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We consider the communication of classical and quantum information between two arbitrary observers
in asymptotically flat spacetimes (possibly containing black holes) and investigate what the energy cost is
for such information transmission. By means of localized two-level quantum systems, sender and receiver
can use a quantum scalar field as a communication channel. As we have already shown in a previous paper,
such a channel has nonvanishing classical capacity as well as entanglement-assisted classical and quantum
capacities. Here we will show that the change in the expectation value of the energy of the system during the
communication process can be separated in (i) a contribution coming from the particle creation due to the
change of the spacetime, (ii) a contribution associated with the energy needed to switch on or off each qubit,
and (iii) a term which comes from the communication process itself. For the quantum channel considered
here, we show that the extra energy cost needed for communication vanishes. As a result, if one has
already created a system of qubits for some specific task (e.g., quantum computation), one can also reliably
convey information between its parts with no extra energy cost. We conclude the paper by illustrating the
form of the channel capacities and energy contributions in two paradigmatic cases in Minkowski
spacetime: (i) sender and receiver in inertial motion and (ii) sender in inertial motion while the receiver is
uniformly accelerated.
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I. INTRODUCTION

To quantify at which rate one can reliably convey
information between two or more parts by means of a
quantum communication channel is one of the major goals
of quantum information theory [1,2]. Although the road to
this end has a rich landscape already in the nonrelativistic
context, it is only when relativity is taken into account that
we can fully enjoy all its hues. The main reason is that
relativity opens up the possibility of having nontrivial
structures such as black hole event horizons, causal
horizons caused by the relativistic relative motion of
the parts conveying the information (or the expansion
of spacetime itself), or even the presence of Cauchy
horizons [3]. This has led several authors to analyze
the communication process in relativistic settings with
particular attention being paid to Minkowski [4–16],
Schwarzschild [17–19], or asymptotically flat cosmologi-
cal spacetimes [20–22].
In a recent paper [23], one of the authors analyzed a

communication model using a bosonic quantum field as a
communication channel which is suited to arbitrary observ-
ers communicating in any globally hyperbolic curved
spacetime. In order to convey the information, both sender

and receiver interact with the field, which can be in any
quasifree algebraic quantum state [24], by means of local-
ized two-level quantum systems (qubits). By analyzing such
a quantumcommunication channel nonperturbatively, it was
determined at which rate one can reliably transfer informa-
tion between the two parts. It was shown that the channel has
a nonvanishing classical capacity as well as entanglement-
assisted classical and quantum capacities.
However, it is not enough to know how much classical or

quantum information can be transmitted between two parts.
A related and equally relevant inquiry is, how much energy
is needed to convey the information? This has important
consequences not only for practical proposes (such as
engineering communication networks) but because it may
also shed light in one of the major open problems in
semiclassical and quantum gravity nowadays, namely, what
the fate is of the information which falls into a black hole.
For instance, by studying the energy toll for information
transmission one may be able to address if it is possible for
all the information to come back at the end of the black hole
evaporation process, if it needs to come back during its
earlier stages, or even if the information gets destroyed or
erased. (For a review of such an issue, see Ref. [25] and
references therein.) Although some investigation has been
performed on the issue of how much energy is needed to
convey information [26], they are usually restricted to
Minkowski spacetime [27,28] or 1þ 1 spacetimes [29,30].
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In order to gain a broader perspective on the subject, in
the present paper we will use the communication channel
developed in [23] to analyze what the energy cost is to
transmit information in general globally hyperbolic and
asymptotically flat spacetimes (which may contain black
holes). By means of the so-called null-surface quantization
and its interplay with the usual quantization procedure, we
will be able to analyze how the total energy of the system
formed by the quantum field ϕ and the two local qubits A
and B changes as it is evolved from the asymptotic past to
the asymptotic future. It will be shown that such energy
change can be separated in three terms: (i) a contribution
coming from the particle creation due to the change of the
spacetime metric, (ii) a contribution accounting for the
energy needed to switch on or off each qubit, and (iii) a
term which measures the extra energy cost coming from the
communication process itself. For the communication
channel being used, it will be proved that the contribution
(iii) coming from the convey of information vanishes. This
shows that, once one has already created the qubits, there is
no extra energy cost in reliably transmitting information
between the two parts.
The paper is organized as follows. In Sec. II we will

review the quantum communication model used here. In
Sec. III we will develop the so-called null-surface quan-
tization and relate it to the usual quantization procedure. In
Sec. IV, we will study how the energy of the total system—
field ϕþ qubits AB—changes when it is evolved from past
to future null infinity and analyze what the energy cost is
for communication. Section V will be used to illustrate the
channel capacities and energy cost in two paradigmatic
examples in Minkowski spacetime: two inertial observers
and one inertial and the other uniformly accelerated.
Section VI is reserved to our final remarks. We assume
metric signature ð−þþþÞ and natural units in which c ¼
ℏ ¼ G ¼ 1 unless stated otherwise.

II. THE COMMUNICATION CHANNEL

The quantum communication model we rely on
describes the exchange of information between two arbi-
trary observers in any globally hyperbolic curved spacetime
ðM; gÞ using a quantum scalar field ϕ as a communication
channel. Here, M denotes the four-dimensional spacetime
manifold and g its Lorentzian metric. Let us consider a real
free scalar field ϕ propagating in ðM; gÞ. The spacetime
can be foliated by Cauchy surfaces Σt labeled by the real
parameter t. The field is described by the action

S≡ −
1

2

Z
M

ϵMð∇aϕ∇aϕþm2ϕ2 þ ξRϕ2Þ; ð1Þ

where ϵM ¼ ffiffiffiffiffiffi−gp
dx0 ∧ � � � ∧ dx3 is the spacetime volume

4-form,m is the field mass, ξ ∈ R, R is the scalar curvature,
∇a is the torsion-free covariant derivative compatible with
the metric g, and g≡ detðgμνÞ in some arbitrary coordinate

system. The extremization of the action (1) gives rise to the
Klein-Gordon equation

ð−∇a∇a þm2 þ ξRÞϕ ¼ 0: ð2Þ
In the canonical quantization procedure, we promote the

real field ϕ to an operator1 that satisfies the “equal-time”
canonical commutation relations (CCR)

½ϕðt;xÞ;ϕðt;x0Þ�Σt
¼ ½πðt;xÞ; πðt;x0Þ�Σt

¼ 0; ð3Þ

½ϕðt;xÞ; πðt;x0Þ�Σt
¼ iδ3ðx;x0Þ; ð4Þ

where x≡ ðx1; x2; x3Þ are spatial coordinates on Σt and
πðxÞ is the conjugate momentum defined as

π ≡ δS

δ _ϕ
; ð5Þ

where “ _”≡ ∂t. In addition, we may formally write the
canonical Hamiltonian of the field as

HϕðtÞ≡
Z
Σt

d3xðπðt;xÞ _ϕðt;xÞ − L½ϕ;∇aϕ�Þ; ð6Þ

with

d3x≡ dx1 ∧ dx2 ∧ dx3 ð7Þ

and

L½ϕ;∇aϕ�≡ −
1

2

ffiffiffiffiffiffi
−g

p ð∇aϕ∇aϕþm2ϕ2 þ ξRϕ2Þ ð8Þ

being the Lagrangian density.
To find a representation of the CCR, Eqs. (3) and (4), we

define an antisymmetric bilinear map σ acting on the space
SC of complex solutions of Eq. (2) as

σðψ1;ψ2Þ≡
Z
Σt

ϵΣna½ψ2∇aψ1 − ψ1∇aψ2�; ð9Þ

where ϵΣ represents the proper-volume 3-form on the
Cauchy surface Σt and na its future-directed normal unit
vector. It allows us to define the Klein-Gordon (KG)
product as

hψ1;ψ2i≡ −iσðψ̄1;ψ2Þ; ð10Þ

and, although this product is not positive definite on SC, we
may choose any subspace H ⊂ SC (the so-called one-
particle Hilbert space) such that [24]: (i)2 SC ≃H ⊕ H̄;

