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Motivated by the fact that the null shell of a collapsing black hole can be described by a perfectly reflecting
accelerating mirror, we investigate an extension of this model to mirror semitransparency and derive a general
implicit expression for the corresponding Bogolyubov coefficients. Then, we turn this into an explicit
analytical form by focusing on mirrors that are accelerated via an impulsive force. From the so-obtained
Bogolyubov coefficients we derive the particle production. Finally, we realize the field coming from the left-
past spacetime region, passing through the semitransparent moving mirror and ending up to the right-future
spacetime region as undergoing the action of a Gaussian quantum channel. We study the transmission and
noisy generation properties of this channel, relating them to the Bogolyubov coefficients of the mirror’s
motion, through which we evaluate capacities in transmitting classical and quantum information.
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I. INTRODUCTION

The dynamical Casimir effect [1] is the general model
encompassing the gravitational analog model of scalar
particle creation by a single perfectly reflecting moving
mirror [2–4]. The usual approach to the analog is to assume
a prescribed trajectory that fulfills given physical require-
ments and compute the resulting radiative measures [5–10].
A key theoretical success of the dynamical Casimir effect
has been the demonstration that accelerated point mirrors
disturb the quantum vacuum via a nonzero Bogolyubov
transformation and renormalized stress tensor, resulting in
principal outputs: particle production, energy flux and
entanglement (see e.g., [11–17]). To reconcile the usual
divergent stress tensor, point-splitting regularization is
used to construct meaningful finite results consistent with
particle production (e.g., [18,19]). In this prescription, it is
found that the particle production and energy flux are a
result of the mirror’s acceleration and jerk, respectively
[20,21]. The entropy associated with the moving mirror
has motivated investigations into thermodynamic puzzles
(see e.g., [22,23]) and quantum information issues

(see e.g., [24–26]). Efforts are under way to directly1

measure moving mirror radiation [28,29].
Recently, perfectly reflecting mirror solutions in (1þ 1)

dimensions have been found that demonstrate unexpected
resemblances to strong gravitational systems in (3þ 1)
dimensions. Particularly, (1þ 1)-dimension mirrors could
emulate the radiation provided by accelerating boundaries
in (3þ 1) dimensions in terms of particle production
and radiated energy. A typical example of the emulated
(3þ 1)-dimension radiation is given by objects undergoing
a gravitational collapse into a black hole, leading to
Hawking radiation. Currently, analogy between mirrors
and well-known spacetimes, e.g., Schwarzschild [5],
Reissner-Nordström [30], Kerr [8], and de Sitter/AdS
has been found [10].
Nonthermal or quasithermal perfectly reflecting solu-

tions closely characterize other well-known curved space-
time end states, including extremal black holes (asymptotic
uniformly accelerated mirrors [8,31–34]), black hole rem-
nants (asymptotic constant-velocity mirrors [35–40]) and
complete black hole evaporation (asymptotic zero-velocity
mirrors [6,13,15,25,41–43]). However, it is worth saying
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1A superconducting quantum interference device can act as
moving mirrors whereas the dynamical Casimir effect can be
measured in the case of a Bose-Einstein condensate, see the
review [27].
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that the reduction from a (3þ 1)-dimensional spacetime to
a (1þ 1)-dimensional spacetime does not yield a confor-
mally invariant action. For example, starting from a
massless (3þ 1)-dimensional theory in the curved back-
ground of spherically symmetric Schwarzschild geometry,
transversal (angular) momenta will effectively induce a
nonzero mass term in the reduced (1þ 1)-dimensional
theory. Hence, the (1þ 1)-dimensional spacetime we are
going to deal with does not aim to faithfully represent the
(3þ 1)-dimensional system.2

On the other hand, generalizing Bogolyubov coefficients
in (3þ 1)-dimensional theory has so far been intractable.
Consequently, attempts toward particle production analysis
in (3þ 1)-dimensional spacetime would be rather chal-
lenging. In contrast, despite impressive progress over the
past half century [27], the moving mirror model is still
evolving. The extension to realistic conditions for partially
transmitting mirrors has had success in generalizing the
specialized case of perfectly reflecting mirrors which often
possess infrared divergences [45–50]. Semitransparent
mirrors can also be used to simulate a null-shell collapse
to form a black hole and provide new insights in determin-
ing the physics of particle production [51,52].
Considering semitransparent mirrors, we provide a more

realistic case for the dynamical Casimir effect since, in real
mirrors, perfect reflection is only an approximation valid for
a small range of frequencies. For the black hole-mirror
analogy, perfect reflection models the regularity condition at
the center of the collapsing ball r ¼ 0, where r is the radial
coordinate in (3þ 1)-dimensional spacetime.3 This condi-
tion says that the field vanishes at r ¼ 0 because no field can
exist behind r < 0, as the coordinate itself is defined only for
r ≥ 0. The semitransparency of the mirror stresses out this
condition: this may seem unphysical. However, in important
and interesting contexts where it becomes impossible to
impose regularity, say e.g., four-dimensional Schwarzschild
spacetime with Eddington-Finkelstein coordinates such
that r ¼ 0 is a spacelike curvature singularity [see e.g.,
Eq. (5.137) of Ref. [20]], perfect reflection might indeed
need to be relaxed. For this reason, there is good physical
motivation to study semitransparent moving mirrors with
respect to black hole radiation.
Another intriguing issue is the interplay between mirrors

and quantum information theory. A mirror can be seen as
a fundamental tool to model a quantum communication
channel. Since the relation between input and output modes
through a mirror is linear, it actually realizes a bosonic
Gaussian channel. In this perspective, the mirror is however
always considered at rest. Only recently quantum channels

arising from the reflection of a one-mode bosonic input
upon a perfectly reflecting moving mirror have been
characterized [26]. It seems then quite natural to investigate
the information transmission capabilities of quantum chan-
nels arising in the broader context of semitransparent
moving mirrors. This would allow us to also explore the
information capabilities across the null shell of a collapsing
black hole.
In this paper we investigate the particle production

from a semitransparent moving mirror, obtaining analytical
expressions of Bogolyubov coefficients. To do this, we
consider a very short acceleration period compared with
the wavelength of the produced particles, namely we
focus on impulsive accelerated semitransparent mirrors.
Consequently, we obtain a finite spectrum of the radiated
particles. Then, we investigate the transmission of a signal,
carried by the field, through a semitransparent moving
mirror. The above mentioned spectrum permits to under-
stand if the mirror motion can improve the quality of the
signal transmission, or if it only creates additional noise,
compared with the static case. Actually, we shall realize the
field coming from the left-past spacetime region, passing
through the semitransparent moving mirror and ending up
to the right-future spacetime region as undergoing the
action of a Gaussian quantum channel, obtaining an
average transmission coefficient, τ, and an average number
of noisy particles created, n̄. For a mirror with a short
acceleration period we find τ < 1 and n̄ ¼ 0, yielding a
beam splitter bosonic channel. Therefore, an exact expres-
sion of the classical and quantum capacity is provided. The
most interesting property arising from this line of inves-
tigation is that, for each frequency of the input signal, τ is
maximized when the final speed of the mirror is equal to a
critical speed, which is different from the speed of light.
The paper is organized in the following: in Sec. II we

provide the general expressions for Bogolyubov coefficients
for semitransparent moving mirrors, assuming the trajectory
of the mirror starting from timelike past and ending at
timelike future in proper null coordinates. In Sec. III we
focus on trajectories which have a finite acceleration period
leading to analytic expressions when this period is very
small. In Sec. IV we show that the transmission of a signal
through a semitransparent moving mirror corresponds to the
transmission through a bosonic Gaussian quantum channel,
following the same procedure used in Ref. [26]. Finally,
in Sec. V we provide an exact expression for the classical
and quantum capacity of the quantum channel created by an
impulsive accelerated mirror. Throughout we use natural
units, namely ℏ ¼ c ¼ 1.

