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Self-duality is a very important concept in the study and applications of topological solitons in many
areas of physics. The rich mathematical structures underlying it lead, in many cases, to the development of
exact and nonperturbative methods. We present a generalization of the Yang-Mills-Higgs system by the
introduction of scalar fields assembled in a symmetric and invertible matrix % of the same dimension as the
gauge group. The coupling of such new fields to the gauge and Higgs fields is made by replacing the Killing
form, in the contraction of the group indices, with the matrix % in the kinetic term for the gauge fields and
with its inverse in the Higgs field kinetic term. The theory is conformally invariant in the three-dimensional

space R3. An important aspect of the model is that for practically all configurations of the gauge and Higgs
fields the new scalar fields adjust themselves to solve the modified self-duality equations. We construct
solutions using a spherically symmetric Ansatz and show that the "t Hooft-Polyakov monopole becomes a
self-dual solution of such modified Yang-Mills-Higgs systems. We use an Ansatz based on the conformal
symmetry to construct vacuum solutions presenting nontrivial toroidal magnetic fields.

DOI: 10.1103/PhysRevD.104.105016

I. INTRODUCTION

Topological solitons play a fundamental role in the study
of nonlinear phenomena in many areas of science. Their
stability, inherited from nontrivial topological structures,
makes them ideal candidates to describe excitations in
some sectors of the theory, especially strong coupling
regimes. Examples of topological solitons range from
kinks in (1 + 1)-dimensions, to vortices and magnetic
Skyrmions in (2 + 1)-dimensions, magnetic monopoles
and Skyrmions in (3 + 1)-dimensions, and instantons in
four-dimensional Euclidean spaces. They find applications
from high energy physics to condensed matter physics and
in nonlinear phenomena in general [1-3].

There is a class of topological solitons however, that
deserves a special attention as they reveal deeper math-
ematical structures in the theory, which may lead to the
development of some exact and nonperturbative methods.
They present two main properties: first, they are classical
solutions of the so-called self-duality equations which
are first-order differential equations that imply the
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second-order FEuler-Lagrange equations of the theory,
and second, on each topological sector of the theory there
is a lower bound on the static energy, or Euclidean action,
and the self-dual solitons saturate that bound. Therefore,
self-dual solitons are very stable.

The fact that one has to perform one integration less
to construct self-dual solitons, as compared to the usual
topological solitons, is not linked to the use of any
dynamically conserved quantity. In all known examples,
the relevant topological charge admits an integral repre-
sentation, and so there exists a density of topological
charge. As such charge is invariant under any smooth
(homotopic) variations of the fields, it leads to local
identities, in the form of second-order differential equa-
tions, that are satisfied by any regular configuration of the
fields, not necessarily solutions of the theory. The magic is
that such identities become the Euler-Lagrange equations
of the theory when the self-duality equations are imposed.
That may happen even in the cases where there is no lower
bound on the energy or Euclidean action.

By exploring such ideas it was possible to develop
the concept of generalized self-dualities where one can
construct, from one single topological charge, a large
class of field theories possessing self-dual sectors [4].
In (1 + 1)-dimensions it was possible to construct field
theories, with any number of scalar fields, possessing self-
dual solitons, and so generalizing what is well known in
theories with one single scalar field, like the sine-Gordon
and A¢* models [5,6]. In addition, exact self-dual sectors
were constructed for Skyrme type theories by the addition

Published by the American Physical Society


https://orcid.org/0000-0003-3679-4722
https://orcid.org/0000-0001-7676-825X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.105016&domain=pdf&date_stamp=2021-11-19
https://doi.org/10.1103/PhysRevD.104.105016
https://doi.org/10.1103/PhysRevD.104.105016
https://doi.org/10.1103/PhysRevD.104.105016
https://doi.org/10.1103/PhysRevD.104.105016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

L. A. FERREIRA and H. MALAVAZZI

PHYS. REV. D 104, 105016 (2021)

of extra scalar fields [7—10], and concrete applications have
been made to nuclear matter [11].

In this paper we apply such ideas and methods to the
Yang-Mills-Higgs system in (3 + 1)-dimensions. In this
case, the relevant topological charge is the magnetic charge
defined by the integral

/ d3xsl~jkTr(Fl-jDk<I>), (11)
RB

where F;; = 0;A; — 0;A; +ie[A;,A}] is the field tensor,
A; = A¢T, the gauge field, and ® = ®,7T, the Higgs
field in the adjoint representation of a simple, compact
Lie group G, with generators 7,, a =1,2,...dimG. In
addition, D;x = 9; x +ie[A;, *] is the covariant derivative
in the adjoint representation of G.

The generalized self-duality equations are given by

1
_giijj?khba = £(D;®)?,

5 (1.2)

where h,;,, a,b =1,2,...dim G is a symmetric invertible
matrix of scalar fields. Following [4], we show in Sec. II
that the identities following from the invariance of (1.1)
under smooth variations of the fields, combined with the
self-duality equations (1.2), imply the Euler-Lagrange
equations associated to the static energy functional
given by

1 1
Fyan — / d*x [Zha,,F?ij} +§ha‘l}(D,»d>)“(D,»d>)” .

(1.3)

In fact, they imply not only the Euler-Lagrange equations
associated with the gauge and Higgs fields, but also the
ones associated with the scalar fields /.

Clearly, in the case where the matrix £ is the unit
matrix, the self-duality equations (1.2) become the usual
Bogomolny equations [12], and (1.3) becomes the static
energy functional for the Yang-Mills-Higgs system in
the Prasad-Sommerfield limit [13]. Modifications of the
Yang-Mills-Higgs system have been considered in [14—18],
where the kinetic terms of gauge and Higgs fields are
multiplied by functionals of the modulus of the Higgs field,
without the introduction of new fields.

The introduction of the scalar fields &, brings in some
novel features. They make the static sector of the theory
conformally invariant in the three-dimensional space R?,
and that plays an important role in many aspects of the
theory, especially in the construction of solutions. The
eigenvalues of the matrix /& have to be positive to make
the energy (1.3) positive definite. That is guaranteed in
most of the cases, but as we will show, it is possible to use
the conformal symmetry to build an Ansatz to construct
vacuum solutions with vanishing energy and topological

charge, and presenting nontrivial magnetic fields in toroidal
configurations. We give an example where the toroidal
magnetic field possesses a new nontrivial topological
charge resembling the concept of helicity used in mag-
netohydrodynamics. Clearly, for such nontrivial vacuum
configurations the eigenvalues of 4 are not all positive, and
it would be interesting to investigate their stability.

The scalar fields h,, transform under the symmetric
part of the tensor product of the adjoint representation of
the gauge group with itself. Their asymptotic value at
spatial infinity may be related to some pattern of sponta-
neous symmetry breaking. Note that we do not have a
Higgs potential in (1.3), and neither are we considering the
Prasad-Sommerfield limit of it. As an example, we consider
the usual spherically symmetric 't Hooft-Polyakov Ansatz
for the case G = SU(2), and show that for any configu-
ration in such an Ansatz, two of the three eigenvalues of &
are equal, pointing to some spontaneous breaking of the
symmetry to U(1). Indeed, some configurations behave at
spatial infinity such that two eigenvalues go to unity and the
third to zero, leaving & invariant under a U(1) subgroup.

Finally, the introduction of the scalar fields %, enlarge
the space of solutions considerably. A special role is played
by the matrices 7, =3 F¢F?; and 6, = =&, F§;(D®@)".
For the configurations of the gauge fields such that the
matrix 7 is invertible, one can show that the matrix #,
given by h = +77 !5, solves the self-duality equations (1.2).
Therefore, the scalar fields act as spectators adjusting
themselves to the gauge and Higgs fields configurations
and solving the self-duality equations. In the cases where 7
is singular it seems that some components of h get
undetermined but still one gets a solution for such con-
figurations. In fact, that happens in one of our examples of
vacuum configurations with nontrivial toroidal magnetic
fields. So, there is still a lot to be understood about the
physical role of the scalar fields 4,;,. We comment however,
that if one diagonalizes it, i.e., h = MhpM", with M being
an orthogonal matrix and /p diagonal, the fields in Ap can
be interpreted as dilaton fields leading to the conformal
symmetry of the theory in the three-dimensional space R?.
The M fields relate, in many cases, to the Wilson line
operator in the adjoint representation and lead to dressed
quantities, namely the field tensor and covariant derivative
of the Higgs field, that become gauge invariant.