1Rigorously, an operator-valued distribution.
2For the sake of mathematical precision, we note that one

must first suitably Cauchy-complete SC for this decomposition to
be valid.
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(ii) the KG product is positive definite on H, thus making
ðH; h; iÞ a Hilbert space3; (iii) given any u ∈ H and v ∈ H̄,
hu; vi ¼ 0. Then, the Hilbert space that comprises the field
states is defined as the symmetric Fock space FsðHÞ and
the quantum field operator is formally defined as

ϕðt;xÞ≡X
j

½ujðt;xÞaðūjÞ þ ūjðt;xÞa†ðujÞ�; ð11Þ

where fujg form an orthonormal basis for H and aðūÞ and
a†ðvÞ are the usual annihilation and creation operators
associated with the modes u and v, respectively, which
satisfy

½aðūÞ; a†ðvÞ� ¼ hu; viI; ð12Þ

with I being the identity operator on FsðHÞ. The vacuum
state associated with this representation of the CCR is the
normalized vector j0i that satisfies aðūÞj0i ¼ 0 for every
mode u ∈ H.
In order to make it mathematically well defined, the

quantum field operator must be defined as an operator-
valued distribution. To this end, let S ⊂ SC be the space of
real solutions of Eq. (2) whose restriction to Cauchy
surfaces have compact support; let K∶S → H be the
projection operator that takes the positive-norm part of
any ψ ∈ S; and define the map E∶C∞

0 ðMÞ → S acting on
some test function f ∈ C∞

0 ðMÞ, where C∞
0 ðMÞ is the set

of all smooth, compactly supported real functions onM, as

EfðxÞ≡ AfðxÞ − RfðxÞ: ð13Þ

Here, Af and Rf are the advanced and retarded solutions,
respectively, of the Klein-Gordon equation with source f.
Hence, they satisfy

PðAfÞ ¼ PðRfÞ ¼ f; ð14Þ

with P ≡ ð−∇a∇a þ m2 þ ξRÞ representing the
Klein-Gordon differential operator. Then, for each test
function f ∈ C∞

0 ðMÞ, we define a smeared quantum field
operator by

ϕðfÞ≡ i½aðKEfÞ − a†ðKEfÞ�; ð15Þ

which satisfy the covariant version of the CCR,

½ϕðf1Þ;ϕðf2Þ� ¼ −iΔðf1; f2ÞI; ð16Þ

where

Δðf1; f2Þ≡
Z
M

ϵMf1ðxÞEf2ðxÞ ð17Þ

and f1; f2 ∈ C∞
0 ðMÞ. It is easy to see that Eq. (15) can be

obtained by formally integrating Eq. (11) with the test
function f, i.e.,

ϕðfÞ ¼
Z
M

ϵMϕðxÞfðxÞ: ð18Þ

The above construction has the downside that there
are infinitely many choices of H satisfying properties
(i)–(iii) below Eq. (10) which are, in general, unitarily
inequivalent. This issue can be avoided through the
algebraic approach to quantum field theory (QFT)
[24,31] in which the field quantization can be seen as a
real linear map ϕ∶ f ∈ C∞

0 ðMÞ → ϕðfÞ ∈ AðMÞ between
the space of test functions and an *-algebra AðMÞ (called
algebra of observables) such that
(1) ϕðfÞ� ¼ ϕðfÞ for all f ∈ C∞

0 ðMÞ—i.e., the
(smeared) field is Hermitian;

(2) ϕðPfÞ ¼ 0, for all f ∈ C∞
0 ðMÞ—i.e., the field

satisfies the Klein-Gordon equation;
(3) ½ϕðf1Þ;ϕðf2Þ� ¼ −iΔðf1; f2ÞI, f1; f2 ∈ C∞

0 ðMÞ—
i.e., the field satisfies the CCR;

(4) AðMÞ is algebraically generated by the identity I
and the ϕðfÞ’s, f ∈ C∞

0 ðMÞ.
In the algebraic approach, a quantum state is defined as a
complex linear functional ω∶AðMÞ → C which satisfies
ωðA�AÞ ≥ 0 for all A ∈ AðMÞ and ωðIÞ ¼ 1. The so-
called Gelfand-Naimark-Segal construction [24,31]
ensures that every algebraic state ω can be realized as a
vector on a Hilbert space together with a representation of
the algebra of observables.
In this work, we will focus on a particular class of states:

the quasifree states, defined as follows. Given a real inner
product μ∶S × S → R satisfying

jσðφ1;φ2Þj2 ≤ 4μðφ1;φ1Þμðφ2;φ2Þ; ð19Þ

for all φ1;φ2 ∈ S, we define a quasifree state ωμ associated
with μ by the relation

ωμ½eiϕðfÞ�≡ e−μðEf;EfÞ=2; ð20Þ

for all f ∈ C∞
0 ðMÞ. We can extend ωμ to act on all

observables of AðMÞ by using

ωμ½ϕðf1Þ…ϕðfnÞ�≡ ð−iÞn∂n
t1…tn ½eit1ϕðf1Þ…eitnϕðfnÞ�jt¼0;

ð21Þ

where t≡ ðt1;…; tnÞ, together with linearity and
continuity.
Now that the field quantization procedure has been

introduced, we present the communication scheme studied
here. Suppose that two observers, Alice and Bob, want to
use the quantum field ϕ to communicate with each other.
We consider Alice and Bob’s trajectories to be arbitrary and3After its completion with respect to the norm induced by h; i.
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we consider the field to be initially in some quasifree state
ωμ.

4 Each observer possesses a two-level gapless quantum
system that may interact with the quantum field. The two-
dimensional Hilbert spaces associated with Alice and Bob’s
qubits are denoted by HA and HB, respectively.
The communication setup is as follows: Alice wants to

transmit classical or quantum information to Bob, and for
that, she prepares her qubit in some initial quantum state
ρA−∞ and switches on its interaction with the field for a finite
time ΔtA (measured in the parameter t). To measure the
information imprinted by Alice on the field’s state, Bob
initially prepares his qubit in a suitable state ρB−∞. He then
switches on its interaction with the field for a finite time
interval ΔtB, but only after Alice has switched off her qubit
interaction. Such communication setup is implemented by
means of the Hamiltonian

HðtÞ≡HϕðtÞ þHintðtÞ; ð22Þ

where Hϕ is the field Hamiltonian in Eq. (6) and Hint is the
Hamiltonian that describes the interaction between the
qubits and the field which, in the interaction picture, is
given by

HI
intðtÞ≡

X
j

ϵjðtÞ
Z
Σt

d3x
ffiffiffiffiffiffi
−g

p
ψ jðt;xÞϕðt;xÞ ⊗ σzj; ð23Þ

where j ¼ A, B with A and B labeling Alice and Bob’s
qubit, respectively. Here, σzj is one of the Pauli matrices
fσxj ; σyj ; σzjg associated with qubit j, ψ jðt;xÞ is a smooth
real function satisfying ψ jΣt

