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We consider the communication of classical and quantum information between two arbitrary observers
in asymptotically flat spacetimes (possibly containing black holes) and investigate what the energy cost is
for such information transmission. By means of localized two-level quantum systems, sender and receiver
can use a quantum scalar field as a communication channel. As we have already shown in a previous paper,
such a channel has nonvanishing classical capacity as well as entanglement-assisted classical and quantum
capacities. Here we will show that the change in the expectation value of the energy of the system during the
communication process can be separated in (i) a contribution coming from the particle creation due to the
change of the spacetime, (ii) a contribution associated with the energy needed to switch on or off each qubit,
and (iii) a term which comes from the communication process itself. For the quantum channel considered
here, we show that the extra energy cost needed for communication vanishes. As a result, if one has
already created a system of qubits for some specific task (e.g., quantum computation), one can also reliably
convey information between its parts with no extra energy cost. We conclude the paper by illustrating the
form of the channel capacities and energy contributions in two paradigmatic cases in Minkowski
spacetime: (i) sender and receiver in inertial motion and (ii) sender in inertial motion while the receiver is

uniformly accelerated.
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I. INTRODUCTION

To quantify at which rate one can reliably convey
information between two or more parts by means of a
quantum communication channel is one of the major goals
of quantum information theory [1,2]. Although the road to
this end has a rich landscape already in the nonrelativistic
context, it is only when relativity is taken into account that
we can fully enjoy all its hues. The main reason is that
relativity opens up the possibility of having nontrivial
structures such as black hole event horizons, causal
horizons caused by the relativistic relative motion of
the parts conveying the information (or the expansion
of spacetime itself), or even the presence of Cauchy
horizons [3]. This has led several authors to analyze
the communication process in relativistic settings with
particular attention being paid to Minkowski [4-16],
Schwarzschild [17-19], or asymptotically flat cosmologi-
cal spacetimes [20-22].

In a recent paper [23], one of the authors analyzed a
communication model using a bosonic quantum field as a
communication channel which is suited to arbitrary observ-
ers communicating in any globally hyperbolic curved
spacetime. In order to convey the information, both sender
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and receiver interact with the field, which can be in any
quasifree algebraic quantum state [24], by means of local-
ized two-level quantum systems (qubits). By analyzing such
aquantum communication channel nonperturbatively, it was
determined at which rate one can reliably transfer informa-
tion between the two parts. It was shown that the channel has
a nonvanishing classical capacity as well as entanglement-
assisted classical and quantum capacities.

However, it is not enough to know how much classical or
quantum information can be transmitted between two parts.
A related and equally relevant inquiry is, how much energy
is needed to convey the information? This has important
consequences not only for practical proposes (such as
engineering communication networks) but because it may
also shed light in one of the major open problems in
semiclassical and quantum gravity nowadays, namely, what
the fate is of the information which falls into a black hole.
For instance, by studying the energy toll for information
transmission one may be able to address if it is possible for
all the information to come back at the end of the black hole
evaporation process, if it needs to come back during its
earlier stages, or even if the information gets destroyed or
erased. (For a review of such an issue, see Ref. [25] and
references therein.) Although some investigation has been
performed on the issue of how much energy is needed to
convey information [26], they are usually restricted to
Minkowski spacetime [27,28] or 1 + 1 spacetimes [29,30].
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In order to gain a broader perspective on the subject, in
the present paper we will use the communication channel
developed in [23] to analyze what the energy cost is to
transmit information in general globally hyperbolic and
asymptotically flat spacetimes (which may contain black
holes). By means of the so-called null-surface quantization
and its interplay with the usual quantization procedure, we
will be able to analyze how the total energy of the system
formed by the quantum field ¢ and the two local qubits A
and B changes as it is evolved from the asymptotic past to
the asymptotic future. It will be shown that such energy
change can be separated in three terms: (i) a contribution
coming from the particle creation due to the change of the
spacetime metric, (ii) a contribution accounting for the
energy needed to switch on or off each qubit, and (iii) a
term which measures the extra energy cost coming from the
communication process itself. For the communication
channel being used, it will be proved that the contribution
(iii) coming from the convey of information vanishes. This
shows that, once one has already created the qubits, there is
no extra energy cost in reliably transmitting information
between the two parts.

The paper is organized as follows. In Sec. II we will
review the quantum communication model used here. In
Sec. III we will develop the so-called null-surface quan-
tization and relate it to the usual quantization procedure. In
Sec. IV, we will study how the energy of the total system—
field ¢ + qubits AB—changes when it is evolved from past
to future null infinity and analyze what the energy cost is
for communication. Section V will be used to illustrate the
channel capacities and energy cost in two paradigmatic
examples in Minkowski spacetime: two inertial observers
and one inertial and the other uniformly accelerated.
Section VI is reserved to our final remarks. We assume
metric signature (— + ++) and natural units in which ¢ =
h = G =1 unless stated otherwise.

II. THE COMMUNICATION CHANNEL

The quantum communication model we rely on
describes the exchange of information between two arbi-
trary observers in any globally hyperbolic curved spacetime
(M, g) using a quantum scalar field ¢ as a communication
channel. Here, M denotes the four-dimensional spacetime
manifold and g its Lorentzian metric. Let us consider a real
free scalar field ¢ propagating in (M, g). The spacetime
can be foliated by Cauchy surfaces X, labeled by the real
parameter t. The field is described by the action

- _%/M em(VapVigp +m*¢* + ER?). (1)

where e,y = /=@dx" A - -+ A dx? is the spacetime volume
4-form, m is the field mass, £ € R, R is the scalar curvature,
V, is the torsion-free covariant derivative compatible with
the metric g, and g = det(g,,) in some arbitrary coordinate

system. The extremization of the action (1) gives rise to the
Klein-Gordon equation

(=VeV, +m? + ER)¢p = 0. (2)

In the canonical quantization procedure, we promote the
real field ¢ to an operator1 that satisfies the “‘equal-time”
canonical commutation relations (CCR)

[#(1.%), (1,X")]y, = [#(2,x), 2(t,x')]5, = 0, (3)

(1. %), 2(t.x")]5, = i&8* (x. '), (4)

where x = (x',x%,x3) are spatial coordinates on ¥, and

z(x) is the conjugate momentum defined as

oS
T=—, (5)
o¢p
where “*” = 0,. In addition, we may formally write the

canonical Hamiltonian of the field as

Hy(1) = / Px(a(t.x)p(1.x) - Lip.Vof)).  (6)

with
dx =dx' A dx® A dx (7)
and
1
L6Vt =~ L VATV + i 4 R (9

being the Lagrangian density.

To find a representation of the CCR, Egs. (3) and (4), we
define an antisymmetric bilinear map o acting on the space
SC of complex solutions of Eq. (2) as

6(1//1,1//2) EL 62”a[l//2vall/1 _V/lvay/ﬂ’ (9)

where ey represents the proper-volume 3-form on the
Cauchy surface %, and n? its future-directed normal unit
vector. It allows us to define the Klein-Gordon (KG)
product as

(Wi, w2) = —io(fy, ), (10)

and, although this product is not positive definite on S¢, we
may choose any subspace H C S (the so-called one-
particle Hilbert space) such that [24]: (i)2 SC~H @ H;

'Rigorously, an operator-valued distribution.

For the sake of mathematical precision, we note that one
must first suitably Cauchy-complete S® for this decomposition to
be valid.

105018-2



RELATIVISTIC QUANTUM COMMUNICATION: ENERGY COST ...