The paper is organized as follows. In Sec. Il we present
ideas about the generalized self-duality and its features. In
Sec. III we discuss the properties of our modified Yang-
Mills-Higgs system, construct the generalized self-duality
equations, and discuss their consequences. In Sec. IV we
use the well-known ’t Hooft-Polyakov spherically sym-
metric Ansatz for the gauge group G = SU(2), and con-
struct new magnetic monopole solutions. We show that the
usual 't Hooft-Polyakov magnetic monopole becomes a
self-dual solution of our modified Yang-Mills-Higgs sys-
tem, even in the absence of a Higgs potential. In Sec. V we
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use the conformal symmetry to build an Ansatz and
construct new solutions for our theory. The subtlety here
is that there seems to be no regular solutions with
nontrivial energy and a topological charge. We are able
however, to construct vacuum solutions with vanishing
energy and topological charge, but with nontrivial toroi-
dal magnetic field configurations. In one of the examples,
the solution presents a new nontrivial topological charge
similar to the concept of helicity used in magnetohydro-
dynamics. Then, in Sec. VI, we present our conclusions,
and in the Appendix we show that the modified Yang-
Mills-Higgs system is conformally invariant in the three-
dimensional space R3.

II. GENERALIZED SELF-DUALITY

The concept of self-duality has been used in physics and
mathematics for a long time and in several contexts
[12,13,19,20]. Basically, the self-duality equations are in
general first-order differential equations such that their
solutions also solve the second-order (static) Euler-
Lagrange (EL) equations. In addition, those solutions
saturate a bound on the static energy, or Euclidean action,
related to a topological charge. The fact that the solutions
are constructed by performing one integration less than
what the EL equations would require is not a consequence
of the use of dynamical conservation laws. As explained
in [4], it is related to the existence of a topological invariant
that possesses an integral representation. Indeed, consider a
field theory that possesses a topological charge with an
integral representation of the form

Q:/ddanVZtm (21)

where A, and A, are functionals of the fields of the theory
and their first derivatives only, and where the index «a stands
for any type of indices, like vector, spinor, internal, etc., or
groups of them. The fact that Q is topological means that it
is invariant under any smooth (homotopic) variation of the
fields. Let us denote the fields by y,, where they can be
scalar, vector, or spinor fields, and where the index « stands
for the space-time and internal indices. The invariance of Q
under smooth variations of the fields lead to the identities

S A, - 5A,
5A, SA\
+ Aa5—K -d, <Aa m) =0. (22)

If we now impose the first-order differential equations, or
self-duality equations, on the fields as

A, ==+A,, (2.3)

it follows that, together with the identities (2.2), they imply
the equations

5A, 5 A, - 5A, - AL\
DA (5% ““a) AT O (““a—aaMJ =0

(2.4)

But, (2.4) are the Euler-Lagrange equations associated with
the functional

E= % / d'x[ A2 + A2). (2.5)

So, first-order differential equations together with second-
order topological identities lead to second-order Euler-
Lagrange equations. Note that, if E is positive definite then
the self-dual solutions saturate a lower bound on E as
follows. From (2.3) we have that A2 = A2 = +A,A,.

Therefore, if A2 > 0, and consequently A2 > 0, we have
that

Aa:A(leQ:/d"x.A?,ZO,

Ay=-A, - 0=- / dixA2<0.  (2.6)

Therefore, we have that

E:% / dix[A, 7 A + / dixA A, 2 |0, (27)

and the equality holds true for self-dual solutions, where
we have

E:/ddxAg:/ddxA’;‘z 0. (28)

The splitting of the integrand of Q as in (2.1) is quite
arbitrary, but once it is chosen one can still change .4, and
A, by the apparently innocuous transformation

Ag = Ay = Ak Ay = A=k h A, (2.9)
The topological charge does not change and so it is still
invariant under homotopic transformations. Therefore,
we can now apply the same reasoning as above with the
transformed quantities A/, and A,,. The transformed self-
duality equations are

Apkpo = Ehgj Ay = Aghy, = £ A, (2.10)

where we have defined the symmetric and invertible
matrix as
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h = kk". (2.11)
Together with the transformed identities (2.2), the new self-
duality equations (2.10) imply the Euler-Lagrange equa-
tions associated with the energy

1 ~ ~
E=3 / dx[hyy AnAy + hT AA (2.12)

Note that the matrix A, or equivalently k, can be used to
introduce new fields in the theory without changing the
topological charge Q and therefore its field content. In
addition, the new self-duality equations (2.10) will also
imply the Euler-Lagrange equations associated to such new
fields coming from E’. Indeed, if the topological charge
does not depend upon these new fields, and neither does A,
and A,, then the Euler-Lagrange equations associated with
hap are Ay Ay — A ) ,Zl,;hgﬁl = 0. But that follows from
the self-duality equations (2.10).

Note that (2.10) implies /hypA,Az = h;pl,jajﬁ =
+A,A,. Therefore, if hopAyAs >0, and consequently
h;l .»Zl,,./zl,; > 0, we have that the bound follows in the same
way as before:

1 7 A
E = 2/ ddX[-A/}k[)’a F k;ﬂl.A/}]z + / ddan-Aa > |Q|
(2.13)

Such ideas have been applied quite successfully in many
Skyrme type models [7-10] and in two-dimensional scalar
field theories [5].

III. SELF-DUALITY IN THE
YANG-MILLS-HIGGS SYSTEM

We now consider a Yang-Mills theory for a gauge group
G coupled to a Higgs field in the adjoint representation of
G. The relevant topological charge is the magnetic charge

Oy = / d®x0;Tr(B;®) = / dz;Tr(B;®), (3.1)
R 5%
where
1
B; = _Eeiijjk

and A; = AT, © =®,T,, with T,, a=1,2,...dimG,
being a basis of the Lie algebra of the gauge group G,
satisfying [T, Tp] = if spe T, and Tr(T,,T}) = k8,4, and k
being the Dynkin index of the representation where the
trace is taken. In (3.1) we have used the normalized trace

Tr= iTr. Adding to the integrand in (3.1) the trivially

vanishing term Tr([A;, B;®]), and using the Bianchi
identity D;B; =0 with D;x = 0; x +ie[A;,*], one can
write (3.1) as

Oy = / d®xTr(B;D;®) = / d*xB¢(D;®)". (3.3)
R3 RS

Following the ideas described in Sec. II, we shall split the
integrand of such a topological charge as [21]

A, =Blkyy; A, =k} (D;®), (3.4)
and the self-duality equations are then given by
Blhy, =n(D;®)*;  n==£1;  h=kk". (3.5)

The static energy of our generalized Yang-Mills-Higgs
system, according to (2.12), is given by

1
Evn = [ dxlhaBiB! + (DO (D). (36)

For the solutions of the self-duality equations we have that

EYMH = QM' (37)

The four-dimensional action associated to (3.6) is

1 1
Symu = /d“x {—ZhangyFb/w+§h;,!(Dﬂ<I>)“(Dﬂq))b .
(3.8)

Under a gauge transformation A, — gA”g_l +£8ﬂgg‘1,
1 —1
we have that F,, — gF,g" and D,® — gD, ®g .
Therefore, the action (3.8), the energy (3.6), and the
self-duality equations (3.5) are invariant under

Fo > du(9)Fh;:  (D,®)" = d(9)(D,D)P;

hab - dac(g)dbd(g)hcd’ (39)

where d(g) are the matrices of the adjoint representation of
the gauge group,
9Tag™" = Tydya(9). (3.10)
The adjoint representation of a compact simple Lie group is
unitary and real, and so its matrices are orthogonal, i.e.,
dd” = 1. The action (3.8) is Lorentz invariant in the four-
dimensional Minkowski space-time. However, the static
energy (3.6) and the self-duality equations (3.5) are con-
formally invariant in the three-dimensional space, as we
show in the Appendix.
Note that under space parity x; - —x;, and t — ¢, we
have that A; - —A; and Ay — Ay, and so B; — B,.
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Therefore, the self-duality equations (3.5) are invariant
under space parity if the Higgs fields ®@“ are pseudoscalars
and the fields &, are scalars, and consequently the energy
(3.6) and the topological charge (3.3) are parity invariant.
However, if the Higgs fields are scalars and h,, are
pseudoscalars, the self-duality equations are still invariant
but both the energy and topological charge change sign
under parity. Perhaps the most sensible situation to assume
is one where both the Higgs and A-fields are scalars, and so
the self-duality equations are not invariant. In that case, the
energy (3.6) is parity invariant, but the topological charge
(3.3) changes sign. Therefore, space parity would map self-
dual solutions into anti-self-dual solutions.

