03).  (2.22b)

These identities are essential for imposing differential
constraints on correlation functions.

3. Building blocks in components

For future reference we will also review the nonsuper-
symmetric conformal blocks detailed in [2]. These objects
will appear in component reduction of superspace corre-
lation functions. The two-point and three-point structures
are defined as follows:

Xik  Xj .
x,»j:xl-—xj, XU:—zk—%k, l,],k:1,2,3. (223)
i Xjk

These objects may be obtained by bar projection of the
superspace variables defined in Sec. II as follows:

(Kihn = =5 () (K )

(2.24)

1
(xij)m = _E(ym)a/}(xij)aﬂL

Here (i, j, k) is a cyclic permutation of (1, 2, 3). That is,

, etc.

(XIZ)m == % (ym)aﬂ(X3>aﬂ
(2.25)

In addition, we introduce the inversion tensor, / ayay> and its
representation acting on rank-2 symmetric traceless ten-
sors, 7

ayaz,mymy>
2X, X
Ialaz (X) = ’7a1a2 - % ’ (2268.)
Zoraymymy,(X) = Ly, ) o (X)EM™,, 0 (2.26D)

where we have introduced the projection operator

1
Emlmz,nlnz = E (”mlnlrlmznz + ”mlnznmznl)

3 MiymyMnyny -
(2.27)

C. Correlation functions of primary superfields

The two-point correlation function of a primary super-
field ® 4 and its conjugate ®7 is fixed by the super-
conformal symmetry as follows:

T 45(%12)
(x%z)q '

where ¢ is a constant coefficient. The denominator of
the two-point function is determined by the conformal

(@4(21)@5(2)) = ¢ (2.28)
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dimension g of ® 4, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.

Concerning the three-point functions, let ®, ¥, and I1 be
primary superfields with conformal dimensions ¢, ¢,, and
q3, respectively. The three-point function may be con-
structed using the general expression

(D g, (21) ¥4, (22) 4, (23))
_ T 4, (R15)T? 4,4

(x15)91 (x35)

! A

2(%23)

H o ,4,(X3, 03, U3),
(2.29)

where the tensor H 4 4,4, is highly constrained by the
superconformal symmetry as follows:

(i) Under scale transformations of superspace z4 =
(x4,0%) > 74 = (172x%,A7'0%), the three-point
building blocks transform as Z = (X,0) — Z' =
(42X, 2@). As a consequence, the correlation func-
tion transforms as

(@4, (21) W, ()14, (23))

= ()t (D (21)Wa, (22) T4 (23)),  (2.30)

which implies that H obeys the scaling property

H o4, 4,4, (22°X,20,U)

— (R)smea, o (X,0,U), VieR\{0}.

(2.31)

This guarantees that the correlation function trans-
forms correctly under conformal transformations.

(ii) If any of the fields @, V¥, Il obey differential
equations, such as conservation laws in the case
of conserved current multiplets, then the tensor H is
also constrained by differential equations. Such
constraints may be derived with the aid of identities
(2.22a) and (2.22b).

(iii) If any (or all) of the superfields @, ¥, I1 coincide, the
correlation function possesses symmetries under
permutations of superspace points, e.g.,

(@4, (21)D 4, (22)T1 4, (23))

= (=1)OND 4, (22) P, (21)Ly, (23)).  (2.32)
where ¢(®) is the Grassmann parity of ®. As a
consequence, the tensor H obeys constraints that

will be referred to as “point-switch identities.”
The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
parameters. Hence, the procedure described above reduces

the problem of computing three-point correlation functions
to deriving the tensor H subject to the above constraints.

III. COMPONENT STRUCTURE OF A
SUPERSPIN-2 CURRENT MULTIPLET

In this paper we will be interested in three-point
functions of a superspin-2 current multiplet described by
the totally symmetric superfield F ) := F 4, 0y050, (2)» Sat-
isfying the conservation equation

Dalfa1a2a3a4(z) =0. (31)

In three dimensions this superfield admits the following
Taylor expansion:

‘7:(110!2030!4 (Z) = ‘10510’20530!4 <x> + Qalaza3a4~,a(x>ga

+ 9(0(1 Sa2a3a4)(x) + 923a1a2a3a4 (X) (32)
It can be convenient to express some of these fields in
vector notation as follows:

Tayarasa, () = (" )aya, () asag Ty (%) (3:3)
where J, ,, is symmetric and traceless; a similar treatment
follows for the other fields in the multiplet. Imposing the
conservation equation is then tantamount to the following
constraints on the component fields:

6“‘Jala2 =0, on Qalaz.a =0, (7“‘ )5aQala2,a =0,
(3.4a)
Balaz = le(almnamJaQ)m S(1|(12(13 =0. (34b)

2

Hence, we see this multiplet contains only two independent
component currents: a conserved spin-2 field J, ,, satisfy-
ing the same properties as the energy momentum tensor,
and a conserved spin-5/2 field Q,, ,, , Which is conserved
and gamma traceless (the latter guarantees that Q is totally
symmetric in spinor notation). Let us stress that J, ,, is
different from the energy-momentum tensor 7', ,,, the latter
is a component of the supercurrent multiplet 7 ,3). The
independent components of F 4 may be extracted by bar
projection,

Ja1a2a3a4 (x) = ]:alaza3a4 (Z)
Qa1a2a3a4,a(x) = Da:’ralaza@ou (Z)|

El

(3.5)

In addition, under infinitesimal superconformal transfor-
mations, the superfield F transforms as
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5Falazaga4 (Z) = _§Fa1a2a3a4 (Z) - qG(Z)‘Fa]azogoq (Z)

+ 4/1(a1§<z)]:a2a3a4)5(z)’ (36)
where ¢ is the scaling dimension of F. The conservation
equation (3.1) then uniquely fixes the dimension of the field
as follows: if we compute 6D F, 4 4., (2) and use the
definitions (2.5) and (2.6), we obtain

(q - 3)D2§5F5a2a3a4 (Z> (37)

N[ =

S(DF ayayasay (2)) =

Hence, we see that we require ¢ = 3 for covariant con-
servation of F.

IV. CORRELATION FUNCTION (FFF)

In this section we will derive an explicit solution
for the three-point function (FFF). In Sec. IVA we
impose the constraints that arise due to the superfield
conservation equations and invariance under permutation
of superspace points z; and z,. This is already too
sufficient to fix the three-point function up to one parity-
even and one parity-odd structure. In Sec. IVB we
computationally analyze the constraints arising from
the invariance of the three-point function under permu-
tation of superspace points z; and z3; this is done by
considering the independent component correlators con-
tained within (FFF): (JJJ) and (QJQ). This is
followed by a numerical analysis of the point-switch
identity for consistency. Most of the tensor expressions
are too large to be manipulated efficiently by hand, so we
make use of Mathematica to do most of the lengthy
calculations.

A. Superfield analysis

The ansatz for the correlation function (FFF) is

(Fa) (@) Fpay (22) Fyay(23))
_ [T 130, “R03p”
(x%3)3(x§3)3

where the tensor H is independently totally symmetric in
the «;, f;, and y;, and is required to satisfy covariant
constraints which arise due to conservation equations and
invariance under permutations of superspace points. The
constraints are summarized below:
(1) Homogeneity constraint
Covariance of the correlation function under scale
transformations of superspace results in the follow-
ing constraint on H:

Ho@p @ (X3,03),  (4.1)

Hawypaya) (X, 40) = () Houpay ) (X, 0),
(4.2)

which implies that H is a homogeneous tensor field
of degree —3. This constraint ensures conformal
covariance of the three-point function.
(i1) Differential constraints
The conservation equation (3.1) implies that
the correlation function must satisfy the following
constraint:

D0\ (Foa3)(21) F pay (22) Fya)(z3)) = 0. (4.3)
Application of the identities (2.22a) results in the
following differential constraint on H:

D H ga(3)p(ayy(4)(X. ©) = 0. (4.4)
(iii) Point-switch identities
Invariance under permutation of the superspace

points z; and z, results in the following constraint on
the correlation function:

<fa(4)(Zl)fﬁ(4)(12)fy(4)(zs)>

= (Fpa)(22) Faay(21) Fyay(z3)).  (4.5)
which results in the condition
Hawpay@) (X, 0) = Hyuaays) (X", =0). (4.6)

There is an additional point-switch identity obtained

from imposing invariance under permutation of the

points z; and z3; however, it is considerably more

complicated so we will discuss it in detail later.
To make subsequent calculations more tractable, it is often
convenient to express H in terms of its vector equivalent by
factoring out gamma matrices as follows:

Hal“z%%ﬁlﬁzﬂ}ﬂﬁl Y2¥374 (X’ ®)
= (r")aya, Y asa (J’b‘)ﬂ,ﬁz(}’bz)ﬁ3ﬁ4

X (ycl )y1y2 (ycvz)y3y4Ha]a2b]bzclcz (X7 9) (47)
This equality holds provided that H (in vector notation)
is symmetric and traceless in the pairs a;, b;, and c;,
respectively. This is seen by requiring that the com-
ponents antisymmetric in a, and az (and other combina-
tions involving f; and y;) vanish. Further, since H is
Grassmann even it admits the Taylor expansion

Ha,azb,bzclcz (X’G)) = Falazblhzc,cz (X) + ®2Ga|a2blh2clcz (X)
(4.8)

At this step it is more convenient to view F and G as
functions of the three-vector X™ rather than of X®. The
point-switch identity (4.6) then implies the following
constraints on F and G:

106004-6
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Fa1a2b1b26162 (X) (4921)

= Fblbzalazclcz(_x)’

= Gb]bzalazclcz(_x)' (49b)

Galazblbzclcz (X)

On the other hand,
results in*

the differential constraint (4.4)

a —
0 lFalazb]bzclcz - Ov

1
GalazbleCICZ = 5 €(a, mnamFﬂaz)blbzclcz : (410)

In the next subsections we will computationally solve for
the tensor H subject to the constraints listed above using
the xAct package.

