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We show that in some kink-antikink collisions, sphalerons, i.e., unstable static solutions—rather than the
asymptotic free soliton states—can be the source of the internal degrees of freedom (normal modes), which
trigger the resonance phenomenon responsible for the fractal structure in the final state formation.
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I. INTRODUCTION

Nonlinear field theories supporting kinks in one plus one
dimension, and their embeddings in higher dimensions
called defects, have a wide range of applications, from
protein folding and optical fibers to particle physics and
cosmology. Surprisingly, the scattering of kinks reveals a
fascinating and rather complex behavior [1–3], despite its
conceptual simplicity. The best example is the fractal
structure observed in the final state formation in kink-
antikink (KAK) scattering in nonintegrable scalar field
theories like the ϕ4 model [4–8] where, depending on the
initial velocity vi of the colliding solitons, two main
channels occur: (1) annihilation to the vacuum via the
formation of quasiperiodic, slowly decaying states
(“bions”) or (2) the reappearance of free kinks after a
few “bounces.” Both the regions where a bion is created
(bion chimneys) and the n-bounce regions (bounce win-
dows) show a fractal pattern.
Qualitatively, the existence of the fractal structure is

attributed to the so-called “resonance phenomenon”
[4,6,8], which couples the kinetic degrees of freedom
(d.o.f.) of a soliton with the internal ones. The kinetic
(translational) d.o.f. are obviously related to the lightest
excitation of the soliton, its zero mode. The internal d.o.f.
are typically the massive normal (or quasinormal [9])
modes of the asymptotic states, i.e., of the free, infinitely
separated solitons. During a collision, the energy that is
initially stored in the kinetic d.o.f. of the incoming solitons
(and possibly also in initially exited massive modes) may
be transferred temporarily to the internal d.o.f., which
results in a complicated pattern of final states.

Here it is assumed that the normal modes take the fixed
form resulting from the asymptotic kink and antikink
during the whole scattering, and no deformation due to
the presence of the collision partner is taken into account.
We say that the normal modes are “frozen.” The reason is
that for KAK configurations with a finite separation no
static solution with a well-defined linear problem (i.e.,
well-defined normal modes) is available in the ϕ4 model.
For many years it was believed that the nonintegrable
mechanical system resulting from a “collective coordinate”
(CC) approximation, where only the relative KAK sepa-
ration sðtÞ and the two normal-mode amplitudes A1ðtÞ and
A2ðtÞ are promoted to dynamical variables, allows for a
reliable quantitative description of KAK scattering and the
resonance mechanism. A typographical error [8] in the
original paper [4], which propagated through the sub-
sequent literature, however, invalidated those conclusions.
Only very recently it has been shown that the CC approach
allows for a reliable description of KAK scattering in the
reflection-symmetric case A≡ A1 ¼ −A2 [10]. Here the
two crucial steps are (i) the removal of a coordinate
singularity in the “moduli space” spanned by the CC
and (ii) a judicious choice of the initial value of the
amplitude A, which must be inferred from the one-kink
sector. The same resonance mechanism is assumed to be
responsible for the existence of fractal structures also in
many other models [11–20].
In contrast, in some theories there exist static KAK

configurations solving the static Euler-Lagrange equations
for arbitrary KAK separation, implying the existence of (at
least) a one-parameter family of static KAK solutions,
parametrized, e.g., by the separation parameter s. In this
case, each static KAK solution has its own linear problem,
and the resulting normal modes and their frequencies, in
general, vary with s. Adiabatic low-energy KAK scattering
may be described by an effective motion on the subspace
spanned by s, but for more excited initial conditions, the
normal modes and their variation with s play a crucial role.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 105022 (2021)