The fields of our model are the gauge fields Ay, the
Higgs fields ®“, and the scalar fields %,;,. The static Euler-
Lagrange equations associated to those fields, following
from (3.8) or equivalently (3.6), are

D;(hF;;) = ie|®, h™'D,;®], (3.11)
D;(h"'D,®) =0, (3.12)
BIB! = WG (D@ (D®),  (3.13)
where we have introduced the notation
hF;; =T haFl; h"'D;® =T,h;}(D;®). (3.14)
Note that we can write (3.5) as
B2 = n(D,®)°h, (3.15)
and, contracting with Bf-’ , we get
Tup = NOuch) (3.16)
with
Tap = B{BY; Oap = BY(D;®@)", (3.17)

and these matrices will be important in what follows.
We can now write (3.13) as

B{B! — h! hy (D;®@)° (D;®)*
= [B — hy! (D®)][B} + hyyj(D;®)]

+ (oh™),, — (6h™") . (3.18)
Therefore, using (3.15) and (3.17) one observes that the rhs
of (3.18) vanishes, and so the self-duality equations (3.5)
do imply the Euler-Lagrange equations (3.13) for the
h-fields. Contracting both sides of (3.15) with 7,, and
taking the covariant divergency of both its sides, one gets,
using (3.2) and (3.14),

1
— =& DiF i = nD;(h™'D;®).

5 (3.19)

But, the lhs of (3.19) is the Bianchi identity and so it
vanishes. Therefore, the self-duality equations (3.15) imply
the Euler-Lagrange equations (3.12) for the Higgs field ®.

Using the notation of (3.14) and (3.2), we can write (3.5)
as hF;; = —ne;D;®. Taking the covariant divergence
on both sides one gets D;(hF;;) = —nie[B;, ®], where
we have used the Jacobi identity. Contracting (3.15) with
T,, commuting both sides with @, and using the notation
of (3.14), we get [®, B;] = 5[®, h~' D;®]. Therefore, we
observe that the self-duality equations imply the Euler-
Lagrange equations (3.11) for the gauge fields A;. So, the
solutions of the self-duality equations also solve all three
Euler-Lagrange equations, (3.11), (3.12), and (3.13).

Since the matrix & is always invertible, we note
from (3.17) that the matrix 7 is invertible whenever o is
invertible, and vice versa. Therefore, on the regions
of R3 where the matrix 7 is invertible, we can use the
self-duality equations, or equivalently (3.17), to write
the matrix of the h-fields in terms of the gauge and
Higgs fields as

h=nto. (3.20)

Such a relation means that whenever 7 is invertible the self-
duality equations are automatically satisfied by an # matrix
given by (3.20), and so the A-fields are just spectators in the
sense that they adjust themselves to the given @ and A; field
configurations to solve the self-duality equations.

Note in addition that, since 7 and /& are symmetric, it
follows that th = no and ht = no’. Therefore, [z, h] =
n(c —6'). So, ¢ will be symmetric whenever 7 and h
commute.

A. The h-fields

Note from (3.9) that the i-fields transform under gauge
transformations as h — d(g)hd" (g), with dd” = 1, and so
the eigenvalues of h are gauge invariant. Since h is a
symmetric and a real matrix, it can be diagonalized by an
orthogonal transformation,

h=MhpM™; MM"=1; (hp) . =2a0u-
Therefore, it is convenient to split the A(N +1)/2
h-fields, where A is the dimension of the gauge group
G, into two sets. The first set contains the N gauge
invariant A-fields, and the second set contains the
N (N —=1)/2 fields parametrizing the orthogonal matrix
M. According to (3.9), under a gauge transformation such
fields transform as

(3.21)

Ay = Agi M — d(g)M. (3.22)
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Under a conformal transformation in the three-dimensional
space R?, as described in the Appendix, we have that such
fields transform as

0hy = QAy; oM = 0. (3.23)
We now introduce the quantities
Fiw=MyFp; (D), =M, (D,®),.  (3.24)

From (3.9) and (3.22) one observes that such quantities are
gauge invariant, i.e.,

Fa, = Fb,;

s (D,®), = (D,®),. (3.25)
Therefore, the four-dimensional action (3.8) and static
energy (3.6) can be written solely in terms of gauge

invariant quantities as

1 11
Symu = /d“x [—Zﬂaf,‘iy}'““” + 5 (D”(D)“(D"(I))“]

a

(3.26)
and

1

1
EYMH = 5/ d3x |:/1a8?8? + /1 (qu))a(qu))a:| 5 (327)

where, following (3.2), we have denoted

1
qu = _Egijkf?k‘ (328)
The self-duality equations (3.2) can also be written in terms
of gauge invariant quantities only,
B¢, = n(D;®)“; n==+l. (3.29)
It is interesting to note that there is a standard way of
constructing quantities out of the field tensor and the
covariant derivative of an adjoint Higgs field that transform
globally under local gauge transformations, using the
Wilson line. Given a curve x“(o) on a space-time, para-
metrized by o, the Wilson line operator W is defined
through the differential equation

d H
W en &

— —W=0.
do " do

(3.30)

Under a gauge transformation A, — gA,,g'l —l—é@,,gg‘],
the Wilson line transforms as

W — g, Wgr', (3.31)

where g, and g; are the group elements at the final and
initial points, respectively, of the curve x#(s). Consider
now the quantities

Fl,=W'F,W,

= (D,®)V=w-'D, oW, (3.32)
where the Wilson line is defined on a curve that ends at the
point where F,, and D, ® are evaluated. Therefore, under a
gauge transformation such quantities transform as

F, — giF;‘jz//gi_l;

(D,®)" - g:(D,®)Vg7'. (3.33)
If we now restrict ourselves to the case where all curves
start at a given fixed reference point, it turns out that g; is a
fixed element of G, and so the conjugated quantities F,‘j‘l’,
and (D,®)" transform under global gauge transforma-
tions. Note that (3.30) is a first-order differential equation
and so the Wilson line is defined up to an integration
constant, i.e., if W is a solution of (3.30), so it is WW, with
W, being a constant group element. Note that W, is the
value of the Wilson line at the initial point of the curve.
Therefore, the global gauge transformations of the quan-
tities Fy, and (D,®)" amount to the freedom of the choice
of such integration constant.

The field tensor conjugated by the Wilson line appears
in the usual non-Abelian Stokes theorem, as well as in its
generalizations to two-form connections [22,23]. Such
theorems were used to construct the integral form of the
Yang-Mills equations in [24,25]. These integral equations
are expressed in terms of the field tensor and its Hodge
dual, conjugated by the Wilson line in the way explained
above. In addition, the Wilson lines have to be evaluated
on curves all starting at a fixed reference point, and the
integration constants associated with the Wilson line have
to be restricted to the center of the gauge group in order for
the integral equations to be gauge covariant [24,25]. So, in
order to keep the integration constant in the center of the
group we have to take g; in (3.33), also in the center, and
then F,, and (D,®)" are gauge invariant like F§, and
(D,®),, given in (3.24).

From (3.32) we have that

F), = F4,W T, W = F&,Tydy,,(W™")
= T,,dl{a(W)F“

Hv

(3.34)
and this is similar for (D,®)". Therefore, we have that

(Fu)* = day(W)Fp,

(D, ®@)"]* = dg, (W) (D, @)". (3.35)

The covariant derivative of the M-fields is D,M =
0,M + ied(A,)M, since it transforms as D,M —
d(g)D,M, and so in the same way as M in (3.22).
Given a curve x*(o), consider the quantity
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dx* am dx*
DM === ied(A,) =M.
o

o o (3.36)

One observes that in the regions of space where D,M = 0,
or where D, M is perpendicular to the curve, the matrix M
satisfies the same equation as the Wilson line W in the
adjoint representation, i.e., (3.30). Therefore, for curves on
those regions we have that M = d(W), and so the quantities
(Fi. (D,®),) and (Fh)*, [(D,®)"V]*), given in (3.24)
and (3.35), respectively, are the same. In the examples that
we discuss below, we show that, for the cases where the
matrix & is completely determined in terms of the gauge
fields [as given in (3.20)], it is possible to choose curves
x* (o), starting at a fixed reference point and ending at any
point of R3, such that M = d(W).