PHYS. REV. D 104, 105018 (2021)

(i1) the KG product is positive definite on H, thus making
(H.(,)) a Hilbert space”; (iii) given any u € H and v € H,
(u, vy = 0. Then, the Hilbert space that comprises the field
states is defined as the symmetric Fock space §(H) and
the quantum field operator is formally defined as

G(t.x) = [u;(t.x)a(t;) + i;(t.x)a" (u;)]. (1)

J

where {u;} form an orthonormal basis for { and a(i) and
a’(v) are the usual annihilation and creation operators
associated with the modes u and v, respectively, which
satisfy

la(@). a" (v)] = (u.v)1, (12)

with 7 being the identity operator on &, (#). The vacuum
state associated with this representation of the CCR is the
normalized vector |0) that satisfies a(it)|0) = O for every
mode u € H.

In order to make it mathematically well defined, the
quantum field operator must be defined as an operator-
valued distribution. To this end, let S C S® be the space of
real solutions of Eq. (2) whose restriction to Cauchy
surfaces have compact support; let K: S - H be the
projection operator that takes the positive-norm part of
any y € S; and define the map E: C(M) — S acting on
some test function f € Cy (M), where C§° (M) is the set
of all smooth, compactly supported real functions on M, as

Ef(x)=Af(x) - Rf(x). (13)

Here, Af and Rf are the advanced and retarded solutions,
respectively, of the Klein-Gordon equation with source f.
Hence, they satisfy

P(Af) = P(Rf) = f. (14)
with P = (=-V*V, + m?> + £R)  representing  the
Klein-Gordon differential operator. Then, for each test

function f € C{ (M), we define a smeared quantum field
operator by

¢(f) = ila(KEf) — a'(KEf)], (15)

which satisfy the covariant version of the CCR,

[#(f1). ¢(f2)] = —iA(f1. f2)1, (16)

where

A1 f) = /M ef1(DES(x) (17)

3 After its completion with respect to the norm induced by (, ).

and f1, f, € CP(M). It is easy to see that Eq. (15) can be
obtained by formally integrating Eq. (11) with the test
function f, i.e.,

$(f) = /M en ()£ (x). (18)

The above construction has the downside that there
are infinitely many choices of H satisfying properties
(i)—(ii) below Eq. (10) which are, in general, unitarily
inequivalent. This issue can be avoided through the
algebraic approach to quantum field theory (QFT)
[24,31] in which the field quantization can be seen as a
real linearmap ¢: f € CP (M) — ¢(f) € A(M) between
the space of test functions and an *-algebra A(M) (called
algebra of observables) such that

(D) ¢(f) =¢(f) for all feCP(M)—ie., the

(smeared) field is Hermitian;

(2) ¢(Pf)=0, for all feCP(M)—ie. the field

satisfies the Klein-Gordon equation;

Q) [p(f1).@(f2)] = =iA(f1. f2)L, f1. [2 € CF(M)—

i.e., the field satisfies the CCR;
4) A(M) is algebraically generated by the identity 7
and the ¢(f)’s, f € CF(M).
In the algebraic approach, a quantum state is defined as a
complex linear functional @: A(M) — C which satisfies
w(A*A) >0 for all A€ A(M) and w(I) = 1. The so-
called Gelfand-Naimark-Segal construction [24,31]
ensures that every algebraic state @ can be realized as a
vector on a Hilbert space together with a representation of
the algebra of observables.

In this work, we will focus on a particular class of states:
the quasifree states, defined as follows. Given a real inner
product p: S x § — R satistying

lo(p1.02)* < 4u(@r. @1)u(@2. 92). (19)

forall ¢, p, € S, we define a quasifree state w, associated
with u by the relation

w,[e)] = e HEFED/2, (20)

for all fe Cy(M). We can extend w, to act on all

"
observables of A(M) by using

w0, p(f1)--p(f)] = (=i)"D7_, [eM P etdln)]

t=0°

(21)
where t=(t,....1,), with
continuity.

Now that the field quantization procedure has been
introduced, we present the communication scheme studied
here. Suppose that two observers, Alice and Bob, want to
use the quantum field ¢ to communicate with each other.
We consider Alice and Bob’s trajectories to be arbitrary and

together linearity and
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we consider the field to be initially in some quasifree state
a)”.4 Each observer possesses a two-level gapless quantum
system that may interact with the quantum field. The two-
dimensional Hilbert spaces associated with Alice and Bob’s
qubits are denoted by H, and Hp, respectively.

The communication setup is as follows: Alice wants to
transmit classical or quantum information to Bob, and for
that, she prepares her qubit in some initial quantum state
pA, and switches on its interaction with the field for a finite
time Az, (measured in the parameter ¢). To measure the
information imprinted by Alice on the field’s state, Bob
initially prepares his qubit in a suitable state p2,. He then
switches on its interaction with the field for a finite time
interval Az, but only after Alice has switched off her qubit
interaction. Such communication setup is implemented by
means of the Hamiltonian

H(t) = Hy(1) + Hin (1), (22)

where H , is the field Hamiltonian in Eq. (6) and Hjy is the
Hamiltonian that describes the interaction between the
qubits and the field which, in the interaction picture, is
given by

Hau(0)= Y1) [ %ot x)0le.x) @07, (23

where j = A, B with A and B labeling Alice and Bob’s
qubit, respectively. Here, % is one of the Pauli matrices
{a}?,ojy,af} associated with qubit j, y;(¢,x) is a smooth
real function satisfying yly, € C3°(Z,) for all ¢ which
models the range of interaction between the qubit j and
the field (i.e., the interaction occurs only at some vicinity of
each qubit worldline), and €;(7) is a smooth and compactly
supported real coupling function modeling the finite-time
coupling of the qubit j with the field. Each coupling
function has support

suppe; = [T, TY], (24)

where T and T% represent the time (with respect to the

parameter ¢) in which each qubit interaction with the field is
switched on and off, respectively. Here, we denote Atj =
T! — T’ and assume T}y > T7 (i.e., Bob’s measurement will
be performed after Alice imprinted her information on the
field state).

The interaction between each qubit and the field, given
by Eq. (23), is very similar to the Unruh-DeWitt model.
However, we assumed that the two levels of each qubit have

*Actually, the results from this section apply to any algebraic
state @ which satisfies w[e’#/)] € R*. This condition includes
the vacuum states, n-particle states, as well as KMS (thermal)
states.

the same (zero) energy. This assumption allows us to
calculate the evolution operator of the system and trace
out the field degrees of freedom in a nonperturbative
manner, thus making this model interesting to investigate
both the causality in the information exchange process as
well as the communication between parts lying in early and
future asymptotic spacetime regions. We note that one
could also have given an energy gap 26; for each qubit j by
adding H; = 6,07 to the total Hamiltonian in Eq. (22). This
would change it to

H:H¢+HA+HB+Hint (25)

but would keep the interaction Hamiltonian in the inter-
action picture [Eq. (23)] unchanged. Hence, all the results
we have just described would remain the same.

The interaction-picture time-evolution operator, associ-
ated with the foliation X,, can be written as the time-ordered
expression

U=Texp [—i /_ ” dtHilm(t)} . (26)

o

As shown in [23], Eq. (26) can be computed exactly and it
is given by

U = ¢iBem 18, o=it3)80% o=id/af5)5®%,  (27)

where = is the c-number

= %;/_: dre; (1) /_; dr'e(!)A (1. 1),

[1]

with
Aj(t,t’)z/z d*x\/—g
x/ dx' /=gy (1, %) A(x, X )y (7, X'),
z,

and we recall that [¢(x),p(x")] = —iA(x,x')] is the
unsmeared version of Eq. (16). Additionally, we have
defined

fi(t.x) = e;(D)y;(1, %), (28)

which is a compactly supported function on M carrying all
information about the interaction of qubit j with the field.