1. Parity-even sector

In the parity-even sector, we begin by constructing a
solution for F that is an even function of X; hence,
Eq. (4.92) implies

Fa]azblbzclcz(X) (411)

= Fblbzalazc]cz (X)

A general expansion for F' consistent with the symmetry
property (4.11) may be obtained by introducing the
symmetric and traceless basis tensors found in [2].
Explicit expressions for the elements of the tensor basis
{T},i=1,...,8, are as follows:

S | . X
1 - _ o a
o0, (%) = X0, X, = 3000 Xa_\/)?, (4.12a)

aax ay“ap

Tilazblbz(f() = )A(a,f(b,ﬂuzhz +(a; <> ay, by < by)
4. 4 4. .
_gxalxaznb,bz - §Xb1Xb27]a,a2
4
+§’1a1a2’7b1b27 (412b)
3 2
ayabyby = Na,b,Mayb, + Na,byMarp, — g””]aanle’ (4120)

(X)="13 Xy, X, +(by <> by.ci <> ¢r)

2 oy 2

_§”b1b2 Talazclcz (X) 3’7clcz
8 N

_§nb1b2nclczTala2 (X)

4
ajayb\bycicy ala,blcl

T2, (%)

aaxbib,

(4.12d)

*The underlined indices are excluded from the symmetrization.

ayarbybycicy Nayb,Naye, Mbye,

+ (a; < ay, by <> by, c; < ¢5)
4 4
3
_§’1alaZTb1bzclcz

4
_ 3
3 nclczTalazblbz

3
- gnblhzTalazclcz

8
- §’7a1a2’7b1b2’70102 .
(4.12¢)

These tensors each possess a variety of symmetry
properties; in particular, they are symmetric and traceless
in pairs of indices. Using this basis we can construct the
following set of rank-6 tensors

t“l“ZhleCICZ (X) a]azb bycicy? (4133)
talazblbzchz (X) clcza]azb b, (X), (413]3)
tilazblbzclcz (X) a]azh szlcz(X) + Tb bzalalecz(X)’
(4.13¢)
Layarbibycic, (X) alazb b2T0107 (5() (413d)
t?llazblbzclcz(x) = b baclczTélllth( ) + Tglazclczrll)lbz (X)’
(4.13¢)
talaZhleClC’) (X) Talazb b, (X)TLILZ(X)v (413f)
tzlazblbzclcz( ) TzlazClcz( )Té bZ(X)
+ X7 e, (X )Y 0, (X). (4.13g)
B abibsere, X) = Tho (X)), (XYL, (X).  (4.13h)

The talazb byeie, ©ach possess the symmetry property

(4.11); hence, the ansatz for the tensor F is a linear
combination of these tensor structures,

1 A
Falazblbzclcz(X) = Ftalazblbzclq (X)’

§ :kt ajayb, bzclcz )

where we have used the homogeneity constraint (4.2). It
now remains to impose the differential constraint (4.4),
which results in the following relations:

1 (4.14)

ﬂlazblbzclcz

k3 - —2k1 - kz, ks - k4, k6 - 15k1 + 5k2 - 5k4,

(4.15a)

k7 = —7k1 - k2 + 3k4, kg - 28k1 + 14k2 - 7k4

(4.15b)
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Hence, we see that the differential constraint immediately
fixes the parity-even sector down to three independent
coefficients. It is at this step where the linear dependence
of the first five tensor structures can be noticed, as the k;
dependence can be removed by shifting the variables as
follows: k2 g k2 - klv k3 - k3 - kl’ k4 - k4 + 2k1,
ks — ks 4+ 2k;. Alternatively it may be shown that the
following linear dependence relation holds:

ttlzlalech]cz <X) - tilazblbzclcz (X) - tzlazblbzc]cz (X)
+2¢4 (X) +28 (X)=0.

ajazbibyeicy ajazbibycicy

(4.16)

It is now clear that the k; term is redundant; hence, it can be
completely removed from our analysis. This reduces our
system of equations to

k3 = —kz, kS = k4,

k6 = 5k2 - 5k4, (4173)

k7 = —k2 + 3k4, kg — 14k2 - 7k4 (417b)

Therefore, the parity-even sector of the three-point function
is fixed at this stage up to two independent coefficients, k,
and k4, and the explicit solution for F is

Fa]azb,bzclcz (X)

k, R
_ 2 _ 43
7X3 talazblbzc]cz(x) talazblbzclq

- tZt]azh]bzclcz <X) + 14t§]a2b]bzclc2 (X)}
ky ) ) .
+F{tilazblbzclcz (X) + tzlazb,bzclcz (X) - Stglazblbzclcz (X)

+ 3tt711a2h1bzclc2 (X) - 7t§11a2b1b2c1c2 (X)} (418)

(X) + 56 (X)

ajazbibyeicy

where each P’ must have the symmetry property P!

m,ajab by

1 ~
Fﬂluzblhzclcz (X) = F{ealhlmprln,azbzclcz (X) + €u1h2mP2m,a2blc]cz (X)

+ €ayb, mP?n,albzclcz (X> + eazbzmpﬁualblclcz (X)}7

The tensor G is then determined in terms of F using (4.10).
However, we have not yet imposed the condition (4.9b).
Since G is an odd function of X by virtue of (4.10), the
constraint (4.9b) implies

Ga]azb]bzclcz (X) = _Gblbzalazclcz (X> (419)
After some calculations one can show that this results in an
additional relation between the coefficients k, and k,:

Thus, the conservation equations and the proper trans-
formation under the z; <> z, exchange fix the parity-even
sector up to a single overall coefficient. Note that so far we

have not imposed the z; <> z3 point-switch identity. It will
be imposed later.

2. Parity-odd sector
Let us now construct the parity-odd sector of the
correlation function, where we begin by assuming that
the tensor F is an odd function of X. Due to (4.9a), this
implies that £ must satisfy

Fa]azb]bzclcz(X) = _Fb]bza]azclcz(x)' (421)

Now let us construct an explicit solution for the tensor F; it
must be an odd function of X, and each term must contain at
most one instance of the Levi-Civita tensor (as products of
the latter may be expressed in terms of the metric). We may
decompose F' as follows:

A

(4.22)

= Pin,(alaz) (b1by) (X). Requiring that the expansion (4.22) is

consistent with the properties of pairwise index symmetry and (4.21) implies that the P’ must be identical. Hence, we need
to find a general expansion for a tensor P, , 4,5 5,» Which is homogeneous degree 0 and is composed solely of X and the
metric tensor. Using Mathematica we can generate an ansatz consistent with the symmetry properties:

Py aarb, b, ()A() = XUX2XN KR 4, X0 XX ey XU XX phih
b RERY R - RO R0 Koy 4 e fRN KR 4 RO RO K1y
4o {RERP Ry 4 RN Kmpmbs 4 R Ko gmpabn 4 g g0 Kb
ey Rmymaaybibe 4 e [RMpmbagab 4 gmpabgarbs)y
- co{RPpm b 4 Rbpm s - Rbagabigam o fb b yamy
F ey Xapamybie: 4 Kagampbibay | o) TRP i g Jb by

+ Clz{j(uznalbznblm +)’za1na2b2ﬂb,m +)"(u2’,,a]b1;,lb2m +)’zu]na2b1’7b2m}'

(4.23)
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Only nine of these structures contribute when substituted into (4.22); in particular, the terms with c¢g, ¢4, and c;, may
be neglected. Imposing tracelessness on each pair of indices is tantamount to the following constraints on the
coefficients:

C5 = Cg, Cip = Cg, cp = —6C6 — 3C3, (4243)
2 2 1
C7:_§C8_§Cll_§c2- (4.24b)

It remains to impose the differential constraint for F in (4.10), from which we find the additional relations

1 1
8= "4 c3 =0, €1 = 5% ¢y = —2¢6. (4.25)

Hence, the solution for F is fixed up to a single coefficient, b = c6.5 The solution for F becomes

7 b m % m ©
Falazblbgclcz (X) = F{ealbl Pm,azbzclcz(x) + €a1b2 Pm,azblclc‘Q(X)

A

+ eazb]um,a,bzclcz (j\() + eazbszm.alblclcz (X)}’ (426)

where the explicit solution for P is

N

Pm,alazb]bz (5\() = _6Xa]),\(a2}?b1j(b2xm - be]j\(sz(mr/alaz + Xaz}?szzmr]a]bl + j\(azj\(blj(mrlalbz =+ Xalj\(sz\(mnazbl

A

PN A oA & PPN 1.
+ XaIXbIer]azbg + XaIXGZXblnbzm + XaIXaZsznblm - 7Xm’7a1b177a2b2 + 7Xm’7a1a277b1b2

4 2
1. 1. 1. 1. 1.
- ZXm’/Ialbznazbl + Esznalaznblm - ZXaZ’/Ialbznblm - ZXaI’/Iazbznblm + EXbll/la]azrlbzm
1. 1.
- Zxazrlalb]r/bzm - ZXal’/lazb]rlbzm- (427)

The tensor G is found using Eq. (4.10). However, we still need to impose the symmetry property (4.9b). Since G is an even
function of X, Eq. (4.9b) implies

Ga,azb]hzclcz (X) = Gb,hzulazclcz (X) (428)
After some calculations we find that Eq. (4.28) is satisfied automatically and does not result in any restrictions on b. Thus,

the conservation equations and the proper transformation under the z; <> z, exchange fix the parity-odd sector up to a
single overall coefficient.