The h-fields are constituted of two distinct type of fields.
The A-fields, according to (3.22) and (3.21), are gauge
invariant and have conformal weight one. Therefore, they
are like dilaton fields and are responsible for the conformal
invariance of the theory (3.8) in the three-dimensional
space R3. Dilaton fields have been introduced in effective
theories for Yang-Mills theories in relation to the trace
anomaly [26,27]. The dilaton field is related to the expect-
ation value of the trace of the energy-momentum tensor, or
equivalently to the gluon condensate, and it couples to the
Yang-Mills Lagrangian in a way similar to the coupling of
the A-fields in (3.27). In such a context our theory (3.8) can
be seen as an effective field theory. The M-fields, on the
other hand, are scalars under the conformal group and
transform under gauge transformations in a way similar to
the Wilson line operator in the adjoint representation. As
they lead to dressed quantities, like (3.24) which are gauge
invariant, and also given their close relation to the Wilson
operator (which plays a role in the low energy regime
of Yang-Mills), they reinforce the interpretation of the
theory (3.8) as an effective Yang-Mills-Higgs theory.

IV. SPHERICALLY SYMMETRIC SOLUTIONS
FOR G=SU(2)

We use the spherical Ansatz of 't Hooft-Polyakov given
by [28,29]

LH(r)
b =-— 7.T,,
e r
Loy
A= __gija7(1 K(r))T,,
Ay =0, (4.1)

with 7, = x;/r, and T, a = 1, 2, 3 being the basis of the
SU(2) Lie algebra satisfying [T, T,] = i€ p.T.. We then
get that

1
Bi:B?Ta; B?:W[rK/Qiu+(K2_l)Aia]’

Di® = (D;®)T,.

1
(D;®@)* = — [HKQ;, + (rH' — H)A;,]. (4.2)
er

where we have defined Q=1-A, with A, =7,7,
and so A2 = A, Q2 =Q, and AQ = QA = 0. Therefore,
the matrix A that solves the self-duality equations (3.5) is
given by

KH  rH —H
QL T A

"= K- 1)

=N x (4.3)
Note that, given any field configuration for the gauge and
Higgs fields, in the Ansatz (4.1) we solve the self-duality
equations with the matrix & given in (4.3) for any profile
functions H and K, as long as the eigenvalues of 4 do
not vanish. So, the h-fields act like spectators adjusting
themselves to the gauge and Higgs fields configurations.
From (3.17) and (4.2) we then get

. ;7 [(PK")2Q + (K2 = 1)A] (4.4)
and
o= [PK'KHQ+ (K~ 1)(rH — H)A].  (45)

e’r

Therefore, the matrix o is also symmetric. In addition, any
two matrices that are linear combinations of A and Q
commute among themselves. So, [z, 6] = 0. Note that for
any matrix of the form L = aQ + A its inverse is
simply L™' = Q/a + A/p.

Note that A has a zero eigenvalue twice degenerated, and
a single eigenvalue unity. The eigenvector corresponding to
the unity eigenvalue is clearly

sin @ cos ¢
sinfsing |, (4.6)

cos 6

where 6 and ¢ are the angles of the spherical polar
coordinates. We take the basis for the degenerated zero
eigenvalue subspace as

cos 6 cos ¢ —sing
v = | cosOsing |; v =1 cos¢ |, (4.7)
—sind 0
and so
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A=A @ =0; A®=pB); @0 —5,,

(4.8)

Clearly, those three vectors are eigenvectors of € with
eigenvalues 1 (doubly degenerate) and zero, respectively.
Therefore, for a matrix of the form L = aQ + A the
eigenvalues are (a, a, f3), and so the eigenvalues of &, 7, and
o can be read off directly from their expressions (4.3), (4.4),
and (4.5). Those matrices can be simultaneously diagon-
alized by an orthogonal matrix M, i.e.,

h:MhDMT; T:MTDMT
6=MopMT; MMT =1, (4.9)
with
hD = diag.(/h,/h,iz),
Tp — diag.(a)l, @1, CU2),
op = diag.(nh, 01, ndiwy, Nh@,), (4.10)
with
KH (rH/ — H)
i = —; = _—
| ”HK/ 2 =1 (K2 —1)
1 1
=—(rK"? =—(K*-1)72 4.11
w o2 (r ) > 2} o2 ( ) ( )

A. The usual BPS monopole

Note that the matrix /, given in (4.3), will be the unity
matrix whenever the coefficients of Q and A are both equal
to the sign n = *£1, i.e.,
h=1- rK =nKH, rH' —H =n(K*>-1), (4.12)
and note that those are the self-duality equations for the
profile functions of the ’t Hooft-Polyakov Ansatz for the

Bogomolny-Prasad-Sommerfield (BPS) monopole [12,13].
The solution is given by

_ ¢
K==

with £ = r/ry, and r, being an arbitrary length scale.

H = —n[§coth(§) — 1]; (4.13)

B. The ’t Hooft-Polyakov monopole

In the case of the 't Hooft-Polyakov monopole [28,29],
the profile functions of the Ansatz (4.1) satisfy

EK" = KH* + K(K* - 1),

P2H" = 2K*H + %H(Hz —&),  (414)

where again £ = r/ry, and « is the parameter of the Higgs
potential V =% (Tr®? — (®)?)?, with (®) being the vac-
uum expectation value of the Higgs field.
The asymptotic behavior of the profile functions at
infinity and at the origin are given by
K ~e7s; H— &~ e

for £ - o0 (4.15)

and

H
K~1; EN(); for £ - 0. (4.16)

Therefore, the eigenvalues of &, given in (4.10), behave as

A = -1 Ay —0; foré— oo (4.17)

and

Ay = —np; Ay = —np;  for & — 0, (4.18)
with S being a positive constant depending upon k/e>.
Therefore, the ’t Hooft-Polyakov monopole must belong
to the self-dual sector corresponding to # = —1 in order
to have the eigenvalues of & positive, and so the static
energy (3.6) positive.

We plot in Fig. 1 the eigenvalues of #, against &, for the
't Hooft-Polyakov monopole for some values of x/e?.
Note that at spatial infinity the eigenvalue 1, tend to unity
[i.e., the value it has in the usual self-dual solution, given in
(4.12) and (4.13)], but 4, tend to zero instead. It is such a
different behavior of the scalar fields &, that allows the
configuration of the ’t Hooft-Polyakov monopole to be a
self-dual solution in such modified Yang-Mills-Higgs
theory.

In fact, if we turn the arguments around, we could
interpret the h-fields as introducing a dielectric medium in
the Yang-Mills-Higgs system, along the lines of what has
been attempted in [14—18]. Therefore, the coupling of such
a medium to the gauge and Higgs fields replaces the Higgs
potential and sustains the "t Hooft-Polyakov monopole as a
solution of a self-dual theory. Instead of introducing such
an structure as an external and rigid medium, we do it
dynamically through the coupling of the (nonpropagating)
h-fields to the gauge and Higgs fields.

C. Some special choices of monopole solutions

As we have seen, any choice of profile functions H
and K satisfying appropriate boundary conditions leads to
monopole solutions with nontrivial topological charges. We
present here some monopole solutions where the eigen-
values of & behave, close to the origin, in the same way as
the ordinary BPS solution (4.13), i.e.,
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FIG. 1.
parameter x/e’.

Ao = 1; a=1,2; foré—0, (4.19)

and at infinity such eigenvalues behave in the same way as
the 't Hooft-Polyakov monopole solution, i.e.,

M =1, 24, —>0; forr— co.

(4.20)

In order to do that, we take the following Ansatz for the
eigenvalues /,:

HK H\“
Ah=1+—; Hh=1—-(—], 4.21
1 + z 2 <£> ( )

with a being a constant parameter. The Ansatz (4.21)
constitutes, in fact, a generalization of the one used in
[14]. Therefore, from (4.10) we get the following first-order
differential equations for the profile functions:

_ KH/E
~ T+ KH/E

() -goe-0(i- ()

We plot in Fig. 2 the profile functions K and H/¢,
solving (4.22) for some values of a, as well as the same
functions for the usual BPS case, given in (4.13). In Fig. 3
we plot the eigenvalues 4,, a = 1, 2, defined in (4.11), for
solutions of the Eq. (4.22) for some values of a.