The initial state of the two-qubit+field system is
P =Pl ® pBo ® p,,» Where p, is the density operator
associated with the initial quasifree state w, of the field.
Using the unitary evolution operator in Eq. (27), we can
evolve p_,, to obtain the system’s state after the commu-

nication process, p.o = Up_q U'. Additionally, we can
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trace out the field and Alice’s qubit degrees of freedom,
obtaining the state of Bob’s qubit after the communication
process has finished:

PP =try4(Upt, ® pBo ® p,UT). (29)

As shown in [23], Eq. (29) can be written in the form

PP =E(pls). (30)

where £ is a linear, completely positive, and trace-preserving
quantum map that relates the initial state of Alice’s qubit
(which has the information that will be conveyed) to the final
state of Bob’s qubit (which will be measured by him in order
to retrieve the message). In other words, £ is the quantum
map that describes the communication channel used between
Alice and Bob. It depends on their trajectories, on the
spacetime geometry, and on both the initial state of the field
and of Bob’s qubit. The explicit form of Eq. (30) as well as
the details of the calculations can be found in [23]. It is worth
pointing out, however, that the initial state p® ., should not be
arbitrarily chosen: since o¢% commutes with the total
Hamiltonian (25), o% is conserved and thus its eigenvalues
cannot be used to recover any information transmitted by
Alice. Nevertheless, it can be shown that some states will
maximize the signalling amplitudes between Alice and Bob,
e.g. plo =[yi)pp(yi |, where |y, ), satisfies oply )=
|y, ). With this choice of pZ, it can be shown that this
quantum channel has a classical capacity (i.e., the maximum
rate at which classical bits can be reliably transmitted)
given by

cte) = (3 + 2 cos2alf ) - (3 +2),

where H(x) =—xlog,x — (1 —x)log, (1 —x) is the
Shannon entropy and

v = @, [e#)] = ¢ 2(KEfnKESy), (32)
On the other hand, since this channel is entanglement

breaking, its quantum channel capacity (i.e., the rate at
which qubits can be reliably transmitted) is

0() = 0. (33)

One could also define protocols for sending both
classical and quantum information when Alice and Bob
initially have access to an unlimited supply of entangle-
ment. In this case, one can define classical (or quantum)
entanglement-assisted channel capacities which measure
the maximum rate at which classical information (or
qubits) can be reliably sent through the channel. As
shown in [23], the classical C,,(£) and quantum Q,,(€)

entanglement-assisted capacities are related to the classical
channel capacity (31) by

Cea(€) = 20.4(E) = C(£). (34)

Thus, it is not worth using entanglement in order to try to
increase the classical capacity of this channel. On the other
hand, when prior entanglement is shared between Alice and
Bob, it is possible to convey qubits through this channel at
maximum rate Q,,(€), in contrast with the unassisted case
in Eq. (33).

ITII. QUANTIZATION ON NULL SURFACES

The so-called quantization on null surfaces provides the
formulation of a QFT restricted to three-dimensional null
submanifolds such as black hole horizons [32], asymptotic
infinities [33,34], and cosmological horizons [35]. In this
section, we will build a quantum field theory restricted to a
special class of null hypersurfaces. Then, under a few
assumptions, we show how one can relate the ordinary QFT
presented in Sec. II to the algebra of operators defined in
the asymptotic past and future null infinities as well as
causal horizons.

Let § be a three-dimensional null hypersurface satisfying
the following.

(1) B is diffeomorphic to R xI", where I" is a two-

dimensional spacelike submanifold of M;
(2) there exist coordinates (€, 4, s', s?) on M such that
(@) s = (s',s?) are coordinates of T}
(b) h = {p € M|Q(p) =0} and dQ # 0 at by
(v) the restriction of the metric to fj takes the form

gly = —7*(dQ ® dA+dl ® dQ) + hr,  (35)

where A is the metric induced by g on I
and y € R.
It follows from conditions (i) and (ii) above that (4,s)
defines a coordinate system for § and that the curves
A = (4,s), defined for fixed s, are the null generators of }.
From now on, we will refer to ¥ generically as ‘“the
horizon” (although it can also be describing past or future
infinity).
To parallel the usual QFT construction we have pre-
sented in Sec. II, let us define the “solution space” on §j as

Sy = {smoothy: § — Cly, 0,y € L*(§,dA Aer)}, (36)

where er is the natural volume element on I' and
L%(Y,dA A er) is the space of square-integrable functions
on § with respect to the measure di A er. Similarly to
Eq. (9), we define the symplectic product on S‘g as

oy (W1.y2) E/f)d/1 A er[y20wy — w05, (37)
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which again allows us to define the Klein-Gordon inner
product on Sf by

W1, wa)y = —ioy (W1, w2)- (38)

Now, let us note that Eq. (35) is invariant under trans-
lations A — A + a, with a € R. We can explore this trans-
lation symmetry on A to choose a preferable representation
of the CCR. For this purpose, let us first define the positive-
frequency projection operator K acting on y € S% by

Ky (4. s) dEe™ "™y (E,s), (39)

1
N V2 Jr*

where

W(E,s) = \/Lz_ﬂA die®hy (2, s) (40)

is the Fourier transform of y with respect to A. Then, the
one-particle Hilbert space is defined as

Hy = {Kwly € S} (41)

where the closure is with respect to the norm induced by the
product in Eq. (38) (which is positive definite on Hy). It is
easy to see that the horizon one-particle Hilbert space Hy in
Eq. (41) satisfies properties (i)—(iii) below Eq. (10).
Having established the one-particle Hilbert space Hy, we
can now follow the same procedure described in Sec. II to
build the bosonic Fock space §,(Hy) and the creation and
annihilation operators associated with each mode u € Hy,.
Then, the horizon smeared quantum field can be defined as

¢ (y) = ila(Ky) - a' (Kw)), (42)
for every y € Sy C S with
Sy = {y € Silwis real}. (43)

The horizon algebra of observables, A(), is generated by
the identity operator 7: &, (Hy) — &,(Hy) and the set of
field operators {¢(y )|y € Sy}.

It will be useful to write a basis for the one-particle space
Hy. To this end, let {¢,}4en € L*(I, €r) be an orthonor-
mal basis for L?(T", er) with respect to some measure dy(c)
on the set A of quantum numbers a. Hence, every y €
L*(T, er) can be written as

w(s) = / (@) (@) pals) (44)

for some function ¥ (a), with ¢,. ¢4 satistying

/F erpa®)0s(s) = 8,(c, ), (45)

where 6, is the Dirac distribution relative to the measure
dy(a). Then, define the set of modes {ug,} C Hy as

1

Ugy(4,8) = e, (s), E>O0, 46
which satisfy
<uE(l’ uE',lf>f) = 6(E - E,)éﬂ(a’ a/) (47)

and, thus, form a orthonormal basis for the one-particle
Hilbert space Hy. They allow us to define annihilation
operators, ag, = a(lig,), and write the horizon unsmeared
quantum field operator as

$9G.5) = [ dE [ du@lusan +Hel. (@9
R+ A
which satisfy the commutation relation
[$0(h5). 0,9 (X, )] = 5602 = X)or(s = ). (49)

It is worth noting that the smeared and unsmeared
quantum fields [Egs. (42) and (48)] are related by

P () = oy(w. ")

= 2/ di A erOup (2, )Y (A, s)
)

- / 2dy A erd(A,s), (50)
)

from which we see that the correct way to smear this field is
with forms. This is because there is no natural volume
element on  (the induced metric is degenerate).