II. BOGOLYUBOV COEFFICIENTS
FOR MOVING MIRRORS WITH PROPER

NULL COORDINATES

In this section we propose a general, though implicit,
expression for the Bogolyubov coefficients relating input

2In the mirror framework, one direct and precise connection
that holds in both dimensional contexts, (3þ 1)-dimensions and
(1þ 1) dimensions, is the Lorentz invariant power as demon-
strated in Ref. [44].

3We remind that the analogy occurs between (1þ 1)-dimension
mirrors and (3þ 1)-dimension collapsing balls or shells.
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(in) and output (out) modes in the presence of a semi-
transparent moving mirror. These coefficients give infor-
mation about the spectrum of particles produced by the
mirror and will be at the heart of the communication
properties of the mirror.
We work on a ð1þ 1ÞD spacetime, which can be

compactly portrayed through Penrose diagrams, as in Fig. 1.
As stressed in the Introduction, the (3þ 1)-dimensional

case is more realistic, even if very harsh to study analyti-
cally. Nevertheless, the (1þ 1)-dimension results provide a
suitable matching with theoretical expectations in (3þ 1)-
dimensional spacetimes, e.g., recovering the Hawking
radiation and/or obtaining the dynamical Casimir effect
when the mirror is very large. Consequently, the next
results are thought to hold a relevant guidance for (3þ 1)-
dimensional spacetimes.
There, i− and iþ represent timelike past and future

infinities, respectively. The null surfaces J �
R=L are instead

the boundaries of the Penrose diagram. Since only massless
scalar particles will be considered as input and output, the
input mode should necessarily come from a past null-like
surface J −

R=L, whereas the output mode should end up at a

future null-like surface J �
R=L. To this end, we simply

introduce the null coordinates u ¼ t − x and v ¼ tþ x.
The trajectory of a mirror is usually expressed via null
coordinates through the function pðuÞ ≔ vmirror and its
inverse fðvÞ ≔ umirror, e.g., [3]. To guarantee the mirror

does not evolve faster than light both pðuÞ and fðvÞ are
increasing monotonic functions.
As anticipated, we only consider a massless scalar field

Φ (since it describes the vast majority of radiation fields)
without self-interaction. The Lagrangian density for this
field interacting with a static mirror at the position xm is
described by [51]

L ¼ 1

2
∂μΦ∂μΦþ ηΦδðx − xmÞ: ð1Þ

From this, one can obtain the following reflection and
transmission amplitudes:

rðωÞ ¼ −
iη

ωþ iη
; sðωÞ ¼ ω

ωþ iη
; ð2Þ

where ω is the frequency of the reflected/transmitted mode.
The field Φ can be expanded as

Φ ¼
X
J¼L;R

Z
∞

0

ðϕJ
ωaJω þ ϕJ�

ω aJ†ω Þdω; ð3Þ

where ϕR
ω (respectively ϕL

ω) is the input mode with
frequency ω incoming from the right, i.e., J −

R (respectively
left, i.e., J −

L) and a
R
ω (respectively aLω) is the corresponding

annihilation operator. Considering the boundary condition
given by the mirror at the position x ¼ xm, the modes ϕR

ω

and ϕL
ω can be written, respectively, as

ϕR
ωðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4πjωjp ðsðωÞe−iωvθðu − vþ 2xmÞ

þ ðe−iωv þ rðωÞe−iωuÞθðv − u − 2xmÞÞ; ð4Þ

ϕL
ωðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4πjωjp ðsðωÞe−iωuθðv − u − 2xmÞ

þ ðe−iωu þ rðωÞe−iωvÞθðu − vþ 2xmÞÞ: ð5Þ

The expressions for the input modes (4) and (5) are valid
when the mirror is static. When the mirror moves along a
trajectory xmðtÞ also the amplitudes rðωÞ and sðωÞ change
in time (see Appendix A of [52]). Hence, there is a great
mathematical complication, since the boundary condition
between the left side and right side of the mirror becomes
time dependent. To overcome this problem, we resort to the
strategy used in Ref. [53]. Namely, we put ourselves in the
mirror frame, using proper coordinates. The proper distance
from the mirror is indicated by ρ and the proper time by τ.
From them, the proper null coordinates are defined as
ū ≔ τ − ρ and v̄ ¼ τ þ ρ. The proper null coordinates ū
and v̄ could also be written in terms of the external null
coordinates u ¼ t − x and v ¼ tþ x through ūðuÞ and v̄ðvÞ
which depend on the trajectory of the mirror [specified by

FIG. 1. Penrose diagram showing the trajectories of high
acceleration mirrors for different values of the parameter ν,
defined in Sec. III. The trajectory is like the one described by
Eq. (24) with u0 very small. In particular, ν ¼ 1.5 for the green
dashed line, ν ¼ 2 for the green line, ν ¼ 4 for the black dashed
line and ν ¼ 100 for the black line. We can imagine the
infinitesimal acceleration period to be in a neighborhood of t ¼ 0.
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pðuÞ and fðvÞ]. This dependence comes from the metric
conservation [see Eq. (20) of [54]]:

ds2 ¼ dū2 ¼ dv̄2 ¼ ∂upðuÞdu2 ¼ ∂vfðvÞdv2; ð6Þ

from which one obtains

dūðuÞ
du

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂upðuÞ

p
;

dv̄ðvÞ
dv

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂vfðvÞ

p
: ð7Þ

Finally, we define the input modes in proper coordinates as
gRω and gLω.
In the mirror frame, the mirror is obviously static.

Hence, the modes gRω and gLω could be written analogously
to the modes ϕR

ω and ϕL
ω in the static case, i.e., like

Eqs. (4) and (5):

gRωðū; v̄Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4πjωjp × ðsðωÞe−iωv̄θðū − v̄Þ

þ ðe−iωv̄ þ rðωÞe−iωūÞθðv̄ − ūÞÞ; ð8Þ

gLωðū; v̄Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4πjωjp × ðsðωÞe−iωūθðv̄ − ūÞ

þ ðe−iωū þ rðωÞe−iωv̄Þθðū − v̄ÞÞ: ð9Þ

From now on, we consider only timelike trajectories
for the mirror, i.e., we consider trajectories starting at i−

and ending up at iþ, referring to the Penrose diagram in
Fig. 1. In that case, both the modes in external coordinates
fϕR

ωgv and the ones in proper coordinates fgRωgv̄ form a
complete set of input modes incoming from J −

R.
Analogously, both the sets fϕL

ωgu and fgLωgū are complete
sets of modes incoming from J −

L. As a consequence, the
modes in external coordinates ϕJ

ω are related to the ones in
proper coordinates through the following Bogolyubov
transformation [53]:

ϕJ
ω ¼

Z þ∞

−∞
χðω0ÞðϕJ

ω; gJω0 ÞgJω0dω0; ð10Þ

where χ is the sign function.
Using Eq. (10) one may obtain a general expression for

the input modes in external coordinates ϕJ
ω. Let us turn our

attention to the scalar product ðϕR
ω; gRω0 Þ. To single out a

convenient integration surface for the integration, we select
J −

R, since here ϕ
R
ω ¼ 1ffiffiffiffiffiffiffiffi

4πjωj
p e−iωv and gRω ¼ 1ffiffiffiffiffiffiffiffi

4πjωj
p e−iωv̄ðvÞ.

