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Cascade of instabilities in the classical limit of the Berenstein-Maldacena-
Nastase matrix model
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We study the leading- (LO) and the next-to-leading-order (NLO) stability of multipole perturbations for
a static dielectric M2-brane with spherical topology in the 11-dimensional maximally supersymmetric
plane-wave background. We observe a cascade of instabilities that originates from the dipole (j = 1) and
quadrupole (j = 2) sectors (the only unstable sectors of the LO) and propagates toward all the multipoles of

the NLO.
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I. INTRODUCTION

According to our current understanding of the black hole
(BH) information paradox, the chaotic dynamics of the
microscopic degrees of freedom that are present on BH
horizons is an indispensable aspect of its resolution [1].
In the present paper, we make an analogy with the BH
membrane paradigm [2,3] and attempt to describe the
dynamics of BH horizons by means of relativistic mem-
branes inside plane-wave spacetimes. In the context of
M theory, these membranes arise from the Berenstein-
Maldacena-Nastase (BMN) matrix model in the limit of
large matrix dimensions [4,5]. Our goal is to study the
emergence of classical chaos at both the leading (LO) and
the next-to-leading order (NLO) of perturbation theory for
various spherical membranes, by using methods from chaos
theory and dynamical systems.

Our previous findings [6-8] imply that the various modes
of multipole perturbations are coupled to each other. This
effect is responsible for the propagation (or the cascade) of
dipole and quadrupole instabilities from LO perturbation
theory to higher-order multipoles (which are stable to LO).
There is a striking similarity between this cascade of
instabilities and the avalanche phenomenon (i.e., the
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breaking of large vortices into smaller ones) that character-
izes turbulent flows in hydrodynamics (see e.g., [9]).

Our paper is organized as follows. In Sec. Il we review the
SO(3) symmetric ansatz which is our main object of study.
In Sec. III we set up and carry out the LO perturbative
analysis for this system, filling out and supplying many
details that were omitted in our previous works. In Sec. IV
we proceed to the study of higher-order perturbations that
lead to the instability cascade phenomenon. An illustrative
example of instability cascades can be found in Sec. V.
A brief discussion of our findings as well as the conclusions
have been included in Sec. VL

II. SETUP

One of the most remarkable properties of plane-wave
spacetimes is that they can be obtained from any given
metric via the Penrose limiting procedure [10], which
consists in blowing up the spacetime around null geodesics
(effectively “zooming in” to them). As it turns out, plane
waves preserve the supersymmetries of the original back-
ground, so that the maximally supersymmetric spacetimes
AdS, /7 x S7/* of 11-dimensional supergravity give rise to
the maximally supersymmetric plane-wave solution [11]:

3 6
ds? = =2dxtdx + Z dx;dx; + Z dydyy

i=1 k=1

2 3 2 6
1 p
- {5 E XX +% E kak] dx*dx*, (1)
i=1 k=1

Finy =u, (2)
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where F,,,, is the field strength tensor of 11-dimensional
supergravity.

The Hamiltonian of a bosonic relativistic membrane in
the 11-dimensional maximally supersymmetric plane-wave
background (1)—(2) reads in the so-called light-cone gauge
=1

T 1 1
H:—/d20 p§+p§+—{xi’xk}2+—{}’i»)’k}2
2 Js 2 2

2.2 2.2
WX Pyt
+ {xi i }? +T+¥—§€ik1{xi,xk}xl ) (3)

where T is the membrane tension and the indices of the
coordinates x and y run from 1 to 3 and 1 to 6, respectively.
The corresponding dynamics is described by the Gauss law
constraint

{5} + ey} =0 (4)

and the equations of motion

2
%= (Dsondond + (Lo =g

U
+§€ikl{xk7xl}’ (5)

5= (oo + {exdoxd =Yy ()

It can be shown that the regularized light-cone super-
membrane (3) is described by the BMN matrix model [12].
Equivalently, the Hamiltonian (3) describes the continuum
limit of the BMN matrix model [5]. In the absence of
background flux (4 = 0), the plane wave (1)—(2) becomes
flat 11-dimensional spacetime and the BMN matrix model
reduces to the matrix model of Banks, Fischler, Shenker
and Susskind [13].

The presence of a nonzero 4-form field strength £, in
the plane-wave background (2) induces repulsive flux terms
in the membrane effective potential. The potential also has
attractive quartic and quadratic terms. These are respectively
induced by the self-interaction terms of the M2-brane action
and the mass terms of the plane-wave metric (1). The
competition of attractive and repulsive forces gives rise to
stable dielectric membrane solutions that are named after
Myers who studied a similar effect [14].