Let us now discuss the application of the null-surface
quantization and its relation to the ordinary QFT presented
in Sec. II. Suppose that the spacetime (M, g) is asymp-
totically flat with future null infinity Z*, possibly contain-
ing a future causal horizon §* (e.g., the event horizon
of a black hole). The future null infinity Z* is a three-
dimensional null hypersurface which satisfies the proper-
ties (i) and (ii) defined at the beginning of this section with
I'=S? and 1= u being the so-called “retarded time.”
Similarly, the causal horizon )™ is a three-dimensional null
hypersurface which satisfies the same properties but with
A = v being the so-called “advanced time.” Thus, we can
apply the quantization procedure introduced in this section
to both surfaces Z and §™ (if present) and build the field
algebras A(Z*1) and A(h™), respectively.
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Let us take now §) = )" U Z" as the union of future null
infinity and the future causal horizon and let M = I~ (§) be
the asymptotically flat region outside the horizon, where
I~ (A) indicates the chronological past of a subset A C M.
For the sake of simplicity, from now on, we will restrict our
analysis to minimally coupled massless fields. Suppose we
have constructed a quantum field theory in M following
the steps of Sec. II, obtaining an algebra of observables

A(M) (called the bulk algebra). Since we are dealing with
a massless field, all the information carried by the field will
be “imprinted” on §. Thus, we expect that (BB1) every
solution i € S of the Klein-Gordon equation in M which
has compact support on Cauchy surfaces can be extended
by continuity to (unique) functions y* € S%, on Z* and
VAMN= S% on §*. Moreover, y, w’ , and y? should
satisfy

(BB2) o(y1.y2) =0z (wh Wi ) 4oy (W) yd), (51)

where the lhs is defined in Eq. (9) and the horizon bilinear
products in the rhs are defined in Eq. (37). By using (BB1)
and (BB2) above, each operator in A(M) can then be
mapped with an operator in A()) = A(Z") ® A(h') by
the identification

$U) = GOEM). ¥ feCTR).  (52)
An algebraic state @: A(M) — R* induces the state
wy: A(h) = R* on § through the identification
oy (] = wlp(f)]. Y HO(ES) € AB). (53)
By following a completely analogous procedure, one can
also relate the bulk algebra to the algebra defined at past
null infinity, 7.

It is important to note that, although we will restrict
ourselves to massless and minimally coupled real scalar
fields, the above relation between between A(M) and A(})

will always exists provided that the field in question
satisfies conditions (BB1) and (BB2) [35].

IV. ENERGY COST FOR THE TRANSMISSION
OF INFORMATION

In Sec. II, we have discussed a communication channel
that allows the transmission of information between two
arbitrary observers in a globally hyperbolic spacetime
(M, g). Now, we turn our attention to investigate the
energy cost involved in this communication process when
(M, g) is asymptotically flat with past and future null
infinities given by Z~ and Z, respectively. Our goal will be
to analyze the total energy variation of the two-qubit+field
system between early and late times. We recall that the
initial state of the system is given by

Peco = péoo ® ,01—300 ® Paw> (54)

where p, is the density operator associated with some
initial quasifree field state @, and /!« is the initial state of
qubit j = A, B. When the communication process finishes,
the final state of the two-qubits+field system is

Pioo = Up—ooUTv (55)

where U is the evolution operator given by Eq. (27). As a
result, the total energy variation of the system is formally
written as

AE = (H(+00)),  —(H(=)), (56)

with H(t) defined in Eq. (22). As the interaction time of
each qubit with the field is finite, the interaction
Hamiltonian vanishes for t — +o0 and, thus, Eq. (56)
can be cast as

AE = tr(H 4(+0)Up_o ,U") — tr(H y(—=0)p_s,).  (57)

Asin Sec. II, define ) = h* U ZT or h = 7T, depending
on whether there is a future causal horizon § or not. Now,
let us restrict our attention to the globally hyperbolic region
M = I~ () outside the horizon and let us foliate it with
Cauchy surfaces %, such that 2,_,_, =7~ and X, = §.
By using the identification between the algebra .A(M) with
the algebras A(h) and A(Z~), we can cast Eq. (57) as

AE = u(HY UL U —u(H] ) p%))

= w(UDTHP U o) —u(HT %)), (58)
with Hf;’) (H;I_)) and pl%, (p(_Io:,)) being the horizon field
Hamiltonian and the state induced by p_, at § (Z7),

respectively. Similarly, U is the evolution operator (27)
written using the algebra A(}); i.e., we have used the

identification ¢(f;) — ¢(f’)(Ef?).
The field Hamiltonian at X = Z~, § can be written as

HY = A diy A er, TX, kK
_ / dix A er [0, ¢, (59)
X

where I'y is the spacelike 2-surface transverse to the null
generators of X:

1 .
Tffb = v(a¢th)¢X - Eguhvc¢xvc¢x (60)

is the stress-energy-momentum tensor at X of the massless
KG field, and k* = (0,, )" is the vector field tangent to the
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affinely parametrized null generators of X whose affine
parameter is given by A7- = v or 4y = A whenever X =7~
or X = B, respectively.
Let us evaluate Eq. (58) by steps. For this purpose, we
first define
UEI]) = e—illl’(m(l':.f?)@tf;’ J =A,B, (61)
and use Eq. (27), together with the identification between
field algebras in ) and M, to write

+ il i

Next, by using Egs. (49) and (61) together with the relation

ebe™® = b+ [a,b], (63)
valid when [[a, b], a] = [[a, b],b] = 0, we can write
UM 0,400 = 9,09 - 0,Ef 2, (64)

where we recall that j = A, B. Now, using Egs. (61) and
(64) in Eq. (62), we obtain

U®T9,p0U® = 9,4Y — Z @Ef?af. (65)

j=A.B

By using Egs. (59) and (65) we can cast the evolved
Hamiltonian on § as

UOTHPU® = -2 3" / di N erd,Ef10,¢° ® o
. .

J=A.B
s / dA N erO,Ef{0,Ef 10t @ o
ij=A,BY D
(66)

Finally, by substituting Eq. (66) in Eq. (58) we can write the
energy variation as

AE =W, + Wy + W+ Wy, (67)
where
1) (-
Wy =u(HY o) —u(H o), (68)
W, = /ﬁ di A er(9,Ef)). (69)

Was =2 [ /h din er<alEff;><alEf2>] (02) 1 (6%}

(70)

and we have used that, for any quasifree state w,

(0:9%),, = tr(p0;9") = 0.

Note that we have separated the energy variation into
three parts. The first one, Wy, is the contribution to the
energy that arises from the particle creation due to the
change in the spacetime metric. It depends only on the field
state and spacetime metric and has nothing to do with the
presence of Alice and Bob. A difficulty we face now is that
some sort of renormalization of the field energy operator
H j is needed. For this purpose, we will restrict ourselves to
the so-called Hadamard states, for which a general renorm-
alization procedure is possible [24]. By noting that any state
that is Hadamard in some open neighborhood of a Cauchy
surface is Hadamard everywhere [36], we can see that the
spacetime evolution preserves the renormalizability of the
state. As a result, we can see that, for Hadamard states,
Eg. (68) [and, thus, Eq. (57) as W, is the only contribution
to AE where divergences appear] is well defined and gives
finite results.

The second contribution, W, + Wjp, depends independ-
ently on each qubit interaction with the field. This con-
tribution is due to the work necessary to switch on or off
each qubit, and it depends on their trajectories and coupling
constants, as well as on spacetime parameters.