∈ C∞
0 ðΣtÞ for all t which

models the range of interaction between the qubit j and
the field (i.e., the interaction occurs only at some vicinity of
each qubit worldline), and ϵjðtÞ is a smooth and compactly
supported real coupling function modeling the finite-time
coupling of the qubit j with the field. Each coupling
function has support

suppϵj ¼ ½T i
j; T

f
j�; ð24Þ

where T i
j and Tf

j represent the time (with respect to the
parameter t) in which each qubit interaction with the field is
switched on and off, respectively. Here, we denote Δtj ≡
Tf
j − T i

j and assume T i
B ≥ Tf

A (i.e., Bob’s measurement will
be performed after Alice imprinted her information on the
field state).
The interaction between each qubit and the field, given

by Eq. (23), is very similar to the Unruh-DeWitt model.
However, we assumed that the two levels of each qubit have

the same (zero) energy. This assumption allows us to
calculate the evolution operator of the system and trace
out the field degrees of freedom in a nonperturbative
manner, thus making this model interesting to investigate
both the causality in the information exchange process as
well as the communication between parts lying in early and
future asymptotic spacetime regions. We note that one
could also have given an energy gap 2δj for each qubit j by
addingHj ¼ δjσ

z
j to the total Hamiltonian in Eq. (22). This

would change it to

H ¼ Hϕ þHA þHB þHint ð25Þ

but would keep the interaction Hamiltonian in the inter-
action picture [Eq. (23)] unchanged. Hence, all the results
we have just described would remain the same.
The interaction-picture time-evolution operator, associ-

ated with the foliation Σt, can be written as the time-ordered
expression

U ≡ T exp

�
−i

Z
∞

−∞
dtHI

intðtÞ
�
: ð26Þ

As shown in [23], Eq. (26) can be computed exactly and it
is given by

U ¼ eiΞe−iϕðfAÞ⊗σzAe−iϕðfBÞ⊗σzBe−iΔðfA;fBÞσzA⊗σzB ; ð27Þ

where Ξ is the c-number

Ξ≡ 1

2

X
j

Z
∞

−∞
dtϵjðtÞ

Z
t

−∞
dt0ϵjðt0ÞΔjðt; t0Þ;

with

Δjðt; t0Þ≡
Z
Σt

d3x
ffiffiffiffiffiffi
−g

p

×
Z
Σt0

d3x0 ffiffiffiffiffiffiffi
−g0

p
ψ jðt;xÞΔðx; x0Þψ jðt0;x0Þ;

and we recall that ½ϕðxÞ;ϕðx0Þ�≡ −iΔðx; x0ÞI is the
unsmeared version of Eq. (16). Additionally, we have
defined

fjðt;xÞ≡ ϵjðtÞψ jðt;xÞ; ð28Þ

which is a compactly supported function onM carrying all
information about the interaction of qubit j with the field.
The initial state of the two-qubit+field system is

ρ−∞ ≡ ρA−∞ ⊗ ρB−∞ ⊗ ρω, where ρω is the density operator
associated with the initial quasifree state ωμ of the field.
Using the unitary evolution operator in Eq. (27), we can
evolve ρ−∞ to obtain the system’s state after the commu-
nication process, ρþ∞ ¼ Uρ−∞U†. Additionally, we can

4Actually, the results from this section apply to any algebraic
state ω which satisfies ω½eiϕðfÞ� ∈ Rþ. This condition includes
the vacuum states, n-particle states, as well as KMS (thermal)
states.
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trace out the field and Alice’s qubit degrees of freedom,
obtaining the state of Bob’s qubit after the communication
process has finished:

ρB ≡ trA;ϕðUρA−∞ ⊗ ρB−∞ ⊗ ρωU†Þ: ð29Þ

As shown in [23], Eq. (29) can be written in the form

ρB ¼ EðρA−∞Þ; ð30Þ

where E is a linear, completely positive, and trace-preserving
quantum map that relates the initial state of Alice’s qubit
(which has the information that will be conveyed) to the final
state of Bob’s qubit (which will be measured by him in order
to retrieve the message). In other words, E is the quantum
map that describes the communication channel used between
Alice and Bob. It depends on their trajectories, on the
spacetime geometry, and on both the initial state of the field
and of Bob’s qubit. The explicit form of Eq. (30) as well as
the details of the calculations can be found in [23]. It is worth
pointing out, however, that the initial state ρB−∞ should not be
arbitrarily chosen: since σzB commutes with the total
Hamiltonian (25), σzB is conserved and thus its eigenvalues
cannot be used to recover any information transmitted by
Alice. Nevertheless, it can be shown that some states will
maximize the signalling amplitudes between Alice and Bob,
e.g., ρB−∞ ≡jyþiBBhyþj, where jyþiB satisfies σyBjyþiB ¼
jyþiB. With this choice of ρB−∞, it can be shown that this
quantum channel has a classical capacity (i.e., the maximum
rate at which classical bits can be reliably transmitted)
given by

CðEÞ ¼ H

�
1

2
þ νB

2
j cos½2ΔðfA; fBÞ�j

�
−H

�
1

2
þ νB

2

�
;

ð31Þ

where HðxÞ≡ −x log2 x − ð1 − xÞlog2 ð1 − xÞ is the
Shannon entropy and

νB ≡ ωμ½eiϕð2fBÞ� ¼ e−2μðKEfB;KEfBÞ: ð32Þ

On the other hand, since this channel is entanglement
breaking, its quantum channel capacity (i.e., the rate at
which qubits can be reliably transmitted) is

QðEÞ ¼ 0: ð33Þ

One could also define protocols for sending both
classical and quantum information when Alice and Bob
initially have access to an unlimited supply of entangle-
ment. In this case, one can define classical (or quantum)
entanglement-assisted channel capacities which measure
the maximum rate at which classical information (or
qubits) can be reliably sent through the channel. As
shown in [23], the classical CeaðEÞ and quantum QeaðEÞ

entanglement-assisted capacities are related to the classical
channel capacity (31) by

CeaðEÞ ¼ 2QeaðEÞ ¼ CðEÞ: ð34Þ

Thus, it is not worth using entanglement in order to try to
increase the classical capacity of this channel. On the other
hand, when prior entanglement is shared between Alice and
Bob, it is possible to convey qubits through this channel at
maximum rate QeaðEÞ, in contrast with the unassisted case
in Eq. (33).

III. QUANTIZATION ON NULL SURFACES

The so-called quantization on null surfaces provides the
formulation of a QFT restricted to three-dimensional null
submanifolds such as black hole horizons [32], asymptotic
infinities [33,34], and cosmological horizons [35]. In this
section, we will build a quantum field theory restricted to a
special class of null hypersurfaces. Then, under a few
assumptions, we show how one can relate the ordinary QFT
presented in Sec. II to the algebra of operators defined in
the asymptotic past and future null infinities as well as
causal horizons.
Let h be a three-dimensional null hypersurface satisfying

the following.
(1) h is diffeomorphic to R × Γ, where Γ is a two-

dimensional spacelike submanifold of M;
(2) there exist coordinates ðΩ; λ; s1; s2Þ on M such that

(a) s≡ ðs1; s2Þ are coordinates of Γ;
(b) h ¼ fp ∈ MjΩðpÞ ¼ 0g and dΩ ≠ 0 at h;
(v) the restriction of the metric to h takes the form

gjh ¼ −γ2ðdΩ ⊗ dλþ dλ ⊗ dΩÞ þ hΓ; ð35Þ

where hΓ is the metric induced by g on Γ
and γ ∈ R.

It follows from conditions (i) and (ii) above that ðλ; sÞ
defines a coordinate system for h and that the curves
λ → ðλ; sÞ, defined for fixed s, are the null generators of h.
From now on, we will refer to h generically as “the
horizon” (although it can also be describing past or future
infinity).
To parallel the usual QFT construction we have pre-

sented in Sec. II, let us define the “solution space” on h as

SCh ≡ fsmoothψ∶ h → Cjψ ; ∂λψ ∈ L2ðh; dλ ∧ ϵΓÞg; ð36Þ

where ϵΓ is the natural volume element on Γ and
L2ðh; dλ ∧ ϵΓÞ is the space of square-integrable functions
on h with respect to the measure dλ ∧ ϵΓ. Similarly to
Eq. (9), we define the symplectic product on SC

h as

σhðψ1;ψ2Þ≡
Z
h
dλ ∧ ϵΓ½ψ2∂λψ1 − ψ1∂λψ2�; ð37Þ
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which again allows us to define the Klein-Gordon inner
product on SC

h by

hψ1;ψ2ih ≡ −iσhðψ1;ψ2Þ: ð38Þ

Now, let us note that Eq. (35) is invariant under trans-
lations λ → λþ a, with a ∈ R. We can explore this trans-
lation symmetry on λ to choose a preferable representation
of the CCR. For this purpose, let us first define the positive-
frequency projection operator K acting on ψ ∈ SC

h by

Kψðλ; sÞ≡ 1ffiffiffiffiffiffi
2π

p
Z
Rþ

dEe−iEλψ̃ðE; sÞ; ð39Þ

where

ψ̃ðE; sÞ≡ 1ffiffiffiffiffiffi
2π

p
Z
R
dλeiEλψðλ; sÞ ð40Þ

is the Fourier transform of ψ with respect to λ. Then, the
one-particle Hilbert space is defined as