So, the scalar product becomes

ðϕR
ω; gRω0 Þ ¼ −i

Z þ∞

−∞
ðð∂vgR�ω0 ÞϕR

ω − gR�ω0 ∂vϕ
R
ωÞdv: ð11Þ

Using the fact that these modes vanish for v → �∞ we can
integrate Eq. (11) by parts, simplifying the scalar product to

ðϕR
ω; gRω0 Þ ¼ 2i

Z þ∞

−∞
gRω0∂vϕ

R
ωdv

¼ ω

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffijωjjω0jp Z þ∞

−∞
e−iðωv−ω0v̄ðvÞÞdv: ð12Þ

The same thing is done for the scalar product ðgLω0 ;ϕL
ωÞ

integrating on the surface J −
L and obtaining

ðϕL
ω; gLω0 Þ ¼ 2i

Z þ∞

−∞
gL�ω0 ∂vϕ

L
ωdv

¼ ω

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffijωjjω0jp Z þ∞

−∞
e−iðωu−ω0ūðuÞÞdu: ð13Þ

From now on, we also consider a detector positioned on the
right of the mirror. Hence, the terms of gJω [from Eqs. (8)
and (9)] proportional to θðū − v̄Þ are neglected. For the
mode coming from the right of the mirror ϕR

ω, applying
some contour integration in the variable ω0 and using the
fact that ūðuÞ and v̄ðvÞ are increasing monotonic functions
(to guarantee that the mirror speed is not faster than the
speed of light), we obtain

ϕR
ω ¼ 1ffiffiffiffiffiffiffiffiffi

4πω
p e−iωv þ ϕrefl

ω;R ðuÞ; ð14Þ

where ϕrefl
ω ðuÞ is the reflected wave of the input mode:

ϕrefl
ω ðuÞ ¼

ffiffiffiffiffiffi
ω

4π

r
i
Z þ∞

−∞

�1
2
χðūðuÞ − v̄ðv0ÞÞ

− θðūðuÞ − v̄ðv0ÞÞe−ηðūðuÞ−v̄ðv0Þ
�
e−iωv

0
dv0: ð15Þ

With a similar calculation, we can obtain ϕL
ω as

ϕL
ω ¼

ffiffiffiffiffiffi
ω

4π

r
ð−iÞ

Z þ∞

−∞
θðu − u0Þe−ηðūðuÞ−ūðu0ÞÞe−iωu0du0

¼
ffiffiffiffiffiffi
ω

4π

r
ð−iÞ

Z
u

−∞
e−ηðūðuÞ−ūðu0ÞÞe−iωu0du0: ð16Þ

In the presence of an accelerating boundary, we expect a
difference between the input and the output spacetime
structure [21,55,56]. The output mode (outgoing to the
right, i.e., J þ

R ) can be written in terms of the input ones
through the following Bogolyubov transformation:

ϕout
ω ¼

X
J¼R;L

Z
∞

0

ðαRJωω0ϕJ
ω0 þ βRJωω0ϕJ�

ω0 Þdω0; ð17Þ

where αRRωω0 ¼ ðϕout
ω ;ϕR

ω0 Þ, αRLωω0 ¼ ðϕout
ω ;ϕL

ω0 Þ, βRRωω0 ¼
ðϕout�

ω ;ϕR
ω0 Þ� and βRLωω0 ¼ ðϕout�

ω ;ϕL
ω0 Þ� are the

Bogolyubov coefficients we want to compute. We are
particularly interested in the β Bogolyubov coefficients,
since they give us information about the production of the
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particles by the mirror. Since we consider mirrors with a
trajectory ending at iþ, J þ

R is a surface we can use as an
integration surface for the scalar product of Bogolyubov
coefficients. In fact on this surface we have

ϕout�
ω →

1ffiffiffiffiffiffiffiffiffi
4πω

p eiωu; ð18aÞ

ϕR
ω0 → ϕrefl

ω0;R: ð18bÞ

Applying the derivative of the scalar product to the input
modes ϕJ

ω and changing the variable from u to ū [we define
uðūÞ as the inverse of ūðuÞ] we obtain the following general
expression for the Bogolyubov coefficients:

βRRωω0 ¼ −
η

2π

ffiffiffiffiffi
ω0

ω

r Z þ∞

−∞

Z þ∞

−∞
θðū − v̄ðv0ÞÞeηv̄ðv0Þ−iω0v0e−ηū−iωuðūÞdv0dū ð19Þ

βRLωω0 ¼ −
η

2π

ffiffiffiffiffi
ω0

ω

r Z þ∞

−∞

Z þ∞

−∞
θðū − ūðu0ÞÞeηūðu0Þ−iω0u0e−ηū−iωuðūÞdu0dū; ð20Þ

and

αRRωω0 ¼ −
η

2π

ffiffiffiffiffi
ω0

ω

r Z þ∞

−∞

Z þ∞

−∞
θðū − v̄ðv0ÞÞeηv̄ðv0Þþiω0v0e−ηū−iωuðūÞdv0dū; ð21Þ

αRLωω0 ¼
ffiffiffiffiffi
ω0

ω

r
δðω − ω0Þ − η

2π

ffiffiffiffiffi
ω0

ω

r Z þ∞

−∞

Z þ∞

−∞
θðū − ūðu0ÞÞeηūðu0Þþiω0u0e−ηū−iωuðūÞdu0dū: ð22Þ

Considering Eqs. (19) and (20), we have that NR
ω ¼Rþ∞

0 jβRRωω0 j2dω0 is the spectrum of the particles produced
due to the reflection of the modes at the right of the mirror
and NL

ω ¼ Rþ∞
0 jβRLωω0 j2dω0 is the spectrum of particles

produced due to the transmission of the modes at the left
of the mirror. The total spectrum of produced particles is
therefore given by

Nω ¼ NR
ω þ NL

ω: ð23Þ

III. APPROXIMATED TRAJECTORIES WITH
IMPULSIVE ACCELERATION

Once we have found a general expression for the
Bogolyubov coefficients, as reported in Eqs. (19)–(22),
we aim at finding trajectories for which the Bogolyubov
coefficients can be explicitly and analytically computed. In
this section we show that this task can be accomplished for
trajectories corresponding to impulsive acceleration.
First, looking at Eqs. (19) and (20), we notice that

finding explicit Bogolyubov coefficients turns out to be
nonanalytical and quite hard for some physical aspects that
we summarize below.
(1) The trajectories in null comoving coordinates are

arguments of exponentials, and the only functions
which can be easily analytically computed in an
exponential are the linear ones, which corresponds

to a nonaccelerating mirror, giving trivially the
Bogolyubov coefficients β ¼ 0.

(2) In order to find a nontrivial trajectory we have to
use integral functions (such as the Euler gamma),
but even if we solve one integral with it, we also
need to solve the other. This will be an integral
of an exponential multiplied by an integral func-
tion, which is almost always not computable
analytically.

(3) In particular for Eq. (20) we need to find a function
ūðuÞ such that the exponential of it and the ex-
ponential of its inverse uðūÞ is integrable analyti-
cally. Even if such a function exists, it is needed also
that Eq. (19) is analytically computable.

(4) For some trajectories (such as the Carlitz-Willey’s
and the uniform acceleration trajectory [56]) we can
pass easily from the expressions of the trajectories in
null coordinates to ūðuÞ and v̄ðvÞ. However, for
the other nontrivial trajectories which provide an
exact solution for the Bogolyubov coefficients in the
perfectly reflecting case (Walker-Davies [6], Arctx
[43], Dlogex [57], Proex [40], etc.) it is impossible
even to find an analytic expression for the trajecto-
ries in null coordinates ūðuÞ and v̄ðvÞ. Reversely, if
we succeed finding a function ūðuÞ, such that we can
find an analytic function for the Bogolyubov co-
efficients, we need to have the respective functions
pðuÞ and fðvÞ describing the trajectory of a mirror.
To this aim, the quantities pðuÞ and fðvÞ should be
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real, without asymptotes, without singularities in
their domain, and monotonic in their domain.

We thus consider a class of trajectories that will allow us to
simplify the treatment. It consists of trajectories fulfilling
the conditions below:

(i) the mirror is static at x ¼ 0 for t < 0,
(ii) it begins to accelerate toward its left along a certain

trajectory zðtÞ at t ¼ 0 until it reaches the time t0,
arriving to the point x0,

(iii) after a time interval t0, the mirror continues traveling
with the same velocity V reached after the accel-
eration period. Such V must be smaller than 1,
otherwise the proper acceleration of the mirror
would become infinite.

Such a trajectory can be described though the simplest
choice, represented by the following function:

ptotðuÞ ¼
8<
:

u; if u ≤ 0;

pðuÞ; if 0 < u ≤ u0;

pðu0Þ þ ν−1ðu − u0Þ; if u > u0:

ð24Þ

For simplicity, hereafter we refer to the complete trajecto-
ries with the subscript “tot” and with the usual pðuÞ, fðvÞ,
ūðuÞ and v̄ðvÞ we refer to the trajectory of the mirror only
on its period of acceleration. In Eq. (24) u0 ¼ t0 − x0
quantifies the width of the acceleration period, alongside
with ν−1 ≔ ∂upðuÞju0 , which ensures the continuity of the
derivative on u0.