B. Point-switch identity

The last constraint to be imposed on the correlation function (FF F) is invariance under the permutation of points z; and
z3; 1.e., we must have

<7:a(4)(21)7:ﬂ(4) (Zz)fy<4) (z3)) = (fy(4)(23)7:ﬂ<4) (ZZ)Fa(ét)(Zl»- (4.29)

This results in the following constraint on H:

Haypays) (X3, 03) = H’AC 130, R 13, %1570 X355 Hy () ) () (=X T =O). (4.30)

6 v6
x73X3 0

>To account for linear dependence of the tensor structures, each constraint is checked by computationally analyzing every element of
the tensor for an arbitrary building block vector X = (X, X, X»).
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It is clear that direct calculation of (4.30) is inefficient due to (i) the large number of tensor structures in the solution for H,
and (ii) the linear dependence between the structures. Therefore, we will need to consider some alternative approaches,
which will be explored in the next subsections.

The superfield correlator (FFF) contains only two independent component correlators,

<Jalaz(x])‘,b1b2(x2>]clcz (X3)>, <Qa1a2,a(xl)Jblbz(x2)Qc]cz.y(x3)>' (431)

These may be obtained by bar projection of the three-point function (FFF) as follows®:
(Ja@) (x1)J gy (x2) Ty (x3)) = (Faa) (21) Fpay (22) F ) (23)).

<Qa( (xl)J[i (xz)Qy ( )> = D(3)yD(1)a<7:a(4) (21)711(4)(12)Fy(4)(13)>|' (4'32]3)

(4.32a)

All correlators involving the components S,3) and B4 in Eq. (3.2) either vanish or are expressed in terms of (4.31) by

virtue of (3.4b). From Eq. (4.29) it follows that the component correlators (4.31) satisfy the following point-switch
identities:

<Ju]az(xl)Jhlbz(x2)‘lc]cz(x3)> = <Jc|cz(x3)‘]h]b2(XZ)Jaluz (X1)>, (43321)

<Qala2 a(xl)‘]b bz(XZ)chcz y(x3)> <chcz ;/(XB)Jb bz(XZ)Qalaz a(x1)> (433b)

These relations will be studied analytically (though with extensive use of Mathematica) in Secs. IVB 1 and IV B 2.
However, proving Egs. (4.33) is not sufficient to prove Eq. (4.29). The reason is that we cannot use Eqs. (3.4b) because we
have not yet proven that the conservation law on the third point is satisfied. In fact, it will follow once we prove Eq. (4.29).
Hence, to prove Eq. (4.29) at the component level we must consider all component correlators obtained from (4.29) by
the action of the superspace covariant derivatives followed by bar projection. This is, clearly, impractical. Therefore,
our approach will be to study Eq. (4.29) at higher orders in 8, numerically, which we do in IV B 3. For this we will
keep O, arbitrary but use various numeric values for the spacetime points x;, x,, x3. Then the components of
(Fa@)(21)F pay(z2) Fy(4)(z3)) will be polynomials in 6; with numeric coefficients. Since these polynomials are quite
complicated, we are confident in our results despite the proof not being fully analytic.

1. Component correlator (J]J)

The computation of the component correlator (JJJ) is relatively straightforward, explicitly we have

(a@) (x0)I gy (02) Ty 4y (x3)) = (Faay(21)F pa) ( 2)F 4 (23))]

_ H?:l -’21305 ’x23/3
(x%3)3(x§3)3

Since bar projections of any objects involving ® vanish, combined with the result

Ha@)p @)@ (X3, 03)].

Ho @y @) (X3, 03)| = Foaypay @) (X12). (4.34)

we obtain

g,
H 1 X13q, 'x%ﬁ/

(xm) (xzz)

If we convert this result into vector notation by combining pairs of spinor indices and apply the identity

(o) () peay (02) T4y (x3)) =

Fo@yp @y Xi2). (4.35)

1 b A
Iala’l (x) == E (7a, )alaz (ya’l )alaZxala’lxaza’Zv (436)

®To express each of these correlators in the form (4.31), we combine symmetric pairs of spinor indices into a vector index as in (4.7)
and use Eq. (2.24).
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we obtain the result

Ialuz,a’]a’z (xl3)-zh1b2,h'lh’z (X23)

<Jala2 (xl)‘]blbz <x2)‘]clcz (X3)> =

(x%3 ) (x%3 )

Fa b pyerc,(X12)- (4.37)

If we now use (4.14), then this component correlator can be put in the covariant canonical form

Ialaz.a’la’z (xl3)Ib1b2,b'lb’2 (x23)

<Ja]a2 (xl)‘]b]bz (XZ)JCICZ (X3)> =

It then follows that the constrained tensors . 4t 1, c, (X12)
appearing in (JJJ) satisfy all the same properties as those
present in the energy-momentum tensor three-point func-
tion (TTT), so we can simply use the known results.

It was shown in [2] that the parity-even contribution to
the three-point function (77T) in general dimensions is
fixed up to three independent coefficients. However, in
three-dimensional theories there is linear dependence
between the tensor structures due to the identity (4.16).
This reduces the number of independent structures down to
two. The solution for #, 4. p,c,c,(X) found in [2] is the
same as given in our Egs. (4.14) and (4.18). It was also
shown in [2] that this solution satisfies the z; <> z3 point-
switch identity. Since the solution for the correlator (JJJ) is
identical to that of (TTT), it follows that the three-point
|

e, Ly ey (X12)- (4.38)

|
function (JJJ) in (4.35) with F(4)4(4),(4) defined in (4.18)
is compatible with the point-switch identity (4.33a) for
arbitrary k, and k4. In this case there is a further relation
between k, and k, in Eq. (4.20); however, it does not affect
the z; <> z3 point-switch identity.

The parity-odd sector of the energy-momentum tensor
three-point function was obtained in [1]. It was shown that it
is fixed up to one independent structure given in Egs. (4.26)
and (4.27).7 Hence, Eqs. (4.26) and (4.27) are also compat-
ible with the point-switch identity (4.33a). In the remaining
subsections we will consider the relation (4.29) at higher
orders in 6.

2. Component correlator (QJQ)

The correlator (QJQ) can be computed as follows:

(Qa@).a(X1) I p@) (x2) Qya)(%3)) = D3y, D(1)alF a(a)(21) F piay (22) F 4y (23))|

= D<3>yD<1>a{

=A+B.

After evaluating the derivatives, one finds that the calcu-
lation is broken up into two relevant parts: the A contri-
bution is due to the derivatives hitting the prefactor,

H4—1313a.a;323ﬁﬁ;}
A:D‘ D a{ R ’ ! HO!' / (X’G)?
@)= (x%3)3(x%3)3 B H)r@) 23,3

(4.40)
while the B contribution arises due to the derivatives
hitting H,

4 4 a3 B
Hi:1x13ai ’xzs/},-/'

BTyl

Dy Dya{ Har(ayp @) (X3, ©3) 3

(4.41)

"We use a different approach and notation than the authors in
[1]; however, our results agree.

