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Self-duality is a very important concept in the study and applications of topological solitons in many
areas of physics. The rich mathematical structures underlying it lead, in many cases, to the development of
exact and nonperturbative methods. We present a generalization of the Yang-Mills-Higgs system by the
introduction of scalar fields assembled in a symmetric and invertible matrix h of the same dimension as the
gauge group. The coupling of such new fields to the gauge and Higgs fields is made by replacing the Killing
form, in the contraction of the group indices, with the matrix h in the kinetic term for the gauge fields and
with its inverse in the Higgs field kinetic term. The theory is conformally invariant in the three-dimensional
space R3. An important aspect of the model is that for practically all configurations of the gauge and Higgs
fields the new scalar fields adjust themselves to solve the modified self-duality equations. We construct
solutions using a spherically symmetric Ansatz and show that the ’t Hooft-Polyakov monopole becomes a
self-dual solution of such modified Yang-Mills-Higgs systems. We use an Ansatz based on the conformal
symmetry to construct vacuum solutions presenting nontrivial toroidal magnetic fields.

DOI: 10.1103/PhysRevD.104.105016

I. INTRODUCTION

Topological solitons play a fundamental role in the study
of nonlinear phenomena in many areas of science. Their
stability, inherited from nontrivial topological structures,
makes them ideal candidates to describe excitations in
some sectors of the theory, especially strong coupling
regimes. Examples of topological solitons range from
kinks in (1þ 1)-dimensions, to vortices and magnetic
Skyrmions in (2þ 1)-dimensions, magnetic monopoles
and Skyrmions in (3þ 1)-dimensions, and instantons in
four-dimensional Euclidean spaces. They find applications
from high energy physics to condensed matter physics and
in nonlinear phenomena in general [1–3].
There is a class of topological solitons however, that

deserves a special attention as they reveal deeper math-
ematical structures in the theory, which may lead to the
development of some exact and nonperturbative methods.
They present two main properties: first, they are classical
solutions of the so-called self-duality equations which
are first-order differential equations that imply the

second-order Euler-Lagrange equations of the theory,
and second, on each topological sector of the theory there
is a lower bound on the static energy, or Euclidean action,
and the self-dual solitons saturate that bound. Therefore,
self-dual solitons are very stable.
The fact that one has to perform one integration less

to construct self-dual solitons, as compared to the usual
topological solitons, is not linked to the use of any
dynamically conserved quantity. In all known examples,
the relevant topological charge admits an integral repre-
sentation, and so there exists a density of topological
charge. As such charge is invariant under any smooth
(homotopic) variations of the fields, it leads to local
identities, in the form of second-order differential equa-
tions, that are satisfied by any regular configuration of the
fields, not necessarily solutions of the theory. The magic is
that such identities become the Euler-Lagrange equations
of the theory when the self-duality equations are imposed.
That may happen even in the cases where there is no lower
bound on the energy or Euclidean action.
By exploring such ideas it was possible to develop

the concept of generalized self-dualities where one can
construct, from one single topological charge, a large
class of field theories possessing self-dual sectors [4].
In (1þ 1)-dimensions it was possible to construct field
theories, with any number of scalar fields, possessing self-
dual solitons, and so generalizing what is well known in
theories with one single scalar field, like the sine-Gordon
and λϕ4 models [5,6]. In addition, exact self-dual sectors
were constructed for Skyrme type theories by the addition
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of extra scalar fields [7–10], and concrete applications have
been made to nuclear matter [11].
In this paper we apply such ideas and methods to the

Yang-Mills-Higgs system in (3þ 1)-dimensions. In this
case, the relevant topological charge is the magnetic charge
defined by the integralZ

R3

d3xεijkTrðFijDkΦÞ; ð1:1Þ

where Fij ¼ ∂iAj − ∂jAi þ ie½Ai; Aj� is the field tensor,
Ai ¼ Aa

i Ta the gauge field, and Φ ¼ ΦaTa the Higgs
field in the adjoint representation of a simple, compact
Lie group G, with generators Ta, a ¼ 1; 2;… dimG. In
addition, Di� ¼ ∂i � þie½Ai; �� is the covariant derivative
in the adjoint representation of G.
The generalized self-duality equations are given by

1

2
εijkFb

jkhba ¼ �ðDiΦÞa; ð1:2Þ

where hab, a; b ¼ 1; 2;… dimG is a symmetric invertible
matrix of scalar fields. Following [4], we show in Sec. II
that the identities following from the invariance of (1.1)
under smooth variations of the fields, combined with the
self-duality equations (1.2), imply the Euler-Lagrange
equations associated to the static energy functional
given by

EYMH ¼
Z

d3x

�
1

4
habFa

ijF
b
ij þ

1

2
h−1abðDiΦÞaðDiΦÞb

�
:

ð1:3Þ

In fact, they imply not only the Euler-Lagrange equations
associated with the gauge and Higgs fields, but also the
ones associated with the scalar fields hab.
Clearly, in the case where the matrix h is the unit

matrix, the self-duality equations (1.2) become the usual
Bogomolny equations [12], and (1.3) becomes the static
energy functional for the Yang-Mills-Higgs system in
the Prasad-Sommerfield limit [13]. Modifications of the
Yang-Mills-Higgs system have been considered in [14–18],
where the kinetic terms of gauge and Higgs fields are
multiplied by functionals of the modulus of the Higgs field,
without the introduction of new fields.
The introduction of the scalar fields hab brings in some

novel features. They make the static sector of the theory
conformally invariant in the three-dimensional space R3,
and that plays an important role in many aspects of the
theory, especially in the construction of solutions. The
eigenvalues of the matrix h have to be positive to make
the energy (1.3) positive definite. That is guaranteed in
most of the cases, but as we will show, it is possible to use
the conformal symmetry to build an Ansatz to construct
vacuum solutions with vanishing energy and topological

charge, and presenting nontrivial magnetic fields in toroidal
configurations. We give an example where the toroidal
magnetic field possesses a new nontrivial topological
charge resembling the concept of helicity used in mag-
netohydrodynamics. Clearly, for such nontrivial vacuum
configurations the eigenvalues of h are not all positive, and
it would be interesting to investigate their stability.
The scalar fields hab transform under the symmetric

part of the tensor product of the adjoint representation of
the gauge group with itself. Their asymptotic value at
spatial infinity may be related to some pattern of sponta-
neous symmetry breaking. Note that we do not have a
Higgs potential in (1.3), and neither are we considering the
Prasad-Sommerfield limit of it. As an example, we consider
the usual spherically symmetric ’t Hooft-Polyakov Ansatz
for the case G ¼ SUð2Þ, and show that for any configu-
ration in such an Ansatz, two of the three eigenvalues of h
are equal, pointing to some spontaneous breaking of the
symmetry to Uð1Þ. Indeed, some configurations behave at
spatial infinity such that two eigenvalues go to unity and the
third to zero, leaving h invariant under a Uð1Þ subgroup.
Finally, the introduction of the scalar fields hab enlarge

the space of solutions considerably. A special role is played
by the matrices τab≡ 1

2
Fa
ijF

b
ij and σab ≡ − 1

2
εijkFa

ijðDkΦÞb.
For the configurations of the gauge fields such that the
matrix τ is invertible, one can show that the matrix h,
given by h ¼ �τ−1σ, solves the self-duality equations (1.2).
Therefore, the scalar fields act as spectators adjusting
themselves to the gauge and Higgs fields configurations
and solving the self-duality equations. In the cases where τ
is singular it seems that some components of h get
undetermined but still one gets a solution for such con-
figurations. In fact, that happens in one of our examples of
vacuum configurations with nontrivial toroidal magnetic
fields. So, there is still a lot to be understood about the
physical role of the scalar fields hab. We comment however,
that if one diagonalizes it, i.e., h ¼ MhDMT , with M being
an orthogonal matrix and hD diagonal, the fields in hD can
be interpreted as dilaton fields leading to the conformal
symmetry of the theory in the three-dimensional space R3.
The M fields relate, in many cases, to the Wilson line
operator in the adjoint representation and lead to dressed
quantities, namely the field tensor and covariant derivative
of the Higgs field, that become gauge invariant.
The paper is organized as follows. In Sec. II we present

ideas about the generalized self-duality and its features. In
Sec. III we discuss the properties of our modified Yang-
Mills-Higgs system, construct the generalized self-duality
equations, and discuss their consequences. In Sec. IV we
use the well-known ’t Hooft-Polyakov spherically sym-
metric Ansatz for the gauge group G ¼ SUð2Þ, and con-
struct new magnetic monopole solutions. We show that the
usual ’t Hooft-Polyakov magnetic monopole becomes a
self-dual solution of our modified Yang-Mills-Higgs sys-
tem, even in the absence of a Higgs potential. In Sec. V we
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use the conformal symmetry to build an Ansatz and
construct new solutions for our theory. The subtlety here
is that there seems to be no regular solutions with
nontrivial energy and a topological charge. We are able
however, to construct vacuum solutions with vanishing
energy and topological charge, but with nontrivial toroi-
dal magnetic field configurations. In one of the examples,
the solution presents a new nontrivial topological charge
similar to the concept of helicity used in magnetohydro-
dynamics. Then, in Sec. VI, we present our conclusions,
and in the Appendix we show that the modified Yang-
Mills-Higgs system is conformally invariant in the three-
dimensional space R3.

II. GENERALIZED SELF-DUALITY

The concept of self-duality has been used in physics and
mathematics for a long time and in several contexts
[12,13,19,20]. Basically, the self-duality equations are in
general first-order differential equations such that their
solutions also solve the second-order (static) Euler-
Lagrange (EL) equations. In addition, those solutions
saturate a bound on the static energy, or Euclidean action,
related to a topological charge. The fact that the solutions
are constructed by performing one integration less than
what the EL equations would require is not a consequence
of the use of dynamical conservation laws. As explained
in [4], it is related to the existence of a topological invariant
that possesses an integral representation. Indeed, consider a
field theory that possesses a topological charge with an
integral representation of the form

Q ¼
Z

ddxAαÃα; ð2:1Þ

where Aα and Ãα are functionals of the fields of the theory
and their first derivatives only, and where the index α stands
for any type of indices, like vector, spinor, internal, etc., or
groups of them. The fact that Q is topological means that it
is invariant under any smooth (homotopic) variation of the
fields. Let us denote the fields by χκ, where they can be
scalar, vector, or spinor fields, and where the index κ stands
for the space-time and internal indices. The invariance ofQ
under smooth variations of the fields lead to the identities