4 The quantity ν is related to the final speed
of the mirror V through ν ¼ 1þV

1−V and any deviations from
the linearity in terms of ∼u would imply that, at asymptotic
regimes, the velocity is no longer a constant.

Analogously, we can write the inverse of ptotðuÞ, i.e.,
ftotðvÞ by

ftotðvÞ ¼
8<
:

v; if v ≤ 0;

fðvÞ; if 0 < v ≤ v0;

fðv0Þ þ νðv − v0Þ; if v > v0;

ð25Þ

where v0 ¼ pðu0Þ. It is worth noticing that all the quantities
derived from u0, i.e., v0, ū0 ¼ ūðu0Þ and v̄0 ¼ v̄ðv0Þ
satisfy the equations describing the trajectories of the
mirror, i.e., v ¼ pðuÞ, u ¼ fðvÞ, ū ¼ v̄ðvÞ and v̄ ¼ ūðuÞ.
As consequence we have v0 ¼ pðu0Þ, u0 ¼ fðv0Þ and
ūðu0Þ ¼ v̄ðv0Þ ¼ ū0 ¼ v̄0.
In proper coordinates Eqs. (24) and (25) become

ūtotðuÞ¼
8<
:
u; if u≤0;

ūðuÞ; if 0<u≤u0;

ūðu0Þþν−1=2ðu−u0Þ; if u>u0;

ð26Þ

v̄totðvÞ ¼
8<
:

v; if v ≤ 0;

v̄ðvÞ; if 0 < v ≤ v0;

v̄ðv0Þ þ
ffiffiffi
ν

p ðv − v0Þ; if v > v0:

ð27Þ

We now focus on the β Bogolyubov coefficients [in order to
obtain the α it is sufficient to switch ω0 → −ω0 everywhere

except in the external factor − η
2π

ffiffiffiffi
ω0
ω

q
, and add the termffiffiffiffi

ω0
ω

q
δðω − ω0Þ in αRLωω0]. For this class of trajectories we

obtain, separating the integrals, through Eqs. (19) and (20)
the following:

βRRωω0 ¼ −
η

2π

ffiffiffiffiffi
ω0

ω

r �
e−iωu0−ηū0

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞ −

1

ðω0 þ iηÞðωþ ω0 þ iϵÞ −
e−iωu0−iω

0v0

ðωνþ ω0 − iνϵÞðω ffiffiffi
ν

p
− iηÞ

þ 1

η − iω0

Z
ū0

0

e−ηū−iωuðūÞdūþ e−iωu0−ηū0

ηþ iω
ffiffiffi
ν

p
Z

v0

0

eηv̄ðv0Þ−iω0v0dv0 þ
Z

ū0

0

e−ηū−iωuðūÞ
�Z

vðūÞ

0

eηv̄ðv0Þ−iω0v0dv0
�
dū

�
; ð28Þ

βRLωω0 ¼ −
η

2π

ffiffiffiffiffi
ω0

ω

r �
e−iωu0−ηū0

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞ −

1

ðω0 þ iηÞðωþ ω0 þ iϵÞ −
e−iðωþω0Þu0

ðωþ ω0 − iϵÞðω ffiffiffi
ν

p
− iηÞ

þ 1

η − iω0

Z
ū0

0

e−ηū−iωuðūÞdūþ e−iωu0−ηū0

ηþ i
ffiffiffi
ν

p
ω

Z
u0

0

eηūðu0Þ−iω0u0du0 þ
Z

ū0

0

e−ηū−iωuðūÞ
�Z

uðūÞ

0

eηūðu0Þ−iω0u0du0
�
dū

�
; ð29Þ

where ϵ is an exponential cutoff in u and v, needed in order to make some integrals convergent. For the β Bogolyubov
coefficients, we can set ϵ ¼ 0without problems. However, for the α Bogolyubov coefficients we cannot neglect ϵ, otherwise
a divergence for them occurs for ω ¼ ω0.5

For computing particle production, we only need the β Bogolyubov coefficients. So, limiting to ϵ ¼ 0 and looking at
Eqs. (28) and (29), we soon notice that we need a strategy to neglect those integrals that are nonanalytical.

4The continuity of ptotðuÞ and of its first derivative should be imposed at u ¼ 0 as well. Hence, the trajectory pðuÞ should be chosen to
satisfy this condition.

5For Eq. (22), considering ϵ ≠ 0, the Dirac delta can be seen as 1
π

ϵ
ϵ2þðω−ω0Þ2.
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Since the arguments of all the integrals have no singu-
larities in their integration range, and since for u0 → 0 we
have also v0 → 0 and ūðuÞ → 0, the first option is to
consider u0 → 0, taking the acceleration period so short to
neglect its contribution. Further, with the recipe u0 ∼ 0, we
stress that, before this period the mirror was at rest, whereas
after it the mirror shows a finite velocity.
Since we are minimizing the period in which the mirror

accelerates, we could maximize the acceleration. In this
respect, we refer to these mirrors as “impulsive accelerated
mirrors,” in which particular physical consequences are
expected. In particular, to clarify why we need to maximize
the acceleration, let us first consider the well-consolidated
Carlitz-Willey trajectory [56]. Here, we have ūðuÞ ¼
2
k ð1 − e−ku=2Þ and v̄ðvÞ ¼ 2

k ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kv

p Þ, where k is
intimately related to the mirror acceleration.
Even though we cannot fix the acceleration, since it is

not constant for the Carlitz-Willey trajectory, we can fix the
parameter k to be arbitrarily large enough. Thus, the
approximation for impulsive accelerated mirrors consists
in setting u0 ≪ 1 and k ≫ 1, leading to the single main
assumption ku0 ¼ const. The value of this constant is
related to the final speed of the mirror itself. Indeed, the
parameter ν in Eqs. (28) and (29) is simply given by
ν ¼ eku0 for the Carlitz-Willey trajectory. The trajectories
of such mirrors are portrayed in Fig. 1. It is worth noticing
that the above described approximation is valid for all those
trajectories provided that we can associate to the accel-
eration of the mirror a constant parameter k.
Finally we can apply the approximation to Eqs. (28)

and (29), using k ¼ lnðνÞ=u0 and expanding in series for
u0 → 0. For short acceleration periods, only the lowest
expansion orders are clearly needful.

To the zeroth order the integrals on Eqs. (28) and (29)
can be completely neglected. In this case, the Bogolyubov
coefficients read

βRRωω0 ¼−
η

2π

ffiffiffiffiffiffiffiffi
ω0ω

p ffiffiffi
ν

p ðω0−ω
ffiffiffi
ν

p Þðω ffiffiffi
ν

p
−1Þþ iηðν−1Þ

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞðωνþω0Þðωþω0Þ;

ð30Þ

βRLωω0 ¼ −
η

2π

ffiffiffiffiffiffiffiffi
ω0ω

p 1 −
ffiffiffi
ν

p
ðω ffiffiffi

ν
p

− iηÞðω0 þ iηÞðωþ ω0Þ : ð31Þ

Here, we are neglecting the acceleration period and
Eqs. (30) and (31) are valid for each trajectory for which
we associate a constant parameter k to the acceleration.
Both the Bogolyubov coefficients Eqs. (30) and (31) have
the factor

ffiffiffiffiffiffiffiffi
ω0ω

p
at the beginning.