Hh ≡ fKψ jψ ∈ SC
h g; ð41Þ

where the closure is with respect to the norm induced by the
product in Eq. (38) (which is positive definite on Hh). It is
easy to see that the horizon one-particle Hilbert spaceHh in
Eq. (41) satisfies properties (i)–(iii) below Eq. (10).
Having established the one-particle Hilbert spaceHh, we

can now follow the same procedure described in Sec. II to
build the bosonic Fock space FsðHhÞ and the creation and
annihilation operators associated with each mode u ∈ Hh.
Then, the horizon smeared quantum field can be defined as

ϕðhÞðψÞ≡ i½aðKψÞ − a†ðKψÞ�; ð42Þ

for every ψ ∈ Sh ⊂ SC
h with

Sh ≡ fψ ∈ SC
h jψ is realg: ð43Þ

The horizon algebra of observables, AðhÞ, is generated by
the identity operator I∶FsðHhÞ → FsðHhÞ and the set of
field operators fϕðψÞjψ ∈ Shg.
It will be useful to write a basis for the one-particle space

Hh. To this end, let fφαgα∈Λ ⊂ L2ðΓ; ϵΓÞ be an orthonor-
mal basis for L2ðΓ; ϵΓÞwith respect to some measure dμðαÞ
on the set Λ of quantum numbers α. Hence, every ψ ∈
L2ðΓ; ϵΓÞ can be written as

ψðsÞ ¼
Z
Λ
dμðαÞψ̃ðαÞφαðsÞ ð44Þ

for some function ψ̃ðαÞ, with φα;φβ satisfying

Z
Γ
ϵΓφαðsÞφβðsÞ ¼ δμðα; βÞ; ð45Þ

where δμ is the Dirac distribution relative to the measure
dμðαÞ. Then, define the set of modes fuEαg ⊂ Hh as

uEαðλ; sÞ≡ 1ffiffiffiffiffiffiffiffiffi
4πE

p e−iEλφαðsÞ; E > 0; ð46Þ

which satisfy

huEα; uE0;α0 ih ¼ δðE − E0Þδμðα; α0Þ ð47Þ

and, thus, form a orthonormal basis for the one-particle
Hilbert space Hh. They allow us to define annihilation
operators, aEα ≡ aðuEαÞ, and write the horizon unsmeared
quantum field operator as

ϕðhÞðλ; sÞ≡
Z
Rþ

dE
Z
Λ
dμðαÞ½uEαaEα þ H:c:�; ð48Þ

which satisfy the commutation relation

½ϕðhÞðλ; sÞ; ∂λϕ
ðhÞðλ0; s0Þ� ¼ i

2
δðλ − λ0ÞδΓðs − s0Þ: ð49Þ

It is worth noting that the smeared and unsmeared
quantum fields [Eqs. (42) and (48)] are related by

ϕðhÞðψÞ ¼ σhðψ ;ϕhÞ

¼ 2

Z
h
dλ ∧ ϵΓ∂λψðλ; sÞϕhðλ; sÞ

¼
Z
h
2dψ ∧ ϵΓϕ

hðλ; sÞ; ð50Þ

from which we see that the correct way to smear this field is
with forms. This is because there is no natural volume
element on h (the induced metric is degenerate).
Let us now discuss the application of the null-surface

quantization and its relation to the ordinary QFT presented
in Sec. II. Suppose that the spacetime ðM; gÞ is asymp-
totically flat with future null infinity Iþ, possibly contain-
ing a future causal horizon hþ (e.g., the event horizon
of a black hole). The future null infinity Iþ is a three-
dimensional null hypersurface which satisfies the proper-
ties (i) and (ii) defined at the beginning of this section with
Γ ¼ S2 and λ≡ u being the so-called “retarded time.”
Similarly, the causal horizon hþ is a three-dimensional null
hypersurface which satisfies the same properties but with
λ≡ v being the so-called “advanced time.” Thus, we can
apply the quantization procedure introduced in this section
to both surfaces Iþ and hþ (if present) and build the field
algebras AðIþÞ and AðhþÞ, respectively.
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Let us take now h≡ hþ ∪ Iþ as the union of future null
infinity and the future causal horizon and let M̃≡ I−ðhÞ be
the asymptotically flat region outside the horizon, where
I−ðAÞ indicates the chronological past of a subset A ⊂ M.
For the sake of simplicity, from now on, we will restrict our
analysis to minimally coupled massless fields. Suppose we
have constructed a quantum field theory in M̃ following
the steps of Sec. II, obtaining an algebra of observables
AðM̃Þ (called the bulk algebra). Since we are dealing with
a massless field, all the information carried by the field will
be “imprinted” on h. Thus, we expect that (BB1) every
solution ψ ∈ S of the Klein-Gordon equation in M̃ which
has compact support on Cauchy surfaces can be extended
by continuity to (unique) functions ψIþ ∈ SC

Iþ on Iþ and
ψhþ ∈ SC

hþ on hþ. Moreover, ψ , ψIþ
, and ψhþ should

satisfy

ðBB2Þ σðψ1;ψ2Þ¼ σIþðψIþ
1 ;ψIþ

2 Þþσhþðψhþ
1 ;ψhþ

2 Þ; ð51Þ

where the lhs is defined in Eq. (9) and the horizon bilinear
products in the rhs are defined in Eq. (37). By using (BB1)
and (BB2) above, each operator in AðM̃Þ can then be
mapped with an operator in AðhÞ≡AðIþÞ ⊗ AðhþÞ by
the identification

ϕðfÞ → ϕðhÞðEfhÞ; ∀ f ∈ C∞
0 ðM̃Þ: ð52Þ

An algebraic state ω∶ AðM̃Þ → Rþ induces the state
ωh∶AðhÞ → Rþ on h through the identification

ωh½ϕðhÞðEfhÞ�≡ ω½ϕðfÞ�; ∀ ϕðhÞðEfhÞ ∈ AðhÞ: ð53Þ

By following a completely analogous procedure, one can
also relate the bulk algebra to the algebra defined at past
null infinity, I−.
It is important to note that, although we will restrict

ourselves to massless and minimally coupled real scalar
fields, the above relation between betweenAðM̃Þ andAðhÞ
will always exists provided that the field in question
satisfies conditions (BB1) and (BB2) [35].

IV. ENERGY COST FOR THE TRANSMISSION
OF INFORMATION

In Sec. II, we have discussed a communication channel
that allows the transmission of information between two
arbitrary observers in a globally hyperbolic spacetime
ðM; gÞ. Now, we turn our attention to investigate the
energy cost involved in this communication process when
ðM; gÞ is asymptotically flat with past and future null
infinities given by I− and Iþ, respectively. Our goal will be
to analyze the total energy variation of the two-qubit+field
system between early and late times. We recall that the
initial state of the system is given by

ρ−∞ ≡ ρA−∞ ⊗ ρB−∞ ⊗ ρω; ð54Þ

where ρω is the density operator associated with some
initial quasifree field state ωμ and ρj−∞ is the initial state of
qubit j ¼ A, B. When the communication process finishes,
the final state of the two-qubits+field system is

ρþ∞ ≡ Uρ−∞U†; ð55Þ

where U is the evolution operator given by Eq. (27). As a
result, the total energy variation of the system is formally
written as

ΔE≡ hHðþ∞Þiρþ∞
− hHð−∞Þiρ−∞ ; ð56Þ

with HðtÞ defined in Eq. (22). As the interaction time of
each qubit with the field is finite, the interaction
Hamiltonian vanishes for t → �∞ and, thus, Eq. (56)
can be cast as