δQ ¼ 0 →
δAα

δχκ
Ãα − ∂μ

�
δAα

δ∂μχκ
Ãα

�

þAα
δÃα

δχκ
− ∂μ

�
Aα

δÃα

δ∂μχκ

�
¼ 0: ð2:2Þ

If we now impose the first-order differential equations, or
self-duality equations, on the fields as

Aα ¼ �Ãα; ð2:3Þ

it follows that, together with the identities (2.2), they imply
the equations

δAα

δχκ
Aα− ∂μ

�
δAα

δ∂μχκ
Aα

�
þ Ãα

δÃα

δχκ
−∂μ

�
Ãα

δÃα

δ∂μχκ

�
¼ 0:

ð2:4Þ

But, (2.4) are the Euler-Lagrange equations associated with
the functional

E ¼ 1

2

Z
ddx½A2

α þ Ã2
α�: ð2:5Þ

So, first-order differential equations together with second-
order topological identities lead to second-order Euler-
Lagrange equations. Note that, if E is positive definite then
the self-dual solutions saturate a lower bound on E as
follows. From (2.3) we have that A2

α ¼ Ã2
α ¼ �AαÃα.

Therefore, if A2
α ≥ 0, and consequently Ã2

α ≥ 0, we have
that

Aα ¼ Ãα → Q ¼
Z

ddxA2
α ≥ 0;

Aα ¼ −Ãα → Q ¼ −
Z

ddxA2
α ≤ 0: ð2:6Þ

Therefore, we have that

E ¼ 1

2

Z
ddx½Aα ∓ Ãα�2 �

Z
ddxAαÃα ≥ jQj; ð2:7Þ

and the equality holds true for self-dual solutions, where
we have

E ¼
Z

ddxA2
α ¼

Z
ddxÃ2

α ¼ jQj: ð2:8Þ

The splitting of the integrand of Q as in (2.1) is quite
arbitrary, but once it is chosen one can still change Aα and
Ãα by the apparently innocuous transformation

Aα → A0
α ¼ Aβkβα; Ãα → Ã0

α ¼ k−1αβ Ãβ: ð2:9Þ

The topological charge does not change and so it is still
invariant under homotopic transformations. Therefore,
we can now apply the same reasoning as above with the
transformed quantities A0

α and Ã0
α. The transformed self-

duality equations are

Aβkβα ¼ �k−1αβ Ãβ → Aβhβα ¼ �Ãα; ð2:10Þ

where we have defined the symmetric and invertible
matrix as
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h≡ kkT: ð2:11Þ

Together with the transformed identities (2.2), the new self-
duality equations (2.10) imply the Euler-Lagrange equa-
tions associated with the energy

E0 ¼ 1

2

Z
ddx½hαβAαAβ þ h−1αβ ÃαÃβ�: ð2:12Þ

Note that the matrix h, or equivalently k, can be used to
introduce new fields in the theory without changing the
topological charge Q and therefore its field content. In
addition, the new self-duality equations (2.10) will also
imply the Euler-Lagrange equations associated to such new
fields coming from E0. Indeed, if the topological charge
does not depend upon these new fields, and neither doesAα

and Ãα, then the Euler-Lagrange equations associated with
hαβ are AαAβ − Ãγh−1γα Ãδh−1δβ ¼ 0. But that follows from
the self-duality equations (2.10).
Note that (2.10) implies hαβAαAβ ¼ h−1αβ ÃαÃβ ¼

�AαÃα. Therefore, if hαβAαAβ ≥ 0, and consequently
h−1αβ ÃαÃβ ≥ 0, we have that the bound follows in the same
way as before:

E0 ¼ 1

2

Z
ddx½Aβkβα ∓ k−1αβ Ãβ�2 �

Z
ddxAαÃα ≥ jQj:

ð2:13Þ

Such ideas have been applied quite successfully in many
Skyrme type models [7–10] and in two-dimensional scalar
field theories [5].

III. SELF-DUALITY IN THE
YANG-MILLS-HIGGS SYSTEM

We now consider a Yang-Mills theory for a gauge group
G coupled to a Higgs field in the adjoint representation of
G. The relevant topological charge is the magnetic charge

QM ¼
Z
R3

d3x∂i
bTrðBiΦÞ ¼

Z
S2∞

dΣi
bTrðBiΦÞ; ð3:1Þ

where

Bi ¼ −
1

2
εijkFjk

Fij ¼ ∂iAj − ∂jAi þ ie½Ai; Aj� ð3:2Þ

and Ai ¼ Aa
i Ta, Φ ¼ ΦaTa, with Ta, a ¼ 1; 2;… dimG,

being a basis of the Lie algebra of the gauge group G,
satisfying ½Ta; Tb� ¼ ifabcTc, and TrðTaTbÞ ¼ κδab, and κ
being the Dynkin index of the representation where the
trace is taken. In (3.1) we have used the normalized tracebTr≡ 1

κ Tr. Adding to the integrand in (3.1) the trivially

vanishing term bTrð½Ai; BiΦ�Þ, and using the Bianchi
identity DiBi ¼ 0 with Di� ¼ ∂i � þie½Ai; ��, one can
write (3.1) as

QM ¼
Z
R3

d3x bTrðBiDiΦÞ ¼
Z
R3

d3xBa
i ðDiΦÞa: ð3:3Þ

Following the ideas described in Sec. II, we shall split the
integrand of such a topological charge as [21]