A static dielectric Myers solution of spherical topology
that lives exclusively in the SO(3) symmetric subspace of
the background (1)—(2) can be obtained from the following
ansatz':

ISee [8] for a generalized form of this solution. A similar
ansatz was studied in [15], although the prototype was probably
introduced a long time ago [16].

i=1,203, k=1,..6, (7)

Xi = pu;e;, e =0,

where the three coordinates of the unit sphere,
(e, e5,e3) = (cosgsin@,singsin@d, cosd),  (8)

satisfy the 80(3) Poisson bracket algebra and are ortho-
normal:

4
/ e epd’c = ?”5,,,?. (9)

{ew eb} = €apcCo>
The membrane effective potential that arises when the
ansatz (7) is inserted into the Hamiltonian (3) is the
generalized 3d Hénon-Heiles potential [17]:

2nTu*
off =3 [”%”% + uzu3 + w3
Voo o, o
—|—§(u1 + us + u3) = 2uquruz | . (10)

Equation (10) has exactly nine critical points [7]. These are

1 1
u, =0, u1/6=6(1’1,1)’ u1/3=§(1,1,1), (11)

as well as six more extrema that are obtained from u; /5 and
u, /3 by flipping the signs of two of their components. The
discrete symmetry group of the nine extremal points of (10)
is the tetrahedral group T;. This discrete symmetry is shared
by the equations of motion (4) and (5). To see this, apply
separate reflections to the coordinates x; — €;x; (¢; = £1)
and note that the flux term implies the constraint €;e,e3 = 1.

In sum, the potential (10) has degenerate minima at u, (a
pointlike membrane) and u, 3 (the Myers dielectric sphere)
and a saddle point at u; /s (unstable static sphere):

1 1 2xTu®
Vet (0) = Ve <3) =0, Vet <6> = 64” . (12)

The radial stability analysis of the solution (7) around the
extremal points (11) was carried out in [6] where it was
shown that u, and u, /3 are radially stable, whereas u, /¢ is a
radially unstable point.

III. LEADING-ORDER PERTURBATIONS

The study of angular perturbations around the spheri-
cally symmetric extrema (11) was performed in [7]. Below
we revisit the main points of the analysis and restate its
main results by supplying certain new details.

The static ansatz x;(7) = uuge; is constructed from
the SO(3) extrema uy = {0,1/6,1/3}. It satisfies (5) for
yi =0
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= {{xi xe o xe} — X; + 2€1kl{xk’xl} (13)

and corresponds to the initial conditions x;(0) = ux? and
x;(0) =0, at r = 0. The perturbative analysis which was
performed in the paper [7] is based on the work of
Lyapunov (details can be found in many standard text-
books, e.g., [18]). Consider an infinitesimal variation of the
initial conditions (for i =1, 2, 3)

xi(0) = p(x} +edx;(0)),  %(0) = pedi;(0).  (14)

The perturbation of the initial conditions (14) induces an ¢
dependence in the solution x;(z,€). In general, x;(z,¢)
affords a series expansion in e:

—,u<x?+28"5x§n)>, i=123. (15
n=lI

Inserting the perturbation (15) into the equations of motion
(13), we obtain to leading order &

o%; = {{ox;. 17} 47} + {{X?, ox;} 47}

+{{xd. 7} ox ) = 5xl+€l,k{5x,vxk} (16)

where, from now on, we switch to the dimensionless time
t = ur. For simplicity we have also set 5x1(1) = 6x;. The
Gauss law constraint (4) becomes

{0%;. x]} = 0. (17)

It can be shown [7] that if (17) is satisfied at t = 0, then the
perturbation equations (16) guarantee its validity at all
times . Following the works [19], we expand Ox in
spherical harmonics:

5x; = Z’Y (1) (60, 9), (18)

where 8x must be real, so that the fluctuation modes 7" (1)
satisfy

7™ (1) = (=1l (). (19)

By using the property of spherical harmonics,

{eiv ij(ev 4))} = _l‘]( jm(g ¢)
zz 2 (0.0),  (20)

where J l(’ ) is the spin-j angular momentum operator and

(J i)g;)n/ the 2j + 1-dimensional (spin-j) matrix representa-
tion of 81(2), we can show that the fluctuation modes #;
satisfy the following equations of motion:

i + @3n; = udTyny + ugQuy- (21)

In (21), we have omitted the indices j and m; we have
summed the repeated indices and have used the definitions

1
i =uf)® + 5" Ty =Jidy = 2ied;,  (22)

Qi = i€jxd s (23)

where J?> = j(j + 1). Equation (21) can be written in a
compact form as follows:
H+K-H=0, K=w}-uiT—uyQ, (24)

where H, Q and T refer to the 3 x (2j + 1)-dimensional
representations of 77", Q; and T, respectively:

" 0o J. -,
H=|qg"|. o=il-J. 0 J. |, (25
" J, —J, 0
J? JJy =200, JJ.+2i,
T=|J,J,+2il, J? JJ.=2il, |. (26)
JJ =2il, JJ +2il, J?

The 2j + 1 and the 3 x (2 + 1)-dimensional representa-
tions (21) and (24) are in many ways inequivalent. Many
important details of the analysis that follows depend
crucially on which of the two representations is being used.