The third contribution, W4z, measures the extra energy
cost arising from the communication process itself. It
depends on the initial state of each qubit, on the spacetime
metric, and on the relative motion between Alice and Bob.
We note that, by integrating by parts and using Eq. (37), we
can write

2 /ﬁ di A e (O,EFY) = oy(EFS, 0,EFY), (1)

which, by using Eqs. (49) and (50), enables us to cast
Eq. (70) as

Wag = (i[O (ESL), ¢ (D,Ef5)]), (%) 0. (050 (72)

As expected, we can see that W,p vanishes if Alice and
Bob’s qubits interact with the field in causally disconnected
regions of the spacetime. More interestingly, we can make
the W,p contribution to identically vanish with a conven-
ient choice of pZ_,. Recall that Alice encodes the informa-
tion she wants to convey in her qubit’s initial state p?,. On
the other hand, we are free to choose the initial state of
Bob’s qubit. The choice p8 = |y + )p5(y.|, for example,
leads to W,z =0 while it maximizes the channel
capacities. This shows that one can convey arbitrary
amounts of information through this quantum channel
without extra energy costs.
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V. TWO PARADIGMATIC EXAMPLES

We now illustrate the results presented in the previous
sections with two paradigmatic examples in Minkowski
spacetime. Let us begin with the field quantization,
following the steps presented in Sec. II. Consider a free
and massless scalar field ¢ propagating in the Minkowski
spacetime (R*, 7). Let (,x,y,z) € R* denote global iner-
tial Cartesian coordinates and let us denote the spatial
coordinates as x = (x, y, z). The Klein-Gordon equation is
simply

O¢ = 0, (73)
with O=-3% #*0,0,, n=>_,,1,dx" ® dx*, and
n=—-dt@dt+dx @ dx +dy ® dy + dz ® dz. (74)

Let SC be the space of complex solutions of Eq. (73) with
compact-support initial data and consider the antisymmet-
ric bilinear map (9), which takes the form

dmwﬁ—L Exlydwn — o). (75)

where
T—ee = {(1,X) € R*t = cte}. (76)

We choose as the one-particle Hilbert space H the space
spanned by the positive frequency parts, with respect to the
inertial time 7, of solutions in S® Cauchy-completed with
the norm induced by the Klein-Gordon inner product (10).
One then builds the bosonic Fock space §(H) as usual, to
represent the space of field states and define the field
operators via Eq. (15). This is the standard CCR repre-
sentation in Minkowski spacetime associated with inertial
observers and we will refer to its vacuum state |0,,) as the
inertial (or Minkowski) vacuum state.

Using the Green functions of the D’ Alambertian oper-
ator [J, one can show that the map E: CY (M) - S
defined in Eq. (13) takes the form [37]

MU?=/%M@WWJ) (77)
with
1
E(x,x) = m[é(t— = |x—=x'|)
—8(t— 1+ x —x'|)]. (78)

For later use, it will be useful to consider the standard
positive-frequency modes

1 n
u (1,X) = ——— eIkl gikx, k eR3, (79)

4n2 k|2

which comprises a complete basis for the one-particle
Hilbert space H.

Now that we have chosen a representation for the CCR in
Minkowski spacetime, let us analyze the effects of the field
state as well as the state of motion of both Alice and Bob in
the communication process.

A. Inertial sender and receiver

We consider first the following scenario: suppose Alice
is at rest at the origin of our inertial coordinate system and
wants to transmit some information to Bob, who is at rest at
the spatial position x = (L,0,0) (thus at rest relative to
Alice and separated by a spatial distance L). For simplicity,
we consider that both are equipped with pointlike detectors.
To avoid divergences, we consider that the interactions of
each qubit with the field are switched on or off continu-
ously. We have seen that Eq. (28) carries all the information
about the qubit interaction with the field. Applying it to
Alice’s qubit + field interaction gives

fa(t.x) = e4c4(0)8(x), (80)

where €4 is a dimensionless coupling constant and

en(=T) < T
ca(t) =11, T, <t<T, (81)

el > T

models the switching function. Similarly, the function
modeling Bob’s qubit + field interaction is

[(1.X) = epep(1)8* (x — LX), (82)

where ¢ is a dimensionless coupling constant and c(7) is
defined as c4(¢) but replacing the A’s by B’s in Eq. (81).

Our goal is to explicitly evaluate the classical channel
capacity in Eq. (31) and analyze its dependence on the
various parameters involved in this communication proc-
ess. To this end, we first substitute Eq. (82) in Eq. (77) to
write

Efp(t.x) = 47T|X7iLﬁ|

—cp(r + [x = LR[)]. (83)

[ep(t =[x = LR])

Then, by using Egs. (80) and (83) in Eq. (17), we can cast
the smeared propagator as
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A fn) =2 [ drealestr=L)=cple L. (84

Now, note that vg defined in Eq. (32) depends on Bob’s
state of motion as well as the quantum field state. Let us
consider two cases: if the field is initially in the inertial
vacuum state |0,), vp is simply

vg = exp [-2(KEf, KEfg)], (85)

where (,) is the Klein-Gordon inner product (10) and we
recall that K : S© — 'H takes the positive-frequency part of
any solution of Eq. (73). Now, if the field is in a KMS
(thermal) state at temperature ©, then [38]

v = exp {—2<KEfB,coth<'%> KEfB>], (86)

where f = ©~! is the inverse temperature and 7: H — H is
the one-particle Hamiltonian, which is given by h = id,
and satisfies

Hy=dU(h)=10h® h®h) & -
We note that, in the zero-temperature limit (i.e., f — o0),
Eq. (86) reduces to Eq. (85), as it should be.

Since the modes u) defined in Eq. (79) form a complete
basis for H, we can decompose Efp as

KEfp = /d3k<ukaEfB>”k (87)
and thus, as / is diagonal in this basis, we can write
h
<KEfB, coth <'62> KEfB>

_ / Pk coth(@)wkﬂfgﬂ% (88)

By making use of Eq. (10) and Lemma 3.2.1 of [24] we can
cast the Klein-Gordon inner product in Eq. (88) as

(i Efg) = i /M v fsx).  (89)

which, by using Eq. (79), can be put in the form

ic N .
(. Efp) = ———— Cp(|k|)e*L, (90)
22z|k|2

where

Gyl(@) = —— A diei' (1) (91)
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FIG. 1. Spacetime diagram representing Alice’s worldline (red

dashed line) and Bob’s worldline (blue dashed line). The red and
blue rectangles represent the regions where their respective qubits
interact with the quantum field. As we are considering a massless
field, the gray region represents the region where signals emitted
by Alice should be present.

is the Fourier transform of c(7). Putting together Eqgs. (86),
(88), and (90) we obtain

v5(®) = exp [—% L ” dkk coth (%) |5}3(k)|2] . (92)

We can now use Eqgs. (31), (84), and (92) to investigate
the classical channel capacity when sender and receiver are
inertial observers at rest relative to each other. Let us
consider that Alice and Bob let their qubits interact with the
quantum field for the same amount of time

AT=T, T\ =T - T,

where, for the sake of simplicity, we have set T\, = 0. We
note that by choosing large values of a4, ap (e,
ay,ag > 1/AT) in the switching functions c,(¢), cg(1),
we can model the case where qubit + field interactions take
place at finite time intervals AT. In Fig. 1 we plot Alice and
Bob worldlines for a spatial separation L as well as the
regions where the emission and detection events take place.
Note that the emission and detection events are spacelike
separated whenever Tl < L — AT or timelike separated
whenever T > L + AT. As the field is massless, the
channel capacity is expected to be zero in such cases since
Bob cannot intercept any signal emitted by Alice.
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€B

FIG. 2. Classical channel capacity as a function of Bob and
Alice’s coupling constants €4 and ep, respectively. Here, a, =
ap = 100AT! and T% = L = 4AT. The channel capacity and
coupling constants are dimensionless.

Let us begin by analyzing how the coupling constants
influence the channel capacity C(&). For this purpose we
consider the case where the quantum field is initially in the
inertial vacuum state and, thus, we are considering the f —
oo limit in Eq. (92). In Fig. 2, we plot how C(&) varies
when one changes the couplings €, and ep. For the sake of
illustration, we have considered the case where
Ti, = L = 4AT. This guarantees that Bob’s detection
process takes place entirely in the gray region of the plot.
We can see that the channel capacity increases very close to
1 (maximum efficiency) for large values of €, but decreases
rapidly with the increase of Bob’s coupling constant eg.
This happens, for a fixed value of AT, because as Alice
wants to imprint some information on the field state, the
stronger her interaction with the field, the more efficient
this process will be. On the other hand, Bob’s qubit state is
altered when it is allowed to interact with the field. If the
interaction is too strong (or if it is switched on for a long
period of time), the information encoded in his qubit state
can be lost due to quantum decoherence.

