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In this paper, we study the ’t Hooft type instantons in eight dimensions, which satisfy the (anti)self-dual
equations F ∧ F ¼ � �8F ∧ F. Using various designs of such instantons, we find new soliton solutions to
the low-energy effective theory of the heterotic fivebrane. We investigate conditions under which these
instanton configurations can be identified with the D-instantons embedded in the D7-brane world volume.
Finally, we discuss the relationship between eight-dimensional periodic instantons and monopoles.
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I. INTRODUCTION

The study of classical soliton solutions in string theory
with higher brane structure is closely related to the
construction of nonperturbative superstring theory. Such
solitons are static multisoliton solutions that saturate the
Bogomol’nyi bound. While classical solitons are three-
level solutions in quantum string theory, they can never-
theless be used in nonperturbative calculations such as
vacuum tunneling, since higher-order corrections often do
not contribute to these effects.
The first major breakthrough for p-brane solitons

came with the paper [1], where was showed that the ten-
dimensional supergravity coupled to super Yang-Mills
admits as a solution the heterotic fivebrane. The most
important part of the design was the Yang-Mills instanton
located in four directions transverse to the fivebrane. Later,
the Yang-Mills instantons were used to construct classical
p-brane solitonic solutions of the low energy effective
theory of the heterotic string (see [2–9]).
At the same time, there are solutions to the self-duality

equations between the higher-order terms of the Yang-Mills
field. This kind of Yang-Mills theory is not the standard
gauge field theory but appears in some physically appro-
priate situations. For example, in [10,11], the quartic Yang-
Mills model has been used to find soliton solutions of the
heterotic fivebrane. A crucial part of this construction was
the one-instanton in eight dimensions satisfying the equa-
tions of self-duality F ∧ F ¼ �8F ∧ F. As shown in [12],
this instanton plays an essential role in smoothing out the

singularity of heterotic string soliton solutions by incor-
porating one-loop corrections.
An explicit example of one-instanton satisfying

such relations was originally proposed in [13,14], as a
classical configuration that minimizes the quartic actionR
d8 x trðF ∧ FÞ2. Later it was realized [15] that it also

minimizes the quartic action which appears from the
dimensional reduction of the α0 corrected super Yang-
Mills theory in ten-dimensions [16]. This made it
possible to consider the one-instanton as the D-instan-
ton, i.e., as an instanton embedded in the D7-brane. It
was shown in [17] that the one-instanton solution can be
interpreted as the D-instantons if their size becomes
zero. A similar statement for the multi-instantons in the
well-separated limit was obtained in [18]. The situation
where the instanton solutions can be interpreted as the
D-instantons has been analyzed in [19,20] where the
instanton partition function for the D7=Dð1Þ system was
studied.
In this article, we investigate various constructions of

(anti)self-dual instantons in eight dimensions and seek
related to them soliton solutions to the low-energy
effective theory of the heterotic fivebrane. In the next
section, we will study the self-dual two-instanton con-
figurations of the ’t Hooft type. We use such instantons to
construct soliton solutions that generalize the fivebrane
solution that was obtained in the case of one-instanton. In
Sec. III, we will find a solution to the eight-dimensional
antiself-duality equations, and then show that this solution
can be extended to larger dimensions. In Sec. IV, we will
investigate the instanton effects of the obtained solutions.
We will show that self-dual two-instanton configurations
satisfy the D-instanton conditions in the zero-size and
can be identified with the D-instantons embedded in the
D7-brane world-volume. In Sec. V, we will discuss the
eight-dimensional periodic instantons (calorons) and their
monopole limits. In Sec. VI, we will briefly list the results
obtained.
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II. MULTIFIVEBRANE CONFIGURATIONS

As mentioned in the Introduction, the ten-dimensional
supergravity coupled to super Yang-Mills admits the
fivebrane soliton as a solution, with the self-dual one-
instanton being the key part of the design. In [10] (see also
[21]) it was suggested that the heterotic string and the
heterotic fivebrane may be dual to each other in the sense
that they are equivalent descriptions of the same underlying
physical theory. Under this assumption, the heterotic
fivebrane action takes the form

S ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

2 · 7!
eϕK2

−
β0

244!
eϕ=2trðt8F4Þ

�
: ð1Þ

Here K is the seven-form field strength, which is dual to the
three-form field strength of the heterotic string, the five-
brane tension T6 is given by 1=β0 ¼ ð2πÞ3T6, and t8 is the
ten-dimensional extension of the eight-dimensional light-
cone gauge “zero-mode” tensor, i.e.,

t8F4 ¼ FMNFPNFMSFPS þ 1

2
FMNFPNFPSFMS

−
1

4
FMN FMNFPSFPS −

1

8
FMNFPSFMNFPS: ð2Þ

In this section, we use the self-dual two-instantons to
construct fivebrane soliton solutions of the equations of
motion that follow from the action (1).
Following [10,22], we split the indices xM ¼ ðxm; yμÞ,

where m; n ¼ 1; 2;…; 8 and μ, ν ¼ 10, 11, and we choose
a supergravity ansatz for the ten-dimensional metric gMN
and seven-form KMNPSIJKL in the form

ds2 ¼ e3ϕ=2ημνdyμdyν þ e−ϕ=2δmndxmdxn; ð3Þ

Kmnpsijk ¼ 2
ffiffiffiffiffi
g8

p
e−ϕ=2εmnpsijkl∂lϕ; ð4Þ

where g8 ¼ det gmn ¼ e−4ϕ and the dilaton field ϕ depends
only on xm. All other components of K are set zero. With
this choice of gMN and K, the supersymmetry variations
δψM and δλ of the gravitino and gaugino vanish.
In order to make the variation δχ of the gaugino zero,

we must make an ansatz for AM which preserves both the
bosonic and fermionic symmetries. This configuration is
provided by the (anti)self-dual SOð8Þ-instanton that is a
solution of the equations

F½mnFps� ¼ � 1

24
εmnpsijklF½ijFkl� ð5Þ

in the eight-dimensional Euclidean space with the flat
metric. Here, the gauge field strength

Fmn ¼ ∂mAn − ∂nAm þ ½Am; An�; ð6Þ

where the potential Am taking value in the Lie algebra
soð8Þ. Given the known explicit formula for the potential

Ãm ¼ −
Rmnxn
λ2 þ x2

; ð7Þ

where Rmn ¼ 1
2
ð1þ Γ9ÞΓmn are generators of SOð8Þ cor-

responding to the irreducible 8-dimensional representation
of Spin(8), and the gauge field strength

F̃mn ¼
2λ2Rmn

ðλ2 þ x2Þ2 ð8Þ

corresponding to a single instanton of the size λ, the self-
duality equations (5) can be solved (see [13]).
We will look at a more general multi-instanton configu-

ration with the potential

Am ¼ −
1

2
Rmn∂n ln

�
1þ

XN
i¼1

λ2i
ðx − biÞ2

�
; ð9Þ

where λi gives the scale size of the instanton located at bi.
As was shown in [23], this potential defines the field
strength that is a solution to the self-dual equation (5). This
multi-instanton can be viewed as a superposition of N
instantons that depend on 8N þ 1 free parameters and its
topological charge is defined by the fourth Chern number.
To determine the dilaton field, we substitute Fmn into the
field equations of the fivebrane obtained by varying
the action (1). They are all satisfied identically, except
for the dilaton field equation which reduces to

∂m∂me−2ϕ ¼ −
2 · 8!β0

4!Φ4
trf4; ð10Þ

where the function ϕ ¼ ϕðxmÞ is identified with the dilaton
field, and f ¼ fðxiÞ are given by

f ¼
�
λ1xt1
x21

…
λkxtk
x2k

�0BB@
λ21 þ x21 � � � λ1λk

..