A. Eigenvalues

In order to solve (24) we set H = ¢*&. We are led to
the following eigenvalue problem in the 3 x (2j + 1)-
dimensional space:

(-2 + 0} — T —upQ) - £=0, &=(&"). (27)

We further introduce the (2j + 1) x (2j + 1) matrices

1
Pl- Ef‘li']’ 28
TS 2
s U ) Gy x 1 - Py)
k=241 (2 ’ ’
i—(éikxI—Q,-k)], (29)

which form a complete and orthogonal set of projection
operators (i.e., idempotent and Hermitian). In the
3 x (2j 4 1)-dimensional space,
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PP=P=P", RL=R.=R., (30)
P-R*=R"-R =0, (31)
P+R"+R =1, (32)

where 1 is the 3(2j + 1) x 3(2j + 1) unit matrix. It turns
out that the matrices T and Q are also Hermitian and can
be expressed in terms of the projectors P and R.:

T=[j(j+1)=2|P+2jR, —2(j+ R, (33)
Q=P—-jR, +(j+1)R_. (34)

The advantage of this decomposition is that we can
immediately read the eigenvalues of the matrices 7 and
Q (along with their degeneracies) in each of the projective
spaces P,R.. Plugging (33) and (34) into (27) we are
led to

(@3 = )& = [(BLG + 1) = 2] + uo) P+ jug
(g = DR = -+ Du(2uy = DR_E,
(35)

which we then multiply with the projectors P and R, in
order to obtain the eigenvalues 4:

R T a6

. ) 1
2= — Vud + jug + (37)

§ )
1

Z=(+0)0+2uy=(+Dug+g.  (38)

The degeneracies of the eigenvalues /1%. 4 are equal to the

dimensionalities of the corresponding projectors P and R,

ie,d, =2j+3,dp=2j+1,andd_ = 2j — 1. For each
of the critical points in (11) we find

1
.2 2 1
w0 Ap =0, ﬁ+=%(]+1)(1+4),
jG=3)
2= , 40
u s =0, A3 —i('+1)2 2=t (41)
13- Ap=Y, +7 36 J , -~

which coincide with the eigenvalues that were found in [5]
for the BMN matrix model. Note that only the R_ sector of

u, /¢ is unstable for j = 1, 2 (A_ is purely imaginary). These
instabilities are related to the existence of a separatrix in the
corresponding phase diagram (see e.g., [6]).

The general solution of (24) can be written in the
3 % (2j + 1)-dimensional space as follows:

H(t) _ ei/lpté:P 4 e—i/lptgP + ei/htg+ + e_i/1+tz+
_|_ eii_té_ _|_ e—il_té_’ (42)

where &4, &4, A = {P, £} are generic 3 x (2j + 1)-dimen-
sional vectors of the subspaces P and R.. These are
naturally expressed as linear combinations of the corre-
sponding eigenvectors |P, ). They are determined by the
initial values of H and H at t = 0 and the leading order of
the Gauss law constraint [see (59) below].

B. Eigenvectors

Calculating the square of the matrix Q [defined in (23)
above] by using the decomposition (33)—(34), we find that
the projection operators P and R, can be expressed in
terms of Q as follows:

L 0-¢ L
P—I+j(j+1), i—2j+1|:2(2f+1:|:1)
0*-0 ]
: +(I-0)|. 43
e (I-0) (43)

This implies that the eigenvectors of P and R, are fully
determined by those of Q.

Before going on to derive the precise expressions of
these eigenvectors, let us note that Q is just the spin-orbit
coupling operator of the orbital angular momentum L = 1
with the spin angular momentum J = j. To see why this is
so, consider the so-called adjoint representation of SU(2)
in which the three components of the orbital angular
momentum L = 1 read

0 0 O
(Li)y =ieq=>Ly,=0 0 —i]|,
0 ¢ O
0 0 i 0 —-i O
L=[o oof|l L=[i o0 ol @
- 0 0 0O 0 O

and Q indeed takes the form of spin-orbit coupling:
Qi = (L)1 Q0=-L;®J; (45)

or, in terms of the raising and lowering operators L, =
L +iL,and J, =J, Lt i/,
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Q:—%(L+ ®J_)—%(L_ ®Jy)—L.®J.. (40)

The three components of the total angular momentum
Jr=L+], for J =j, L =1, are given by

Ji=U0, @1+ 1 QL; (47)

and, explicitly,

Jo 0 0 I, 0 il
s=lo g |, =0 4 o]

0 il J, ~il 0 J,

J. —il 0
Go=|i J. 0], (48)

0o 0 J

while the square of the total angular momentum is
7 =+ 1)+ 2)I505) — 20, (49)
so that its eigenstates

J+Lmj 1), |jmij ), - Lmj 1) (50)
will obviously also diagonalize the spin-orbit coupling
operator Q.