4 & a2 i
Hizl X13q, 'x23/3,-ﬂ’

(x73)° (x3;)° Ha@p @y 4)(X3,03) } ‘

(4.39)

|
Other combinations in which either derivative acts on
the prefactor and H result in terms that are at least linear
in 8, 05, or ®3, which vanish upon bar projection, so they
may be neglected. The A contribution can be written in the
form

1 J J J / /

— 2. a2 a2 a, 2 a, 2. a

A _—(x2 )7/2(x2 )3 X3a X3, 'X13a, X303 X130 ¢
13 23

A N ! A 7N 3 A
X Fo3p, "1 R03p, 23038, 3038, Ty iy 4y (K12),

(4.42)
with 74 defined as
72.(1(4)/}(4);/.;/(4) (X) = =101, (o F oy ayay00)p(4)1(4) (X).  (443)

Similarly if we evaluate the B contribution, we find it can
be written in the form
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1 ,
_ A A i A l! A ar A ! A }/ A 7N N )/ B
B = 7()(2 )7/2()(2 )3 x13aa x13a]( 1x13azf 2X13a5 3x13a4(l4X23/3] 1x23/32ﬂ2x23/}3ﬂ3x23/j4ﬂ4Ta’.a’(4)/i’(4)y,y(4) (X12), (4.44)
13 23

with 72 given by the expression

T a@p@ry@X) = =100 X " OnF aapya)(X) = 2X e Gaapaya) (X). (4.45)
Hence, we see that the correlation function (QJQ) may be written in the following covariant canonical form:
1 / / ] /
<Qa4 .a(xl)J 4 (xz)Q 4), (x3)> = 7551305"1561305 "1 %134 (125613(11(’35513(14(14
(4) B4) r(4).r (x%3)7/2(x%3)3 i ) ;
X fip3p,” ,‘ R3p,” /25523/)’3'” ;5623/34ﬂ i‘Ta',a#(4)5’(4)7,7(4) (X12), (4.46)
with
Ta-a(4>ﬁ(4)y-r(4) (X) = 73.(1(4)/1(4)y.y(4) (X) + Tg,(l(4)/;(4)y,y(4) (X). (4.47)

Additional details regarding this calculation are contained in Appendix B. It is worth commenting that it is not immediately
obvious that 7 is totally symmetric in the « indices; indeed, it may be shown by direct calculations that this symmetry is
manifest by virtue of (4.3) [and by extension (4.10)].8 To make subsequent calculations more tractable, we convert this
entire expression into vector notation. The component three-point function may then be written in the following form:

&m
<Qa1a2,a(x1)-]blb2 (Xz)Qc,cz,y()%)) = m alaz,a’la’z(x13)Ib1b2,b’lb’2(x23)
X Tm,a’]a’zb’]h’zclcz,ay(XIZ)' (448)

It is convenient to decompose the tensor 7 into the symmetric and antisymmetric parts
Tm,a]azb]bzclcz,ay(x> = 805;'Am,a1a2b1bzc]cz (X) + (yn)aySnm,alazblbzclcz (X) (449)
We find the following expressions for the tensors A and S:

Am,alazblbzclcz (X) = iempqxqapFalazblbzclq (X> + 2XmGa1a2b1bzclcz (X)
- 2inm,a1azmlszmlmzblbzclcz (X)’ (450)

Snm,a,azb]bzclcz (X) = igana]azb]bzclcz (X) + 2€nmepGa]a2b]hzclcz (X)
- 2iEnm,a1azmlszmlmzblbzclcz (X) (451)

The differential operator D and the constant “projection” tensors IT and E naturally arise when expressing (QJQ) in the
covariant form (4.48). They have the following definitions:

$nm = Xnam - Xman + nnmXPap ~ Nnm> (452)
1 1 1 1
Hm,alaz,hlbz = Eeazbznrlu]hl + Eeazh]nnalhz + Eealhzn”azb] + Eealhlnnuzhy (453)
1
:nm.alazblbz = Enaln”azbznblm + Enalbzﬂaznrlblm - Enalmr]azbzrlbln - Enalbzﬂazm’//bln
1 1 1 1
+ Enu]nnazhlnhzm + Enalblnaznnhzm - Enu]mnaﬂu”bzn - Enu]hlnazmnhzn

2
~ Na,;b,Masb, Mmn — Nayb NaybyTmn + gnalaznblbznmn' (454)

¥Recall that in (3.4b) it was shown that the component field Q is totally symmetric after imposing conservation of F. Since we have
already imposed conservation of (FFF) at z;, the fact that (QJQ) is totally symmetric in « is implicit.
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The point-switch identity on (QJQ), Eq. (4.33b) can be
written in terms of the following two equations involving
only vector indices:

Iblbzb/lblz (X)Am,alazb’lb’zclcz (X) + Am,0102b1b2a1a2 (_X) =0,
(4.552)

Ib]bzb/lblz (X)S”m,alazb/]b’zclcz (X) - S”m,CICZb]b’Za]az(_X) =0.
(4.55b)

To recall, here the tensors A and S are given by Egs. (4.50)
and (4.51), where the tensor F' is given by Eq. (4.18) in the
parity-even case and in Egs. (4.26) and (4.27) in the parity-
odd case, and the tensor G in both cases is obtained from F
using Eq. (4.10).

Now the task is to substitute F"and G into Egs. (4.50) and
(4.51) in the parity-even and in the parity-odd cases
separately to determine if there are additional, different
from Eq. (4.20) constraints on the coefficients k,, k4, and b
in Egs. (4.18) and (4.26). Since A and S have rather
complicated definitions, it is futile to attempt to impose
them by hand; however, computation of these identities is
possible in Mathematica using the xAct package [40]. The
package allows for symbolic manipulation of tensors using
index notation and contains a suite of “canonicalization”
functions which can essentially manipulate tensor struc-
tures down to their simplest form. In this way the
computations are completely symbolic and are exactly
the same as if they were done “by hand.” Once a given
tensor is canonicalized, we can then convert the expression
into an array using in-built functions.

Parity-even sector.—Evaluating (4.55a) using definitions
(4.50) and the solution (4.18) results in ~400 terms after
canonicalization. On the other hand, Eq. (4.55b) results in
~800. The tensor structures in each identity should cancel

|

Iam(xIZ)Imh(_xIZ) = Nab>»

among each other for some relation between the coeffi-
cients k, and k,. However, if we naively just collect all of
the tensor structures, one would find that k&, = k4, = 0, as
there is a hidden linear dependence between the terms. A
way around this is to go into a coordinate basis and check
every component of the left-hand sides (LHS) of (4.55a)
and (4.55b). If we carry out this computation, the identities
are satisfied for the choice k, = —2k,4. Hence, we do not get
any new relations in the parity-even sector, and it is still
fixed up to an overall coefficient.

Parity-odd sector.—We now carry out an identical analysis
for the parity-odd solution (4.26), which turns out to be
more computationally intensive. In this case there are ~800
tensor structures after canonicalization of the LHS of
(4.55a), while there are ~1600 for (4.55b). If one goes
into a coordinate basis, the identities are satisfied for an
arbitrary choice of the coefficient b. Hence, the parity-odd
sector is also fixed up to a single tensor structure.

3. Numerical analysis

To supplement the results above, we will carry out a
numerical analysis of the point-switch identity by sub-
stituting in various configurations of points. To do this, first
we convert the ansatz (4.1) into vector notation. This can be
done by introducing the following A/ = 1 object:

1 !l A A

Lap (x12) == E (},a>a1a2 (}/b>ala2 (xIZ)ala’] (x12)112a’2

92
= Iab(yIZ) - leabmj\]}in2_' (456)

Y12

To recall, x;, is given in Eq. (2.8), the vector y, is given in

(2.9) and 37y = ¥4 /y12. 145 (x12) may be thought of as the

supersymmetric generalization of (2.26b). It obeys some

useful properties such as

2

Using this new object, the ansatz (4.1) can be written in the form

<‘7:a|112(zl)fb]bz(ZZ)fc]cz(ZS» =

Iam(xIZ)Imh(xIZ) = Hap — 2i€ahm§7}]nzg . (457)
Lot (613) Ly (%13) 1,1 (X23) 1310 (X23)
e ey M. ©) (459)

Now to check the point-switch identity, we will introduce null vectors 1;, 4,, 13, and contract them with the ansatz to obtain
(F(21)F (22)F (23)) = (Faya (20)F by, (22) F ey (23)) AV 412251 232051057 (4.59)

Essentially our approach is to pick a configuration of points x;, x,, x3 and null vectors 1;, 4,, 43, and then expand out (4.59)
to all orders and combinations of the fermionic superspace coordinates €;, 8,, 85. This simplifies the point-switch identity
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(F(21)F(22)F (23)) = (F(23) F(22) F (1)) (4.60)

to a polynomial expression in the fermionic coordinates. We then check whether the point-switch identity is satisfied for
both the parity-even and parity-odd solutions that we found in Sec. IV A. To carry out these computations we must make
use of the following expansions for the fermionic two-point (three-point) functions, which follow from the definitions (2.8)
and (2.13b):

02, = 02 + 6% — 20, - 05, (4.61a)

6%, 6>
M="L+24
Yiz Y3 )’1%)’22

)’13)’23{’7mn913 O3 — €mnc(913 v 923)0}, (4.61b)

where we have used the notation

0,0, = 0%, (070,00 = (r*) 05 (4.62)

i jor

Expansions for the other building blocks are obtained by cyclic permutations of superspace points. Hence, we see that the
resulting polynomial from (4.59) will be a function of 67, 0, - 6 i (0;j -7 - 0j)", and combinations/products of these objects.9
All the 0 expansions and numerical calculations are done computationally. We performed a numeric analysis for various
configurations of points and null vectors and always found the same result. Below we present one example when the
polynomials are relatively simple.