So, their modulus squares show the factor ω0ω, which is
not canceled by any term in the denominator. This ensures
that in these modulus squares no infrared divergences
occur6 for ω0 → 0. Furthermore, for ω0 → þ∞ Eqs. (30)
and (31) are asymptotic to ω0−3=2. This means that their
modulus squares do not provide any ultraviolet divergence.
As a consequence the number of particles produced
with this approximation is finite and different from zero
for finite values of ω. Finally, checking the case in which
the mirror lies at rest, namely ν ¼ 1, we immediately notice
that the Bogolyubov coefficients are zero, as expected.
To the first order expansion, we restrict the trajectories to

the ones with nonsingular ∂uūðuÞ and ∂uv̄ðv0Þ throughout
the range 0 ≤ u ≤ u0. Hence, first order Bogolyubov
coefficients are

βRRωω0 ∼ −
η

2π

ffiffiffiffiffiffiffiffi
ω0ω

p 	 ffiffiffi
ν

p ðω0 − ω
ffiffiffi
ν

p Þð ffiffiffi
ν

p
− 1Þ þ iηðν − 1Þ

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞðωνþ ω0Þðωþ ω0Þ

þ ðωþ ω0Þ½ηðV0ν − 1Þ þ iωνðU0

ffiffiffi
ν

p
− 1Þ − iω0 ffiffiffiνp ðV0

ffiffiffi
ν

p
−U0Þ�

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞðωνþ ω0Þðωþ ω0Þ u0



;

βRLωω0 ∼ −
η

2π

ffiffiffiffiffiffiffiffi
ω0ω

p 1 −
ffiffiffi
ν

p þ iðωþ ω0ÞðU0

ffiffiffi
ν

p
− 1Þu0

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞðωþ ω0Þ ; ð32Þ

where U0 ≔ ∂u0 ū0ju0¼0 and V0 ≔ ∂u0v0ju0¼0. For the Carlitz-Willey trajectory [58], we get

U0 ¼
2

ln ν

�
1 −

1ffiffiffi
ν

p
�
; ð33Þ

V0 ¼
1

ln ν

�
1 −

1

ν

�
: ð34Þ

6This is valid for βRRωω0, if ω ≠ 0. If not, we could have possible infrared divergences, leading to unphysical particle production.

QUANTUM COMMUNICATION THROUGH A PARTIALLY … PHYS. REV. D 104, 105020 (2021)

105020-7



In terms of ν, the first order Bogolyubov coefficients for the Carlitz-Willey trajectory become

βRRωω0 ∼ −
η

2π

ffiffiffiffiffiffiffiffi
ω0ω

p 	 ffiffiffi
ν

p ðω0 − ω
ffiffiffi
ν

p Þð ffiffiffi
ν

p
− 1Þ þ iηðν − 1Þ

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞðωνþ ω0Þðωþ ω0Þ

þ
ðωþ ω0Þ½ηð 1

lnðνÞ ðν − 1Þ − 1Þ þ iωνð 2
lnðνÞ ð

ffiffiffi
ν

p
− 1Þ − 1Þ − iω0

ffiffi
ν

p
lnðνÞ ð 1ffiffi

ν
p þ ffiffiffi

ν
p

− 2Þ�
ðω ffiffiffi

ν
p

− iηÞðω0 þ iηÞðωνþ ω0Þðωþ ω0Þ u0



; ð35Þ

and

βRLωω0 ∼ −
η

2π

ffiffiffiffiffiffiffiffi
ω0ω

p 1 −
ffiffiffi
ν

p þ iðωþ ω0Þð 2
lnðνÞ ð

ffiffiffi
ν

p
− 1Þ − 1Þu0

ðω ffiffiffi
ν

p
− iηÞðω0 þ iηÞðωþ ω0Þ : ð36Þ

Since only the first order of u0 is considered, in the computation of the modulus square of the Bogolyubov coefficients, the
terms proportional to u20 are neglected.
Summing the modulus square of Eqs. (36) and (35), we obtain

jβRRωω0 j2þjβRLωω0 j2¼ η2

4π2
ωω0

�ð ffiffiffi
ν

p
−1Þ2ðωνþω0Þ2þνðω ffiffiffi

ν
p

−ω0Þ2ð ffiffiffi
ν

p
−1Þ2þη2ðν−1Þ2

ðω2νþη2Þðω02þη2Þðωνþω0Þ2ðωþω0Þ2

þ
2ðωþω0Þðη ffiffiffi

ν
p ðω0−ω

ffiffiffi
ν

p Þð ffiffiffi
ν

p
−1Þð 1

lnðνÞðν−1Þ−1Þþηðν−1Þðω0
lnνð

ffiffiffi
ν

p
−1Þ2Þ−ωνð 2

lnνð
ffiffiffi
ν

p
−1Þ−1ÞÞ

ðω2νþη2Þðω02þη2Þðωνþω0Þ2ðωþω0Þ2 u0

�
:

ð37Þ

Thus, by integrating over dω0 we get the total number of
particles with frequency ω created by the mirror. Even
though the corresponding number could be analytically
computed, its expression turns out to be extremely com-
plicated. Thus, we omitted it explicitly.
Studying Eq. (37), one can prove that the zero order term

increases as ν increases. In particular, it converges to an
asymptotic valueA as ∝

ffiffiffi
ν

p −1. Instead, the first order term,
as ν increases, goes to zero faster, namely as 1ffiffi

ν
p

ln ν. Starting

from this fact, one can prove that, for u0 enough small, an
upper bound for the particle production is provided when
ν → ∞. This upper bound is provided by the following
analytical expression:

Nω →
η2

2π2ω

�
ω2 − η2

ðω2 þ η2Þ2 ln
�
ω

η

�
þ πηω − ω2 − η2

ðω2 þ η2Þ2
�
: ð38Þ

The spectrum of the particles production for the trajectories
shown in Fig. 1 is depicted in Fig. 2(a). In Figs. 2(b)–2(d)
some comparisons among the contributions of the right and
left part of the mirror are shown: it can be seen from them
that the two contributions are comparable when η ≪ u−10 .
We also stress an infrared divergence for the spectrum, in
agreement with the modified Carlitz-Willey trajectory as
found in Refs. [43,53]. Moreover, we can observe that the
contribution of the vacuum modes in the right of the mirror
dominates over the one in the left for low frequencies.

For high frequencies the contribution of the vacuum modes
in the left is slightly higher than the one in the right,
becoming the same for ω → ∞ only. The spectrum of the
particles production for the trajectories shown in Fig. 1 is
depicted in Fig. 2(a). In Figs. 2(b)–2(d) some comparisons
among the contributions of the right and left part of the
mirror are shown: it can be seen from them that the two
contributions are comparable when η ≪ u−10 . We also stress
an infrared divergence for the spectrum, in agreement
with the modified Carlitz-Willey trajectory as found in
Refs. [43,53]. Moreover, we can observe that the contri-
bution of the vacuum modes in the right of the mirror
dominates over the one in the left for low frequencies. For
high frequencies the contribution of the vacuum modes in
the left is slightly higher than the one in the right, becoming
the same for ω → ∞ only.

IV. QUANTUM CHANNEL ARISING
FROM A MOVING MIRROR

We now revisit the model of semitransparent moving
mirrors through an information communication perspec-
tive. In particular, the aim is to realize the field coming from
left-past spacetime region, passing through the semitrans-
parent moving mirror and ending up to the right-future
spacetime region as undergoing the action of a quantum
channel. Then study the capacities in transmitting classical
and quantum information of such a channel.
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We consider as input a mode from J −
L and as output the

same mode transmitted by the mirror and outgoing toward
J þ

R . The bosonic modes in these two zones are related to
each other through the Bogolyubov transformations, which
are linear. Hence, taking the mode say of frequency ω as an
input mode, while the other modes as environment modes
(initially in vacuum, and after the process traced out), we
end up with a Gaussian quantum channel.
To formalize such a mapping, following [26], it is

sufficient to know that a Gaussian quantum channel maps
a bosonic Gaussian state into another bosonic Gaussian
state. Considering only one mode ω, the canonical varia-
bles in phase space are given by the vector zω ¼ ðqω; pωÞ ∈
R2 and a Gaussian bosonic state is represented by a
characteristic function,