By directly diagonalizing the matrix Q in (46) or,
equivalently, by means of the standard Clebsch-Gordan
analysis (see e.g., [20]) we find

|j+1,m;j,1>—\/W’”)("*’"“)- )jom—1)

2+ 1)(2j+1)

(j+1)*-
(J+1)(2J+ )

+\/(j—m)(j—m+l)‘
2+ 1)(25+1)

“[1,0)]j,m)

)J

(51)

1)

j.m—+1),

(52)

1),

, o (G=m)(i- _—
=L 1) = 2j(2j+1) Dljm=1)
j2_ 2
) [1,0)|j,m)
(j+m)(j+m+1) .
+\/ 2o il m).

(53)

Acting with the spin-orbit coupling operator Q on the

Clebsch-Gordan system (51)—(53), we obtain the following
eigenvalues:

jom: j. 1), (55)

Q-lji=1mj.1)=(+1Dj-Lmj1). (56)

Q-lj,msj, 1) =

Furthermore, by plugging the eigenstates (51)—(53) into the
expressions (43) that give the projectors P and R in terms
of the spin-orbit coupling operator O, we find that the
eigenstates |j, m; j, 1) span the subspace of the projector P,
while the eigenstates |j £ 1, m; j, 1) span the subspaces of
the projectors R, i.e.,

|P)=1lj,m;j. 1), [£)=[j£Lmj1). (57)

C. Gauss law constraint (LO)

Plugging the solution (7) and the perturbative expansion
(18) into the Gauss law constraint (17) we obtain, to LO in
perturbation theory,

Z’? {ij’ l} - Zr/ mm jm =0
Jj.m j.mm’
= Z’? ) =0, (58)

since the spherical harmonics Y, form an orthonormal

basis. Multiplying with J ,(Cj ) and using the definition (28) of
the projector P we find

S ) =0
=Y (Pl =o. (59)

m

Equation (59) constrains the generic form (42) of the LO

perturbations n{m, which in principle span all the three
sectors P and R..
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Because of the Gauss law constraint (59), n{m is forced to
live exclusively inside the sectors R. at all the critical
points (39)—(41). However, it receives an additional con-
tribution from the zero eigenvalue eigenstate &p of the P
sector at the critical points u, /s and u; 3.

IV. HIGHER-ORDER PERTURBATIONS

Let us now study the perturbative expansion (15)
beyond the leading order. The initial conditions for the
|

o\ = {{6xl(-")

,_.

n—

1

P
-1 p-1

{{5x

=1

:

e,kl{éx 5x1 } +
=

=
)

As before, we proceed to expand the perturbations in
spherical harmonics:

Zn’”’"r m(0.4). #"(0) =0, (62)

which, in addition to the reality condition (19) and the
property (20), obey

{Ya(0.9).Y5(0.9)} = fi,,Y,(0.9). (63)

55 {{5x

R TR SRR E PUR I L B SRR F P L WP M

(n)

perturbations ox;° and their derivatives are determined
from the initial conditions of the complete solution (15).
They all vanish at ¢t = O:

sx(0) = 55" (0) =0, n=2,3,...,  (60)

unless n = 0, 1. To obtain the equations of motion for the
perturbations, we plug the series (15) into the SO(3)
equations of motion (13). We are led to

1 n n
95 S >+€ikl{x,((0>,5x§ )}

+ [{{xl ,6x), (n— ’7} 5xk }+{{5x n=p) xk }5xk }+{{5x 5xk }xk }

5xkp 2 |2 5xk Y (61)

[
where f Zﬂ are the structure constants of the area-preserving
symmetry of the Hamiltonian (3) and a = jm, = j'n’,
and y = j”m". The structure constants fzﬁ can be computed

by means of a closed formula that is valid for all values of
the spin quantum numbers «, 3, and y. The expressions for
the structure constants f7,, ; and f%,, ; can be found in the

Appendix.

A. Next-to-leading-order perturbations

For n =2, it is easy to show that the higher-order
perturbation equations (61) become

1
Chay o)+ (e ) o }—gax?)+e,~k,{xi°>,5x§2>}

1
+ [{{xl(-o),éx,((l)},éx,((”} + {{5x§l),x,((0)}, 5x,((1)} + {{5)651),5)6,((])},)(,((0)} —l—ieikl{éx,((l), 5x;l)}], (64)

so that by using (20), (62), and (63) we arrive at

..(2
i) + o = 3T

+ “onk'lk + F( ) (65)
For simplicity, we have suppressed the spin indices j and m
and have made all time dependence implicit in (65). Notice
that the n = 2 equations (65) are just the n =1 equa-

tions (21), driven by the forcing term F>/" (7). The latter can
be written as a bilinear form:

Fizy( 1) = ﬂkaszl aﬁ’71 ) (66)

where once more we denote a = jm, = jm/, and y =

j"m” and have omitted the sums on the spatial indices k and

[

[ and the spin indices a and . The matrix of the bilinear
form K is given by

Koy = (ja)giznf;'m,ﬂ(ebakehil + €pai€oir)
1
T3 ik o (67)
where 7, = —iugJ, and we have omitted the dependence

of 71" (t) on the dimensionless time ¢ = uz. As usual, we
have also omitted the sums in the spatial indices a and b
and the spin index m in (67). In compact form, (65) can be
written as
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)4 K-HY = F®), FO =HOKHD,  (68)