Let us pick the following points and null vectors:

x1=(0,-1,0),  x,=(0,1,0),  x3=(0,0,1), (4.63a)
=101, =(L10), i =(1-10). (4.63b)

We now substitute the above values into (4.60). For the parity-even solution (denoted by subscript £) we obtain
ky k4 ky  ky4 kz k4
- = 0363 0303 0%6%
Fe)F ) F e - Fe)F @@ = (155 +6) 88+ (1 +6) 88 + (1 + 1) 263

ky Kk kb ky k ks
i <64+32>9 Ot <64 32)9 63 - (64 32)(6"3 7-02)

k k ky k
+(3§ 12)6’ - 03(6013 -7 - 03)" —<1é 84)5’2 05013 -7 - 023)"

ik, iky (ko k ky k
Pl——=2 2 (21720,.0,— [—=+-2)(0 0
+ 1{ 128 64 <64+32 5= (gat3g) O On)'
i ik (ko bk
+‘92{ 128 64 <64 32)01 03+ (33116 (@7 0)'

ik, ke (ko Kk k k
P22 (2422)0,-0,+ (=42 (0 0
+ 3{ 64 32 (64 35 )01 02t (g T3y ) 07 0)'
(4.64)

Clearly, this expression vanishes at each order of 8 for the choice k, = —2k,, which is the same condition as found
previously in Eq. (4.20). Hence, the numerical evaluations agree with our previous calculations and do not give any new
relations.

Next we perform the same calculation for the parity-odd solution (denoted by O). Explicit evaluation of
(F(21)F(22)F (z3)) o yields the following polynomial:

’Not all these objects are linearly independent since ; are Grassmann odd but one can choose a convenient basis.
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15 15 15
(F(@)F(22)F (23))0 = = 53 D003 = 5 bOI63 — 2 bO36%

3i 3i 9i
10103 = 35 b02 05 = b(O1s 7 - 023)!

3 3
_%bgl 03(013 -7 - 0r3) +Zb92 “03(013 -7 - 03)"

315 3
+9%{—32b+32b92~93 +32b(913-y-923)1}
3,15 3
+0%{6_4b —l—ﬁbﬁl - 03 —gb(gn '7"923)1}
15

3i
+9§{—64b+

When we similarly compute (F(z3)F (z2)F (z1)) o, we find
the same result. Hence, we observe cancellation at every
order, and therefore the odd solution also satisfies the point-
switch identity for an arbitrary coefficient b.

Note that the polynomials in both parity-even and parity-
odd cases are quite nontrivial even for a simple choice of
the points and null vectors. We performed a similar numeric
analysis for various other choices and obtained the same
result as above. However, in all other cases the polynomials
are quite large so we will not present them here. The
complexity of the polynomials makes any accidental
cancellations highly unlikely. Hence, we are confident that
the point-switch identity is satisfied for k, = —2k, and
arbitrary b.

|

32 32

LN a s
[T, X13q; ’x23ﬁ,ﬁ

9
b91 -92—b(913~}/-923)1}. (465)

C. Summary of results

Since our analysis is rather technical and involves
analytic and numeric computations of the superfield and
component expressions, we will collect all the pieces
together and summarize our results. We found that the
correlation function (FFF) contains two independent
tensor structures after imposing all of the constraints;
one of them is parity even, while the other is parity odd.
In particular, we found that the parity-odd contribution is
present unlike in all cases of three-point functions involv-
ing the supercurrent and flavor current multiplets [31,39].

The correlation function found above has the following
structure:

/
i

<fa(4) (Zl)]:ﬂ(4) (Z2)‘7:}/(4) (Z3)> = ( 5 \3/.2 \3 Ha/(4)[i/(4)y(4) (X3, @3), (466)
x13)°(x23)
where H can also be written as follows:
Halaza3a4ﬂlﬁzﬁsﬂ471}’2}’374 (X’ ®) = <},a1 >0!1012 <}/a2>a3a4 <yb] >/"|/"2 (ybz )/33/34
X (7cl)y172 (762)7374Ha1a2b1b20162 (X7 ®) (467)
The tensor H in vector notation then may be split into parity-even and parity-odd sectors
Halazb,hzclcz (X’ ®) = Halazhlbzclcz (Xv G)E + Ha]azb]bzclcz (Xv ®)O’ (468)
where each solution admits the following expansion:
Ha]azh]bzclcz (X7 ®)E = Fa|a2hlhzc]c2 (X) + ®2Ga1a2h|b2clcz (X)’ (4693)
Hu|a2h|bzc]c2 (Xv ®)O = Fa]azhlbzclcz (X) + ®2Gu]azh]bzc|c2 (X)’ (469b)

with G, G determined in terms of F, F by Egs. (4.10). After imposing all the constraints, we find that the solution for the

tensor F in the even sector is
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a A A A
Fa]azb]hzclcz (X) = F{_ztilazblbzclcz (X) + 2t21a2hlbzclc2 (X) + tilazblbzclcz (X)

where we have relabeled k, — a and #/(X) are given by Egs. (4.12) and (4.13).
On the other hand, we find the solution in the odd sector to be

- b

+ tzlazblbzclcz (X) - ISt?zlazblbzclcz (X)
+ 5t2|u2h|b2c1c2 (X) - 35t§1ﬂ2b1b20102 (X)}’ (470)
Faluzblhzclcz (X) = F{ealhlmpm,azbzclcz ()A() + €u1b2um,a2b]clcz (f()
+ €a2b] um,a1b20102 (}AQ =+ eazbszm,alblclcz (}A()}? (4'71)

with P defined as in (4.27).

V. MIXED CORRELATORS

In this section we will discuss some basic examples of
three-point functions of F with other fields such as a scalar
superfield O of dimension A, and the non-Abelian flavor
current superfield L2 of dimension 3/2. The calculations
are straightforward compared to the (FFF) case, so we
will not require computational methods here. These three-
point functions were also previously studied in [20];
however, our method is different and more explicit.

A. Correlation function (OF O)

Let us now compute the correlation function (OFO),
which admits the general ansatz

4 a
H,-zl X23q; !

<O(Zl)]:a(4)(Z2)O(Z3)> = W

Ha’(4) (X3’ ®3)
(5.1)

As usual, the tensor H is required to satisfy covariant
constraints arising from conservation equations and point-
switch identities. They are summarized below:
(1) Homogeneity constraint
Covariance of the correlation function under scale
transformations of superspace results in the follow-
ing constraint on H:
Hus) (PX.40) = () H, (X.0).  (52)
which implies that H is a homogeneous tensor field
of degree —3.
(ii) Differential constraints
The conservation equation (3.1) implies that the
correlation function must satisfy the following con-
straint:

D0 (O F o (22)0(z3)) = 0. (5.3)

Application of the identities (2.22a) results in the
following differential constraint on H:
Q7Hqe(3)(X, ) = 0. (5.4)

(iii) Point-switch identity
Invariance under permutation of the superspace

points z; and z3 results in the following constraint on
the correlation function:

<O(Z1)‘7:a(4) (22)0(z3)) = <O(Z3)}—a<4)(22)0(11)>’
(5.5)

which results in the following constraint on H:

4 JROATIES
Hizl X3 X35,-a,-

Heoa)(X3,03) =
(1(4)( 3 3) x% Xg

Hy (X1, -0y).
(5.6)

Now we must construct an explicit solution; analogous
to the (FFF) case, we combine symmetric pairs of spinor
indices into vector ones as follows:

Ha1a2a3a4 (X7 8) = (yal )alaz (7a2 )a3a4Halag (Xv ®>’ (57)
where it is required that { in vector notation is both
symmetric and traceless. It has the expansion
Halaz(X’ G)) = Fa]az(X) +®2Gala2(X)' (58)
The component fields F and G are both required to be

symmetric and traceless. If we now impose (5.3), we obtain
the constraints

OUF 0 =0, Guu = =€ 0Fuym  (5.9)

aa, 2
Therefore we need only solve for the field F. A general
expansion consistent with the tensor symmetries and
homogeneity is
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c 3X, X
Fow =33 {mw - “2}. (5.10)
Note that no parity violating structures are permitted as
there is simply not enough indices on the tensor F to allow
for such contributions. Substituting this solution into (5.9)
shows that it is satisfied for any value of ¢, while G = 0.
The final solution for the tensor H in spinor notation is

Ha1a2a3a4 (X’ 6)

1 3
=c { - F <€a1a3 Exay + ga]a48a2a3) - FXalaZXo@oq

3i 02
- E (Sa]aZXa3a4 + 8a3rx4Xa1a2) F} .

(5.11)
Indeed, substitution of this solution into (5.6) demonstrates
that it is compatible with the point-switch identity. Hence,
this correlation function is determined up to a single parity-
even tensor structure. A similar result was obtained in [20].

B. Correlation function (FLL)

In this subsection we will compute the correlation
function (FLL), where L is the non-Abelian flavor current
superfield of dimension 3/2, which obeys the conservation
equation

DeL4 = 0. (5.12)
The correlation function admits the general ansatz
(Fa (2)L3(22) L0 (23))
i/ 6. (513

(xf5)* (x35)*/2

The constraints on this three-point function are summa-
rized below:
(1) Homogeneity constraint
Covariance under scale transformations of super-
space results in the following constraint on H:
Ha(4)/3y (’12X7 /16) = (/12)_37_((1(4)/17 (X’ ®) ’ (5 14)
which implies that 7 is a homogeneous tensor field
of degree —3.
(ii) Differential constraints
The conservation equations (3.1) and (5.12) imply
the following constraints:

D?])<fo'a(3) (ZI)LZ(ZZ)LE(Z3)> = O, (515&)
D{z) <-7:a(4)(Z1)L/Z§(ZZ)L§(Z3>> =0. (5.15b)

Application of the identities (2.22a) then gives

DgHo-a(:;)ﬂy(X, @) = O, (5163)

QP H yayp, (X, ©) = 0. (5.16b)

(iii) Point-switch identity
Invariance under permutation of the superspace
points z, and z3z is equivalent to the condition

<fa(4)(21)L7;(Zz)L§(Z3)>

= ~(Faw (@)L} (23)L5(22)), (5.17)

which results in the following constraint on H:

@5 <
xz%/;ﬁ x23yy [T %55 Xags,
6
x23X‘

wp (X3, -0,).