. . .
. ..

.

λ1λk � � � λ2k þ x2k

1
CCA

−1
0
BBB@

λ1x1
x2
1

..

.

λkxk
x2k

1
CCCA:

ð11Þ

Here xi ¼ ðxm − bmi ÞRm, where R8 ≡ I8 is the unit 8 × 8

matrix and Rm is an image of Γm as m ≠ 8 with respect
to the homomorphism Spinð8Þ → SOð8Þ, xti is the
matrix transposed to xi, and Φ ¼ 1þP

N
i¼1 λ

2
i =x

2
i , where

x2i ¼ ðxm − bmi Þðxm − bimÞ.
In the particular case, whenN ¼ 1, a solution of (10) can

be obtained if looking for it in the form ϕ ¼ ϕðx2Þ. In this

E. K. LOGINOV PHYS. REV. D 104, 106003 (2021)

106003-2



case, one is transformed into an ordinary differential
equation and we get the following dilaton solution

e−2ϕ ¼ 1þ c
x6

− 16β0
λ8ð15x4 þ 6λ2x2 þ λ4Þ

x6ðλ2 þ x2Þ6 ; ð12Þ

where c is an integration constant and for convenience we
have set ϕ0 ¼ 0. If we make the identification c ¼ 16β0,
then this solution will exactly coincide with the solution
that was obtained in [10] for SOð8Þ ⊂ SOð32Þ. If we put
β0 ¼ 0 and c > 0, then we obtain the solution of [11]
for SOð8Þ ⊂ E8.
Now we suppose N ¼ 2. It follows from (11) that

∂m∂me−2ϕ

¼ −β0
8!

4!

�
2
λ21x

4
2 þ λ22x

4
1 þ λ21λ

2
2ðx21 þ x22 − 2xm1 x

m
2 Þ

ðλ21x22 þ λ22x
2
1 þ x21x

2
2Þ2

�
4

;

ð13Þ

where the parameters λi determine the sizes of the instan-
tons, and xi ¼ xþ bi are their positions. It is convenient
to pass to a new variable x̃ ¼ xþ 1

2
ðb2 þ b1Þ and put

b ¼ 1
2
ðb2 − b1Þ. (For b2 ¼ b1, we obtain the dilaton solu-

tion (12) with λ2 ¼ λ21 þ λ22.) In this case, x1 ¼ x̃ − b and
x2 ¼ x̃þ b. Consequently, the origin moves to the middle
of the segment connecting the instantons. In addition,
using an appropriate orthogonal transformation, all but
one component of b can be nullified. Therefore, we can
assume that b ¼ b0I8.
We will find solutions to Eq. (13) in the two limiting

cases, when jx̃j ≫ jbj and jx̃j ≪ jbj. In the first case, we
again get the dilaton solution (12). Therefore the large-
distance behavior of the two-fivebrane is the same as that
of the one-fivebrane The alternative condition jx̃j ≪ jbj
leads to the following dilaton solutions

e−2ϕ ¼ 1 − 105β0
27ðλ4x̃0Þ2

b8ðλ2 þ b2Þ4 ; ð14Þ

e−2ϕ ¼ 1 − β0
29ð56z0 þ 5Þ

ðλ22 − λ21Þ2ð2z0 þ 1Þ6 ð15Þ

as jλ2j ¼ jλ1j and jλ2j ≠ jλ1j respectively. Here z0 ¼ ðλ22 −
λ21Þx̃0=jbj3 and λ2 ¼ λ21 þ λ22. Note that the solution (15)
was found in the well-separated limit (see [18,24]). In this
case the scale parameters λ1 and λ2 are of small order
compared to the “instanton separations” jx1 − x2j and
therefore the off-diagonal elements of the matrix (11)
can be neglected. Generally speaking, this condition is
optional. However, if we do not ignore it, then we will get a
very cumbersome expression. Thus, the ansatz (3), (4), (9)
with the dilaton fields (14) or (15) gives a multisoliton
solutions of the fivebrane field equations.