Having established how one can tune €, and ep to
maximize the channel capacity, let us choose suitable
values for the coupling constants and investigate the
communication process for different choices of the field
initial thermal state as well as different causal relations
between Alice emission and Bob measurement events. The
results are shown in Fig. 3, where we plot the channel
capacity C(€) as a function of the time T% where Bob
begins his measurement. In view of our previous results, we
have chosen ¢4 = 800, ez = 0.05, and L = 4AT. We can
see that the channel capacity vanishes if Bob’s qubit
interacts with the field too soon (T < L — AT = 3AT)
or too late (T}; > L + AT = 5AT), regardless of the initial
field state. One may observe in Fig. 1 that these are the
cases where emission and detection events are spacelike
and timelike separated, respectively, and thus Bob cannot
intercept any signal emitted by Alice. On the other hand,
the maximum communication efficiency is reached when

— O=0AT!
© =100 AT?
“== @ =400 AT !
=== ©=1000 AT" |
6 7 8

Ty AT

FIG. 3. Classical channel capacity as a function of the time 7%
when Bob starts the measurement process for different initial
thermal states of the field. Each curve represents a different
temperature © of the initial quantum field state (with ® =0
representing the inertial vacuum state). Here, ay =ag=100AT"!,
€4 = 800, e = 0.05, and L = 4AT.

T', = L = 4AT, since now Bob is able to intercept every
signal emitted by Alice. Additionally, note how the temper-
ature of the field state limits the maximum channel
capacity. The higher the temperature ©, the greater the
noise in the quantum channel. This increases the quantum
decoherence in Bob’s qubit state (as the decoherence time
decreases) and, thus, it becomes impossible to achieve high
efficiency in the communication process.

B. Inertial sender, accelerated receiver

Let us consider now the following scenario: suppose
Alice is at rest at the origin of some inertial Cartesian
coordinate system (z, x,y, z) and wants to transmit infor-
mation to Bob, which travels uniformly accelerated follow-
ing the worldline

tg(7) = a~! sinh (ar),
xp(7) = xo + a~! [cosh (az) — 1],

yg(1) = z3(7) = 0. (93)

Here, a is Bob’s proper acceleration, 7 is his proper time
(synchronized as 7 = 0 when t = 0), and x, is the spatial
distance between Bob and Alice (as measured by Alice) at
the point of maximum approximation. Both worldlines are
shown in Fig. 4 for two different values of Bob’s proper
acceleration a. The quantum field is supposed to be initially
in the inertial vacuum state |0;,) and we consider again
that both observers are equipped with pointlike detectors
which are continuously switched on or off. The function
modeling Alice’s qubit + field interaction remains the one
in Eq. (80).

To discuss Bob’s qubit interaction with the field, let us
first introduce Rindler coordinates (z, &, y, z), with 7, £ € R
implicitly defined by
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FIG. 4. Spacetime diagram, in Cartesian coordinates (z, x), representing Alice (red dashed line) and Bob’s worldline with different
accelerations (blue and orange dashed lines). The solid regions represent emission and detection events that maximize the channel
capacity. The detectors remain switched on for the same proper-time interval.

1
t=a"'e“sinhar, x= <x0——> +a'e®coshar.  (94)
a

These coordinates cover the right Rindler wedge (RRW),
i.e., the region defined by [x — (xy — 1/a)] > |t|, in which
the metric takes the form

g=e*(—dr @ dt + dé ® df) +dy @ dy + dz ® dz.
(95)
In such coordinates, Bob remains static at =y =z=20

and its qubit + field interaction is simply described by the
function

I8(7.6,9,2) = epep(7)6(£)d()(2), (96)
where

eaB(r—riB) ,
Cp (T) = 1 ,

e“’B(T'TEf), T> TfB.

T < 7h
th <t <h (97)

In order to analyze the channel capacity, we need to
evaluate again A(fy, fz). By an analogous procedure to the
one leading to Eq. (83), we obtain

Efu(t.x) = ‘4

o= D —eale X)) (98

Using Eq. (16), we have
A(fA’fB) = _A(fB’fA)
— [ eufsWEL.  9)
M

which, in Rindler coordinates (94), can be straightfor-
wardly evaluated giving

Afp o) =48 [ B {ealta(s) +xa(6)]

— caltp(7) — xp(7)]}- (100)

Now, we proceed to calculate the quantity v defined in
Eq. (32), which depends on Bob’s state of motion and the
initial state of the quantum field. In order to do so, it will be
useful to introduce the so-called right Rindler modes
defined by

s, = [l ) P (B o

ok, = 4n*a a

(101)

in the RRW and vanishing in the left Rindler wedge (LRW),
which is the region where [x — (xq — 1/a)] > —|t|. Here,
x; =2, k, €R?* w>0,and K,(x) is the modified
Bessel function. The left Rindler modes v(ﬁkL are defined

by ”gsz(” XX, )= vf,kL(—t, —x, X ). Hence, they vanish
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in the RRW and take the form (101) in Rindler coordinates
covering the LRW.

By using o5, ~and vf, ~we can define the so-called
Unruh modes

R —nw/a L
vwa_ +e Uw—kJ_

Wik, =~ (102)
’UL + e—ﬂa)/aUR_
Wikl = wk | w kl’ (103)

1— e—27rw/a

which have purely positive frequency relative to inertial
time and comprise a complete basis for the one-particle
space H defined below Eq. (76). Therefore, we can write

(KEfy. KEfs) = / do / K, (W Efg)P. (104)
R R2

where we have used that w!

ok, = Wox - Analogously to

Eq. (90), we can write

o Efs) =i [ exoibu (a0, (105)
which, by using Eq. (102), gives
' inh(zw/a)] /2
L Ef - iep sin
ok, E'5) Vi—e2la| 2ra
X e Ky 0(|K 1| /a)Cp(). (106)

Substituting Egs. (106) and (104) in Eq. (85) and evaluating
the transverse, k |, integral by means of the identity

[0

= Zasinh raja). (07

/ ® dxx|K iy ()2
0

we obtain

2e% [ -
Vg = exp [—%A dow coth (%) \CB(a))d. (108)

Now, we can use Egs. (31), (100), and (108) to inves-
tigate the classical channel capacity C(&) for inertial sender
and accelerated receiver. We consider that Alice and Bob let
their qubits interact with the quantum field for the same
amount of their respective proper time; hence,

AT =T - T =+ — . (109)
In Fig. 4, we plot their spacetime trajectories as well as
regions where emission and detection events may take
place. In Fig. 5 we show the behavior of the classical
channel capacity as a function of the (proper) time 7% in
which Bob begins the measurement process. Let us first
consider the case where Bob’s worldline is the one in

—==a=05AT" |l

— a=01AT! [l

\\\ ]
\\

\NN\ ]

3 4 5

Th /AT

FIG. 5. Classical channel capacity as a function of the proper
time 7i, when Bob starts the measuring process, for different
proper accelerations. Each curve represents one of the situations
schematized in Fig. 4. Here, ay = ag = 100AT"!, e, = 420,
egp = 0.05 and x, = 2AT. The field is initially in the inertial
vacuum state.

Fig. 4(a), where x, = 2AT and a = 0.1AT~!. In this case,
Bob intercepts the first and final signals emitted by Alice at
proper times 7; ~ 1.05AT and 7, ~ 2.23AT, respectively.
As can be seen in Fig. 5, information exchange is possible
only if Bob starts the measurement process at proper time
iy satisfying 7; — AT < i < 7,. When 7y < 7, — AT or
Ty > T,, the classical channel capacity vanishes since the
emission and detection events will be spacelike or timelike
separated, respectively.