Let us now discuss the role of the LO unstable modes.
The presence of unstable LO modes [i.e., having A2 < 0 in
(40)] in the forcing (67) can induce further unstable modes
at the NLO, for any spin j. The form of the structure
constants f1, ; and f3, ; [cf. (A2)=(AS5) in the Appendix]
implies that the coupling of an unstable LO mode with
Jj = 1to astable LO mode j' can destabilize all the j” = j/
modes at NLO order. Similarly, the coupling of an unstable
LO mode with j = 2 to a stable LO mode j’ can destabilize
all the j” = j/ + 1 modes at NLO order. The cascade of
perturbative instabilities extends to the higher perturbative
orders, so that all the modes at any given perturbative order
n can become unstable because of the LO instabilities at
j=1,2.

Another possible source of instabilities shows up
whenever the frequency of the external forcing F (1)
in (67) matches one of the system’s natural elgenfrequen—
cies (39)—(41). These resonances are not restricted to the
unstable critical point u; /¢ but they may also destabilize
the stable critical point u; /3 (i.e., the Myers sphere). For
example, a resonance will occur when a zero mode in the
P sector couples to a mode in the R sectors in such a way
that the resulting forcing (67) contains at least one of the
system’s natural eigenfrequencies (39)—(41). The above
discussion has to take into consideration the LO and NLO
Gauss law constraints which impose the symmetries to the
solution of the equations.

B. Gauss law constraint (NLO)

The LO constraint equation (59) implies that the initial
conditions for the velocity of any mode 7;’ must be
orthogonal to the P sector and thus it should be a linear
combination of the eigenvectors of the other two sectors
R_.. The NLO Gauss law constraint (17) reads

G2+ Y =0, (69)

since icgo) = 0. Substituting the values of xgo)

(7) and (18) we obtain

(n)

and x; ' from

uofyl {Y,m, e} —|—771’m Ljm {Yim. Yy} =0, (70)

where the sums over all the repeated indices have been
omitted as usual. Calculating the brackets by using (20) and
(63) it follows that

i

+771/m ljmf_/ m/ /Y” B —O (71)

Jm,jm

iy " (1), Y

m'm” jm'

which gives

1 1 o1l

Jm(J)< j") +nljm ljmfjm

Jjm.j'm’'

iu(]’:]iz - Oa (72)

after factoring out the spherical harmonics. This equation

implies that the initial velocity 7.](2)

;. must be a linear
combination of the R, sectors and a component that
belongs to the P sector and is given by the LO forcing
term that appears in the constraint. The latter depends on
the coupling of the initial velocity ;'7(.1)

.~ and the values of ;15”
for different spins j.

C. General solution

The general solution of the NLO perturbation equa-
tions (68) can be written as the sum of the general solution
of the homogeneous equation (24) and a special solution of
the full equation (68):

@) = H? (1) + HY (1), (73)

We have already shown that the general solution H ](12) (1) of
the homogeneous equation (24) takes the form (42). By
writing K = @3 — u3T — upQ = Q3, it is easy to see that

H}Ez)(t) can also be written as
H (1) = H?(0) cos Qot + H (0)Q5! sinQyr.  (74)

Similarly, the special solution ng)(t) takes the following
form:

t
HP (1) = Qg sin Q1) / ds cos (Qys)F?)(s)
0

— 01 cos (1) / " ds sin (Qs)FO(s).  (75)
0

Interestingly, the structure of the complete solution (75)
remains the same at all higher perturbative orders
n=2,3,..., while it turns out that the corresponding
forcing terms F(")(s) depend on the solutions of the
previous orders.

V. EXAMPLE

We now work out a simple example that demonstrates
the instability cascade phenomenon. Let us compute F; 27 at
the point ug = 1/6 and spin j” = 3, when only the LO
mode 29 = £ is turned on. Then (42) becomes

£ =& H)ljimamo- (76)

Computing the value (53) of the eigenvector |—) for j = 2
and m = 0 it is easy to show that only the following j = 2
components of ;% are nonzero:

5 \/7 t/(3V2) (77)

H(t) — ei/l,té::_7

1211 _
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] 3
g2l — g \@ etV (78)
12,0 2 1/(3v/2)
Ny =—=¢ 5 -e . (79)

It can be shown that the solution (77)—(79) satisfies both the
reality condition (19) and the LO Gauss constraint (59).
Plugging (77)—(79) into the expression (67) for the NLO
forcing term, we obtain the following nonzero components:

2
F23E — i£1 /i. e\/it/3’ (80)
5 VIn
2i82 3
F2,3,il __=> . \/51/3 81
y 5 Vi ¢ (81)
6&2
F330 = - 2. V3, 82
‘ S5V (82)

by using the analytic expressions (A3)—(AS5) for the structure
constants f7 s and the well-known angular momentum
matrices J; (in the spin-j representation). The parametric
plot of the forcing (80)—(82) can be found in Fig. 1. Because
the only nonzero components of the LO modes are (77)—(79),
we only need the following structure constants:

S R I S S /2
2,0:2,1 2,1;2,0 2,0;2,—1 2,—-1;2,0 7”’
f3,0 — 3,0 _ 6l (83)
2,1;2-1 — 2,-1;2,1 — \/’—‘

r

FIG. 1. Parametric plot of the forcing (80)—(82).