/

(4.22)

The eigenvalues 4, and 4,, given in (4.10), for the solutions of (4.14) of the ’t Hooft-Polyakov monopole for some values of the

D. The Wilson line

We now evaluate the Wilson line, defined in (3.30), for
any gauge connection belonging to the 't Hooft-Polyakov
radial Ansatz (4.1). We evaluate it on curves, all starting at
the same reference point and divided into three parts, as
follows. Consider a sphere with a radius R, which will be
taken to infinite at the end. The first part of the curve starts at
the intersection of such a sphere with the x3-axis and slides
on the sphere on the x! x3-plane, up to an angle 6. The second
part slides on the sphere from the end point of the first part,
on an arc parallel to the x'x>-plane up to angle ¢ with the
x'x*-plane. Then, the third part leaves the sphere on a radial
direction towards the origin and stops at a distance r from it.
After the limit R — oo is taken, any point (7, 8, ¢) of R* can
be reached from the reference point at the north pole of that
infinite radius sphere by a unique curve of such a family of
curves. The parametrization is the following:

Part 1:
x!' = Rsino
=0 0<0c<6
x> =Rcoso

Part I1:

x! = Rsinfcos (6 — 0)
x> = Rsin@sin (6 — ) 0<oc<0+¢

x> =Rcosf
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1 == T )

09+ Y
0.8} ' |
! —BPS K(¢)
g —BPS H(£)/¢
S06F |
E —K,=2(§)
% I —H,»()/¢
SM - = Ko_4(€) |
: - --H,4(8)/¢
——--K,—5(&)
0.2 |
——-H,_3(§)/¢
0.1 _
0 ! . : I I |
0 1 2 3 4 5 6 ! ’ 9 )

FIG. 2. The profile functions K and H/¢&, solving equations (4.22), for some values of a, and the same functions for the usual BPS
case, given in (4.13).

FIG. 3. The eigenvalues 1,, a = 1, 2, defined in (4.11), for solutions of the equations (4.22) for some values of a.

Part III: The Wilson line is given by W = W, W, W, where W,
a =1,11,111 is obtained by integrating (3.30) on each
x!' =[R—=(6—0—¢)(R—r)|sinfcos ¢ part I, 11, and II1. o
5 ) ) On part / we have that 7, =0, since it is on the
x*=[R=(6=0=¢)(R~-r)|sinfsing x'x3-plane, and that 73 = cos ¢ and 7, = sin 6. Therefore,
¥*=[R-(c—-0-¢)(R—r)]cosb,
dx' 1
, A = (1 - K(R)T>, (4.23)
with0+¢p<o<O0+¢+1. do e
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and so
W, = e {(1I-K(R))OT, (4.24)
On part /1 we have
dx' 1
A,-d—); = —— (1= K(R))sin0
x e~i(6=0T3g=i0Ts T (i0T5 pi(6=0)T5 (4.25)

We then perform the gauge transformation A; — A; =
gAig™ +L0,997", with g = €"2¢0=0T5 (0 get

b

A,Z—G = é [K(R)sinOT, —cos0T5).  (4.26)
Therefore,
W, = e #[K(R)sin0T,—cos0Ts], (4.27)
and so
W,y = e~ it gmi0T2 o=id K (R)sin0T—cos T3] oi6T> (4 28)
However, that can be written as
W, = e #K(R)sin 00T, —cos 07, T, e~y (4.29)

with vg) given in (4.7).

On part /I the line is along the radial direction,
and since the radial part of the connection (4.1) vanishes,
we have

WIII - ]] (430)
The physically interesting field configurations are those
where the profile function K satisfies the boundary con-
dition K(R) — 0, as R — oo. Therefore, we get that

W= W”[W“W[ - ei¢c039?aTae—i¢T3e—it9T2. (431)

The adjoint matrix for such Wilson line is

d(W) = (cosavV) —sinav®, sinav?) + cos av®, v3)),

(4.32)

with @ = ¢cos @, and 0@, a = 1, 2, 3, as given in (4.7).
But, that is an orthogonal matrix that diagonalizes
the matrix h, as in (4.9). Therefore, we indeed have
that M = d(W), and so the quantities (Fj, . (D,®),) and
(F). (D, ®)"]*), given, respectively, in (3.24) and
(3.35), coincide for the field configurations in the
’t Hooft-Polyakov radial Ansatz (4.1).

Another way of getting such results is to calculate the
covariant derivatives of the vectors v\@, a = 1, 2, 3, given
in (4.6) and (4.7), ie., D@ = 9,09 + ied(A;) - v'¥,
with A; given in (4.1). One can check that

Drv(a) a = 1’ 2, 3 (433)
and
Dyl = —K(r)v(3)
Dyv® =0
D™ = K(r)v) (4.34)
and
DoV = cos 9v?
D{/)U(Z) = —cos @l — K(r)sin Ov)
D,v®) = K(r)sin0v?. (4.35)

We can have v(®) covariantly constant in all three directions at
spatial infinity since we are assuming the boundary condition
K(r) = 0as r — co. Since v!) and v(? span the degenerate
subspace we can take linear combinations of them. So,
assuming K (c0) = 0, we impose that Dy[Fv!V) + Go®)] =
[04F — cos 0G)v(V) + [0,G + cos OF|v'®) = 0. Therefore,
6(2/,F +cos?@F =0 and 8(2/)G +c0s?20G = 0. Thus, F and
G have to be sine and/or cosine of (¢ cos ). Taking

) = cos (¢ cos 9)11(1) — sin (¢p cos 9)1)(2),

»? = sin (¢p cos @)v1) + cos (¢ cos 9)v?), (4.36)
we get, at spatial infinity,
Dyd@ =0 for¢p=0; Dyd@=0; a=1.2. (4.37)

Therefore, the matrix M = (1), 52, »), which is the
same as in (4.32), satisfies the same equation as W, given in
(3.30) [see (3.36)], on the curves described above (4.23).

V. TOROIDAL SOLUTIONS

We now construct an Ansatz based on the three-
dimensional conformal symmetry of the model, discussed
in the Appendix. Given an infinitesimal space transforma-
tion x' — x' + ¢!, we say it is a symmetry of the equations
of motion; if A(x) = A;(x)dx" and ®(x) are solutions, then
A(x) = A(x = ¢) and ®(x) = ®(x — ) are also solutions.
Therefore,

A(x) =[Ai(x) =0, (x))[dx = 9;¢dx]

=A(x) = [(70;A;(x) +9,7A; (x)]dx' + O(L?),  (5.1)
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and so the variation of the fields are

SA; ==10,A,(x) = 0,LA (x); 6@=-(10,@. (5.2)

Following [30], we shall consider two commuting U(1)
subgroups of the conformal group corresponding to the
vector fields, V, = V0;, given by

84, = V¢ = x231 —x182,
X 1
85 = V.f = ;3()6161 +X282) +%(612 —|—X% —X% —X%)a:;,
(5.3)

where a is an arbitrary length scale factor. Note that we
have introduced two angles, ¢ and &, with translations
along ¢ corresponding to rotations on the plane x;x,.
The vector field V, is a linear combination of the special
conformal transformation x;x;0; —%X?(‘):; and the trans-
lation 3. One can check that they indeed commute,
ie., [04,0;] = 0. One can use such angles as coordinates
on R3, and complete the system with a third coordinate z,
orthogonal to them, i.e., 8,/,1 = 852 = 0. It turns out that
those are the toroidal coordinates given by

a a .
X :E\/ZCOS‘:{); X, :;\/Esm(ﬁ;

X3 —\N —zsiné,
p
(5.4)

with p=1—-+1—-zcos&, and 0<z<1,0< ¢, &< 2.
The metric is

2 2
ds? — a dz

*? m-i- (1 —2)d& + 2d¢?|.

(5.5)

There are some subtleties about the toroidal coordinates
that are worth pointing out. Note that

, (1 ++/1—=2zcosé)
(1 —vT=zcosé)’

224 02442
r=xit+x;+x3=a

2

__ 2 5.6
1+ 7/ (56)

p

and so, the spatial infinity corresponds to z =0and £ =0
(or 27). In addition, for z = O the angle ¢ loses its meaning,
and so the toroidal coordinates contract all points on the
two-sphere S% at spatial infinity to just one point.
Consequently, it is perhaps correct to say that they are
coordinates on the three-sphere S° instead of R3. That has
consequences in what follows.