ΔE ¼ trðHϕðþ∞ÞUρ−∞U†Þ − trðHϕð−∞Þρ−∞Þ: ð57Þ

As in Sec. II, define h≡ hþ ∪ Iþ or h≡ Iþ, depending
on whether there is a future causal horizon hþ or not. Now,
let us restrict our attention to the globally hyperbolic region
M̃ ¼ I−ðhÞ outside the horizon and let us foliate it with
Cauchy surfaces Σt such that Σt→−∞ ¼ I− and Σt→∞ ¼ h.
By using the identification between the algebraAðM̃Þwith
the algebras AðhÞ and AðI−Þ, we can cast Eq. (57) as

ΔE ¼ trðHðhÞ
ϕ UðhÞρh−∞UðhÞ†Þ − trðHðI−Þ

ϕ ρðI
−Þ

−∞ Þ
¼ trðUðhÞ†HðhÞ

ϕ UðhÞρh−∞Þ − trðHðI−Þ
ϕ ρðI

−Þ
−∞ Þ; ð58Þ

with HðhÞ
ϕ ðHðI−Þ

ϕ Þ and ρðhÞ−∞ ðρðI−Þ
−∞ Þ being the horizon field

Hamiltonian and the state induced by ρ−∞ at h ðI−Þ,
respectively. Similarly, UðhÞ is the evolution operator (27)
written using the algebra AðhÞ; i.e., we have used the
identification ϕðfjÞ → ϕðhÞðEfhj Þ.
The field Hamiltonian at X ¼ I−; h can be written as

HX
ϕ ¼

Z
X
dλX ∧ ϵΓX

TX
abk

akb

¼
Z
X
dλX ∧ ϵΓX

½∂λXϕ
X�2; ð59Þ

where ΓX is the spacelike 2-surface transverse to the null
generators of X:

TX
ab ≡∇ðaϕX∇bÞϕX −

1

2
gab∇cϕ

X∇cϕX ð60Þ

is the stress-energy-momentum tensor at X of the massless
KG field, and ka ≡ ð∂λXÞa is the vector field tangent to the
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affinely parametrized null generators of X whose affine
parameter is given by λI− ¼ v or λh ¼ λ whenever X ¼ I−

or X ¼ h, respectively.
Let us evaluate Eq. (58) by steps. For this purpose, we

first define

UðhÞ
j ≡ e−iϕ

ðhÞðEfhj Þ⊗σzj ; j ¼ A;B; ð61Þ

and use Eq. (27), together with the identification between
field algebras in h and M̃, to write

UðhÞ†HðhÞ
ϕ UðhÞ ¼ UðhÞ

B
†UðhÞ

A
†HðhÞ

ϕ UðhÞ
A UðhÞ

B : ð62Þ

Next, by using Eqs. (49) and (61) together with the relation

eabe−a ¼ bþ ½a; b�; ð63Þ

valid when ½½a; b�; a� ¼ ½½a; b�; b� ¼ 0, we can write

UðhÞ
j

†∂λϕ
hUðhÞ

j ¼ ∂λϕ
h − ∂λEf

h
jσ

z
j; ð64Þ

where we recall that j ¼ A, B. Now, using Eqs. (61) and
(64) in Eq. (62), we obtain

UðhÞ†∂λϕ
hUðhÞ ¼ ∂λϕ

h −
X
j¼A;B

∂λEf
h
jσ

z
j: ð65Þ

By using Eqs. (59) and (65) we can cast the evolved
Hamiltonian on h as

UðhÞ†HðhÞ
ϕ UðhÞ ¼HðhÞ

ϕ −2
X
j¼A;B

Z
h
dλ∧ ϵΓ∂λEf

h
j∂λϕ

h ⊗ σzj

þ
X

i;j¼A;B

Z
h
dλ∧ ϵΓ∂λEf

h
i ∂λEf

h
jσ

z
i ⊗ σzj:

ð66Þ

Finally, by substituting Eq. (66) in Eq. (58) we can write the
energy variation as

ΔE ¼ Wϕ þWA þWB þWAB; ð67Þ

where

Wϕ ≡ trðHðhÞ
ϕ ρðhÞω Þ − trðHðI−Þ

ϕ ρðI
−Þ

ω Þ; ð68Þ

Wj ≡
Z
h
dλ ∧ ϵΓð∂λEf

h
j Þ2; ð69Þ

WAB ≡ 2

�Z
h
dλ ∧ ϵΓð∂λEf

h
AÞð∂λEf

h
BÞ
�
hσzAiρA−∞hσzBiρB−∞ ;

ð70Þ

and we have used that, for any quasifree state ω,

h∂λϕ
hiω ≡ trðρhω∂λϕ

hÞ ¼ 0:

Note that we have separated the energy variation into
three parts. The first one, Wϕ, is the contribution to the
energy that arises from the particle creation due to the
change in the spacetime metric. It depends only on the field
state and spacetime metric and has nothing to do with the
presence of Alice and Bob. A difficulty we face now is that
some sort of renormalization of the field energy operator
Hϕ is needed. For this purpose, we will restrict ourselves to
the so-called Hadamard states, for which a general renorm-
alization procedure is possible [24]. By noting that any state
that is Hadamard in some open neighborhood of a Cauchy
surface is Hadamard everywhere [36], we can see that the
spacetime evolution preserves the renormalizability of the
state. As a result, we can see that, for Hadamard states,
Eq. (68) [and, thus, Eq. (57) as Wϕ is the only contribution
to ΔE where divergences appear] is well defined and gives
finite results.
The second contribution, WA þWB, depends independ-

ently on each qubit interaction with the field. This con-
tribution is due to the work necessary to switch on or off
each qubit, and it depends on their trajectories and coupling
constants, as well as on spacetime parameters.
The third contribution, WAB, measures the extra energy

cost arising from the communication process itself. It
depends on the initial state of each qubit, on the spacetime
metric, and on the relative motion between Alice and Bob.
We note that, by integrating by parts and using Eq. (37), we
can write

2

Z
h
dλ ∧ ϵΓð∂λEf

h
AÞð∂λEf

h
BÞ ¼ σhðEfhA; ∂λEf

h
BÞ; ð71Þ

which, by using Eqs. (49) and (50), enables us to cast
Eq. (70) as

WAB ¼hi½ϕðhÞðEfhAÞ;ϕðhÞð∂λEfBÞ�iωhσzAiρA−∞hσzBiρB−∞ : ð72Þ

As expected, we can see that WAB vanishes if Alice and
Bob’s qubits interact with the field in causally disconnected
regions of the spacetime. More interestingly, we can make
the WAB contribution to identically vanish with a conven-
ient choice of ρB−∞. Recall that Alice encodes the informa-
tion she wants to convey in her qubit’s initial state ρA−∞. On
the other hand, we are free to choose the initial state of
Bob’s qubit. The choice ρB−∞ ≡ jyþ iBBhyþj, for example,
leads to WAB ¼ 0 while it maximizes the channel
capacities. This shows that one can convey arbitrary
amounts of information through this quantum channel
without extra energy costs.
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V. TWO PARADIGMATIC EXAMPLES

We now illustrate the results presented in the previous
sections with two paradigmatic examples in Minkowski
spacetime. Let us begin with the field quantization,
following the steps presented in Sec. II. Consider a free
and massless scalar field ϕ propagating in the Minkowski
spacetime ðR4; ηÞ. Let ðt; x; y; zÞ ∈ R4 denote global iner-
tial Cartesian coordinates and let us denote the spatial
coordinates as x≡ ðx; y; zÞ. The Klein-Gordon equation is
simply

□ϕ ¼ 0; ð73Þ

with □≡ −
P

μ;ν η
μν∂μ∂ν, η≡P

μ;ν ημνdx
μ ⊗ dxν, and

η ¼ −dt ⊗ dtþ dx ⊗ dxþ dy ⊗ dyþ dz ⊗ dz: ð74Þ

Let SC be the space of complex solutions of Eq. (73) with
compact-support initial data and consider the antisymmet-
ric bilinear map (9), which takes the form