χinðzωÞ ¼ exp

�
−
1

4
zTω · σω · zω þ idT

ω · zω

�
; ð39Þ

where dω ¼ ðhQωi; hPωiÞ and σj is the so-called covari-
ance matrix, defined as7

σω ¼
 

hQ2
ωi 1

2
hPωQω þQωPωi

1
2
hPωQω þQωPωi hP2

ωi

!
: ð40Þ

A one mode Gaussian quantum channel maps the one
mode characteristic function, Eq. (39), into

χoutðzωÞ ¼ exp

�
−
1

4
zTω · ðTσωTT þ NÞ · zω

þ iðdT
ω · TT þ vTωÞ · zω

�
; ð41Þ

(a) (b)

(c) (d)

FIG. 2. Plots showing the behavior of the particle production as a function of the frequency for a mirror with a trajectory like the
ones shown in Fig. 1. (a) Spectrum of the particles produced by the mirror with η ¼ 1 for different values of A, obtained
integrating in dω0 Eq. (37). It is u0 ¼ 0.0001. (b) Comparison of the spectra of the particles produced at the right-hand side of the
mirror. NR

ω (respectively NL
ω) is the contribution from the vacuum modes at the right-(respectively left-) hand side of the mirror,

obtained integrating in dω0 the modulus squared of Eq. (35) [respectively Eq. (36)]. The complete spectrum is the sum NL
ω þ NR

ω.
Here η ¼ 1, u0 ¼ 0.0001 and A ¼ 0.1. (c) The same as (b) but with η ¼ 0.1 and A ¼ 0.5. (d) The same as (b) but with
η ¼ 0.1 and A ¼ 0.1.

7Qω ¼ 1ffiffi
2

p ða†ω þ aωÞ and Pω ¼ 1

i
ffiffi
2

p ðaω − a†ωÞ are the canoni-
cal quadrature operators for the mode ω.
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where a Gaussian quantum channel is so characterized by
the triad ðT ;N; vÞ with T and N as two 2 × 2 matrices
respectively related to the attenuation/amplification of the
mode, and to the noise which affects the input signal.
In particular, the attenuation/amplification is given by
τ ¼ det T . Since the information transmission capabilities
of the channel can be characterized in terms of entropic
quantities, which do not depend on the vector v, we can
investigate the evolution of the covariance matrix, σj. Thus,
from Eqs. (39) and (41), we write

σinω ⟼ σoutω ¼ TσinωTT þ N: ð42Þ

Our focus is on the covariance matrix, Eq. (40), of the input
mode and its output as a result of Eq. (42). In line with our
aim at the beginning of this section, all modes at J −

L are
considered uncorrelated and in the vacuum, but the single
frequency mode of interest is ω. This can be formalized
with the following values:

haLω0aLω00 i ¼ Mδðω − ω0Þδðω0 − ω00Þ; ð43Þ

haL†ω0 aLω00 i ¼ Nδðω − ω0Þδðω0 − ω00Þ; ð44Þ

and the expectation values of all the other combinations of
bosonic operators (including the ones relative to the right
side of the mirror) equal to zero [except for the Hermitian
of Eq. (43) and the commutation of Eq. (44)]. Moreover,
following Eqs. (43) and (44), N is the mean number of
particles in the input state, and M specifies the correlation
between Qω and Pω.
Using Eqs. (43) and (44), we calculate σinω and σoutω taking

the input and output bosonic operator for the mode ω
(related to each other by a Bogolyubov transformation).
We calculate the quadrature operators for both of them
using Eqs. (43) and (44). It turns out that the input and
output covariance matrices are related by a relation equal
to Eq. (42) from which we can obtain the entries of the
T ¼ ðT1

T3

T2

T4
Þ and N ¼ ðN1

N3

N2

N4
Þ in terms of Bogolyubov

coefficients, i.e.,

T1 ¼ ϵπℜðαRLωω − βRLωωÞ; ð45Þ

T2 ¼ ϵπℑðαRLωω þ βRLωωÞ; ð46Þ

T3 ¼ −ϵπℑðαRLωω − βRLωωÞ; ð47Þ

T4 ¼ ϵπℜðαRLωω þ βRLωωÞ; ð48Þ

N1 ¼ −
ϵπ

2
jαRL�ωω − βRLωωj2

þ 1

2

Z
∞

0

ðjαRL�ωω0 − βRLωω0 j2 þ jαRR�ωω0 − βRRωω0 j2Þdω0;

ð49Þ

N2 ¼ N3 ¼ −ϵπℑðαRLωωβRLωωÞ

þ
Z

∞

0

ℑðαRLωω0βRLωω0 þ αRRωω0βRRωω0 Þdω0; ð50Þ

N4¼−
ϵπ

2
jαRL�ωω þβRLωωj2

þ1

2

Z
∞

0

ðjαRL�ωω0 þβRLωω0 j2þjαRR�ωω0 þβRRωω0 j2Þdω0; ð51Þ

where ϵ is the cutoff8 of Eqs. (28) and (29). Here ℜ and ℑ
denote the real and imaginary parts, respectively.
For the average attenuation/amplification in time

τ ≔ det T , we have the following general expression:

τ ¼ ϵ2π2ðjαRLωωj2 − jβRLωωj2Þ: ð52Þ

Applying the Bogolyubov coefficients of an impulsive
accelerated mirror to first order in a u0 expansion around
u0 ¼ 0 and using the Carlitz-Willey’s acceleration we get

τ ¼ 4Ω4νþΩ2ð1þ ffiffiffi
ν

p Þ2
4ðΩ2νþ 1ÞðΩ2 þ 1Þ ; ð53Þ

where Ω ≔ ω=η. It is easy to see that τ ¼ ω2

ω2þη2
, as

expected, for ν ¼ 1. We are reminded that as Ω → ∞
one has τ ¼ 1 (perfect transparency) and asΩ → 0, one has
τ → 0 (perfect reflection), even when ν ≠ 1.
Transmission through a semitransparent mirror should

result in three main effects:
(1) a loss of the input signal, since part of that is

reflected;
(2) an interference of the input signal with the other

modes of the initial vacuum environment;
(3) a particle production contribution which eventually

amplifies the input signal.
One can prove that τ < 1 for all frequencies and ν,
providing that no signal amplification occurs, as evidence
of the first effect. Nevertheless, for ν > 1, there is a
reduction of such loss. The second and third effects also
show themselves in this way (nevertheless, the effect of the
particle production mostly arises as noise, since it occurs
even without an input signal).
Another relevant aspect of Eq. (53) is that to the first

order in u0 around u0 ¼ 0 does not contribute to τ. In
general, one can prove that also the other orders of u0 do
not give a contribution to τ in the limit ϵ → 0. In fact,
calculating τ from the general expression Eq. (29) (taking
the corresponding α coefficient), for finite acceleration
periods result in convergent integrals. Under these con-
ditions, in the limit ϵ → 0, only the divergent part of αRLωω
gives a contribution:

8We ignored it for β coefficients, although it is needful for α
coefficients, otherwise as ω ¼ ω0 possible divergences arise.
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lim
ϵ→∞

αRLωω ¼ 1

πϵ
−

η

2πϵ

� ð1þ ffiffiffi
ν

p Þω − 2iη
iðω ffiffiffi

ν
p

− iηÞðω − iηÞ
�
: ð54Þ

After a calculation, one can prove that this will lead to the
same τ of Eq. (53). In conclusion, we have shown that,
for the calculation of τ we are justified in removing the
restriction over a small acceleration period. It is then
realized that this τ is valid for any mirror trajectory with
a finite acceleration period, at least in the limit ϵ → 0.
Studying τ from Eq. (53), for ν → ∞, we have an

asymptotic behavior of τ equal to

τ ¼ Ω2 þ 1
4

Ω2 þ 1
: ð55Þ

However, differently from the particle production Nω (see
Sec. III), τ does not increase in a monotonic way by
increasing the final speed of the mirror toward its left (as
considered in Fig. 1). In fact, for each value of Ω we have a
finite value of νwhich maximizes τ. In other words, it exists
a critical final VcritðΩÞ of a mirror (accelerating toward the
left) with finite acceleration period, for which τ reaches a
maximum and slightly decreases for V > Vcrit, asymptoti-
cally reaching τ described by Eq. (55). The critical value of
ν, say νcrit, in function of Ω, can be written as