2470-0010=2021=104(10)=105022(8) 105022-1 Published by the American Physical Society

https://orcid.org/0000-0002-9586-9483
https://orcid.org/0000-0001-8469-6786
https://orcid.org/0000-0001-6821-9904
https://orcid.org/0000-0003-4280-7868
https://orcid.org/0000-0002-0353-4812
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.105022&domain=pdf&date_stamp=2021-11-30
https://doi.org/10.1103/PhysRevD.104.105022
https://doi.org/10.1103/PhysRevD.104.105022
https://doi.org/10.1103/PhysRevD.104.105022
https://doi.org/10.1103/PhysRevD.104.105022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In particular, whenever a discrete normal-mode frequency
disappears into the continuum at a particular value sSW of s,
this has a huge impact on the scattering process (spectral
wall phenomenon [21–23]). In an effective CC description,
it is mandatory to include the full “dynamical” normal
modes, i.e., their variation with s. Any restriction to the
frozen normal modes completely misses the spectral walls.
In this paper, we consider an intermediate situation,

where in addition to the free infinitely separated solitons
there exists a “sphaleron” [24–26], i.e., an unstable static
KAK solution at a certain finite separation sb. It turns out
that the lowest normal mode of this unstable solution can be
the main factor governing the dynamics of KAK collisions
in some cases. Specifically, this normal mode may act as
the internal d.o.f. capable of storing energy and triggering
the fractal structure of final states. Thus, we identify a novel
source of internal modes that can give rise to the fractal
structure in kink-antikink collisions. They do not originate
from the asymptotic free soliton states but rather from a
sphaleron solution. This result presents another manifes-
tation of the importance of the temporary form of the field
and, therefore, of the temporary properties of the related
normal modes, in KAK collisions. More generally, our
results demonstrate the high significance of sphalerons in
the dynamics of topological solitons.

II. MODEL WITH UNSTABLE SOLUTION

The family of models that we consider represent a
modification of ϕ4 theory,

L½ϕ; σ; ϵ� ¼ ð1 − ϵ2ÞL½ϕ; σ� þ ϵ2L½ϕ�; ð1Þ

where

L½ϕ� ¼ 1

2

Z
∞

−∞
dx½ϕ2

t − ϕ2
x − ð1 − ϕ2Þ2� ð2Þ

is the usual ϕ4 model, while

L½ϕ; σ� ¼
Z

∞

−∞
dx

�
1

2
ϕ2
t −

1

2
ðϕx þ σð1 − ϕ2ÞÞ2

�
ð3Þ

is a Bogomol’nyi-Prasad-Sommerfield (BPS)-impurity
modification of the ϕ4 model, where the impurity (back-
ground field) σ ¼ tanhðxÞ [22,27] and ϵ ∈ ½0; 1�. Here BPS
refers to the fact that the static field equations can be
reduced to first-order (“BPS”) equations, which possess a
one-parameter family of KAK solutions, see Eq. (4) below.
We choose the particular model (1) because it has an

unstable static solution—a sphaleron—for any ϵ ∈ ð0; 1Þ.
Moreover, it allows one to study the competition between
the standard mechanism, where the frozen shape mode of
the free soliton takes part in the resonant phenomenon and
the new mechanism due to the unstable static solution. The
former occurs as ϵ → 1, as in the limit ϵ ¼ 1 we recover ϕ4

theory, while the latter dominates for ϵ2 ≲ 0.4.
To understand the structure of solutions, let us begin with

the ϵ ¼ 0 limit, where there are infinitely many static,
energetically equivalent solutions [22]

ϕðx;ϕ0Þ ¼
ð1þ ϕ0Þ − ð1 − ϕ0Þ cosh2 x
ð1þ ϕ0Þ þ ð1 − ϕ0Þ cosh2 x

: ð4Þ

Their energy is set to zero. They are parametrized by
ϕ0 ∈ ð−∞; 1Þ, which coincides with the value of the field at
the origin and describes a kink and antikink at arbitrary
distance [28]. For example, for ϕ0 → 1 we arrive at the
infinitely separated KAK pair, while for ϕ0 ¼ −1 the
solitons lie on top of each other, giving the ϕ ¼ −1
vacuum. This degeneracy of the KAK solutions (4) is
lifted if ϵ ≠ 0 by the following static (potential) energy
emerging from (2):

Vðϕ0Þ ¼ ϵ2
Z

dx
1

2
ð½ϕxðx;ϕ0Þ�2 þ ½1 − ϕ2ðx;ϕ0Þ�2Þ: ð5Þ

Now, the ground state is ϕ ¼ −1 with V ¼ 0, while the
infinitely separated KAK pair is a local minimum, where
V ¼ 8=3. Importantly, there is also a local maximum,
occurring at ϕb

0 ≈ 0.89167, which suggests the existence
of an unstable solution, a sphaleron, see Fig. 1. Indeed,
we find this solution numerically for any ϵ by solving
the static Euler-Lagrange (EL) equation resulting from (1),