Let us consider now that Bob’s trajectory is the one
depicted in Fig. 4(b), where x, = 2AT and a = 0.5AT"".
In this case, Bob’s worldline intercepts the first signal
emitted by Alice at proper time 7} ~ 1.37AT. In Fig. 5, we
see that it is exactly when i, = 7} that the maximum
channel capacity is attained. However, since the surface
t = x is Bob’s causal horizon, he never leaves the light cone
section where the information emitted by Alice is traveling.
Thus, the channel capacity never vanishes. It only
decreases as Bob accelerates away from Alice.

C. Work for switching on and off the detectors

We have shown in Sec. IV that one can use the quantum
channel presented here to convey arbitrary amounts of
information without any extra energy cost. However, some
work is necessary to switch on and off the interaction of
each qubit with the quantum field, which is given by
Eq. (69). Let us now estimate this energy cost for by means
of the inertial detectors previously discussed.

For this purpose, let us first relate the ordinary
Minkowski QFT construction presented at the beginning
of this section to the null-surface construction introduced in
Sec. III. By recalling that (¢, x,y, z) are inertial Cartesian
coordinates where Minkowski metric takes the form given
in Eq. (74), let
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u=t—|x| and v=r1+|x| (110)

be the retarded and advanced null coordinates, respectively,
where x = (x,y, z). By defining

tan V= v, (111)

one can cast Eq. (74) using u# and V coordinates as

(tanV — u)?
fgy’

(112)

1
n=—3sec’V (du® dV +dV @ du) +

where gs2 is the standard metric on a unit 2-sphere.

Now, it is easy to see that Minkowski spacetime is future
null asymptotically flat in the following sense [39]: there
exists a second spacetime (M, §) with metric

2
(sin V —u cos V)?

g=- (du @ dV +dV ® du) + gs

(113)
such that (i) M is conformally embedded in M satisfying
§ = Q%5 with a conformal factor

2

Q=—F7—!
tanV — u

(114)

(ii) the future null infinity Z is the three-dimensional null
hypersurface defined by the set

- T

in which the conformal
and dQ|;+ #0.
The conformal metric § restricted to Z" takes the form

factor satisfies Q|+ =0

1
Ire = =5 (du ®dQ +dQ @ du) + gz, (115)

which has the form given in Eq. (35). Thus, we can perform
the null quantization procedure at future null infinity Z+
described in Sec. III with 4 = u.

Now, let us consider the inertial qubit carried by Alice
whose interaction with the field is described by the function
fa = eaca(1)8%(x) with ¢, given in Eq. (80). To compute
the energy cost W,, given in Eq. (69), to switch on or off
the qubit, we need to first compute E fz. To this end, we can
use the explicit form of Ef 4 given in Eq. (98) together with
Eq. (110) to write

€A
Efy=——
Ja 47)x|

[ca(u) = ca(v)]. (116)

By using the above equation, the extension E fz of Ef, to
Z+ is simply computed using

Ef) = limQ'Ef, (117)
and
v—u
= = Q_l,
x| =23
yielding
€A
Ef) = -calw). (118)
Using Egs. (118) and (80) in Eq. (69) leads to
€4 2 2
Wy = - du A eg ype [0,c4(u)]
_ i (119)
 4x

We can see that the work necessary to switch on or off
the detector increases with the coupling strength and it is
inversely proportional to the timescale 7,, = ~! character-
izing the switching process. This gives the usual trade-off
between the energy W, of the process and its characteristic
time 7,

2
€
W _ €
ATay = 400

(120)
which shows that the more energy is needed, the more rapid
is the switching on or off of the qubit interaction.

VI. CONCLUSIONS

In the present paper, we have analyzed the energy cost in
conveying classical and quantum information between two
arbitrary observers in asymptotically flat and globally
hyperbolic spacetimes (possibly containing black holes)
when they use a quantum scalar field as a communication
channel. We have shown that the energy variation of the
total 2-qubits + field system, AFE, can be cast as
AE=W;+ Wy + Wg+ Wyp. This shows that such
energy variation has three contributions: (i) W,, which
accounts for the particle creation due to the change of the
spacetime geometry; (ii)) W, + Wp, which gives the energy
needed to switch on or off qubits A and B used by Alice and
Bob, respectively, to communicate; (iii) W,p, which
describes the extra energy cost needed for the communi-
cation process. We have shown that, by suitably choosing
Bob’s initial (ready-to-measure) state, the term W,p van-
ishes. Such a condition is satisfied by the channel &
considered here.
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We have then illustrated the communication process and
analyzed how the classical channel capacity C(£) (and, as a
result, the entanglement-assisted classical and quantum
capacities as well) behaves in two paradigmatic examples
in Minkowski spacetime: (A) when sender and receiver are
inertial observers and (B) when the sender is inertial and the
receiver is uniformly accelerated. By using example (A),
we were able to analyze how the coupling constants as well
as the initial field state influence C(€). Example
(B) enabled us to analyze how causal horizons affect the
communication process when the field state is the inertial
vacuum (which, by the Unruh effect, is perceived as a
thermal state with temperature Ty = a/2z by the uni-
formly accelerated receiver).

We have ended the paper using the behavior of Alice
inertial qubit in Minkowski spacetime to estimate the
energy cost in switching on or off the interaction, i.e.,

W 4. We have shown that, as one would expect, W, satisfies
the energy-time relation: Wz, = €% /4r, where 7, , 1s the
characteristic time of the switching-on or -off process and
€4 1s the coupling constant describing Alice’s qubit
interaction with the field ¢. Hence, one would expect to
spend an amount Wy ~ e37,!, X = A, B, of energy in order
to create the qubits and switch them on or off to perform
some task. However, if one has already created the qubits
for some purpose (and the energy cost for it is accounted by
W, + Wp), there is no extra energy cost in using them to
convey information.

ACKNOWLEDGMENTS

1. B.B. and A. G. S. L. were fully and partially supported
by Sao Paulo Research Foundation under Grants No. 2018/
23355-2 and No. 2017/15084-6, respectively.

[1] M. M. Wilde, Quantum Information Theory (Cambridge
University Press, Cambridge, England, 2013).

[2] N. Gisin and R. Thew, Quantum communication, Nat.
Photonics 1, 165 (2007).

[3] R and M. Wald, General Relativity (The University of
Chicago Press, Chicago, 1984).

[4] P.M. Alsing and G.J. Milburn, Teleportation with a Uni-
formly Accelerated Partner, Phys. Rev. Lett. 91, 180404
(2003).

[5] K. Brdler, P. Hayden, D. Touchette, and M. M. Wilde,
Trade-off capacities of the quantum Hadamard channels,
Phys. Rev. A 81, 062312 (2010).

[6] M. Cliche and A. Kempf, Relativistic quantum channel of
communication through field quanta, Phys. Rev. A 81,
012330 (2010).

[7] E. Martin-Martnez, D. Hosler, and M. Montero, Funda-
mental limitations to information transfer in accelerated
frames, Phys. Rev. A 86, 062307 (2012).

[8] K. Bradler, P. Hayden, and P. Panangaden, Quantum
communication in Rindler spacetime, Commun. Math.
Phys. 312, 361 (2012).

[9] B.L. Hu, Shih-Yuin Lin, and Jorma Louko, Relativistic
quantum information in detectors field interactions,
Classical Quantum Gravity 29, 224005 (2012).

[10] A.G.S. Landulfo and A.C. Torres, Sending classical
information through relativistic quantum channels, Phys.
Rev. A 87, 042339 (2013).

[11] R. H. Jonsson, E. Martin-Martinez, and A. Kempf, Quantum
signaling in cavity QED, Phys. Rev. A 89, 022330 (2014).

[12] E. Martin-Martinez, Causality issues of particle detector
models in QFT and quantum optics, Phys. Rev. D 92,
104019 (2015).

[13] R.H. Jonsson, Information travels in massless fields in
1 4+ 1 dimensions where energy cannot, J. Phys. A 50,
355401 (2017).