νcritðΩÞ ¼
9

2
þ 4

Ω2
þ 1þ ð3Ω2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9Ω2 þ 1ÞðΩ2 þ 1Þ

p
2Ω4

:

ð56Þ

For Ω ≪ 1 we have νcrit → ∞ which corresponds to
Vcrit ¼ 1. For Ω ≫ 1 the critical speed reaches the asymp-
totic value VcritðΩ → ∞Þ ¼ 0.8. The decreasing of τ after
Vcrit is sharper for low frequencies, although Vcrit is closer
to the speed of light in this range. A plot for τ is portrayed
in Fig. 3.
One expects a contribution to the noise created by the

mirror due to the particle production and characterized
by Nω with frequency mode ω. Since τ < 1 for each ω, η
and A, we anticipate a lossy and noisy quantum channel.
By the classification of one-mode Gaussian channels made
in Ref. [59], we perform two unitary Gaussian trans-
formations, one before and one after the quantum channel
(respectively named, preprocessing and postprocessing), in
order to reduce the matrix N, of a lossy and noisy quantum
channel, to its canonical form

Nc ¼ ð1 − τÞ
�
1

2
þ n̄

�
I; ð57Þ

where n̄ is the number of noisy particles created by the
quantum channel. The term 1

2
is naturally related to vacuum

energy induced by mode ω. In the continuous limit we
expect that it takes the value 1

2πϵ.

Moreover, instead of finding the average number of
noisy particles arriving to the detector n̄, in the continuous
limit we expect to have a spectrum of particles expressed
as n̄ω. The former, once integrated in a range of frequen-
cies, provides a dimensionless number. Hence, in the
continuous case, Eq. (57) becomes

detN ¼ ð1 − τÞ
�

1

2πϵ
þ n̄ω

�
: ð58Þ

In the continuous limit only an infinitesimal range of
frequencies would be detected. We can therefore write
n̄ ¼ ϵπn̄ω.
Since the determinant of N does not change when

reducing it to its canonical form, we can study it from
Eqs. (49)–(51), leading to

detN ¼ detNc ¼
�
1 − τ

2πϵ
þ B

�
2

− C2; ð59Þ

where

B ≔ −ϵπjβRLωωj2 þ Nω; ð60Þ

and

C ≔
����ϵπαRLωωβRLωω −

X
S¼L;R

Z
∞

0

αRSωω0βRSωω0dω0
����: ð61Þ

Comparing Eq. (58) with Eq. (59), we get

n̄ω ¼ 1

2πϵ

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πϵ

B
1 − τ

þ 4π2ϵ2
B2 − C2

ð1 − τÞ2

s #
: ð62Þ

FIG. 3. Behavior of τ vs Ω from Eq. (53). It was considered:
a static mirror (ν ¼ 1), a mirror accelerating toward the left
with a final speed comparable to Vcrit ∼ 0.8, i.e., the critical
speed at high frequencies (ν ¼ 10) and a mirror accelerating
toward the left with a final speed really close to the speed of
light (ν ¼ 1000).
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Thus, the average number of noisy particles arriving to the
detector is

n̄ ¼ 1

2

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

B̃
1 − τ

þ 4
B̃2 − C̃2

ð1 − τÞ2

s #
; ð63Þ

where B̃ ≔ ϵπB and C̃ ¼ ϵπC.
If B and C are not divergent, for ϵ → 0 we have B ¼ Nω

and expanding the square root in the last term of Eq. (62),
we get the spectrum

n̄ω ¼ Nω

1 − τ
: ð64Þ

Consequently, in this case, n̄ ¼ 0, that corresponds to our
stand-alone approximation, i.e., to an impulsive accelerated
mirror. Indeed, we already demonstrated Nω is convergent
as well as B, with B̃ ¼ 0. Analogously, one can easily prove
the convergence of C as well, leading to C̃ ¼ 0. This
behavior naturally suggests that the impulsive semitrans-
parent mirror acts like a beam splitter.
A different expectation occurs when B and C are

divergent, e.g., for the perfectly reflecting Carlitz-Willey
mirror. In this case a rigorous approach to get B̃ and C̃
requires the use of wave packets, where the frequency
range is supposed to vanish. In fact, applying this approach
to the Carlitz-Willey trajectory furnishes a finite B̃, see
e.g., [43] for further details.

V. QUANTUM CHANNEL CAPACITIES

In this section, we evaluate classical and quantum
capacities of the quantum channel described in the previous
section. In so doing, we quantify the capability of an
impulsive accelerated mirror to transmit both classical and
quantum information.
For bosonic Gaussian channels the regularization of the

capacities is a hard task and this problem is not fully solved,
neither for classical nor quantum capacities. Fortunately,
the channel we obtained in Sec. IV becomes a beam splitter
in the continuous limit. For these kinds of channels the
additivity is proved both for classical [60] and quantum
capacity [61].
We start by studying the classical capacity. Let us take

the classical information we want to transmit with con-
tinuous random variable X and probability distribution px.
The encoding procedure is identified by a map which
associates to each value x of the random variable a state ρx.
Let Φ be the quantum channel of communication. The
maximum that we can extract about X at the channel output
is given by Holevo information [62,63]:

χðρ;ΦÞ ¼ SðΦðρÞÞ −
Z

pxSðΦðρxÞÞdx; ð65Þ

where S is the von Neumann entropy and ρ ≔
R
pxρxdx.

For one-mode Gaussian (OMG) channels it is possible to
express the Holevo information in terms of covariance
matrices if we restrict the possible encodings to Gaussian
ones, see e.g., [64]. Namely, we have to restrict the possible
inputs of the OMG channel ðT ;N; vÞ to be bosonic
Gaussian states with covariance matrix σ and d ¼ ðx; 0Þ.
Moreover we assume px to be a Gaussian probability
distribution with mean equal to zero and covariance matrix
σ0. In Ref. [65] it is proved that, if the channel is a beam
splitter, such encodings maximize the Holevo information,
becoming [66]

SðTðσ þ σ0ÞTT þ NÞ − SðTσTT þ NÞ; ð66Þ

where the von Neumann entropy S, referring to a
covariance matrix σ, can be written by SðσÞ ¼ hðdÞ, with
d ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðσÞp

and

SðσÞ ¼
�
dþ 1

2

�
log

�
dþ 1

2

�
−
�
d −

1

2

�
log

�
d −

1

2

�
:

At this point, the classical capacity C is given by the
maximum of Eq. (66) over the inputs σ and σ0. However,
since the bosonic Gaussian states are in an infinite-
dimensional Hilbert space, as input we can take a state
with an infinite particle amount. Obviously, this maximizes
the Holevo information and it leads to an infinite classical
capacity. This case is unrealistic, since we need an infinite
amount of energy for the encoding process. In order to
remove this possibility, we have to impose a restriction
on the maximum energy E which can be used for the
encoding, by

1

2
ωTrðσ þ σ0Þ ≤ E: ð67Þ

With this prescription, the following classical capacity
for a noiseless, lossy channel (beam splitter), has been
obtained by [60]

C ¼ τE
ω

log

�
τEþ ω

τE

�
þ log

�
τEþ ω

ω

�
: ð68Þ

Plots of C are shown is Fig. 4. Since the channel is
asymptotically without loss for ω → ∞, one can expect a
constant capacity in this limit. However, for great frequen-
cies the encoding necessitates more energy. For this reason,
if the energy is constrained, the number of photons we can
use for the encoding decreases linearly. In fact, studying the
asymptotic behavior of τ for ω → ∞, it turns out that C
goes to zero very slowly, ∼ lnω