We shall consider two Ansditze based on the conformal
symmetry of our system. The first requires that the
solutions are invariant under the two commuting vector
fields (5.3). So, taking ¢ to be (0,0, 84,) and (0, ¢;,0),

respectively, with ¢, and &, constants, we get from (5.2)
that the fields should not depend upon ¢ and ¢, i.e.,

Ai=A@QTs  0=0'()T,.  (57)
with T, being the generators of the gauge group.

For the second Ansatz we shall require the solutions to
be invariant under the joint action of the two commuting
vector fields (5.3) and a gauge transformation, i.e.,
A; = gAig7" +10,997" and ® — gPg~'. Taking g to be
infinitesimally close to the identity element of the
group, i.e., g~ 1+in, we get that 6A; = —1 Dy, with
D; = 0; + ie[A;,] and 6@ = i[n, ®]. We have to choose
two commuting U(1) subgroups in the gauge group to
compensate the action of the two commuting vector
fields (5.3), generating two commuting U(1) subgroups
in the conformal group. We shall consider the case of
G = SU(2), where we can have, at most, one (commuting)
U(1) subgroup. So, taking (' to be (0,0,e4) and
n = g4ny T3, with g, constant, we get that the invariance
of the solutions under the joint action of such U(1)’s
require that

0pA; = ing[T5, A]; 0y ® = iny[T5, D). (5.8)
Similarly, taking ¢’ to be (0, € 0) and n = en:T5, with &;
constant, the invariance of the solutions require

0:A; = ing[T3,A}l;

The solutions satisfying those conditions have the form

Aj = A()T5 + Af ()e!nemd)T
@ @y e
D = q~)3 (Z)T3 + (IS+ (z)ei(’lf5+"¢¢)T+

+ (DT (2)) e et T_, (5.10)
with T, =T, £ iT, and with T, a = 1, 2, 3 being the
generators of SU(2), i.e., [T,,Tp] = iey.T.. In order
for the fields to be single valued we need n; and ny to
be integers. In addition, note that z = 1 corresponds to the
circle of radius a on the plane x,x,, and the angle £ loses its
meaning there. Also, z = 0 corresponds to the x3-axis plus
the spatial infinity, and the angle ¢ loses its meaning there.
Therefore, for the solution to be single valued we need

O+ (0) =D (1) =0. (5.11)

Note that by performing a gauge transformation with
g = e &ty d)Ts | the fields (5.10) become
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~ n ~ ~
As = {Ag(z) —I—f] Ty +Al()T, +A§(Z)T2,

- g - -
4= |80 + 2|14 BT+ BT

A= A?(Z)Ta’

® = d()T,, (5.12)
where we have denoted Af(z) = (Al(z) —iA?(z))/2,
and ®F(z) = (®'(z) — iD?*(z))/2.

Therefore, the Ansdtze (5.7) and (5.12) are essentially
the same, except that functions of the Ansatz (5.12) are
subjected to the condition (5.11). Note in addition that if
we take the z-component of the gauge potential to vanish,
then gauge transformations with group elements of the
form g = e {(ft®)Ts  keep that component zero.
Therefore, we shall work with the Ansatz (5.7), which is
not subjected to conditions of the form (5.11), with a
vanishing z-component of the gauge potential [dropping
the hat from the notation of (5.7)],

A, =0, A =AL2)T,

Ay = A;(Z)Ta; D = P4(z)T,. (5.13)
The field tensor is then given by

and the covariant derivatives of the Higgs field are

D.®=0.®; D:D=ie[A:,®]; D,®=ie[A; @]

(5.15)

As we commented above (5.6), the spatial infinity corre-
sponds to z =0 and £ = 0. Therefore, the solutions in
the Ansatz (5.13) are constant on the two-sphere S2, at
spatial infinity, as well as on the x3-axis, since they do not
depend upon &. That means that the topological magnetic
charge (3.1) vanishes for all such solutions. Indeed,

denoting [r*Tr(B,®)] .0 = ¢; = constant, one gets

~ b3 2
/ dx;Tr(B;®) = / dH/ d¢psin0|c, sin 6 cos ¢
S2, 0 0

+ ¢y sin@sin ¢ + c3 cosf] = 0.
(5.16)

However, we have used the Gauss theorem in (3.1), and the
Bianchi identity to write the topological charge as in (3.3).
So, if our solutions respect that theorem and identity, then
(3.3) must also vanish. We then have [¢' = (z,&, ¢), and

8154, = 1]

/ dxTe(B,(D®))

1 1 2z 2n ~
= ——/ dZ/ dﬁj/ d¢8ci§/§kTr(F§i§jD§kq))
2 Jo 0 0
1 ~
= —ie47[2/ dZTr(azAé[qu,q)] - 8ZA¢[A§, (I)]
0

+ [Ae. Ay]0. @)

1 ~
= —i€4ﬂ2/ dzazTr([Ag,A(/,]d)) (517)
0
Therefore the solutions have to satisfy
Tr[[Ag,A¢]q)]1:1 = TI'HAE,A¢]®]Z:0 (518)

Denoting B = B;dx' = B.dz + B:d¢ + B,d¢, one gets,
from (3.2) and (5.14), that

(5.19)

Therefore, for the Amsatz (5.13) the self-duality equa-
tions (3.5) become

o Y (2) = 10972,

2(1 - Z)azAg(Z)i/\lba(Z) = _rleeachg(Z)q)d<Z)7
220.AL(2)hya(2) = neeacaAy(2)P4(2),  (5.20)

where we have introduced the matrix fzab as

hap (2, €) = %f%lxz). (5.21)

As we have argued, the self-dual solutions in the Ansatz
(5.13), satisfying (5.18), have zero topological charge, and
so, from (3.7), zero static energy. Therefore, if the eigen-
values of & are all positive, we have that the static energy
(3.6) is positive definite, and so the only possibility is that
such solutions are trivial, i.e., B; =0 and D;® =0.
However, we now show that it is possible to have nontrivial
self-dual solutions, with vanishing topological and static
energy, but with the eigenvalues of the matrix # not all
positive. Such self-dual solutions are vacua solutions with
nonvanishing magnetic and Higgs fields.
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A. A quasi-Abelian solution
Within the Ansatz (5.13), let us take

1 1

and so, the condition (5.18) is trivially satisfied. Then the
first equation in (5.20) implies that the Higgs field must be
constant, i.e.,

1
®=-y,T, Y, = constant. (5.23)
e

The other two equations in (5.20) lead to (primes denote
z-derivatives)

J I 72 71 »
2(l—z)—=-2z—=n=—=-n+—; hy3=0, 5.24
( )I 7 ’Ih13 ”lh23 33 ( )

and the components fz“, fzzz, and izlz, as well as the
constant y3, are not constrained by the self-duality equa-
tions (5.20). Such relations can be solved algebraically,
without any integration, by taking

I=-ml—g(2)];  J=myg(z) (525
and leading to
2
s () (526
and
}313 = -1/ }Al23 =nf
- Zm’?mz mz+mi(1-2)].  (5.27)

The matrix /, defined in (5.21), and its inverse are given by

illl il12 =72f
h=1 hyp hyp 7nf

-nf nf 0
2 rihptrahy
7 rr2 —TE
~ 1 - A
-1_ 2 rihiit+yahin
=g nr 73 e | (5.28)
_Vli’IZ'H’Z;'ZZ nhn+rah, iﬁz—ilzllilzz
: 7

where 9 = ]/%il]] + 2]/1]/2illz + }’%ilzz.

The gauge potential for such a solution is

A, =0,
1 mm3(1-z)
As=———5 2T,
emiz+my(l —2)
1 mym3z
A¢:— 21 T3. (529)

ez 3(1—7)
From (5.19) we get that the magnetic field is

14 nmymy
B = aA;; a=-2-— .
! ! amiz+m3(1 -z))

(5.30)

As we have seen, the spatial infinity corresponds to
z— 0 and £ — 0. Then, using (5.6), one can check that
B: - 1/r* and By — 1/r*, as r— oo. Despite the
Coulomb-like tail of the &-component of the magnetic
field, the integrated magnetic flux on a two-sphere at spatial
infinity vanishes as argued in (5.16).