We next insert the expression for the forcing (80)—(82)
into the n = 2 perturbation equation (65) which we want to

2.3.m

solve for the mode #;>" that was metastable for n =1

[cf. Eq. (40)]. As usual, the general solution of (65) can be
cast in the following form:

nr (1) = (1) + CeV¥B, k=1,2,3,  (84)

where 77} (¢) is the general solution of the homogeneous part
(24) of (68) and is thus given by a formula of the form (42),
whereas {7, is a special solution. Plugging (84) into (65) and
using the fact that 7 (7) solves the homogeneous equa-
tion (21), we get

2 -
<§ + w%) Ci —uo(uoT iy + Qi) = fis (85)

where we have set F i” = ﬁeﬁ’/ 3 in (80)—(82) so that the
coefficients ﬂ can be directly read off from the forcing. It is
easy to work out the solution of (85):

982 3

3,41

T = =, 86
5 T (86)
o _ 92 3 )
L T Vi

278

3,0
T=— . 88
: SvVin (88)
The NLO initial conditions (60) imply
1 (0) =i (0) =0, (89)

which leads to the following set of constraints for the
solution of the homogeneous equation 7’ (¢):

iy (0) = =Gy 720(0) = =237, (90)
; V2 . V2
ey (0)=-3C5 R0 ==-3¢% (01

Based on the above, it can be shown that the solution (84)
satisfies the NLO Gauss law constraint (72) at the initial
time ¢ = 0.

The coupling of the j = 2 modes leads to a nonvanishing
forcing F f7, not only in the case j” = 3 (which we have just
treated), but also when the spin becomes j” = 1. Plugging
(77)—(79) into the expression (67) for the NLO forcing
term, we obtain the following nonzero forcing components:

32 [3
F%‘]’l‘ilzi-4—€0 oo e, (92)
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2iE2 3
Fg,l,il __ ;g o V23, (93)
2
3
F%,I.O _ _f_o ~ V2113 (94)

It is again straightforward to calculate the special solution
of (85):

2

Ll _ 29¢ ’ (95)
20v/ 61
292

1.£1

7' = — R 96

’ 20V 61 (56)
8 2

W= _555' (97)

The NLO initial conditions (60) can again be enforced by
choosing an appropriate solution 7} () of the homogeneous
equation (24).

It is interesting to take a closer look at the decomposition
of the above solutions into the three sectors P and R..
As we have already mentioned, the LO mode £2° = ¢ that
we turned on belongs to the R_ sector and corresponds to
j =2and m = 0. It is a matter of algebra to show that the
solutions (86)—(88) and (95)—(97) can be expressed in the
3 x (2j + 1)-dimensional space as follows:

9&2 3
2,=2 Lo (98)

and

2 32
Zy = ———|Fjcimeo + 57o= [jmtmeor (99
= tome Pl F 57 Ficiee (99)

where we defined the 3 x (2j 4+ 1) vectors

Ilm 3m
X X
Zl - }lym 5 Z3 = ;m . (100)
Clm 3m
Z z

Therefore the instabilities not only propagate to NLO
modes of higher angular momenta j (compared to the
LO instabilities), but also between sectors. Note however
that the magnitude of the R, instability is suppressed since
€3] = 44/¢L] and |¢1] = 21]¢L |

VI. CONCLUSIONS AND DISCUSSION

Motivated by the idea that the dynamics of the micro-
scopic degrees of freedom on the horizon of static spherically
symmetric black holes can be described by the BMN matrix

model (a highly nonlocal field theory), we study the chaotic
properties of this theory’s classical continuum limit, that is,
super M2-brane theory in the background (1)-(2). For
previous work on this topic see [21]. The solution (1)—(2)
is nothing more that the Penrose-Giiven [10,22] limit of the
maximally supersymmetric backgrounds AdS; 4 x S*7 of
11-dimensional supergravity. Because of the flux term (2),
the corresponding supermembrane theory is found to contain
both stable and unstable sectors. In the present paper we
study the NLO perturbative dynamics of classical solutions
of spherical topology in the SO(3) sector of the continuum
limit of the BMN matrix model.