FIG. 1. Left: the effective potential Vðϕ0Þ. Right: the sphaleron for various ϵ.
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see Fig. 1. For ϵ2 ≲ 0.4, they are very well approximated by
the exact solution ϕðx;ϕb

0Þ of Eq. (4).
Concerning the spectrum of small perturbations, we first

observe that the continuum threshold is ϵ independent,
ω2
c ¼ 4 [29]. As indicated, there are two configurations,

i.e., (asymptotic) static solutions, with a well-defined linear
problem, namely, the asymptotic KAK pair and the
sphaleron. The asymptotic state is always an infinitely
separated ϕ4 KAK pair, separated by the vacuum þ1,

ϕðxÞ ¼ tanhðxþ x0Þ − tanhðx − x0Þ − 1; ð6Þ

where x0 → ∞. Therefore, each soliton has one massive
normal mode, i.e., the “shape mode,” ηðxÞ ¼ sinhðx�
x0Þ= cosh2ðx� x0Þ with frequency ω2

shape ¼ 3. The vacuum
þ1 also provides two normalmodes located at the origin, as a
consequence of the presence of the impurity σ. Their
frequencies grow with ϵ. Specifically, ω2

impðnÞ ¼ 4 − 1=

4ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 24ϵ2

p
− 1 − 2nÞ2, n ¼ 0, 1. They disappear into

the continuum spectrum at ϵ2 ¼ 1 and ϵ2 ¼ 2=3 for n ¼ 0, 1,
respectively, as it must be (they must be absent in the no-
impurity limit ϵ → 1). The sphaleron solution, on the other

hand, contributes with an obvious unstable mode with
ω2
0 < 0 and several positive frequency normal modes. In

Table I we list the frequency ω2 of the most important, first
even normal mode for several ϵ.

III. FLOW OF THE FRACTAL STRUCTURE

Now we collide the solitons. We choose a largely
separated KAK pair as our initial configuration, which
are boosted toward each other

ϕinðx;tÞ¼ tanhðγðx−vitþx0ÞÞ− tanhðγðxþvit−x0ÞÞ−1:

ð7Þ

Here, 2x0 is the separation distance, vi is the initial velocity
of the solitons, and γ ¼ ð1 − v2i Þ−1=2. This is numerically
evolved in the EL equation for ϵ ∈ ½0; 1�. For each model
(each ϵ), we vary the initial velocity vi from 0 to 0.3. In
Fig. 2, we plot the value of the field at the origin ϕð0; tÞ
after a large time t� ¼ 550þ 40=vi as a function of both
the initial velocity vi and ϵ. This shows how the fractal
structure in the final state formation changes with ϵ.
In Fig. 2, the blue regions correspond to the case where

the kink and antikink reappear in the final state and
therefore represent bounce windows. For example, the
big blue region is one-bounce scattering. There is also a
zero-bounce window—a blue region (for very small vin,
below the multicolor region) related to an elastic process
resulting from the existence of the unstable static solution
and the corresponding local energy maximum which,
during the evolution, acts as a kind of barrier. Initially
separated solitons must have enough kinetic energy to go

TABLE I. Comparison of the fitted resonant frequency ωres
with the first even normal-mode frequency ω2 of the sphaleron.

ϵ2 ωres n0 χ2 ω2

0.2 1.553� 0.006 36.09� 0.15 0.086695 1.558
0.3 1.572� 0.005 15.21� 0.06 0.057051 1.582
0.4 1.585� 0.006 8.22� 0.05 0.104261 1.609

FIG. 2. Flow of the fractal structure with ϵ. The dashed line represents ṽcrit.
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through this point. Therefore, there exists a critical velocity
ṽcrit below which the kinks cannot pass over the sphaleron.
The line ṽcrit can be found from the energy conservation
law. As ϵ → 1, the sphaleron looks like a kink-antikink pair
with the intersoliton distance going to infinity. Thus, its
impact on the collision becomes immaterial, leading to a
vanishing ṽcrit as we flow to the ϕ4 model.
Next, the multicolor (green, yellow, and brown) regions

correspond to bion chimneys in which a bion, a sort of
quasioscillating state, decays into the vacuum via the

emission of radiation. Typically, one defines another critical
initial velocity, vcrit, at which the fractal structure accu-
mulates, while above vcrit only one-bounce scattering is
observed. In Fig. 2, this velocity is defined by the border
between the large blue and multicolor regions.
The two-bounce windows, bion chimneys, and critical

velocities are clearly visible in Fig. 3, where we display the
time dependence of the value of the field at the origin,ϕð0; tÞ,
as a function of the initial velocity vi for ϵ2 ¼ 0.2 and 0.4.
They are qualitatively similar to ϕ4 theory ðϵ ¼ 1Þ, although