[14] R. H. Jonsson, K. Ried, E. Martn-Martnez, and A. Kempf,
Transmitting qubits through relativistic fields, J. Phys. A 51,
485301 (2018).

[15] P. Simidzija, A. Ahmadzadegan, A. Kempf, and E.
Martn-Martnez, Transmission of quantum information
through quantum fields, Phys. Rev. D 101, 036014 (2020).

[16] K. Yamaguchi, A. Ahmadzadegan, P. Simidzija, A. Kempf,
and E. Martin-Martinez, Superadditivity of channel capacity
through quantum fields, Phys. Rev. D 101, 105009 (2020).

[17] D. Hosler, C. van de Bruck, and P. Kok, Information gap for
classical and quantum communication in a Schwarzschild
spacetime, Phys. Rev. A 85, 042312 (2012).

[18] K. Bradler and C. Adami, Black holes as bosonic Gaussian
channels, Phys. Rev. D 92, 025030 (2015); The capacity of
black holes to transmit quantum information, J. High
Energy Phys. 05 (2014) 095.

[19] R. H. Jonsson, D. Q. Aruquipa, M. Casals, A. Kempf, and E.
Martn-Martnez, Communication through quantum fields
near a black hole, Phys. Rev. D 101, 125005 (2020).

[20] A. Blasco, L.J. Garay, M. Martin-Benito, and E.
Martin-Martinez, Violation of the Strong Huygens Principle
and Timelike Signals from the Early Universe, Phys. Rev.
Lett. 114, 141103 (2015).

[21] A. Blasco, L.J. Garay, M. Martin-Benito, and E.
Martin-Martinez, Timelike information broadcasting in
cosmology, Phys. Rev. D 93, 024055 (2016).

[22] P. Simidzija and E. Martn-Martnez, Information carrying
capacity of a cosmological constant, Phys. Rev. D 95,
025002 (2017).

[23] A.G. S. Landulfo, Nonperturbative approach to relativistic
quantum communication channels, Phys. Rev. D 93,
104019 (2016).

[24] R. M. Wald, Quantum Field Theory in Curved Spacetime
and Black Hole Thermodynamics (The University of
Chicago Press, Chicago, 1994).

105018-15


https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1103/PhysRevLett.91.180404
https://doi.org/10.1103/PhysRevLett.91.180404
https://doi.org/10.1103/PhysRevA.81.062312
https://doi.org/10.1103/PhysRevA.81.012330
https://doi.org/10.1103/PhysRevA.81.012330
https://doi.org/10.1103/PhysRevA.86.062307
https://doi.org/10.1007/s00220-012-1476-1
https://doi.org/10.1007/s00220-012-1476-1
https://doi.org/10.1088/0264-9381/29/22/224005
https://doi.org/10.1103/PhysRevA.87.042339
https://doi.org/10.1103/PhysRevA.87.042339
https://doi.org/10.1103/PhysRevA.89.022330
https://doi.org/10.1103/PhysRevD.92.104019
https://doi.org/10.1103/PhysRevD.92.104019
https://doi.org/10.1088/1751-8121/aa7d3c
https://doi.org/10.1088/1751-8121/aa7d3c
https://doi.org/10.1088/1751-8121/aae78a
https://doi.org/10.1088/1751-8121/aae78a
https://doi.org/10.1103/PhysRevD.101.036014
https://doi.org/10.1103/PhysRevD.101.105009
https://doi.org/10.1103/PhysRevA.85.042312
https://doi.org/10.1103/PhysRevD.92.025030
https://doi.org/10.1007/JHEP05(2014)095
https://doi.org/10.1007/JHEP05(2014)095
https://doi.org/10.1103/PhysRevD.101.125005
https://doi.org/10.1103/PhysRevLett.114.141103
https://doi.org/10.1103/PhysRevLett.114.141103
https://doi.org/10.1103/PhysRevD.93.024055
https://doi.org/10.1103/PhysRevD.95.025002
https://doi.org/10.1103/PhysRevD.95.025002
https://doi.org/10.1103/PhysRevD.93.104019
https://doi.org/10.1103/PhysRevD.93.104019

BARCELLOS and LANDULFO

PHYS. REV. D 104, 105018 (2021)

[25] W. G. Unruh and R. M. Wald, Information loss, Rep. Prog.
Phys. 80, 092002 (2017).

[26] J. D. Bekenstein, Energy Cost of Information Transmission,
Phys. Rev. Lett. 46, 623 (1981).

[27] R. H. Jonsson, E. Martn-Martnez, and A. Kempf, Informa-
tion Transmission Without Energy Exchange, Phys. Rev.
Lett. 114, 110505 (2015).

[28] M. Hotta, R. Schtzhold, and W. G. Unruh, Partner particles
for moving mirror radiation and black hole evaporation,
Phys. Rev. D 91, 124060 (2015).

[29] Robert H. Jonsson, Information travels in massless fields in
1 + 1 dimensions where energy cannot, J. Phys. A 49,
445402 (2016).

[30] R.M. Wald, Particle and energy cost of entanglement of
Hawking radiation with the final vacuum state, Phys. Rev. D
100, 065019 (2019).

[31] I. Khavkine and V. Moretti, Algebraic quantum field theory
in curved spacetimes and quasifree Hadamard states: An
introduction, in Advances in Algebraic Quantum Field
Theory, edited by R. Brunetti, Claudio Dappiaggi, Klaus
Fredenhagen, and Jakob Yngvason (Springer International
Publisher, Switzerland, 2015).

[32] V. Moretti and N. Pinamonti, QFT holography near the
horizon of Schwarzschild-like space-times, Published in
The interplay of conformal invariance, Quantum Field
Theory near the horizon of a 2D black hole and Holography

invited contribution to the book Focus in Mathematical
Physics Research, edited by Charles V. Benton (Nova
Science Publishers, Inc., New York, 2004), ISBN: 1-
59033-923-1, pp. 15-88.

[33] V. Moretti, Uniqueness theorem for BMS-invariant states of
scalar QFT on the null boundary of asymptotically flat
spacetimes and bulk-boundary observable algebra corre-
spondence, Commun. Math. Phys. 268, 727 (2006).

[34] C. Dappiaggi, Valter Moretti, and N. Pinamonti, Rigorous
steps towards holography in asymptotically flat spacetimes,
Rev. Math. Phys. 18, 349 (2006).

[35] C. Dappiaggi, V. Moretti, and N. Pinamonti, Cosmological
horizons and reconstruction of quantum field theories,
Commun. Math. Phys. 285, 1129 (2009).

[36] S.A. Fulling, M. Sweeny, and Robert M. Wald,
Singularity structure of the two-point function quantum
field theory in curved spacetime, Commun. Math. Phys. 63,
257 (1978).

[37] S. A. Fulling, Aspects of Quantum Field Theory in Curved
Spacetime (Cambridge University Press, Cambridge,
England, 1989).

[38] B. S. Kay, A uniqueness result for quasi-free KMS states,
Helv. Phys. Acta 58, 1017 (1985).

[39] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Spacetime (Cambridge University Press, Cambridge,
England, 1973).

105018-16


https://doi.org/10.1088/1361-6633/aa778e
https://doi.org/10.1088/1361-6633/aa778e
https://doi.org/10.1103/PhysRevLett.46.623
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevD.91.124060
https://doi.org/10.1088/1751-8113/49/44/445402
https://doi.org/10.1088/1751-8113/49/44/445402
https://doi.org/10.1103/PhysRevD.100.065019
https://doi.org/10.1103/PhysRevD.100.065019
https://doi.org/10.1007/s00220-006-0107-0
https://doi.org/10.1142/S0129055X0600270X
https://doi.org/10.1007/s00220-008-0653-8
https://doi.org/10.1007/BF01196934
https://doi.org/10.1007/BF01196934