We show that the LO instabilities of certain spherical
solutions (which appear exclusively in the dipole j =1
and quadrupole j = 2 sectors of multipole perturbations;
see [7]) give rise to a cascade of NLO instabilities that
extend to all multipole sectors. The transmission of
instabilities is due to the nonlinear coupling of NLO
perturbations, which is in turn induced by the infinite-
dimensional area-preserving symmetry of the membrane.
The instability cascade is further enhanced at subsequent
perturbative orders. The physical reason behind the
development of instabilities is related to the infinite-
dimensional symmetry of relativistic membranes. In other
words, the development of infinitely many thin tubes only
costs an infinitesimal amount of energy to the membrane.
These thin tubes correspond to large values of the angular
momentum quantum number j arising in the expansion of
perturbations in the multipole basis. This confirms our
expectations that the unstable solutions ultimately induce
a hedgehog structure on the membrane. In order to
regularize these instabilities one has to rely on the matrix
model truncation of the membrane (i.e., the BMN matrix
model) where the dimension of the matrices N determines
a maximum value for each j < N — 1.

Concerning the chaotic properties of BMN membranes,
the matrix model has a higher degree of nonlocality and is
therefore expected to scramble perturbations faster than the
continuous membrane (which contains a local Poisson
bracket interaction term). Another exciting aspect relating
to the development of membrane instabilities is the possibility
of topology changes that are caused by the self-interactions of
the membranes. This is a long-standing problem in the field
and is closely related to our understanding of membrane field
theory. Presently, only Euclidean-time solutions have been
shown to be able to induce topology changes in membranes
(see e.g., [23,24]). Because matrix theory is a field theory of
discrete membranes (i.e., seen as bound states of DO-branes
[13]) it stands much better chances of providing an answer to
this riddle.

A straightforward extension of our present work is the
study of NLO perturbations of the BMN membrane in the
SO(3) x SO(6) sector. The SO(6) rotating configuration
encodes the effect of higher dimensions on the 3 + 1-
dimensional fluid system.
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APPENDIX: STRUCTURE CONSTANTS

The structure constants fzﬂ of spherical harmonics that
show up in the forcing term (67) were defined in (63). It is
rather straightforward to invert (63):

W= [ B0.a.0.0. 7,000 (A

in order to obtain a closed formula for f7 , that is valid for
all the values of the quantum numbers a = jm, = j'm’
and y = j”m". In the present paper, we only need the first
few of them (see also [25]):

i'm’ . 3
lil ym = \/—‘ \/ -] + m -] tm + )5j'j5m’.m:|:17 A{,O;jm = —ium- @5”5,”%, (A2)
2 2
j’rn‘" — _3 m 5 ] —m 5 . 5m/m’ A3
2ogm = Qi+ D@j+3) 7 T\ @i+ -1 (A3)
B Gtm+1)(jEtm+2)
AR B Sy pi 2 . S
Poim = +\gg {(J F 2m) \/ Qi+ 1)2j+3) 9
JFm—=1)( F m)
+2m+1 PPN W I Ad
] m + ) \/ 2]+ (2]_1) - 1:| 'm' ,m+1 ( )
. 15 GFmGEm+1)(Em+2)(j+m+3)
f2i2]m =Zi\/ - . . 5j/.j+l
8x (2j+1)(2j +3)
GFmGFm=1D)GFm=2)(jEtm+1)
5./. .5 / . AS
\/ (2J+ 1)(21_ 1) JJj=1 m',m+2 ( )
|
Equation (A1) implies that the structure constants fflﬂ = +1<j <[j+7]-1, (A7)

obey the following sum rules:

m+m =m", j+j +j =odd, (A6)
where the second equation is obtained by setting (6, ¢) —
(= 0,¢ + =) in (Al). In addition j, j’ and j” obey triangle
inequalities, e.g.,

and its cyclic permutations hold. For the purposes of
our work, this implies that when modes n'/" are turned

on up to jy. the forcing term vanishes for F2/'"
for j" 2 2jmax-

[1] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy
Phys. 10 (2008) 065.

[2] T. Damour, Black hole eddy currents, Phys. Rev. D 18, 3598
(1978).

[3] K. S. Thorne, R. H. Price, and D. A. Macdonald, Black Holes:
The Membrane Paradigm (Yale University Press, 1986).

[4] J. Hoppe, Quantum theory of a massless relativistic surface
and a two-dimensional bound state problem, Ph.D. thesis,
Massachusetts Institute of Technology, 1982.

[5] K. Dasgupta, M. M. Sheikh-Jabbari, and M. Van Raamsdonk,
Matrix perturbation theory for M-theory on a pp-wave, J.
High Energy Phys. 05 (2002) 056.

106002-10


https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1103/PhysRevD.18.3598
https://doi.org/10.1103/PhysRevD.18.3598
https://doi.org/10.1088/1126-6708/2002/05/056
https://doi.org/10.1088/1126-6708/2002/05/056

CASCADE OF INSTABILITIES IN THE CLASSICAL LIMIT ...

PHYS. REV. D 104, 106002 (2021)

[6] M. Axenides, E. Floratos, and G. Linardopoulos, M2-brane
dynamics in the classical limit of the BMN matrix model,
Phys. Lett. B 773, 265 (2017).