FIG. 3. Structure of the final states for ϵ2 ¼ 0.2 (upper) and 0.4 (lower).
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the range of vi at which the fractal structure exists strongly
decreases as ϵ takes smaller values. Specifically, vcrit
decreases if ϵ → 0. One may observe that there are, in fact,
two regimes: (i) a linear decrease of vcrit for 0.5≲ ϵ2 ≤ 1 and
(ii) a much slower decrease of vcrit for 0 ≤ ϵ2 ≲ 0.4. These
two regimes reflect two different origins of the resonance
phenomenon.

IV. ORIGIN OF THE RESONANCE PHENOMENON

Let us now concentrate on the second regime, where
ϵ2 ≲ 0.4 and the sphaleron is very well approximated by the
exact configuration ϕðx;ϕb

0Þ.
To understand the bouncing windows in Fig. 3, we take a

closer look at the time dependence of the field at the origin
ϕðx ¼ 0; tÞ. We only plot the nontrivial, fractal regime of
the KAK collision. For velocities smaller or larger than
those in the plot, we observe only elastic or one-bounce
backscattering, respectively. In Fig. 4, we show represen-
tative trajectories ϕðx ¼ 0; tÞ for the ϵ2 ¼ 0.2 case. The
black curve shows KAK scattering with initial velocity
vi ¼ 0.0173562, that is, below the critical velocity ṽcrit. The
result is the elastic (no-bounce) reflection at the sphaleron
(denoted as the dashed line). As the velocity increases, we
enter the region of annihilation via bion formation. Indeed,
for vi ¼ 0.0173564 (red curve), the trajectory passes the
unstable solution. Then, it is reflected at the repulsive core
[repulsive interaction due to the potential (5)], which
excites a bound mode. However, the reflected solution
has too little energy to climb once again through the
sphaleron. As a result, the KAK solution oscillates between
the core and the unstable maximum, slowly decaying into
the ϕ ¼ −1 vacuum. For vi ¼ 0.0174545, we explore one
of the two-bounce windows. The corresponding trajectory
(blue curve) bounces twice at the repulsive core and once at

the unstable maximum. Each bouncing at the core affects
the amplitude of the bound mode, which finally allows the
trajectory to pass the unstable barrier. Thus, in the final
state, we have a kink-antikink pair. For vi ¼ 0.017555 and
vi ¼ 0.0174524 (green and purple curves, respectively), we
have again an annihilation regime via a sequence of
reflections between the repulsive core and the unstable
maximum. Note that, for the purple trajectory, the solution
stays at the unstable maximum for a relatively long time,
forming a stationary oscillating state. In fact, this curve
represents a situation very close to the border between
annihilation and two-bounce windows. For example, as
we very slightly increase the velocity to vi ¼ 0.0175126
(orange curve), the stationary solution chooses to pass the
maximum, and the two-bounce solution emerges. We have
seen that in the bounce windows the trajectories spend a
long time oscillating on the sphaleron until they fall on one
side or another. This choice is synchronized with the phase
of the oscillations. The same pattern repeats for bigger
ϵ2 ≲ 0.4. To conclude, the fractal structure in this regime is
triggered by the sphaleron.
This is further confirmed by the observation that the

oscillation frequency is the frequency of a bound mode of
the sphaleron, which significantly differs from the fre-
quency of the shape mode, ωshape ¼

ffiffiffi
3

p
, of the free

solitons. Indeed, let us now consider solutions that form
a long-living quasistationary state, see Fig. 5, where we plot
the time dependence of the field at the origin for ϵ2 ¼ 0.4.
Each panel shows a quasistationary solution occurring in a
two-bounce window, obtained from the initial configura-
tion (7) with a particular vi. As vi grows, the number of
oscillations also grows, which corresponds to a higher-
order (i.e., occurring at larger velocities) two-bounce
window. Using these solutions, we measure the window
duration T, which we define as the time that passed