ω . Instead, for ω → 0, C goes
to zero linearly. Moreover, from Eq. (68) we can see that the
capacity increases with τ.
As a consequence, we expect the capacity to be maxi-

mized for ν ¼ νcrit. Further, it is interesting to notice, from
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Fig. 4, how for different values of ν the maximum of the
lower bound of the classical capacity occurs for different
values of ω. This “maximum capacity frequency” seems to
decrease when we increase ν. However, since the peak
becomes higher increasing the final speed of the mirror, we
can conclude that the capability of an impulsive accelerated
mirror to transmit classical information always increases
with the mirror final speed.
Next, we proceed to evaluate the quantum capacity,

obtained maximizing the coherent information over the
input (for a beam-splitter channel, the quantum capacity
is additive [66]). Brádler [67] proved that the one-shot
quantum capacity of a lossy and noisy OMG channel is
maximized: either when the number of photons N used
for the encoding is null, or when this number N
is infinite (so, we have an infinite amount of energy for
the encoding). In the first case the maximized coherent
information is zero and no quantum information can be
transmitted reliably. However, unlike the classical capacity
framework, in case of an infinite amount of energy of the
encoding we have a finite value for the coherent informa-
tion. This means that there is no need to impose a constraint
for the energy of the encoding in order to have a finite
value for the one-shot quantum capacity. Nevertheless, the
infinite energy of the encoding is unrealistic. For this
reason, the quantum capacity that we intend to study might
be considered as an upper bound of the “real one” with a
finite encoding energy. However, the quantum capacity,
obtained with a finite E, is basically the same of the one
obtained with E → ∞ in the region ω ≪ E. Consequently,
even if we compute a quantum capacity for E → ∞, it is
realistic to choose E large enough within the range of
employed frequencies.
For the coherent information Jc of a OMG lossy channel,

as E → ∞ we have [59,61]

JcðE → ∞Þ ¼ log
τ

1 − τ
: ð69Þ

Using τ from Eq. (53) we get

JcðE → ∞Þ ¼ log

"
Ω2

ð1þ ffiffi
ν

p Þ2
4

þ Ω2ν

1þ Ω2ð3
4
− 2

ffiffiffi
ν

p þ 3
4
νÞ

#
; ð70Þ

whose behavior is shown in Fig. 5. The quantum capacity
of an impulsive accelerated mirror is given by

QðωÞ ¼ maxf0; JcðE → ∞;ωÞg: ð71Þ

Analyzing Eq. (70), we have that Q diverges logarithmi-
cally as ω → ∞, in agreement with the fact that the channel
becomes without loss in this limit. Even in this case, for
each frequency, the maximum of the quantum capacity is
obtained for ν ¼ νcrit. The quantum capacity is nonzero
only if τ > 1

2
. This is in agreement with the no-cloning

theorem, for which it is impossible to transmit quantum
information reliably if we have a loss 1 − τ larger than 1

2
,

otherwise the input state can be cloned (see e.g., [68]).
Further, from Eq. (71) we observe that in the range of
frequencies in which Q > 0 the curve with ν ¼ 10 is larger
than the one with ν ¼ 1000. This suggests that, unlike the
classical capacity, in order to maximize the quantum
capacity with an impulsive accelerated mirror we are forced
to take a final speed of the mirror comparable with the
critical speed for high frequencies, i.e., V ∼ 0.8.
The minimum frequency required for a non-null quan-

tum capacity depends upon ν through the relation

Ω2 ¼ ð1 − ffiffiffi
ν

p Þ2
2ν

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ffiffiffi

ν
p Þ4

4ν2
þ 1

ν

s
: ð72Þ

For both ν → 1 and ν → ∞ the frequency converges to
Ω ¼ 1. By construction, we thus expect a minimum in the
range 1 < ν < ∞.

FIG. 5. Coherent information for the impulsive accelerated
mirror with an input having an infinite number of photons,
according to Eq. (70).

FIG. 4. Classical capacity of an impulsive accelerated mirror
constraining the encoding energy to E ¼ 5 according to Eq. (68)
for various values of ν:τ is provided by the Eq. (53) with η ¼ 1.
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VI. FINAL REMARKS

In this work, we studied partially reflecting accelerating
mirrors finding general expressions for the Bogolyubov
coefficients. This work has been motivated by analog
models, called accelerated boundary correspondences,
which describe the correspondence between the particle
production from a null shell of a collapsing black hole and
the particle production from a perfectly reflecting accel-
erating mirror.
The natural extension to semitransparency indicated

potential signatures of new effects. Along this line, we
have studied the trajectories in which the mirror satisfies a
few physical conditions: in the past, it lies at rest and in the
future it shows a finite acceleration period, ending with a
constant sublight speed. We introduced the concept of
impulsive accelerated mirrors and we computed the
Bogolyubov coefficients by considering a very short
acceleration period. Consequently, we evaluated particle
production from the so-obtained Bogolyubov coefficients,
providing explicit analytical expressions dependent on
frequency and on the final speed of the mirror.
The particles considered are noninteractive scalar par-

ticles, hence with coupling constant λ → 0. It was proved in
Refs. [69,70] that the interaction (even if infinitesimal) gives
a non-negligible contribute to the particle production at the
time t ∼ λ−1. Here we considered an error on the frequency
ΔðωÞ ¼ ϵπ. As a consequence, the particles produced are
the ones in the time interval ð−ðϵÞ−1;þðϵÞ−1Þ. Since we
have taken the continuous limit ϵ → 0, in order to neglect the
contribute of the interaction, it is sufficient to have λ → 0
faster than ϵ. Moreover, considering mirrors with a finite
acceleration period, we expect the particle production (and
its consequent effects) to occur during the acceleration
period. Hence, even if we consider λ finite but very small,
we do not care about what happens at times t > λ−1, since
the acceleration is over at such times.
Next, we have recognized the mirror as a Gaussian

quantum channel acting between the spacetime regions of
left-past and right-future. The evolution of an input signal
crossing the mirror could then be studied using the
previously obtained Bogolyubov coefficients. For these
quantum channels, we investigated the properties of trans-
mission of an input signal, the noise created by the mirror
over the channel and we finally evaluated both the classical
and quantum capacities. Since we were searching for
analytic solutions for the Bogolyubov coefficients, the
continuous limit for the frequencies was considered. As
a consequence, all the properties of the mirror as a Gaussian
channel (i.e., τ, n̄ and the capacities) are an average in time
from −∞ to þ∞.
In addition, we speculated about the physical conse-

quences of our framework. In particular, the simplicity and
flexibility of the moving mirror model, coupled to its
unique collection of radiative properties, demonstrate that

with use of appropriate trajectories the moving mirror
idealization of evaporating black hole radiation and infor-
mation transfer are remarkably suitable. In harmony with
black hole complementarity [71], observers on both sides
of the mirror cannot make simultaneous physical measure-
ments, much the same way that one cannot both simulta-
neously measure, to within the uncertainty principle, the
position and momentum of a particle in quantum mechan-
ics. With nonhorizon perfect reflection, the information
stays on one side of the mirror, carried by the radiation
providing full knowledge of the initial quantum state; this
necessarily requires that the radiation is never precisely
thermal but quasithermal [15]. That is, the particles are not
distributed in an exact Planck distribution but carry small
imprinting evidence of collapse. With nonhorizon semi-
transparency [e.g., Eq. (24)], the right (left) observer
collects the information from both the right (left)-movers
which reflect (transmit) through the mirror, giving complete
information about the initial state. For the sake of com-
pleteness, one can also consider the complementary com-
munication scheme, namely the reflection case of an input
signal incoming from right-past and outgoing to right-
future. This prescription is likely less interesting than the
transmission case. Indeed, the former works better in
modeling black holes and information theory and holds
a more appropriate physical meaning. From the results of
this work, we speculate that this picture in general, and
further use of this class of trajectories in particular, will
contribute towards the resolution of information transfer in
the black hole evaporation process.
Concluding, to get relevant information about the time

in which such properties occur, future works will generalize
our treatment considering wave packets, whose wave
packet width, Δω, satisfies Δω ∼ u−10 and so we will
investigate physical properties during this small acceler-
ation period, i.e., u0. The results lead smoothly to further
investigations with respect to astrophysical applications to
compact objects. For example, possible scenarios of high-
energy astrophysical explosions could be the object of
future works modeled by means of our approach.
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