III. HIGHER-DIMENSIONAL INSTANTONS

Let us move on to finding the instantons of the antiself-
dual configuration. First of all, note that any totally
antisymmetric eight-dimensional tensor of the fourth rank
can be written as the sum of the self-dual and the antiself-
dual parts Fmnps ¼ Fþ

mnps þ F−
mnps, where

F�
mnps ¼

�
δi½mδ

j
nδkpδ

l
s� �

1

24
εmnpsijkl

�
Fijkl: ð16Þ

On the other hand, the identity ΓmΓn ¼ Γmn − δmn holds
for the gamma matrices. (Here and below, we ignore the
identity matrix, writing δmn instead of δmnI8.) Using it as a
base of induction, it is easy to prove that

ΓpΓs1…sk ¼ Γps1…sk þ
Xk
i¼1

ð−1Þiδpsi Γps1…ŝi…sk : ð17Þ

Let us denote again the generators of SOð8Þ by Rmn ¼
1
2
ð1þ Γ9ÞΓmn and, using (17), we rewrite the expression

(16) for the self-dual tensor in the following form

Fþ
mnps ¼

1

24
tr ðRmnRpsRijRklÞFijkl: ð18Þ

Note that the last equality can be obtained in an alternative
way if we use the identity

Γi1…ik ¼
1

ð8 − kÞ! εi1…i8Γ9Γi8…ikþ1 : ð19Þ

Thus, the tensor Fmnps is antiself-dual if RmnRpsFmnps ¼ 0.
In particular, the tensor Fmnps ¼ F½mnFps� is antiself-dual
if RmnFmn ¼ 0.
Following [25], we choose the ansatz

Am ¼ −
1

6
Rmp∂p ln

�
1þ λ2

x6

�
; ð20Þ

where λ gives the scale size of the instanton located at the
origin. In order to find the gauge field strength Fmn, we use
the identity

RmpRns ¼ Rmpns þ δmnRps − δmsRpn − δpnRms

þ δpsRmn þ δmsδpn − δmnδps; ð21Þ

which is a consequence of (17). As a result, we get

Fmn¼
2λ2x2

ðλ2þx6Þ2 ð4Rmpxnxp−4Rnpxmxp−Rmnx2Þ: ð22Þ

Finally, using the identities
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RmnRsn¼δnnðRms−δmsÞ; RmnRmn¼−δmmδnn; ð23Þ

we prove the antiself-duality condition RmnFmn ¼ 0.
Thus the potential (20) is a solution of the antiself-duality
equations. Note that the potentials (7) and (20) are gauge
nonequivalent. To show this, it suffices to note that
trF2

mn ≠ trF̃2
mn.

We now show that this eight-dimensional construction
of the antiself-dual instanton can be generalized to large
dimensions. In d-dimensional Euclidean space with d > 2,
we consider the gauge field potential

Am ¼ −
1

d − 2
Rmp∂p ln

�
1þ λ2

xd−2

�
; ð24Þ

where Rmp are generators of SOðdÞ. To find the gauge field
strength Fmn, we use the identity (21). As a result, we get

Fmn ¼
λ2xd−6

ðλ2 þ xd−2Þ2 ½dðRmpxn − RnpxmÞxp − 2Rmnx2�:

ð25Þ

Obviously, the fields (24) and (25) coincide identically with
(20) and (22) as d ¼ 8. Using (23), we obtain the identities

RmnFmn ¼ 0; F2
mnps ¼ 0: ð26Þ

Finally, we can find conditions under which this ansatz
satisfies the Yang-Mills equations. In the considered
dimension, we have

∂mFmn þ ½Am; Fmn� ¼ ðd − 4Þð1 − dÞ 4λ4xd−6

ðλ2 þ xd−2Þ3 Rmpxp:

ð27Þ

Obviously, the required condition is satisfied only for
d ¼ 4. In what follows, we will assume that the dimension
d ¼ 4n, where n ∈ N.
In 4n dimensions, we can consider the (anti)self-dual

equation

�F ∧ F ∧ … ∧ F ¼ �F ∧ F ∧ … ∧ F; ð28Þ

where the 2n-forms are on both sides of the equality. It
follows from the first equality in (26) that the field strength
Fmn, defined as (25), is a solution of the antiself-dual
equation. It follows from the second equality in (26) that
the 2n-th Chern number

1

ð2nÞ!ð2πÞ2n
Z

trðF ∧ F ∧ … ∧ FÞ ¼ 0: ð29Þ

If n ¼ 1, then the gauge fields take values in the Lie algebra
soð4Þ ≃ soð3Þþ ⊕ soð3Þ−. Suppose Am¼Aþ

mþA−
m, where

A�
m ∈ soð3Þ�. Then the corresponding field strengths F�

mn
become the (anti) self-dual Yang-Mills instantons, and their
sum is Fmn. Therefore the second Chern number k ¼
kþ þ k− with k� ¼ �1. If n > 1, then the gauge fields take
values in the Lie algebra soð4nÞ. Since this algebra is
simple, it is impossible to represent the 2n-th Chern number
as the sum k ¼ kþ þ k− with k� ≠ 0.

IV. D-INSTANTONS

We now consider the Euclidean D7-brane in Type IIB
string theory. On the world-volume of this D7-brane, there
is an eight-dimensional Yang-Mills theory which is natu-
rally realized as low-energy effective field theory. In
order to see the (anti)self-dual instanton effects of the
obtained solutions, we consider the α0 corrections to the
gauge theory. The gauge part of the effective action can be
written as

SD ¼ S2 þ S4 þ � � � : ð30Þ

Here the first term is the quadratic Yang-Mills action in
eight dimensions

S2 ¼
1

2g2YM

Z
d8 x trðF2Þ ð31Þ

with a dimensionful gauge coupling constant

g2YM ¼ 4πgsð2π
ffiffiffiffi
α0

p
Þ4; ð32Þ

where gs is the string coupling and
ffiffiffiffi
α0

p
is the string length.

The second term is a quartic action of the form

S4 ¼
ð4πα0Þ2
4!g2YM

Z
d8 x trðt8F4Þ − 2πiC0k; ð33Þ

where k is the fourth Chern number

k ¼ 1

4!ð2πÞ4
Z

trðF ∧ F ∧ F ∧ FÞ ð34Þ

and C0 is a scalar field of the closed string RR sector.
Following [17], we will interpret the eight-dimensional

instantons as theD-instantons, i.e., as instantons embedded
in D7-branes. Such instantons are sources for RR 0-form
C0. In the case, the (anti)self-duality condition (5) holds,
the trace

trðt8F4Þ ¼ � 1

2
trðF ∧ F ∧ F ∧ FÞ; ð35Þ

and hence the quartic action S4 becomes
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S4 ¼ −2πi
�
C0 �

i
gs

�
k: ð36Þ

This precisely matches the action of the action of k
D-instantons. Thus, the eight-dimensional (anti)self-dual
instantons become the D-instantons when S2 ¼ 0 and all
the Oðα04=g2YMÞ terms vanish. The second condition is
fulfilled in the zero-slope limit α0 → 0 with fixed α02=g2YM.
In this limit, the quartic term remains finite while the Yang-
Mills part diverges in general. In some cases, the condition
S2 ¼ 0 is fulfilled in the zero-size limit λi → 0, i.e., when
the sizes of instantons tend to zero. This has been shown for
the self-dual one-instanton in [17] and for the ’t Hooft type
multi-instantons in the well-separated limit in [18]. We will
estimate the Yang-Mills quadratic term for the instantons
that were above used to construct the fivebrane solitons.
In the case of the two-instanton configuration with the

potential (9), the Yang-Mills quadratic term takes the form

S2¼
1

g2YM

Z
d8x

�
4
λ21x

4
2þλ22x

4
1þλ21λ

2
2ðx21þx22−2xm1 x

m
2 Þ

ðλ21x22þλ22x
2
1þx21x

2
2Þ2

�
2

;