Hoa)p,(X3.03) =

X Hy s (5.18)

As before we combine symmetric pairs of spinor indices
into vector ones as follows:

Ha]a2a3a4/3y (X’ G)) = (yal )alaz (yaz)a3a4Ha1azﬁy (X’ G)) .

(5.19)

The above decomposition holds prov1ded that H, 4, 5, 18
symmetric and traceless in a;, a2 % We then expand this in
irreducible components as follows:

Ha]az.ﬂy(X’ G)) = gﬁ}'Aalaz (X7 6) + (VC)ﬂysalaz,c(X’ G))’

(5.20)

with
Aga,(X,0) = AL, (X) +©%42 , (X), (5.21a)
S0, c(X.0)=8L . (X)+0%82 , (X). (5.21b)

Here the A’ and S’ are both symmetric and traceless in a;,
a,. Imposing the differential relation (5.16) results in the
following constraints on the tensors A’ and S':

O Ah, (X) =0, A2, (X) = =€, DA, (X).

(5.22a)

0" Shaye(X) = 0. %4, e(X) = =30, IS, (X).

(5.22b)
"In the right-hand side we require that the antisymmetric part

in a,, a3 vanishes. Using Eq. (A7a), it can be seen that H must be
symmetric and traceless in a; and a,.
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while (5.16b) gives the additional relations

i
Aglaz(X) = 2amséla2,m(x)’ (523&)

S (X) = =3O 0, (X) + €0 810, (X))}
(5.23b)

Hence, we may treat A' and S' as independent. The only
solution for the tensor A' compatible with the symmetries is

3X, X
1 _ ¢ a,""a
Aulaz(x) - F {nu]al - )(]2

while for § we have the general ansatz

}, (5.24)

X, Xo X,

a,

X6
+ kz{ealcmxmxaz + €azcmeXa1}

Salzlaz,c(x) = kl

X° X°

'Ica Xaz ”Cd Xll r]ll a XC
+k3{ T ;(4‘}+k4 e

(5.25)

Imposing tracelessness in a,, a, on this expansion results in
the constraint

3

1
The solution then becomes
Xll Xﬂ XC 1’7(‘[1 X(l 1'76‘(1 Xll
Shose(X) = by T e et
€Ll cmeXa €a cmeXa
+ kz{ 1 XS 2 + 2 X5 1
+k ’/Ialazxc _ %’/Icazxal _ §'Ica1Xa2
Uoxt 2 x4 2 x4
(5.27)

It remains to impose the differential constraints. In par-
ticular, Egs. (5.22a) and (5.22b) result in

(5.28)

while A? vanishes. After making the replacement k, — ¢,
the solutions for the tensors A’ and S’ now become

c 3X, X
Acll]az(x) = X3{’1a|a2 - ;(12 az}»

A2 (X) =0,

aja,

(5.29a)

_ | €4 L-meXa €, cmeXa
Si'az’C(X):C{ ¥ } (5.29b)
51X, X, X i X . x
i’]a GZX(;
51)(—5} (5.29¢)

These solutions are consistent with the remaining con-
straints (5.23a) and (5.23b) for the choice ¢ = —3c. It can
also be shown by direct substitution that this solution is
consistent with the point-switch identity (5.18). Hence, this
correlator is determined up to a single tensor structure.

Let us comment on the absence of parity-odd contribu-
tions."! They could only potentially come from the follow-
ing terms contained in S':

Xa Xa XC ”ca Xa nca Xa
S(lodd)alaz,c(X) =k 1X62 + k3{ )1(4 :+ ;(4 1
X
o, e (5.30)

which are odd under X”* — —X". However, this expression
cannot be at the same time traceless and transverse for any
choice of the coefficient k;, k3, k4, which can easily be
checked.

This result is contrary to the computation carried out
using the polarization spinor formalism in [20], where it
was shown that a parity violating contribution can exist.
A direct comparison with the results obtained in [20] is
difficult as our approach and notation are quite dif-
ferent. Our formalism, however, has the benefit that it is
analytic and rather explicit.12 As a consistency check, in
Appendix C we reformulate this problem and use the
(LLF) ansatz. The evaluation procedure is slightly differ-
ent but the same conclusion is obtained.

VI. CONCLUSION

In this paper we analyzed various correlation functions
involving a conserved superspin-2 current multiplet F 4.

The case of (FFF) is particularly challenging due to the
proliferation of tensor structures in the solution; indeed, we
found that it could only be studied efficiently using

"In our formalism, the presence of the antisymmetric € tensor
in the tensor H does not necessarily imply it is parity odd.
Instead, one must count the overall number of y matrices
contained in both H and the prefactor after performing super-
space reduction, and then make use of identities such as
€mnp = =3 Tr(yu¥,7,)- This approach was applied to the study
of mixed correlators of the supercurrent and flavor current
multiplets [39].

*The corresponding result in [20] is listed in Table 2 with few
details provided. To our knowledge it is based mostly on
numerical methods, whereas our result is obtained analytically.
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computational methods. We obtained that the three-point
function (FFF) contains one parity-even and one parity-
odd structure.

The appearance of a single parity-even structure can be
understood intuitively and is somewhat expected. Indeed,
the superfield F,4) contains a conserved spin-2 current
Ja(4) as the lowest component which, though being differ-
ent from the energy-momentum tensor, satisfies the same
conservation equation. Its three-point function has two
parity-even structures which can be attributed to contribu-
tions from a free boson and a free fermion. Since super-
symmetry relates bosons and fermions, it is reasonable to
expect that these structures become related, giving rise to a
single independent contribution. On the other hand, the
existence of the parity-odd structure in (FFF) is rather
nontrivial because, as was pointed out in the Introduction,
there is an apparent tension between parity-odd structures
and supersymmetry: all three-point functions involving the
energy-momentum tensor and vector currents admit parity-
odd structures in the nonsupersymmetric case [1] but not in
the supersymmetric one [31,39].

Let us now clarify a possibly confusing point. The three-
point function of the energy-momentum tensor 7 does not
allow parity-odd structures in the supersymmetric case,
whereas the three-point function of the similar spin-2
current J does. This might look paradoxical because T
and J have the same symmetry properties and satisfy the
same conservation equation. However, it is important to
remember that 7 and J belong to different supermultiplets
and, hence, transform differently under supersymmetry.
Therefore, restrictions on their correlation functions due to
supersymmetry are different.

A natural extension of our results is to study the three-point
functions of higher-spin current multiplets of (arbitrary)
higher (super)spin. For nonsupersymmetric conformal field
theories, the three-point functions of bosonic higher-spin
currents were found in [43-45]. In four-dimensional super-
symmetric conformal field theories correlation functions of
higher-spin spinor currents were recently studied in [46] (see
also [47]). Deriving explicit solutions becomes increasingly
difficult for fields with higher spins. It is possible that other
approaches, for example, based on supersymmetric gener-
alizations of the embedding formalism [48-51] or of the
spinor-helicity formalism [24,52,53], can be more efficient.
It would be interesting to explore them as well.

Another natural question is to find explicit realizations
of superconformal field theories possessing a conserved
superspin-2 current multiplet. Since this multiplet also
contains a higher-spin current, one should expect that these
theories possess infinitely many conserved higher-(super)
spin currents [54].
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APPENDIX A: THREE-DIMENSIONAL
CONVENTIONS AND NOTATION

For the Minkowski metric we use the “mostly plus”
convention: 7,,, = diag(—1, 1, 1). Spinor indices are then
raised and lowered with the SL(2, R) invariant antisym-
metric e-tensor

0 -1 0 1
Eaﬂ = ( ), gaﬁ = < >’ gaygyﬂ — 5aﬂv
1 0 -1 0

(A1)

¢a = 8aﬂ¢ﬂ7 ¢a = gaﬂ¢ﬂ' (AZ)

The y matrices are chosen to be real and are expressed in
terms of the Pauli matrices ¢ as follows:

(ro)s” = —ioy = ((1) _01> (1) =03 = ((1) _01>

(A3a)
0 -1
b= o, = , A3b
(7/2)11 1 (_1 0 ) ( )
(Ym)a/} = €ps (}’m>a§’ (Vm)aﬂ = 8a5(7m)5ﬂ' (A4)
The y matrices are traceless and symmetric
(Ym)a(l =0, (ym)a/} = (Ym)/}a’ (AS)
and also satisfy the Clifford algebra
Ym¥n +Vn¥m = 27]mn' (A6)
Products of y matrices are then
(ym)a/}(yn )[)/} = nmnéaﬂ + €mnp (yp)(l/}’ (A7a)

(Ym)ap (yiz)p(j(yp)aﬂ = Mmn (}/p)aﬂ ~ Nmp (}/n)aﬂ + Mup (ym)aﬂ
+ Epnplal (A7b)

where we have introduced the 3D Levi-Civita tensor ¢, with
V1?2 = —¢;;, = 1. It satisfies the following identities:

Cmnp€m'n'p’ = ~Hmm' (ﬂnn’npp’ - ”np’”pn’)

—(n<m)—-(m < p), (A8a)
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emnpemn’p’ = "N Mpp + Mup'Mpn' s (Agb)
Emnp€™" = —2Mpy, (A8¢)
Epnp€™"? = —6. (A8d)

We also have the orthogonality and completeness relations
for the y matrices

(ym)aﬂ (ym )pa = _5ap5ﬁ6 - 5a65ﬂp7 (ym)aﬁ (Vn)aﬁ = _2’7mn .
(A9)

Finally, the y matrices are used to swap from vector to
spinor indices. For example, given some three-vector x,,,, it
can be expressed equivalently in terms of a symmetric
second-rank spinor x,; as follows:

1
xa/i = (},m)aﬂxm’ Xm = _E(ym)aﬂxa[)” (AlO)

1
det(x,5) = Ex“ﬁxa/; = —x"x, = —-x*.  (All)

The same conventions are also adopted for the spacetime
partial derivatives 0,,,

0P = 0" (y,)".