σðψ1;ψ2Þ ¼
Z
Σt¼0

d3x½ψ2∂tψ1 − ψ1∂tψ2�; ð75Þ

where

Σt¼cte ≡ fðt;xÞ ∈ R4jt ¼ cteg: ð76Þ

We choose as the one-particle Hilbert space H the space
spanned by the positive frequency parts, with respect to the
inertial time t, of solutions in SC Cauchy-completed with
the norm induced by the Klein-Gordon inner product (10).
One then builds the bosonic Fock space FsðHÞ as usual, to
represent the space of field states and define the field
operators via Eq. (15). This is the standard CCR repre-
sentation in Minkowski spacetime associated with inertial
observers and we will refer to its vacuum state j0Mi as the
inertial (or Minkowski) vacuum state.
Using the Green functions of the D’Alambertian oper-

ator □, one can show that the map E∶C∞
0 ðMÞ → S

defined in Eq. (13) takes the form [37]

Efðx0Þ ¼
Z

ϵMfðxÞEðx0; xÞ ð77Þ

with

Eðx; x0Þ≡ 1

4πjx − x0j ½δðt − t0 − jx − x0jÞ

− δðt − t0 þ jx − x0jÞ�: ð78Þ

For later use, it will be useful to consider the standard
positive-frequency modes

ukðt;xÞ≡ 1

4π
3
2jkj12 e

−ijkjteik·x; k ∈ R3; ð79Þ

which comprises a complete basis for the one-particle
Hilbert space H.
Now that we have chosen a representation for the CCR in

Minkowski spacetime, let us analyze the effects of the field
state as well as the state of motion of both Alice and Bob in
the communication process.

A. Inertial sender and receiver

We consider first the following scenario: suppose Alice
is at rest at the origin of our inertial coordinate system and
wants to transmit some information to Bob, who is at rest at
the spatial position x ¼ ðL; 0; 0Þ (thus at rest relative to
Alice and separated by a spatial distance L). For simplicity,
we consider that both are equipped with pointlike detectors.
To avoid divergences, we consider that the interactions of
each qubit with the field are switched on or off continu-
ously. We have seen that Eq. (28) carries all the information
about the qubit interaction with the field. Applying it to
Alice’s qubitþ field interaction gives

fAðt;xÞ ¼ ϵAcAðtÞδ3ðxÞ; ð80Þ

where ϵA is a dimensionless coupling constant and

cAðtÞ ¼

8>><
>>:

eαAðt−T i
AÞ; t < T i

A

1; T i
A ≤ t ≤ Tf

A

e−αAðt−Tf
AÞ; t > Tf

A

ð81Þ

models the switching function. Similarly, the function
modeling Bob’s qubitþ field interaction is

fBðt;xÞ ¼ ϵBcBðtÞδ3ðx − Lx̂Þ; ð82Þ

where ϵB is a dimensionless coupling constant and cBðtÞ is
defined as cAðtÞ but replacing the A’s by B’s in Eq. (81).
Our goal is to explicitly evaluate the classical channel

capacity in Eq. (31) and analyze its dependence on the
various parameters involved in this communication proc-
ess. To this end, we first substitute Eq. (82) in Eq. (77) to
write

EfBðt;xÞ ¼
ϵB

4πjx − Lx̂j ½cBðt − jx − Lx̂jÞ

− cBðtþ jx − Lx̂jÞ�: ð83Þ

Then, by using Eqs. (80) and (83) in Eq. (17), we can cast
the smeared propagator as
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ΔðfA;fBÞ¼
ϵAϵB
4πL

Z
R
dtcAðtÞ½cBðt−LÞ−cBðtþLÞ�: ð84Þ

Now, note that νB defined in Eq. (32) depends on Bob’s
state of motion as well as the quantum field state. Let us
consider two cases: if the field is initially in the inertial
vacuum state j0Mi, νB is simply

νB ¼ exp ½−2hKEfB; KEfBi�; ð85Þ

where h; i is the Klein-Gordon inner product (10) and we
recall that K∶SC → H takes the positive-frequency part of
any solution of Eq. (73). Now, if the field is in a KMS
(thermal) state at temperature Θ, then [38]

νB ¼ exp

�
−2

�
KEfB; coth

�
βĥ
2

�
KEfB

��
; ð86Þ

where β≡ Θ−1 is the inverse temperature and ĥ∶H → H is
the one-particle Hamiltonian, which is given by ĥ ¼ i∂t
and satisfies

Hϕ ¼ dΓðĥÞ≡ 1 ⊕ ĥ ⊕ ðĥ ⊗ ĥÞ ⊕ � � �:

We note that, in the zero-temperature limit (i.e., β → ∞),
Eq. (86) reduces to Eq. (85), as it should be.
Since the modes uk defined in Eq. (79) form a complete

basis for H, we can decompose EfB as

KEfB ¼
Z

d3khuk; EfBiuk ð87Þ

and thus, as ĥ is diagonal in this basis, we can write

�
KEfB; coth

�
βĥ
2

�
KEfB

�

¼
Z

d3k coth

�
βjkj
2

�
jhuk; EfBij2: ð88Þ

By making use of Eq. (10) and Lemma 3.2.1 of [24] we can
cast the Klein-Gordon inner product in Eq. (88) as

huk; EfBi ¼ i
Z
M

ϵMukðxÞfBðxÞ; ð89Þ

which, by using Eq. (79), can be put in the form

huk; EfBi ¼
iϵB

2
3
2πjkj12 ecBðjkjÞe−ikxL; ð90Þ

where

ecBðωÞ≡ 1ffiffiffiffiffiffi
2π

p
Z
R
dteiωtcBðtÞ ð91Þ

is the Fourier transform of cBðtÞ. Putting together Eqs. (86),
(88), and (90) we obtain

νBðΘÞ ¼ exp

�
−
2ϵ2B
π

Z
∞

0

dkk coth

�
k
2Θ

�
j ecBðkÞj2

�
: ð92Þ

We can now use Eqs. (31), (84), and (92) to investigate
the classical channel capacity when sender and receiver are
inertial observers at rest relative to each other. Let us
consider that Alice and Bob let their qubits interact with the
quantum field for the same amount of time

ΔT ≡ Tf
A − T i

A ¼ Tf
B − T i

B;

where, for the sake of simplicity, we have set T i
A ¼ 0. We

note that by choosing large values of αA, αB (i.e.,
αA; αB ≫ 1=ΔT) in the switching functions cAðtÞ; cBðtÞ,
we can model the case where qubitþ field interactions take
place at finite time intervals ΔT. In Fig. 1 we plot Alice and
Bob worldlines for a spatial separation L as well as the
regions where the emission and detection events take place.
Note that the emission and detection events are spacelike
separated whenever T i

B < L − ΔT or timelike separated
whenever T i

B > Lþ ΔT. As the field is massless, the
channel capacity is expected to be zero in such cases since
Bob cannot intercept any signal emitted by Alice.

FIG. 1. Spacetime diagram representing Alice’s worldline (red
dashed line) and Bob’s worldline (blue dashed line). The red and
blue rectangles represent the regions where their respective qubits
interact with the quantum field. As we are considering a massless
field, the gray region represents the region where signals emitted
by Alice should be present.
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Let us begin by analyzing how the coupling constants
influence the channel capacity CðEÞ. For this purpose we
consider the case where the quantum field is initially in the
inertial vacuum state and, thus, we are considering the β →
∞ limit in Eq. (92). In Fig. 2, we plot how CðEÞ varies
when one changes the couplings ϵA and ϵB. For the sake of
illustration, we have considered the case where
T i
B ¼ L ¼ 4ΔT. This guarantees that Bob’s detection

process takes place entirely in the gray region of the plot.
We can see that the channel capacity increases very close to
1 (maximum efficiency) for large values of ϵA but decreases
rapidly with the increase of Bob’s coupling constant ϵB.
This happens, for a fixed value of ΔT, because as Alice
wants to imprint some information on the field state, the
stronger her interaction with the field, the more efficient
this process will be. On the other hand, Bob’s qubit state is
altered when it is allowed to interact with the field. If the
interaction is too strong (or if it is switched on for a long
period of time), the information encoded in his qubit state
can be lost due to quantum decoherence.
Having established how one can tune ϵA and ϵB to

maximize the channel capacity, let us choose suitable
values for the coupling constants and investigate the
communication process for different choices of the field
initial thermal state as well as different causal relations
between Alice emission and Bob measurement events. The
results are shown in Fig. 3, where we plot the channel
capacity CðEÞ as a function of the time Ti