Aα ≡ Bb
i kba; Ãα ≡ k−1abðDiΦÞb; ð3:4Þ

and the self-duality equations are then given by

Bb
i hba ¼ ηðDiΦÞa; η ¼ �1; h ¼ kkT: ð3:5Þ

The static energy of our generalized Yang-Mills-Higgs
system, according to (2.12), is given by

EYMH ¼ 1

2

Z
d3x½habBa

i B
b
i þ h−1abðDiΦÞaðDiΦÞb�: ð3:6Þ

For the solutions of the self-duality equations we have that

EYMH ¼ QM: ð3:7Þ

The four-dimensional action associated to (3.6) is

SYMH ¼
Z

d4x

�
−
1

4
habFa

μνFbμν þ 1

2
h−1abðDμΦÞaðDμΦÞb

�
:

ð3:8Þ

Under a gauge transformation Aμ → gAμg−1 þ i
e ∂μgg−1,

we have that Fμν → gFμνg−1 and DμΦ → gDμΦg−1.
Therefore, the action (3.8), the energy (3.6), and the
self-duality equations (3.5) are invariant under

Fa
μν → dabðgÞFb

μν; ðDμΦÞa → dabðgÞðDμΦÞb;
hab → dacðgÞdbdðgÞhcd; ð3:9Þ

where dðgÞ are the matrices of the adjoint representation of
the gauge group,

gTag−1 ¼ TbdbaðgÞ: ð3:10Þ

The adjoint representation of a compact simple Lie group is
unitary and real, and so its matrices are orthogonal, i.e.,
ddT ¼ 1. The action (3.8) is Lorentz invariant in the four-
dimensional Minkowski space-time. However, the static
energy (3.6) and the self-duality equations (3.5) are con-
formally invariant in the three-dimensional space, as we
show in the Appendix.
Note that under space parity xi → −xi, and t → t, we

have that Ai → −Ai and A0 → A0, and so Bi → Bi.
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Therefore, the self-duality equations (3.5) are invariant
under space parity if the Higgs fields Φa are pseudoscalars
and the fields hab are scalars, and consequently the energy
(3.6) and the topological charge (3.3) are parity invariant.
However, if the Higgs fields are scalars and hab are
pseudoscalars, the self-duality equations are still invariant
but both the energy and topological charge change sign
under parity. Perhaps the most sensible situation to assume
is one where both the Higgs and h-fields are scalars, and so
the self-duality equations are not invariant. In that case, the
energy (3.6) is parity invariant, but the topological charge
(3.3) changes sign. Therefore, space parity would map self-
dual solutions into anti-self-dual solutions.
The fields of our model are the gauge fields Aa

μ, the
Higgs fields Φa, and the scalar fields hab. The static Euler-
Lagrange equations associated to those fields, following
from (3.8) or equivalently (3.6), are

DiðhFijÞ ¼ ie½Φ; h−1DjΦ�; ð3:11Þ

Diðh−1DiΦÞ ¼ 0; ð3:12Þ

Ba
i B

b
i ¼ h−1ac h−1bdðDiΦÞcðDiΦÞb; ð3:13Þ

where we have introduced the notation

hFij ≡ TahabFb
ij; h−1DiΦ≡ Tah−1abðDiΦÞb: ð3:14Þ

Note that we can write (3.5) as

Ba
i ¼ ηðDiΦÞch−1ca ; ð3:15Þ

and, contracting with Bb
i , we get

τab ¼ ησach−1cb ð3:16Þ

with

τab ≡ Ba
i B

b
i ; σab ≡ Ba

i ðDiΦÞb; ð3:17Þ

and these matrices will be important in what follows.
We can now write (3.13) as

Ba
i B

b
i − h−1ac h−1bdðDiΦÞcðDiΦÞd
¼ ½Ba

i − h−1ac ðDiΦÞc�½Bb
i þ h−1bdðDiΦÞd�

þ ðσh−1Þba − ðσh−1Þab: ð3:18Þ

Therefore, using (3.15) and (3.17) one observes that the rhs
of (3.18) vanishes, and so the self-duality equations (3.5)
do imply the Euler-Lagrange equations (3.13) for the
h-fields. Contracting both sides of (3.15) with Ta, and
taking the covariant divergency of both its sides, one gets,
using (3.2) and (3.14),

−
1

2
εijkDiFjk ¼ ηDiðh−1DiΦÞ: ð3:19Þ

But, the lhs of (3.19) is the Bianchi identity and so it
vanishes. Therefore, the self-duality equations (3.15) imply
the Euler-Lagrange equations (3.12) for the Higgs field Φ.
Using the notation of (3.14) and (3.2), we can write (3.5)

as hFij ¼ −ηεijkDkΦ. Taking the covariant divergence
on both sides one gets DiðhFijÞ ¼ −ηie½Bj;Φ�, where
we have used the Jacobi identity. Contracting (3.15) with
Ta, commuting both sides with Φ, and using the notation
of (3.14), we get ½Φ; Bj� ¼ η½Φ; h−1DjΦ�. Therefore, we
observe that the self-duality equations imply the Euler-
Lagrange equations (3.11) for the gauge fields Ai. So, the
solutions of the self-duality equations also solve all three
Euler-Lagrange equations, (3.11), (3.12), and (3.13).
Since the matrix h is always invertible, we note

from (3.17) that the matrix τ is invertible whenever σ is
invertible, and vice versa. Therefore, on the regions
of R3 where the matrix τ is invertible, we can use the
self-duality equations, or equivalently (3.17), to write
the matrix of the h-fields in terms of the gauge and
Higgs fields as

h ¼ ητ−1σ: ð3:20Þ

Such a relation means that whenever τ is invertible the self-
duality equations are automatically satisfied by an h matrix
given by (3.20), and so the h-fields are just spectators in the
sense that they adjust themselves to the givenΦ and Ai field
configurations to solve the self-duality equations.
Note in addition that, since τ and h are symmetric, it

follows that τh ¼ ησ and hτ ¼ ησT . Therefore, ½τ; h� ¼
ηðσ − σTÞ. So, σ will be symmetric whenever τ and h
commute.