1
am = - E (7m)aﬁaaﬁ7 (A12)

8mx" = 5;’,!, 8(1/3)6/)6 = —50/)5/j” - 5(,”5ﬁ/’, (A13)
m 1 aff
E" O = =500y, (AL4)
We also define the supersymmetry generators QF,
0 0
=i— my O — AlS
Qa 1@9@, + (7 )aﬂ Ox™ ’ ( )
and the covariant spinor derivatives
D, =—+i(y") Hﬂi, (A16)
‘00" P oxm

which anticommute with the supersymmetry generators,
{Qa,D/}} =0, and obey the standard anticommutation
relations

{Da, Dg} = 2i(y™) ypOpn- (A17)

APPENDIX B: COMPONENT REDUCTION:
(FFF) - (QIQ)

In this appendix we will provide some additional details
regarding the component reduction from (FF.F) to (QJ Q).
We recall from Sec. IV B that the component correlation
function (QJQ) is obtained from (FFF) as follows:

(Qa@).a(X1) I p@) (x2) Qya)(%3)) = D3y, D(1)alF a(a)(21) F piay (22) F 4y (23))|

= D<3>yD<1>a{

=A+B.

4 & a s
[T, X13q; X23p,

4

(x%3)3(x%%)3 Ha/(4)ﬁ/<4)y(4) (X3, 93)}‘

(B1)

The calculation is broken up into two relevant parts: the A contribution is due to the derivatives hitting the prefactor,

| |41£13a,a;£23ﬂ.ﬁ§}
A—D3 Dla{ = . - HO{/4 /(4 4(X3,®3)
B)r=(1) (x%3)3(x§3)3 (4B (4)r(4)

while the B contribution arises due to the derivatives hitting H,

N ai g i
H,-:1 X13q; ‘x23/3,-ﬂ'

B =Ty

Let us start with the A term. After distributing the derivatives we obtain

4 & o / PN o) 4 ol 2 o, & a,
DD Hi=1x13a, ’x23ﬁiﬁ’ — DD X13a; 'X13a, X13a; X13a, *
@G~ (1a 2 2 — P (Ma

(x13)3 (x23)3

, (B2)

D3, D 1y A Hot (a5 (a)y(2) (X3, ©3) }H. (B3)
(x%3)3

« .%23/31 ]ﬁ23ﬂ2ﬁ2£23ﬂ3ﬁ3£23ﬂ4ﬂ4 (B4)

(x§3)3 ’
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where we have used the fact that D 3) hitting the objects x,3 result in 6 linear terms; hence, they do not contribute. We then
find

A AN AN VAN ! .
X130, 1 X 130, X 130, X130, 2i , , , , /
: 3 _ o o o a, a o, a, o
D(3)7D(l)a{ (x2 )3 = (xz )5 {gaaléy X130, X130, P X130, ™ T €aay Oy 2 X130, T X130, P X130, ™
13 13
a, a, a, a, a, a, a o,
+€aa357 3xlfioz] 1xl?»ozz 2-)613054 4 +£aa46y 4x13a] 1x13a2 2-Xl30(3 3}
101
a, a, &, a,
+ P 6x13ayxl3a] X130, 2 X130y 2X13a, *-
(x13)

Finally, after repeated application of the identity

X13a0, X13ya; ~ X130y X130y,

Eaa, Eyaty = 2 ) (B5)
13
we obtain the result
~ d 2 ad. o a2 d .
X13q, ' X13a, X130, *13a, * 2i o o o o o o o o
D(3)yD(l)a{ (x2 )3 :7(x2 )6 {x13a 1X13ya; X13ay 2 X130 3X13a, 4 T X130 2X13ya, X130, ' X130 *X13a, *
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+ X130y X 130, T X130, 2 X130, B3 X130, % } -
After some additional minor manipulations we obtain

1

o A da ad A a. A a. A o S N N N A
A= —(x2 )7/2(x2 )3 X130~ X130, 'X13a, 2X13a; *X13a, * X x23/5,ﬂ‘x23azﬂ2x23ﬂ3ﬁ3xzsﬂ4ﬂ“Ta/¢(4>/3/(4)w(4) (X12>- (36)
13 23

Now consider the B term: in particular, we need to evaluate

DD yaHa @yp @) (X3, ©3). (B7)
Using the identities (2.22a) we obtain
x13aa,
Dy DinyaHap s (Xs. 03) = D<3>y{— 2, Do Hewpans s, 93)}- (B3)

Evaluating the derivative within the brackets gives
Do Hertayp @) (X ©) = i(r")ors® O Fraypr ) (X) + 20 Gty aya) (X)- (BY)
Now in order to compute
D3y, D (1) Ha ()5 (4)y(4) (X3, ©3)] (B10)

we note that contributions in which the spinor derivative acts on x3 or X, produce terms that are linear in 0, so they may be
neglected as they vanish after bar projection. On the other hand, the following identity holds:

D30 ®3] = X 120" (B11)
Hence, we obtain
o
X13a siom
D(3)]/D(l)aH(z’(4)/}/(4)y(4) (X37 ®3)| = - ;%3 {1(]/ )a/ﬁX‘fzyamFa/(4)ﬁ,(4>y<4) (X12) + 2X12{/}/Ga’(4)/}’(4)y(4) (Xlz)} (B]Z)
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Therefore the B contribution may be expressed in the form

1

with 72 given by the expression

B _
T wa@payrya)X) =

PV IN o A & A
= — =75 5 =X X X 2X
2 \7/2(+2 \3 13a 13a; 13a, 13a;
(x73)"/%(x23)
13 23

/

Combining both the A and B terms we obtain the component correlation function

(Qat)a (1) sy (X2) Qpia) 4 (X3)) = m35130//56130(1""5613052“,25613(13“;5513(14

with

—_ TA

%213(14 %
X )%23[}] ﬁ/' )%23/i2/j/2 5623/33 /}/3 5623/341121 Tg’.a’ (DB (4)r.y(4) (XIZ) ’ (B 1 3)
=17 00Xy OmF a@payya)(X) = 2Xay Gty piayya) (X)- (B14)
a
X X234, /i 5623ﬁ2ﬁ /23523ﬂ3ﬂ/3223ﬂ4ﬁ Ty @ @)@ (X12), (B15)
(B16)

Ta,a(4>/3(4)y,y(4) (X) = Ta,a(4)ﬁ'(4)y,y(4) (X) + Tg,a(4)ﬂ(4)y,y(4) (X).

APPENDIX C: CONSISTENCY CHECKS
1. Correlator (LLO)

In this sub-appendix we derive the general form of the
correlation function (LLO). We also demonstrate that our
solution is consistent with the results of [20] in terms of the
number of independent tensor structures. The ansatz for
(LLO) is

(La(21)Lj(22)O(z3)) = 5 Hop (X3.03).