B where Bob
begins his measurement. In view of our previous results, we
have chosen ϵA ¼ 800, ϵB ¼ 0.05, and L ¼ 4ΔT. We can
see that the channel capacity vanishes if Bob’s qubit
interacts with the field too soon (T i

B < L − ΔT ¼ 3ΔT)
or too late (T i

B > Lþ ΔT ¼ 5ΔT), regardless of the initial
field state. One may observe in Fig. 1 that these are the
cases where emission and detection events are spacelike
and timelike separated, respectively, and thus Bob cannot
intercept any signal emitted by Alice. On the other hand,
the maximum communication efficiency is reached when

T i
B ¼ L ¼ 4ΔT, since now Bob is able to intercept every

signal emitted by Alice. Additionally, note how the temper-
ature of the field state limits the maximum channel
capacity. The higher the temperature Θ, the greater the
noise in the quantum channel. This increases the quantum
decoherence in Bob’s qubit state (as the decoherence time
decreases) and, thus, it becomes impossible to achieve high
efficiency in the communication process.

B. Inertial sender, accelerated receiver

Let us consider now the following scenario: suppose
Alice is at rest at the origin of some inertial Cartesian
coordinate system ðt; x; y; zÞ and wants to transmit infor-
mation to Bob, which travels uniformly accelerated follow-
ing the worldline

tBðτÞ ¼ a−1 sinh ðaτÞ;
xBðτÞ ¼ x0 þ a−1 ½cosh ðaτÞ − 1�;
yBðτÞ ¼ zBðτÞ ¼ 0: ð93Þ

Here, a is Bob’s proper acceleration, τ is his proper time
(synchronized as τ ¼ 0 when t ¼ 0), and x0 is the spatial
distance between Bob and Alice (as measured by Alice) at
the point of maximum approximation. Both worldlines are
shown in Fig. 4 for two different values of Bob’s proper
acceleration a. The quantum field is supposed to be initially
in the inertial vacuum state j0Mi and we consider again
that both observers are equipped with pointlike detectors
which are continuously switched on or off. The function
modeling Alice’s qubitþ field interaction remains the one
in Eq. (80).
To discuss Bob’s qubit interaction with the field, let us

first introduce Rindler coordinates ðτ; ξ; y; zÞ, with τ; ξ ∈ R
implicitly defined by

FIG. 2. Classical channel capacity as a function of Bob and
Alice’s coupling constants ϵA and ϵB, respectively. Here, αA ¼
αB ¼ 100ΔT−1 and T i

B ¼ L ¼ 4ΔT. The channel capacity and
coupling constants are dimensionless.

FIG. 3. Classical channel capacity as a function of the time T i
B

when Bob starts the measurement process for different initial
thermal states of the field. Each curve represents a different
temperature Θ of the initial quantum field state (with Θ ¼ 0

representing the inertial vacuum state). Here, αA¼αB¼100ΔT−1,
ϵA ¼ 800, ϵB ¼ 0.05, and L ¼ 4ΔT.
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t¼a−1eaξ sinhaτ; x¼
�
x0−

1

a

�
þa−1eaξ coshaτ: ð94Þ

These coordinates cover the right Rindler wedge (RRW),
i.e., the region defined by ½x − ðx0 − 1=aÞ� > jtj, in which
the metric takes the form

g ¼ e2aξð−dτ ⊗ dτ þ dξ ⊗ dξÞ þ dy ⊗ dyþ dz ⊗ dz:

ð95Þ

In such coordinates, Bob remains static at ξ ¼ y ¼ z ¼ 0
and its qubitþ field interaction is simply described by the
function

fBðτ; ξ; y; zÞ ¼ ϵBcBðτÞδðξÞδðyÞδðzÞ; ð96Þ

where

cBðτÞ ¼

8>><
>>:

eαBðτ−τiBÞ; τ < τiB
1; τiB ≤ τ ≤ τfB

e−αBðτ−τfBÞ; τ > τfB:

ð97Þ

In order to analyze the channel capacity, we need to
evaluate againΔðfA; fBÞ. By an analogous procedure to the
one leading to Eq. (83), we obtain

EfAðt;xÞ ¼
ϵA

4πjxj ½cAðt − jxjÞ − cAðtþ jxjÞ�: ð98Þ

Using Eq. (16), we have

ΔðfA; fBÞ ¼ −ΔðfB; fAÞ

¼ −
Z
M

ϵMfBðxÞEfAðxÞ; ð99Þ

which, in Rindler coordinates (94), can be straightfor-
wardly evaluated giving

ΔðfA; fBÞ ¼
ϵAϵB
4π

Z
R
dτ

cBðτÞ
jxBðτÞj

fcA½tBðτÞ þ xBðτÞ�

− cA½tBðτÞ − xBðτÞ�g: ð100Þ

Now, we proceed to calculate the quantity νB defined in
Eq. (32), which depends on Bob’s state of motion and the
initial state of the quantum field. In order to do so, it will be
useful to introduce the so-called right Rindler modes
defined by

vRωk⊥ ≡
�
sinhðπω=aÞ

4π4a

�
1=2

Kiω=a

�jk⊥jeaξ
a

�
eik⊥·x⊥e−iωτ

ð101Þ

in the RRWand vanishing in the left Rindler wedge (LRW),
which is the region where ½x − ðx0 − 1=aÞ� > −jtj. Here,
x⊥ ≡ ðy; zÞ, k⊥ ∈ R2, ω > 0, and KνðxÞ is the modified
Bessel function. The left Rindler modes vLωk⊥ are defined

by vLωk⊥ðt; x;x⊥Þ≡ vRωk⊥ð−t;−x;x⊥Þ. Hence, they vanish

(a) (b)

FIG. 4. Spacetime diagram, in Cartesian coordinates ðt; xÞ, representing Alice (red dashed line) and Bob’s worldline with different
accelerations (blue and orange dashed lines). The solid regions represent emission and detection events that maximize the channel
capacity. The detectors remain switched on for the same proper-time interval.
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in the RRWand take the form (101) in Rindler coordinates
covering the LRW.
By using vRωk⊥ and vLωk⊥ we can define the so-called

Unruh modes

w1
ωk⊥ ≡ vRωk⊥ þ e−πω=avLω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ð102Þ

w2
ωk⊥ ≡ vLωk⊥ þ e−πω=avRω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ð103Þ

which have purely positive frequency relative to inertial
time and comprise a complete basis for the one-particle
space H defined below Eq. (76). Therefore, we can write

hKEfB;KEfBi¼
Z
R
dω

Z
R2

d2k⊥jhw1
ωk⊥ ;EfBij2; ð104Þ

where we have used that w1
−ωk⊥ ¼ w2

ωk⊥ . Analogously to
Eq. (90), we can write

hw1
ωk⊥ ; EfBi ¼ i

Z
ϵMw1

ωk⊥ðxÞfBðxÞ; ð105Þ

which, by using Eq. (102), gives

hw1
ωk⊥ ; EfBi ¼

iϵBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p
�
sinhðπω=aÞ

2π3a

�
1=2

× e−πω=aKiω=aðjk⊥j=aÞ ecBðωÞ: ð106Þ

Substituting Eqs. (106) and (104) in Eq. (85) and evaluating
the transverse, k⊥, integral by means of the identityZ

∞

0

dxxjKiω=aðxÞj2 ¼
ω

4a sinh ðπω=aÞ ; ð107Þ

we obtain

νB ¼ exp

�
−
2ϵ2B
π

Z
∞

0

dωω coth

�
πω

a

�
j ecBðωÞj2

�
: ð108Þ

Now, we can use Eqs. (31), (100), and (108) to inves-
tigate the classical channel capacity CðEÞ for inertial sender
and accelerated receiver. We consider that Alice and Bob let
their qubits interact with the quantum field for the same
amount of their respective proper time; hence,