A. The h-fields

Note from (3.9) that the h-fields transform under gauge
transformations as h → dðgÞhdTðgÞ, with ddT ¼ 1, and so
the eigenvalues of h are gauge invariant. Since h is a
symmetric and a real matrix, it can be diagonalized by an
orthogonal transformation,

h¼MhDMT ; MMT ¼1; ðhDÞab¼ λaδab: ð3:21Þ

Therefore, it is convenient to split the N ðN þ 1Þ=2
h-fields, where N is the dimension of the gauge group
G, into two sets. The first set contains the N gauge
invariant λ-fields, and the second set contains the
N ðN − 1Þ=2 fields parametrizing the orthogonal matrix
M. According to (3.9), under a gauge transformation such
fields transform as

λa → λa; M → dðgÞM: ð3:22Þ
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Under a conformal transformation in the three-dimensional
space R3, as described in the Appendix, we have that such
fields transform as

δλa ¼ Ωλa; δM ¼ 0: ð3:23Þ

We now introduce the quantities

F a
μν ≡MT

abF
b
μν; ðDμΦÞa ≡MT

abðDμΦÞb: ð3:24Þ

From (3.9) and (3.22) one observes that such quantities are
gauge invariant, i.e.,

F a
μν → F b

μν; ðDμΦÞa → ðDμΦÞb: ð3:25Þ

Therefore, the four-dimensional action (3.8) and static
energy (3.6) can be written solely in terms of gauge
invariant quantities as

SYMH ¼
Z

d4x

�
−
1

4
λaF a

μνF aμν þ 1

2

1

λa
ðDμΦÞaðDμΦÞa

�
ð3:26Þ

and

EYMH ¼ 1

2

Z
d3x

�
λaBa

i B
a
i þ

1

λa
ðDiΦÞaðDiΦÞa

�
; ð3:27Þ

where, following (3.2), we have denoted

Ba
i ¼ −

1

2
εijkF a

jk: ð3:28Þ

The self-duality equations (3.2) can also be written in terms
of gauge invariant quantities only,

Ba
i λa ¼ ηðDiΦÞa; η ¼ �1: ð3:29Þ

It is interesting to note that there is a standard way of
constructing quantities out of the field tensor and the
covariant derivative of an adjoint Higgs field that transform
globally under local gauge transformations, using the
Wilson line. Given a curve xμðσÞ on a space-time, para-
metrized by σ, the Wilson line operator W is defined
through the differential equation

dW
dσ

þ ieAμ
dxμ

dσ
W ¼ 0: ð3:30Þ

Under a gauge transformation Aμ → gAμg−1 þ i
e ∂μgg−1,

the Wilson line transforms as

W → gfWg−1i ; ð3:31Þ

where gf and gi are the group elements at the final and
initial points, respectively, of the curve xμðσÞ. Consider
now the quantities

FW
μν ≡W−1FμνW; ðDμΦÞW ≡W−1DμΦW; ð3:32Þ

where the Wilson line is defined on a curve that ends at the
point where Fμν andDμΦ are evaluated. Therefore, under a
gauge transformation such quantities transform as

FW
μν → giFW

μνg−1i ; ðDμΦÞW → giðDμΦÞWg−1i : ð3:33Þ
If we now restrict ourselves to the case where all curves
start at a given fixed reference point, it turns out that gi is a
fixed element of G, and so the conjugated quantities FW

μν

and ðDμΦÞW transform under global gauge transforma-
tions. Note that (3.30) is a first-order differential equation
and so the Wilson line is defined up to an integration
constant, i.e., ifW is a solution of (3.30), so it isWW0, with
W0 being a constant group element. Note that W0 is the
value of the Wilson line at the initial point of the curve.
Therefore, the global gauge transformations of the quan-
tities FW

μν and ðDμΦÞW amount to the freedom of the choice
of such integration constant.
The field tensor conjugated by the Wilson line appears

in the usual non-Abelian Stokes theorem, as well as in its
generalizations to two-form connections [22,23]. Such
theorems were used to construct the integral form of the
Yang-Mills equations in [24,25]. These integral equations
are expressed in terms of the field tensor and its Hodge
dual, conjugated by the Wilson line in the way explained
above. In addition, the Wilson lines have to be evaluated
on curves all starting at a fixed reference point, and the
integration constants associated with the Wilson line have
to be restricted to the center of the gauge group in order for
the integral equations to be gauge covariant [24,25]. So, in
order to keep the integration constant in the center of the
group we have to take gi in (3.33), also in the center, and
then FW