Note that we are working with the components of the
one-forms, ie., A= A;dx' and B = B;dx'. If we work
instead with the components of the vectors, in terms of the
unit vectors of the coordinate system, i.e., A= A;e; and
B B,el, the relation above is kept unchanged, i.e.,

= aA since both sides change the same way. We are
worklng with Abelian gauge fields and so the magnetic

field is the curl of A. Therefore, the vector A is a force-free

field, i.e., 6 AA= a;l', and the solution we have may be of
interest in magnetohydrodynamics [8,31].
The components of the magnetic vector field in terms

of the unit vector of the coordinate systems, i.e., B =
B;é; = Byiéyi, with (£',8%, (%) = (2, &, ¢), are given by
B.=o0.
B, — 2p m m2\/1 —
= e e (TP

B _ 2 mim3 /2 T
P edmiztm(1-o Y

T,

(5.31)

Again, using (5.6), one can check that Bg — 1/r* and
By —1/r°, as r > .

In Figs. 4-6 we plot the magnetic vector (5.31) for
(my,my)=(1.1), (my,my)=(1,10), and (m,,m,)=(10,1),
respectively, for z = 0.3.

Note that we can take either y; or y, to vanish, but we can
not take both to vanish, since the matrix 2 would not be
invertible.

From (3.17), (5.5), (5.29), and (5.30), one can check

that all components of the matrix z,, vanish except for

. lp4m]m7
733 = 2 g8 2f7 -

commute, and ¢ is not symmetric. In fact, all components

Therefore, the matrices ¢ and /4 do not
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FIG. 4. The magnetic field vector (5.31) for m; =1 and
m, = 1, and for z = 0.3. The colors refer to the modulus of
the magnetic field.

0.01 0.02 0.03 0.04 0.05 0.06

FIG. 5. The magnetic field vector (5.31) for m; =1 and
m, = 10, and for z = 0.3. The colors refer to the modulus of
the magnetic field.

FIG. 6. The magnetic field vector (5.31) for m; = 10 and
m, = 1, and for z = 0.3. The colors refer to the modulus of the
magnetic field.

3
1 1 — _p_mnm
of the matrix ¢ vanish except for o3 =—35 &
3
__ Y1 p_mny
and 03y = peipcl 27"

One can check, using (5.23), (5.28)—(5.30), that the two
terms of the energy density in (3.6) vanish independently,
ie., hy,B¢B? =0 and h;}(D,®)*(D;®)” = 0, and so the
static energy of such a solution is indeed zero, as well as its
topological charge (3.3).

However, such a solution does possess another topo-
logical charge which is the winding number of the maps
§* — S3., where $? is R with the spatial infinity identified
to a point, and S} is the target three-sphere parametrized
by two complex fields Z,, a=1, 2, such that
|Z\|> +|Z,)> = 1. Let us now consider the following
configurations of such fields as

Zy=1-g()e™s  Zy=1/g(z)e ™. (532)
Consider the vector field
A = % (Z30,Z, — 2,0,Z}) = iZ}0,Z,,. (5.33)
One can check that
A; = eTr(ATs), (5.34)

with A; given in (5.29). The topological charge is given by
the integral representation of the Hopf invariant, i.e.,

1
QH = 4_71_2/d3x8ijk-’4i8j“4k~ (535)

However, we do not perform the projection of S} into S%
as (Z,,2,) » u=2,/Z,, with u parametrizing a complex
plane, which is the stereographic projection of S%.
Therefore, Qy, given in (5.35), is indeed the winding
number of $* — S3., where S$° is R? with the spatial infinity
identified to a point. Such an identification can be done
because the solutions go to a constant at spatial infinity.

Evaluating the topological charge (5.35) on the solutions
(5.29) and (5.34), one gets

QH = mymy, (536)

where we have used the fact that d’xe;;A;0,4; =
Blepigin ApOp Ap,  with  ((1.8%.0%) = (2.6, ¢) and
EZ-flﬁ =1.

Note that the solutions (5.29) and (5.34) are the same
as the ones obtained in [8] for a modified SU(2)
Skyrme model.

So, despite the fact that we have vacuum solutions with
vanishing energy and magnetic charge, such solutions do
present a nontrivial topological charge, given by (5.35), and
nontrivial toroidal magnetic fields. Note that even though
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the energy vanishes, its density does not, and so the energy
can not be positive definite, and consequently the eigen-
values of the A-matrix can not be all positive. It would be
interesting to investigate the stability of such solutions, and
find if the nontrivial topological charge (5.35) may impose
some selection rules.

Note that the components /2,1, A1y, and hy, appearing
in the matrix (5.28) were not fixed by the self-duality
equations as functions of the gauge and Higgs fields.
Therefore, the matrix M that diagonalizes h, as in
(3.21), will not depend only on the gauge fields, and
consequently M can not be related to the adjoint matrix of
the Wilson line W.

B. A simple non-Abelian solution
Again within the Ansatz (5.13), let us take

—~
—_—
|
&l

JH1 ()T,

&
|

B
<=
\
N[ ===
T
[3S)
—~
I\l
SN—
~
[38)

b = H3(Z)T3, (537)
and the condition (5.18) leads to
[Z(l — Z)H1H2H3}z:0 = [Z(l — Z)H1H2H3]Z:1, (538)

which is satisfied as long as the functions H,, a =1, 2, 3
are finite at z =0 and at z = 1.
The self-duality equations (5.20) imply that the matrix &
is diagonal, i.e.,
ilab = /1(1 (Z)éab’ (539)

and its diagonal elements are completely determined in
terms of the functions H,(z) as

1 _n HyH;

L 2((1-oH, - H,]

_n H,H;

P 2[eHy + HY)
H/

Iy =2p—3—. (5.40)
HH,

The self-duality equations (5.20) do not impose any
condition on the functions H,. The only requirement on
such functions is that none of the 4,, a = 1, 2, 3 given in
(5.40) can vanish identically, since that would imply that
the matrix /4 is not invertible.

The magnetic field (5.19) and the covariant derivative of
the Higgs field become

2p
B, =-"£;(1-2)H, - H|T,.
¢ eazK z) 1 1T,
1
D.® = —H,T;,
PRE

(5.41)

From (3.17), (5.5), and (5.41) one observes that, in this
case, the matrices 7 and ¢ are also diagonal.

Note that the eigenvalues (5.40) of & can not have all the
same sign if the condition (5.18), or equivalently (5.38), is
satisfied. Indeed, if all the eigenvalues (5.40) of & have the
same sign, then it follows that H, H,HY, H,[zH) + H,|H3,
and [(1 — z)H| — H|]H,H}; all have the sign. Since z and
(1 — z) are positive, it follows that 0,[(1 — z)H zH,H;] is
either strictly positive or strictly negative, and so its integral
on the interval z € [0, 1] can not vanish. But, that contra-
dicts the condition (5.38).

One can check, using (5.21), (5.39), and (5.40), that
d*xhy,B¢BY = d3xh}(D;®)"(D;®)" = (n/e*)dzdédg x
0.[z(1 = z)H H,Hj3]. Therefore, the static energy (3.6)
indeed vanishes for such solutions, if the functions H,,
a=1, 2,3 are finite at z = 0 and z = 1, i.e., they satisfy
(5.18) or, equivalently, (5.38).

Using (5.6), and the fact that the spatial infinity corre-
sponds to z — 0 and £ — 0, one gets that if the functions
H,, a=1, 2 remain finite at z =0, then B, — 1/r%,
B:— 1/r*, and B, — 1/r* as r — 0. Despite the fact
that the z and £-components of the magnetic field present a
Coulomb-like tail, the magnetic flux, integrated over a two-
sphere at infinity, vanishes. The reason, as argued in (5.16),
is that since the magnetic field depends on z and £ only, and
since those have a fixed value at spatial infinity, namely
z=0and & = 0, it has a constant direction in space and in
the algebra, and so the integrated flux vanishes.

Note that the components of the magnetic field given in
(5.41) are the components of the one-form B = B;dx' =
B:d(', with (¢, 82,8 = (2, & @). If we write the mag-
netic field vector in terms of the unit vectors of the
coordinate systems, i.e., B=Bj = Bié;i, we get that

- 1 p?
BZ = E? \/ Z(l - Z>H1H2T3,

- 2p?
Bi=—5Vl- 2[zHy + HoT>.

_ 2p2

By = 2L (- 9Hy ~ HT,. (542)
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0.050 0.075 0.100 0.125 0.150 0.175

FIG. 7. The component of magnetic field (5.42) in the
direction of the generator T of the SU(2) Lie algebra for
z=0.3 and H; = H, = 1. The colors refer to the modulus of
the magnetic field.