FIG. 4. Bounces from the unstable solution for ϵ2 ¼ 0.2.
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between two subsequent bounces indicated by the pro-
nounced local minima of ϕð0; tÞ (the downward-directed
peaks in Fig. 5). In Fig. 6, we show the dependence of T on
the relative window number n (the first window we examine
is enumerated as n ¼ 1, etc.) and fit a linear function

T ¼ 2π

ωres
ðnþ n0Þ; ð8Þ

where n0 is a positive integer. We repeat this procedure for
ϵ2 ¼ 0.2 and ϵ2 ¼ 0.3. In Table I, we present the obtained
resonant frequency ωres which, for sufficiently small ϵ, is
exactly the frequency of the first normal mode of the
sphaleron. As ϵ grows, the discrepancy as well as the fitting
errors andn th χ2 increase. This suggests that, asn th ϵ grows,
the role of the shapemodes of the free solitons becomesmore
important. To conclude, in the regime of small ϵ, the duration
of a two-bounce solution in the nth window is related to a

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Examples of quasistationary solutions in two-bounce windows for ϵ2 ¼ 0.4 and different values of the initial velocity: (a)
v ¼ 0.02257, (b) v ¼ 0.02817, (c) v ¼ 0.03145, (d) v ¼ 0.03353, (e) v ¼ 0.03494, (f) v ¼ 0.03598, (g) v ¼ 0.03673, (h) v ¼ 0.03723,
and (i) v ¼ 0.03769.

FIG. 6. Duration of two-bounce windows Tn vs relative window number n for ϵ2 ¼ 0.2, 0.3, 0.4, together with the linear fit.
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boundmode excited on the unstable solution and has nothing
to do with a bound mode of the free (anti)kink.
In the regime where ϵ → 1, the well-known situation

occurs. Namely, the free solitons provide the internal modes
that enter into the resonance phenomenon, as very recently
proved in [10]. In the intermediate regime, both sources of
the internal modes contribute, rendering the analysis quite
involved. This regime requires further studies.

V. SUMMARY

In this work, we have shown that the internal mode
participating in the resonance phenomenon, which stands
behind the fractal structures in the formation of the final state
in KAK collisions, may have a completely different origin
than usually assumed. In particular, such a mode can be
provided by an unstable static solution, a sphaleron, rather
than the stable, free single (anti)kink solution. We want to
emphasize that the important property of the specific
example we chose is the existence of the sphaleron and
not the presence of the impurity. The impurity model just
provides a particularly simple realization of this mechanism.
Our results also indicate that the full understanding of

soliton dynamics cannot be achieved only in terms of the
asymptotic states, i.e., free solitons and their excitations
[30], even though such a frozen approach works well in
many cases, see, e.g., [10]. On the contrary, the temporary
properties of the field can play the most prominent role and
can, in fact, govern the KAK scattering. Obviously, this
leads to an increased complexity of soliton dynamics and
should result in the discovery of fractal structures in
previously unexpected situations, e.g., in theories where
the asymptotic states do not host normal modes. The
importance of transient, temporary states and their normal
modes for KAK scattering was already emphasized in [31]
for the ϕ6 model, although no unstable solution was
available in that case.
Moreover, our results explicitly show the high relevance

of sphaleron solutions in the nonlinear dynamics of kinks.

An important role of sphalerons in the dynamics of non-
linear field theories has been conjectured since their
discovery. An explicit demonstration, however, is, in
general, difficult because of the complex nature of time-
dependent problems in those theories. We would like to
remark that unstable kinks (or domain walls) are common
in models with two (and more) scalar fields as, e.g., the
Montonen-Sarker-Trullinger-Bishop model [32–34]. They
also frequently exist in kink models with background
fields where, at some point, the attractive force of a
KAK pair can be compensated by external fields [35] or
by the presence of boundaries [36,37]. Interestingly, they
have been recently found in a model with a higher-order
derivative term [38].
Finally, there may be some similarities between KAK

scattering via a sphaleron and soliton collisions in models
with a false vacuum [39,40], which also is an unstable field
configuration.
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