[7]1 M. Axenides, E. Floratos, and G. Linardopoulos, Multipole
stability of spinning M2 branes in the classical limit of the
BMN matrix model, Phys. Rev. D 97, 126019 (2018).

[8] M. Axenides, E. Floratos, D. Katsinis, and G. Linardopou-
los, M-Theory as a Dynamical System Generator,
arXiv:2007.07028 [Springer Proceedings in Complexity
(to be published)].

[9] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge University Press, Cambridge, England,
1995).

[10] R. Penrose, Any space-time has a plane wave as a limit, in
Differential Geometry and Relativity. A Volume in Honour
of André Lichnerowicz on His 60th Birthday, edited by M.
Cahen and M. Flato, Mathematical Physics and Applied
Mathematics Vol. 3 (Springer, Dordrecht, 1976), p. 271.

[11] J. M. Figueroa-O’Farrill and G. Papadopoulos, Maximally
supersymmetric solutions of ten-dimensional and eleven-
dimensional supergravities, J. High Energy Phys. 03
(2003) 048.

[12] D. Berenstein, J. Maldacena, and H. Nastase, Strings in flat
space and pp waves from A/ = 4 super Yang-Mills, J. High
Energy Phys. 04 (2002) 013.

[13] T. Banks, W. Fischler, S.H. Shenker, and L. Susskind,
M-theory as a matrix model: A conjecture, Phys. Rev. D 55,
5112 (1997).

[14] R. C. Myers, Dielectric branes, J. High Energy Phys. 12
(1999) 022.

[15] T. Harmark and K.G. Savvidy, Ramond-Ramond field
radiation from rotating ellipsoidal membranes, Nucl. Phys.
B585, 567 (2000).

[16] P. A. Collins and R.W. Tucker, Classical and quantum
mechanics of free relativistic membranes, Nucl. Phys. B112,
150 (1976).

[17] K. Efstathiou and D. Sadovskii, Perturbations of the 1:1:1
resonance with tetrahedral symmetry: A three degree of
freedom analogue of the two degree of freedom Hénon-
Heiles Hamiltonian, Nonlinearity 17, 415 (2004).

[18] S. Lefschetz, Differential Equations: Geometric Theory
(Wiley, New York, 1957).

[19] M. Axenides, E.G. Floratos, and L. Perivolaropoulos,
Quadrupole instabilities of relativistic rotating membranes,
Phys. Rev. D 64, 107901 (2001).

[20] M. E. Rose, Elementary Theory of Angular Momentum
(Reidel, Dordrecht, 1957).

[21] Y. Asano, D. Kawai, and K. Yoshida, Chaos in the BMN
matrix model, J. High Energy Phys. 06 (2015) 191.

[22] R. Giiven, Plane-wave limits and T-duality, Phys. Lett. B
482, 255 (2000).

[23] D. Berenstein, E. Dzienkowski, and R. Lashof-Regas,
Spinning the fuzzy sphere, J. High Energy Phys. 08
(2015) 134.

[24] S. Kovacs, Y. Sato, and H. Shimada, On membrane
interactions and a three-dimensional analog of Riemann
surfaces, J. High Energy Phys. 02 (2016) 050.

[25] T. A. Arakelian and G. K. Savvidy, Geometry of a group of
area-preserving diffeomorphisms, Phys. Lett. B 223, 41
(1989).

106002-11


https://doi.org/10.1016/j.physletb.2017.08.036
https://doi.org/10.1103/PhysRevD.97.126019
https://arXiv.org/abs/2007.07028
https://doi.org/10.1088/1126-6708/2003/03/048
https://doi.org/10.1088/1126-6708/2003/03/048
https://doi.org/10.1088/1126-6708/2002/04/013
https://doi.org/10.1088/1126-6708/2002/04/013
https://doi.org/10.1103/PhysRevD.55.5112
https://doi.org/10.1103/PhysRevD.55.5112
https://doi.org/10.1088/1126-6708/1999/12/022
https://doi.org/10.1088/1126-6708/1999/12/022
https://doi.org/10.1016/S0550-3213(00)00333-3
https://doi.org/10.1016/S0550-3213(00)00333-3
https://doi.org/10.1016/0550-3213(76)90493-4
https://doi.org/10.1016/0550-3213(76)90493-4
https://doi.org/10.1088/0951-7715/17/2/003
https://doi.org/10.1103/PhysRevD.64.107901
https://doi.org/10.1007/JHEP06(2015)191
https://doi.org/10.1016/S0370-2693(00)00517-7
https://doi.org/10.1016/S0370-2693(00)00517-7
https://doi.org/10.1007/JHEP08(2015)134
https://doi.org/10.1007/JHEP08(2015)134
https://doi.org/10.1007/JHEP02(2016)050
https://doi.org/10.1016/0370-2693(89)90916-7
https://doi.org/10.1016/0370-2693(89)90916-7