(x%3)3/2(x§3)3/2
(C1)

The constraints on this three-point function are summa-
rized below:
(i) Homogeneity constraint
Covariance under scale transformations of super-
space results in the following constraint on H:
Hop(2X.10) = (12)H,5(X.©).  (C2)
which implies that H is homogeneous degree
T=3-A.
(ii) Differential constraints
The conservation equations (3.1) imply the fol-
lowing constraints:

Dfy (Lo Lh(2)0s) = 0. (C3)

Application of the identities (2.22a) to (C3) gives

DH,,5(X,0) = 0. (C4)

(iii) Point-switch identity
Invariance under permutation of the superspace
points z; and z, is equivalent to the condition

(La(21)Lh(22)0(z3)) = =(Lh(22)La(21)O(z3)),
(C5)

which results in the following constraint on H:

Hop(X,0) = —Hyp(-XT, -0). (Co)
An irreducible expansion for H is
Hap(X.0) = £45A(X. 0) + (r)4pS.(X.0).  (CT7)
with

A(X,0) = Al(X) + ©%A%(X), (C8a)
S,(X,0) = SL(X) + 02S2(X). (C8b)

The point-switch identity (C6) implies
AY(X) = Al (-X), A%(X) = A%(-X), (C9a)
SI0 = =SL-X). S = =SH=X).  (COD)

Imposing the differential relation (C4) results in the
following constraints on the tensors A’ and S':
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A2(X) = %a’"s}n (X), (C10a)

SHX) = =3 {0.A1(X) + €0, S4(X)}.  (C10b)
Hence, we may treat A' and S' as independent. Explicit

solutions for the tensors A! and S! are

a
X

Al(X) = SI(X) = bXX+1 (i)

These solutions are trivially compatible with (C9a) and
(C9b). Using (C10a) and (C10b) we obtain expressions for
A? and S?

ib 1

A2(X) =2 (2-7) 2(x) = 47 Xa

W’ H(X)_ETXT+2'

(C12)

Following [20] we set A = 1 (z = 2) and obtain the set of
solutions

a
AI(X) = F, AZ(X) = O, (Cl3a)
SIX) = b2, R2(X)=iaXe.  (Cl3b)
a X37 a X4

The solution for H in spinor notation is then

. €aﬁ i.Xa/jG‘)z Xaﬁ i Saﬂgz
M. =of 5+ T Lo )
(C14)

which clearly contains both parity-even and parity-odd
contributions. Our notation is quite different so it is difficult
to make a direct comparison; however, we agree on the
number of independent tensor structures.

2. Correlator (FLL)—alternative ansatz

In this subsection we investigate an alternative formu-
lation of the correlation function (FLL), it serves as a
consistency check of our result in Sec. V B. The starting
point is the alternative ansatz (LLO):

(L§(21)L7 (22) F o) (23))

Hﬁ’y’a (Xg, @3) (CIS)

)3/2

The constraints on this three-point function are summa-
rized below:
(1) Homogeneity constraint
Covariance under scale transformations of super-
space results in the following constraint on H:

Hpya(a) (2°X,10) = Hpya(s)(X, ©), (C16)
which implies that H is homogeneous degree O.
(ii) Differential constraints
The conservation equations (3.1) imply the

following constraints:

D€1><LZ(21)L§(22)7: @(z3)) =0, (Cl7a)
DYy (L(21)L} (22) Foa(3)(23)) = 0. (C17b)

Application of the identities (2.22a) to (C17a) gives

D/’Hﬁm (X,0) =0. (C18)
Imposing (5.15b) is rather nontrivial, and it will be
handled later in this section.

(iii) Point-switch identity

Invariance under permutation of the superspace
points z; and z, is equivalent to the condition

<LZ<21)L§(22)7:0:(4)(Z3)>

= —(L(22)L5(21) Fugay(z3)).  (C19)

which results in the following constraint on H

Hﬂ}/a(4) (X, @) - _Hyﬁa(4) (—XT, —6) (CZO)
First we combine symmetric pairs of spinor indices into

vector ones as follows:

Dy (

Hﬁya1a2a3a4 (X’ ®> = (7/ yaz)a3a4Hﬂy,ala2 (X’ 8) ’

(C21)
where it is required that H, ,, 4, is symmetric and traceless

in a,, a,. We then expand this in irreducible components as
follows:

Hﬂ}/,alaz (X’ ®) = 8ﬂyAa]a2 (X7 8) + (}/C)/)’ysalag,C(X’ ®>7

(C22)

with
Agyar(X.0) = Al o, (X) + ©%A7 (X)), (C23a)
Saray.c(X.0) = Sgyq, o(X) + 2554, o(X).  (C23b)

Here the A’ and S’ are both symmetric and traceless in a;,
a,. The point-switch identity (C20) implies

Atlllaz( ) Aﬁlllaz( )’ A%lla7( ) Aglaz( )’
(C24a)
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Sclzlaz.c(X) = _Stlzlaz,c(_X)’ S31a2,6<X> = _Szzzlaz,c(_X)'

(C24b)

Imposing the differential relation (C18) results in the
following constraints on the tensors A’ and S':

(C25a)

alao(X> 8’nséla2,m(x>’

Sczzlaz.c(X) {8 Aalaz(x) +€cmnamsc11]a2.n(x)}'

(C25b)

Hence, we may treat A! and S' as independent. The only
solution for the tensor A' compatible with the symmetries is

3X, X
Azlzlaz(X) = C{’//alaz - ;(12 a2}7

(C26)

while for § we have the general ansatz

Xy, X0, X, Lk {ealc”’XmXa2+€azcmeXal}
2

X3

Sclzlaz.c(X) =k X2 X2

’7(,'(1 Xa r]Cll X(l na a XC
k 1 2 2 1 k 1642 X C27
+ 3{ X + X }+ Ty (C27)

Imposing tracelessness on ay, a, on this expansion, along
with the conditions (C24a) and (C24b) results in the
constraints

3 1
k3:—§k4—§kl, k2:O (ng)
The solution then becomes
Xa Xll XC 1 ’76‘0 Xa 1 nca Xa
Sl (X)=k 1@ _ 2 1 a
a,az.c( ) 1{ X3 2 X ) X }
ntl a XC 3’70(1 Xd 3’76(1 Xa
k 142 _ ey ay ¥ 11— (29
+ 4{ X 2 X 2 X (€29)
The expressions for A% and S? are
> i(ky + k) [Nay0,  3Xa,Xq
Aa,uz( ) - D) X 2 — X3 ? s (C30a)
(X, X X, 111 1900, X
2 _ a“ta ca u| ca;a
S ar.c(X) _—310{ X42 ) };2 5y 2}
ik €q cmeXa €ayc XmXa
+Tl{ 1 = 2y 1}
3iky (€4, X Xa, €4 L’”X X,
- ! 2 2 . (C30b
4 { X3 + X3 } ( )

Imposing the symmetry conditions (C24a) and (C24b) on
these solutions results in the constraint k; = 3k,. After
making the replacement k, — ¢, the solutions for the
tensors A’ and S become

3X, X,
Alllla2(X) —C{nalaz_ )(12 2}, (C31a)
| Maya,  3Xa Xa
Ada,(X )_210{72—T2}, (C31b)
~ 3Xa Xa XC ’/Ia a7XC 3’7C07Xa
Sélava(X):c{ 1X32 + l}é i .
3ca, X
i } (C31c)
X
(XoXoXe 1neXe 100X
2 _ a a c ca“*a ca a
(C314d)

where we note that the correlation function is presently
determined up to two coefficients. However, it remains to
impose the final relation (C17b). To provide a comparison
with our results in Sec. VB it is sufficient to analyze
conservation on one of the component correlators to see
whether this reduces the number of tensor structures. First,
let us define the component fields by bar projection’’

wa(x) = L§(2)l.

1
Jalaz (x) =7 (yal )a1a2 (Yaz)GSaAFala2a3a4 (Z) |

Z (C32)

The three-point function (yyJ) is then defined as follows:

<LZ(ZI)L}Z}(Z2)‘Fa1a2(Z3>> )
(C33)

<W§(X1)W§(x2)falaz(x3)> =

where bar projection denotes switching off the fermionic
variables at each superspace point. Using (C15), this three-
point function has the general form

<U/Z(X1)Wf (x2)J 4,0, (X3))

N ﬂ/ /
ap  X13p x23y
= 5“”—H v aa,(X12),  (C34a)
(xF3) /2 (a3, 32T
Hﬂy,a,az( ) g/iyAclt]av( )+(7/ )/}ySa,a2 c(X) (C34b)

BThere are three component fields contained within the flavor
current multiplet, and they are {w,. Vs x,}. The superfield
conservation equation (5.12) then implies that V satisfies
0%V, =0, while y is auxiliary. The calculations are similar to
those in Sec. IIL.
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where A! and S! are the solutions given above. We will then
impose conservation by transforming the three-point func-
tion such that it is represented in the following way:

<1///“_;(x1)ll/§(x2)fa,a2 (¥3)) = (Jaya, (x3)z//f(x2)y//“;(x1)>.
(C35)

Using the explicit expressions for A' and S, after some
calculation it may be shown that

/

Ialaz,a/]alz ('%31)-%21/
) (B

X Hey a,yp(X32),

<‘]a1az (x3>‘l/§(x2)l//g(x1)> — 5ab
(C36)
Hayar () = €Ak (X) + () Sy (X), - (C37)

where H is homogeneous degree —3 and the tensors A' and
S are found to be

, ¢ 3X, X,
A;Iaz (X) - F {ﬂaw - #}, (C38)

P 3Xa Xl,l XC 11(1 a XC
$h,0() = of e el

3~ 6(116‘meth2 €a2CmeX
o T x

d } (C39)

At this stage we note that the ¢ terms exactly match the
solutions (5.29a) and (5.29b); however, we have picked up
an extra tensor structure (the ¢ terms). If we now relabel the
points in the (Jyy) ansatz such that x3; — x;, x; = x3, then
the tensors A' and §' must satisfy the constraints (5.22a)
and (5.22b). The solutions above are compatible with these
constraints provided that ¢ = 0. Hence, we have found that
this correlator is fixed up to a single tensor structure and
fully agrees with what we found in Sec. V B.
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