ð37Þ

where λi are the sizes of the instantons and xi ¼ xþ bi. We
will calculate this integral in the two limiting cases, when
jx̃j ≫ jbj and jx̃j ≪ jbj, where as above x̃¼xþ 1

2
ðb2þb1Þ

and b ¼ 1
2
ðb2 − b1Þ ¼ b0I8. If jx̃j ≫ jbj, then we get the

self-dual one-instanton of the size λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22

p
. It then

follows from [17] that S2 ¼ 0 when the instantons shrink to
zero-size λ → 0. Suppose jx̃j ≪ jbj. Then the radial part of
the space-time integral in (37) can been rewritten in the
form

Z
R

0

d6r

�
4b2r3ðλ2ðb2 þ rÞ þ 4λ2−bzþ 4λ21λ

2
2Þ

ðλ2ðb2 þ rÞ þ 2λ2−bx̃0 þ b2ðb2 þ 2r − 4x̃20ÞÞ2
�
2

¼ 8R2b4λ4

ð2b2 þ λ2Þ4 ; ð38Þ

where λ2− ¼ λ22 − λ21. Here we introduce the cutoff R in the
space-time integral (37) and neglect subleading terms of
1=R. Obviously, when the instantons shrink to the zero-
size limit, the Yang-Mills quadratic term vanishes. Thus,
all the self-dual two-instantons, that we were used to
constructing the fivebrane solitons, in the small instanton
limit correspond to the D-instantons embedded in the
D7-branes.
Now we consider the anti-instanton configuration with

the potential (20). In this case, the Yang-Mills quadratic
term has the form

S2 ¼ −
1122

g2YM

Z
d8x

λ4x8

ðλ2 þ x6Þ4 : ð39Þ

The radial part of the space-time integral in (37) has the
form

Z
R

0

d7r
λ4r15

ðλ2 þ r6Þ4 ¼
ffiffiffi
3

p
λ4=3

37

�
5π − 30 arctan

λ2=3 − 2R2

3λ2=3

�
;

ð40Þ

where we reintroduced the cutoff R in the space-time
integral and neglected the subleading terms 1=R. Obvious
that the Yang-Mills quadratic term S2 vanishes when the
instanton shrinks to the zero-size limit. However, this
instanton has nothing to do with D-instantons embedded
in the D7-branes. The point is that it satisfies the equality
trF2

mnps ¼ 0 and therefore

1

12
trðt8F4Þ ¼ 1

4! · 24
trðϵmnpsijklFmnFpsFijFklÞ ¼ 0: ð41Þ

Hence the quartic action in (30) equal to zero. It follows
from (41) that the dilaton field corresponding to the
antiself-dual instanton (22) is given by the formula

e−2ϕ ¼ 1þ c
x6

; ð42Þ

where ϕ0 ¼ 0 and c ≥ 0. This formula coincides with (12)
as β0 ¼ 0, as well as with the singular elementary string
solution obtained in [22] (see also [21]).

V. CALORONS AND MONOPOLES

In this section, we study the eight-dimensional periodic
instantons (calorons) and their relationship with monop-
oles. In four dimensions, such instanton was first con-
structed in [26] as a finite temperature generalization of
the BPST instanton. In [27,28], a connection was found
between calorons and magnetic monopoles, and in [29],
discussed the relation between magnetic monopoles and
fivebrane solutions. The higher-dimensional calorons were
studied in [30] but only in the well-separated limit.
We will be interested in instanton solutions that are

periodic in t ¼ x0. Such instanton can be constructed if
we take an infinite string of identical instantons and will
look for solutions to the self-dual equations (5) on the
space R7 × S1. Following [26], we choose the ’t Hooft-like
ansatz (9) and denote