μν and ðDμΦÞW are gauge invariant like F a
μν and

ðDμΦÞa, given in (3.24).
From (3.32) we have that

FW
μν ¼ Fa

μνW−1TaW ¼ Fa
μνTbdbaðW−1Þ

¼ TbdTbaðWÞFa
μν; ð3:34Þ

and this is similar for ðDμΦÞW. Therefore, we have that

ðFW
μνÞa ¼ dTabðWÞFb

μν

½ðDμΦÞW �a ¼ dTabðWÞðDμΦÞb: ð3:35Þ

The covariant derivative of the M-fields is DμM ¼
∂μM þ iedðAμÞM, since it transforms as DμM →
dðgÞDμM, and so in the same way as M in (3.22).
Given a curve xμðσÞ, consider the quantity
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dxμ

dσ
DμM ¼ dM

dσ
þ iedðAμÞ

dxμ

dσ
M: ð3:36Þ

One observes that in the regions of space where DμM ¼ 0,
or where DμM is perpendicular to the curve, the matrix M
satisfies the same equation as the Wilson line W in the
adjoint representation, i.e., (3.30). Therefore, for curves on
those regions we have thatM ¼ dðWÞ, and so the quantities
ðF a

μν; ðDμΦÞaÞ and ððFW
μνÞa; ½ðDμΦÞW �aÞ, given in (3.24)

and (3.35), respectively, are the same. In the examples that
we discuss below, we show that, for the cases where the
matrix h is completely determined in terms of the gauge
fields [as given in (3.20)], it is possible to choose curves
xμðσÞ, starting at a fixed reference point and ending at any
point of R3, such that M ¼ dðWÞ.
The h-fields are constituted of two distinct type of fields.

The λ-fields, according to (3.22) and (3.21), are gauge
invariant and have conformal weight one. Therefore, they
are like dilaton fields and are responsible for the conformal
invariance of the theory (3.8) in the three-dimensional
space R3. Dilaton fields have been introduced in effective
theories for Yang-Mills theories in relation to the trace
anomaly [26,27]. The dilaton field is related to the expect-
ation value of the trace of the energy-momentum tensor, or
equivalently to the gluon condensate, and it couples to the
Yang-Mills Lagrangian in a way similar to the coupling of
the λ-fields in (3.27). In such a context our theory (3.8) can
be seen as an effective field theory. The M-fields, on the
other hand, are scalars under the conformal group and
transform under gauge transformations in a way similar to
the Wilson line operator in the adjoint representation. As
they lead to dressed quantities, like (3.24) which are gauge
invariant, and also given their close relation to the Wilson
operator (which plays a role in the low energy regime
of Yang-Mills), they reinforce the interpretation of the
theory (3.8) as an effective Yang-Mills-Higgs theory.

IV. SPHERICALLY SYMMETRIC SOLUTIONS
FOR G= SUð2Þ

We use the spherical Ansatz of ’t Hooft-Polyakov given
by [28,29]

Φ ¼ 1

e
HðrÞ
r

r̂aTa;

Ai ¼ −
1

e
εija

r̂j
r
ð1 − KðrÞÞTa;

A0 ¼ 0; ð4:1Þ

with r̂i ¼ xi=r, and Ta, a ¼ 1, 2, 3 being the basis of the
SUð2Þ Lie algebra satisfying ½Ta; Tb� ¼ iεabcTc. We then
get that

Bi ¼ Ba
i Ta; Ba

i ¼
1

er2
½rK0Ωia þ ðK2 − 1ÞΛia�;

DiΦ ¼ ðDiΦÞaTa;

ðDiΦÞa ¼ 1

er2
½HKΩia þ ðrH0 −HÞΛia�; ð4:2Þ

where we have defined Ω≡ 1 − Λ, with Λab ≡ r̂ar̂b,
and so Λ2 ¼ Λ, Ω2 ¼ Ω, and ΛΩ ¼ ΩΛ ¼ 0. Therefore,
the matrix h that solves the self-duality equations (3.5) is
given by

h ¼ η

�
KH
rK0 Ωþ rH0 −H

ðK2 − 1ÞΛ
�
: ð4:3Þ

Note that, given any field configuration for the gauge and
Higgs fields, in the Ansatz (4.1) we solve the self-duality
equations with the matrix h given in (4.3) for any profile
functions H and K, as long as the eigenvalues of h do
not vanish. So, the h-fields act like spectators adjusting
themselves to the gauge and Higgs fields configurations.
From (3.17) and (4.2) we then get

τ ¼ 1

e2r4
½ðrK0Þ2Ωþ ðK2 − 1Þ2Λ� ð4:4Þ

and

σ ¼ 1

e2r4
½rK0KHΩþ ðK2 − 1ÞðrH0 −HÞΛ�: ð4:5Þ

Therefore, the matrix σ is also symmetric. In addition, any
two matrices that are linear combinations of Λ and Ω
commute among themselves. So, ½τ; σ� ¼ 0. Note that for
any matrix of the form L ¼ αΩþ βΛ its inverse is
simply L−1 ¼ Ω=αþ Λ=β.
Note that Λ has a zero eigenvalue twice degenerated, and

a single eigenvalue unity. The eigenvector corresponding to
the unity eigenvalue is clearly

vð3Þa ¼ r̂a; or vð3Þ ¼

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA; ð4:6Þ

where θ and ϕ are the angles of the spherical polar
coordinates. We take the basis for the degenerated zero
eigenvalue subspace as

vð1Þ ¼

0
B@

cos θ cosϕ

cos θ sinϕ

− sin θ

1
CA; vð2Þ ¼

0
B@

− sinϕ

cosϕ

0

1
CA; ð4:7Þ

and so
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Λ ·vð1Þ ¼Λ ·vð2Þ ¼0; Λ ·vð3Þ ¼vð3Þ; vðaÞ ·vðbÞ ¼δab:

ð4:8Þ

Clearly, those three vectors are eigenvectors of Ω with
eigenvalues 1 (doubly degenerate) and zero, respectively.
Therefore, for a matrix of the form L ¼ αΩþ βΛ the
eigenvalues are ðα; α; βÞ, and so the eigenvalues of h, τ, and
σ can be read off directly from their expressions (4.3), (4.4),
and (4.5). Those matrices can be simultaneously diagon-
alized by an orthogonal matrix M, i.e.,

h ¼ MhDMT ; τ ¼ MτDMT

σ ¼ MσDMT ; MMT ¼ 1; ð4:9Þ

with

hD ¼ diag:ðλ1; λ1; λ2Þ;
τD ¼ diag:ðω1;ω1;ω2Þ;
σD ¼ diag:ðηλ1ω1; ηλ1ω1; ηλ2ω2Þ; ð4:10Þ

with

λ1 ¼ η
KH
rK0 ; λ2 ¼ η

ðrH0 −HÞ
ðK2 − 1Þ

ω1 ¼
1

e2r4
ðrK0Þ2; ω2 ¼

1

e2r4
ðK2 − 1Þ2: ð4:11Þ

A. The usual BPS monopole

Note that the matrix h, given in (4.3), will be the unity
matrix whenever the coefficients of Ω and Λ are both equal
to the sign η ¼ �1, i.e.,

h ¼ 1 → rK0 ¼ ηKH; rH0 −H ¼ ηðK2 − 1Þ; ð4:12Þ

and note that those are the self-duality equations for the
profile functions of the ’t Hooft-Polyakov Ansatz for the
Bogomolny-Prasad-Sommerfield (BPS) monopole [12,13].
The solution is given by

H ¼ −η½ξ cothðξÞ − 1�; K ¼ −η
ξ

sinhðξÞ ; ð4:13Þ

with ξ ¼ r=r0, and r0 being an arbitrary length scale.

B. The ’t Hooft-Polyakov monopole

In the case of the ’t Hooft-Polyakov monopole [28,29],
the profile functions of the Ansatz (4.1) satisfy

ξ2K00 ¼ KH2 þ KðK2 − 1Þ;
ξ2H00 ¼ 2K2H þ κ

e2
HðH2 − ξ2Þ; ð4:14Þ

where again ξ ¼ r=r0, and κ is the parameter of the Higgs
potential V ¼ κ

4
ðTrΦ2 − hΦi2Þ2, with hΦi being the vac-

uum expectation value of the Higgs field.
The asymptotic behavior of the profile functions at

infinity and at the origin are given by

K ∼ e−ξ; H − ξ ∼ e−
ffiffiffi
2κ

p
e ξ; for ξ → ∞ ð4:15Þ

and

K ∼ 1;
H
ξ
∼ 0; for ξ → 0: ð4:16Þ

Therefore, the eigenvalues of h, given in (4.10), behave as

λ1 → −η; λ2 → 0; for ξ → ∞ ð4:17Þ

and

λ1 → −ηβ; λ2 → −ηβ; for ξ → 0; ð4:18Þ

with β being a positive constant depending upon κ=e2.
Therefore, the ’t Hooft-Polyakov monopole must belong
to the self-dual sector corresponding to η ¼ −1 in order
to have the eigenvalues of h positive, and so the static
energy (3.6) positive.
We plot in Fig. 1 the eigenvalues of h, against ξ, for the

’t Hooft-Polyakov monopole for some values of κ=e2.
Note that at spatial infinity the eigenvalue λ1 tend to unity
[i.e., the value it has in the usual self-dual solution, given in
(4.12) and (4.13)], but λ2 tend to zero instead. It is such a
different behavior of the scalar fields hab that allows the
configuration of the ’t Hooft-Polyakov monopole to be a
self-dual solution in such modified Yang-Mills-Higgs
theory.
In fact, if we turn the arguments around, we could

interpret the h-fields as introducing a dielectric medium in
the Yang-Mills-Higgs system, along the lines of what has
been attempted in [14–18]. Therefore, the coupling of such
a medium to the gauge and Higgs fields replaces the Higgs
potential and sustains the ’t Hooft-Polyakov monopole as a
solution of a self-dual theory. Instead of introducing such
an structure as an external and rigid medium, we do it
dynamically through the coupling of the (nonpropagating)
h-fields to the gauge and Higgs fields.