ΔT ≡ Tf
A − T i

A ¼ τfB − τiB: ð109Þ

In Fig. 4, we plot their spacetime trajectories as well as
regions where emission and detection events may take
place. In Fig. 5 we show the behavior of the classical
channel capacity as a function of the (proper) time τiB in
which Bob begins the measurement process. Let us first
consider the case where Bob’s worldline is the one in

Fig. 4(a), where x0 ¼ 2ΔT and a ¼ 0.1ΔT−1. In this case,
Bob intercepts the first and final signals emitted by Alice at
proper times τ1 ≃ 1.05ΔT and τ2 ≃ 2.23ΔT, respectively.
As can be seen in Fig. 5, information exchange is possible
only if Bob starts the measurement process at proper time
τiB satisfying τ1 − ΔT < τiB < τ2. When τiB < τ1 − ΔT or
τiB > τ2, the classical channel capacity vanishes since the
emission and detection events will be spacelike or timelike
separated, respectively.
Let us consider now that Bob’s trajectory is the one

depicted in Fig. 4(b), where x0 ¼ 2ΔT and a ¼ 0.5ΔT−1.
In this case, Bob’s worldline intercepts the first signal
emitted by Alice at proper time τ01 ≃ 1.37ΔT. In Fig. 5, we
see that it is exactly when τiB ¼ τ01 that the maximum
channel capacity is attained. However, since the surface
t ¼ x is Bob’s causal horizon, he never leaves the light cone
section where the information emitted by Alice is traveling.
Thus, the channel capacity never vanishes. It only
decreases as Bob accelerates away from Alice.

C. Work for switching on and off the detectors

We have shown in Sec. IV that one can use the quantum
channel presented here to convey arbitrary amounts of
information without any extra energy cost. However, some
work is necessary to switch on and off the interaction of
each qubit with the quantum field, which is given by
Eq. (69). Let us now estimate this energy cost for by means
of the inertial detectors previously discussed.
For this purpose, let us first relate the ordinary

Minkowski QFT construction presented at the beginning
of this section to the null-surface construction introduced in
Sec. III. By recalling that ðt; x; y; zÞ are inertial Cartesian
coordinates where Minkowski metric takes the form given
in Eq. (74), let

FIG. 5. Classical channel capacity as a function of the proper
time τiB when Bob starts the measuring process, for different
proper accelerations. Each curve represents one of the situations
schematized in Fig. 4. Here, αA ¼ αB ¼ 100ΔT−1, ϵA ¼ 420,
ϵB ¼ 0.05 and x0 ¼ 2ΔT. The field is initially in the inertial
vacuum state.
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u≡ t − jxj and v≡ tþ jxj ð110Þ

be the retarded and advanced null coordinates, respectively,
where x≡ ðx; y; zÞ. By defining

tan V ≡ v; ð111Þ

one can cast Eq. (74) using u and V coordinates as

η ¼ −
1

2
sec2 V ðdu ⊗ dV þ dV ⊗ duÞ þ ðtanV − uÞ2

4
gS2 ;

ð112Þ

where gS2 is the standard metric on a unit 2-sphere.
Now, it is easy to see that Minkowski spacetime is future

null asymptotically flat in the following sense [39]: there
exists a second spacetime ðcM; ĝÞ with metric

ĝ ¼ −
2

ðsin V − u cos VÞ2 ðdu ⊗ dV þ dV ⊗ duÞ þ gS2

ð113Þ

such that (i) M is conformally embedded in cM satisfying
ĝ ¼ Ω2η with a conformal factor

Ω≡ 2

tanV − u
; ð114Þ

(ii) the future null infinity Iþ is the three-dimensional null
hypersurface defined by the set	

p ∈ cMjV ¼ π

2




in which the conformal factor satisfies ΩjIþ ¼ 0
and dΩjIþ ≠ 0.
The conformal metric ĝ restricted to Iþ takes the form

ĝjIþ ¼ −
1

2
ðdu ⊗ dΩþ dΩ ⊗ duÞ þ gS2 ; ð115Þ

which has the form given in Eq. (35). Thus, we can perform
the null quantization procedure at future null infinity Iþ
described in Sec. III with λ ¼ u.
Now, let us consider the inertial qubit carried by Alice

whose interaction with the field is described by the function
fA ¼ ϵAcAðtÞδ3ðxÞ with cA given in Eq. (80). To compute
the energy cost WA, given in Eq. (69), to switch on or off
the qubit, we need to first compute EfhA. To this end, we can
use the explicit form of EfA given in Eq. (98) together with
Eq. (110) to write

EfA ¼ ϵA
4πjxj ½cAðuÞ − cAðvÞ�: ð116Þ

By using the above equation, the extension EfhA of EfA to
Iþ is simply computed using

EfhA ≡ lim
v→∞

Ω−1EfA ð117Þ

and

jxj ¼ v − u
2

¼ Ω−1;

yielding

EfhA ¼ ϵA
4π

cAðuÞ: ð118Þ

Using Eqs. (118) and (80) in Eq. (69) leads to

WA ¼
Z
Iþ

du ∧ ϵS2

�
ϵA
4π

�
2

½∂ucAðuÞ�2

¼ ϵ2AαA
4π

: ð119Þ

We can see that the work necessary to switch on or off
the detector increases with the coupling strength and it is
inversely proportional to the timescale ταA ≡ α−1A character-
izing the switching process. This gives the usual trade-off
between the energyWA of the process and its characteristic
time ταA :

WAταA ¼
ϵ2A
4π

; ð120Þ

which shows that the more energy is needed, the more rapid
is the switching on or off of the qubit interaction.

VI. CONCLUSIONS

In the present paper, we have analyzed the energy cost in
conveying classical and quantum information between two
arbitrary observers in asymptotically flat and globally
hyperbolic spacetimes (possibly containing black holes)
when they use a quantum scalar field as a communication
channel. We have shown that the energy variation of the
total 2-qubitsþ field system, ΔE, can be cast as
ΔE ¼ Wϕ þWA þWB þWAB. This shows that such
energy variation has three contributions: (i) Wϕ, which
accounts for the particle creation due to the change of the
spacetime geometry; (ii)WA þWB, which gives the energy
needed to switch on or off qubits A and B used by Alice and
Bob, respectively, to communicate; (iii) WAB, which
describes the extra energy cost needed for the communi-
cation process. We have shown that, by suitably choosing
Bob’s initial (ready-to-measure) state, the term WAB van-
ishes. Such a condition is satisfied by the channel E
considered here.
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We have then illustrated the communication process and
analyzed how the classical channel capacity CðEÞ (and, as a
result, the entanglement-assisted classical and quantum
capacities as well) behaves in two paradigmatic examples
in Minkowski spacetime: (A) when sender and receiver are
inertial observers and (B) when the sender is inertial and the
receiver is uniformly accelerated. By using example (A),
we were able to analyze how the coupling constants as well
as the initial field state influence CðEÞ. Example
(B) enabled us to analyze how causal horizons affect the
communication process when the field state is the inertial
vacuum (which, by the Unruh effect, is perceived as a
thermal state with temperature TU ¼ a=2π by the uni-
formly accelerated receiver).
We have ended the paper using the behavior of Alice

inertial qubit in Minkowski spacetime to estimate the
energy cost in switching on or off the interaction, i.e.,

WA. We have shown that, as one would expect,WA satisfies
the energy-time relation: WAταA ¼ ϵ2A=4π, where ταA is the
characteristic time of the switching-on or -off process and
ϵA is the coupling constant describing Alice’s qubit
interaction with the field ϕ. Hence, one would expect to
spend an amountWX ∼ ϵ2Xτ

−1
αX , X ¼ A, B, of energy in order

to create the qubits and switch them on or off to perform
some task. However, if one has already created the qubits
for some purpose (and the energy cost for it is accounted by
WA þWB), there is no extra energy cost in using them to
convey information.
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