ρðxÞ ¼ 1þ
XN
i¼1

λ2i
ðx − biÞ2

: ð43Þ

We suppose that all instantons have same identical gauge
orientation (i.e., λi¼ λ and bi¼b) and perform the sum-
mation to ensure the periodicity t ¼ tþ 2πR. As a result,
we get the eight-dimensional periodic instanton:
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ρðxÞ ¼ 1þ
X∞
k¼−∞

λ2

ðtþ 2πkRÞ2 þ r2

¼ 1þ λ2

2rR

�
sinh r

R

cosh r
R − cos t

R

�
; ð44Þ

where r ¼ jx⃗j and the instanton is at the origin (we
choose b ¼ 0). Under λ ≪ R, this eight-dimensional
instanton coincides with the one constructed in [30].
However, the results obtained in [23] allow us to ignore
this condition.
The built instanton has two scale parameters, the

instanton size λ and the compactification radius R. The
gauge fields of such instanton depend on the ratio of these
scales. Wewill find the values of these fields in two limiting
cases: at jxj ≪ R and at jxj ≫ R. For distances jxj ≪ R, the
formula (44) takes the form

ρðxÞ ¼ 1þ λ2

x2
þ λ2

R2
O

�
x2

R2

�
: ð45Þ

In this case, the potential (9) reduces to

Am ∼
Rmnxn

x2ðλ2 þ x2Þ : ð46Þ

This potential is gauge equivalent to (7). Therefore, if we
consider the scales much less than R, the eight-dimensional
finite-temperature instanton is identical to a zero-
temperature instanton of the size λ.
Now consider the asymptotic limit jxj ≫ R (or, equiv-

alently, r ≫ R). In this case,

ρðxÞ ¼ 1þ λ2

2rR
þOðe−r=RÞ: ð47Þ

Substituting this expression in (9), we obtain

Am ∼
λ2Rmnxn

4Rr3ð1þ λ2=2RrÞ ; ð48Þ

where n ≠ 0. Hence it follows thatAm ∼ 1=r2 as r ≫ λ2=2R,
so the field strength falls off as 1=r3. If r ≪ λ2=2R,
then Am ∼ 1=r and hence the field strength falls off as
1=r2. In this case, the space-time components of the field
strength looks like that of a monopole in seven dimensions.

VI. CONCLUSION

In this paper, we have studied the ’t Hooft type instantons
in eight dimensions, which satisfy the (anti)self-dual
equations �F ∧ F ¼ �F ∧ F. Special attention was paid
to the study of the configuration of two self-dual instantons.
We used such instantons to construct soliton solutions for
the low-energy effective theory of the heterotic fivebrane.
These solutions are a generalization of the soliton solutions
that were obtained in the case of one-instanton.
In order to see the self-dual instanton effects of the

obtained solutions, we have investigated the α0 corrections
to the eight-dimensional Yang-Mills theory which was
naturally realized as a low-energy effective field theory. We
have shown that the self-dual two-instanton configurations
satisfy the D-instanton conditions in the zero-size and
can be identified with the D-instantons embedded in the
D7-brane world volume.
Along with the study of the self-dual two-instantons, new

solutions of the antiself-duality equations in 4n dimensions
was found. It is curious that the topological charge of this
antiself-dual instanton, determined by the fourth Chern num-
ber, turnedout tobezero.For this reason,usingthis instantonin
the low-energy effective theory did not lead to the appearance
of a new fivebrane solution. We got the elementary string
solution. In addition, we have constructed an infinite series of
exotic antiself-dual instantons in 4n dimensions.
In the last section, we studied eight-dimensional periodic

instantons (calorons) and their relationship with monop-
oles. Using the standard construction of calorons, we have
found solutions to the self-duality equations on the space
R7 × S1. Investigating this instanton solution in various
asymptotic limits, we constructed static monopole seven-
dimensional solutions.
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