Again using (5.6), and if the functions H,, a = 1, 2 remain
finite at z = 0, one gets that B, — 1/r°, B; — 1/r*, and
By — 1/r° as r — oo. In Figs. 7-9 we plot the components
of the magnetic field vector (5.42) in the direction of the
generators T, T,, and T3, respectively, of the SU(2) Lie
algebra for z =0.3 and H; = H, = 1.

1. The Wilson line

We now evaluated the Wilson line for gauge connections
belonging to the toroidal Ansatz (5.37). All the curves we
consider start at the same fixed reference point and are
divided in three parts. Consider a toroidal surface of
thickness z = zg, i.e., the surface obtained, through the
toroidal coordinates (5.4), by fixing the value of the
coordinate z to z; and varying both angles & and ¢ from
0 to 2z. The fixed reference point is the intersection of that
toroidal surface with the x-axis. The first part of the curve

0.05 0.10 0.15 0.20 0.25 0.30

FIG. 8. The component of magnetic field (5.42) in the
direction of the generator T, of the SU(2) Lie algebra for
z=0.3 and H; = H, = 1. The colors refer to the modulus of
the magnetic field.

FIG. 9. The component of magnetic field (5.42) in the
direction of the generator 75 of the SU(2) Lie algebra, for
7=20.3,and H; = H, = 1. The colors refer to the modulus of
the magnetic field.

starts at that reference point and slides on the toroidal
surface on the x;x,-plane (£ =0) in the anticlockwise
direction up to an angle ¢. The second part starts at the end
of the first part of the curve, sliding the toroidal surface
upward (increasing £) and keeping the value of the angle ¢
fixed, up to an angle &. Then, the third part starts at the end
of the second part of the curve, leaving the toroidal surface,
either upward or downward, and keeping the values of the
angles £ and ¢ fixed up to a given value of the coordinate z.
After we take the limit z, — 0, or z, — 1, any point of R?
can be reached by a unique curve of such a family of
curves. The parametrization is the following:

Part I:

a
x! =—/zpcoso
Pi

a .
x* =—./zysinc 0<o6<¢
P

=0,

with p; =1 —+/1 —z,.
Part I1:

a
x! =—/zgcos ¢
P

a
X =—\zgsing Pp<o<Pp+E
P
3_ 4 :
X' =—1/1—zysin(c — ),
Pu

with p;; =1—+/T=zycos (6 —¢).
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Part III:
x! :L\/W(o—)cowp
P
2= /wlo)sing P+E<c<P+E+]
P
B =2\ /T—wo)siné,
P
with p;;=1-+/1—-w(o)cosé and w(o) =z9— (o —

¢ — &)(zo — z). Note that in Part IIl we can have either
7> 70 Or Z < 2.

The Wilson line is given by W = W;;;W;;W; where W,
a=1,11,11I is obtained by integrating (3.30) on each
part 1, I1, and I11. The integration of (3.30) is quite simple
because in Parts I, II, and III the curves are along the ¢, &,
and z directions, respectively, and so Ai‘fl—ﬁ = Ag, with
equal to ¢, &, and z, respectively. But, A, and A, depend
only on z, and A, = 0. So we get

W, = e~ i20H:(20)¢T>
W, = e_i(l_ZO)Hl(ZO)fTI’

WIII = ]] (543)
We now consider configurations satisfying the boundary
conditions H(0) =0 and H,(1) =0, which are quite
compatible with the condition (5.38). Therefore, when
we take the limit zy — O (infinitely thick torus), or
Zo — 1 (infinitesimally thin torus), we get that

w=1. (5.44)
Since for the Ansatz (5.37) the matrix 4 is already diagonal
[see (5.39)], we get that the matrix M is unity and so we
have in such a case that M = d(W).

Another way of obtaining such a result is to analyze the
covariant derivatives of the matrix M, which in this case is
unity, i.e., M = 1. For the Ansatz (5.37), where A, = 0, we
get D, 1 =0 and

D1 =i(1-2)H,(2)d(T1); Dyl = izH,(2)d(T>).
By assuming the boundary conditions H;(0) = 0 and/or
H,(1) =0, one observes that M = 1 satisfies the same
equation as W, given in (3.30) [see (3.36)], on the curves
described above (5.43) for z5 — 0 or z5 — 1.

VI. CONCLUSIONS

We have explored the concept of generalized self-duality
in the context of the Yang-Mills-Higgs system by the
introduction of N(N + 1)/2 scalar fields, where N is the
dimension of the gauge group G. Those fields are
assembled in a symmetric and invertible matrix %, that

transforms under the symmetric part of the direct product of
the adjoint representation of G with itself. The coupling of
such fields to the gauge and Higgs field is made by the
replacement of the Killing form of G in the contraction of
group indices, by / in the kinetic term of the gauge fields
and by its inverse in the Higgs fields kinetic term. The
theory we consider does not present a Higgs potential,
neither one in the Prasad-Sommerfield limit.

The introduction of the h-fields renders our modified
Yang-Mills-Higgs system conformally invariant in the three-
dimensional space R?, bringing interesting new features to it.
The generalized self-duality equations are such that given a
(perhaps any) configuration of the gauge and Higgs fields,
the h-fields adjust themselves to solve those equations. So,
our model possesses plenty of solutions. Indeed, we have
constructed many solutions using the ’t Hooft-Polyakov
spherically symmetric Ansatz in the case G = SU(2),
and also have used the conformal symmetry to build toroidal
Ansdtzes to construct vacuum configurations presenting
nontrivial toroidal magnetic field configurations.

The physical role of the A-fields is still far from clear,
and new investigations are necessary to clarify that issue.
We have shown, however, that by diagonalizing 4, i.e.,
h = MhpMT", where hy, is diagonal and M an orthogonal
matrix, it turns out that the /p-fields play the role of dilaton
fields leading to the conformal symmetry of the theory in
the three-dimensional space R*. The M-fields relate, in
many cases, to the Wilson line operator in the adjoint
representation and lead to dressed quantities, like the field
tensor and covariant derivative of the Higgs field, that
become gauge invariant. Those facts points to an inter-
pretation of the theory (3.8) as an effective Yang-Mills-
Higgs theory. It would be interesting to study that further
and explore its consequences. It would also open up new
ways of studying the Yang-Mills-Higgs system.

The special coupling of the h-fields to the gauge and
Higgs fields, which leads to self-duality, did not allow the
introduction of kinetic and potential terms for them. It
would be interesting to investigate that route of breaking
the self-duality, even in a perturbative way, and explore
the physical consequences of it. The h-fields have been
introduced in the Skyrme model, leading to an exact self-
dual sector [9,10], and they have lead to new applications
of the Skyrme model to nuclear matter [11]. In fact, there
may be a connection to be explored among magnetic
monopoles of the Yang-Mills-Higgs system, presented
here, and Skyrmions in the models [9,10].
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APPENDIX: CONFORMAL SYMMETRY

We show in this Appendix that the self-duality equa-
tions (3.5) and the static energy (3.6) are conformally
invariant in the three-dimensional space R3. We consider
space transformations of the form

oxt =i, (A1)
with the infinitesimal parameters ¢’ satisfying

For spatial rotations and translations we have that Q = 0,
for dilatations we have that € is constant, and for special
conformal transformations we have that Q is linear in the
Cartesian coordinates x’. The fields transform as

0A; = —aiCjAj; oF;; = —5i§kaj - jé'kFik;
oD;® = —6,~Cij(I>; Ohy, = Qhyy. (A3)
The magnetic field (3.2) transforms as
0B; = €ijk8j¢:1F1k = _8ijkglkmajCle

Therefore, we have that

5(hayBSBY) = ~3Qh,, BB,

5(hyy (D®)*(D;®)") = =3Qh,,) (D;®)*(D;®)".  (AS5)

Using the fact that the volume element transforms as
8(d*x) = 3Qd>x, we conclude that the static energy (3.6)
is conformally invariant. Denoting the self-duality equa-
tions (3.5) as

gia = B?hba - ”(Diq))a? (A6)
one gets
6Eia = 0;CiBhyy — 2QBY hyy +10;¢;(D ;@)
= —=0i{;€ja- (A7)

Therefore, the self-duality equations are conformally
invariant. One can check that the static Euler-Lagrange
for the gauge, Higgs, and h-fields are also conformally
invariant in the three-dimensional space R3.
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