C. Some special choices of monopole solutions

As we have seen, any choice of profile functions H
and K satisfying appropriate boundary conditions leads to
monopole solutions with nontrivial topological charges. We
present here some monopole solutions where the eigen-
values of h behave, close to the origin, in the same way as
the ordinary BPS solution (4.13), i.e.,
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λa → 1; a ¼ 1; 2; for ξ → 0; ð4:19Þ

and at infinity such eigenvalues behave in the same way as
the ’t Hooft-Polyakov monopole solution, i.e.,

λ1 → 1; λ2 → 0; for r → ∞: ð4:20Þ

In order to do that, we take the following Ansatz for the
eigenvalues λa:

λ1 ¼ 1þHK
ξ

; λ2 ¼ 1 −
�
H
ξ

�
α

; ð4:21Þ

with α being a constant parameter. The Ansatz (4.21)
constitutes, in fact, a generalization of the one used in
[14]. Therefore, from (4.10) we get the following first-order
differential equations for the profile functions:

K0 ¼ η
KH=ξ

ð1þ KH=ξÞ�
H
ξ

�0
¼ η

ξ2
ðK2 − 1Þ

�
1 −

�
H
ξ

�
α
�
: ð4:22Þ

We plot in Fig. 2 the profile functions K and H=ξ,
solving (4.22) for some values of α, as well as the same
functions for the usual BPS case, given in (4.13). In Fig. 3
we plot the eigenvalues λa, a ¼ 1, 2, defined in (4.11), for
solutions of the Eq. (4.22) for some values of α.

D. The Wilson line

We now evaluate the Wilson line, defined in (3.30), for
any gauge connection belonging to the ’t Hooft-Polyakov
radial Ansatz (4.1). We evaluate it on curves, all starting at
the same reference point and divided into three parts, as
follows. Consider a sphere with a radius R, which will be
taken to infinite at the end. The first part of the curve starts at
the intersection of such a sphere with the x3-axis and slides
on the sphere on the x1x3-plane, up to an angle θ. The second
part slides on the sphere from the end point of the first part,
on an arc parallel to the x1x2-plane up to angle ϕ with the
x1x3-plane. Then, the third part leaves the sphere on a radial
direction towards the origin and stops at a distance r from it.
After the limit R → ∞ is taken, any point ðr; θ;ϕÞ ofR3 can
be reached from the reference point at the north pole of that
infinite radius sphere by a unique curve of such a family of
curves. The parametrization is the following:
Part I:

x1 ¼ R sin σ

x2 ¼ 0 0 ≤ σ ≤ θ

x3 ¼ R cos σ

Part II:

x1 ¼ R sin θ cos ðσ − θÞ
x2 ¼ R sin θ sin ðσ − θÞ θ ≤ σ ≤ θ þ ϕ

x3 ¼ R cos θ

FIG. 1. The eigenvalues λ1 and λ2, given in (4.10), for the solutions of (4.14) of the ’t Hooft-Polyakov monopole for some values of the
parameter κ=e2.
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Part III:

x1 ¼ ½R − ðσ − θ − ϕÞðR − rÞ� sin θ cosϕ
x2 ¼ ½R − ðσ − θ − ϕÞðR − rÞ� sin θ sinϕ
x3 ¼ ½R − ðσ − θ − ϕÞðR − rÞ� cos θ;

with θ þ ϕ ≤ σ ≤ θ þ ϕþ 1.

TheWilson line is given byW ¼ WIIIWIIWI, whereWa,
a ¼ I; II; III is obtained by integrating (3.30) on each
part I, II, and III.
On part I we have that r̂2 ¼ 0, since it is on the

x1x3-plane, and that r̂3 ¼ cos σ and r̂1 ¼ sin σ. Therefore,

Ai
dxi

dσ
¼ 1

e
ð1 − KðRÞÞT2; ð4:23Þ

FIG. 2. The profile functions K and H=ξ, solving equations (4.22), for some values of α, and the same functions for the usual BPS
case, given in (4.13).

FIG. 3. The eigenvalues λa, a ¼ 1, 2, defined in (4.11), for solutions of the equations (4.22) for some values of α.
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and so

WI ¼ e−ið1−KðRÞÞθT2 : ð4:24Þ

On part II we have

Ai
dxi

dσ
¼ −

1

e
ð1 − KðRÞÞ sin θ

× e−iðσ−θÞT3e−iθT2T1eiθT2eiðσ−θÞT3 : ð4:25Þ

We then perform the gauge transformation Ai → Āi ¼
gAig−1 þ i

e ∂igg−1, with g ¼ eiθT2eiðσ−θÞT3 , to get

Āi
dxi

dσ
¼ 1

e
½KðRÞ sin θT1 − cos θT3�: ð4:26Þ

Therefore,

W̄II ¼ e−iϕ½KðRÞ sin θT1−cos θT3�; ð4:27Þ

and so

WII ¼ e−iϕT3e−iθT2e−iϕ½KðRÞ sin θT1−cos θT3�eiθT2 : ð4:28Þ

However, that can be written as

WII ¼ e−iϕ½KðRÞ sin θv
ð1Þ
a Ta−cos θr̂aTa�e−iϕT3 ; ð4:29Þ

with vð1Þa given in (4.7).
On part III the line is along the radial direction,

and since the radial part of the connection (4.1) vanishes,
we have

WIII ¼ 1: ð4:30Þ

The physically interesting field configurations are those
where the profile function K satisfies the boundary con-
dition KðRÞ → 0, as R → ∞. Therefore, we get that

W ¼ WIIIWIIWI ¼ eiϕ cos θr̂aTae−iϕT3e−iθT2 : ð4:31Þ

The adjoint matrix for such Wilson line is

dðWÞ ¼ ðcos αvð1Þ − sin αvð2Þ; sin αvð1Þ þ cos αvð2Þ; vð3ÞÞ;
ð4:32Þ

with α ¼ ϕ cos θ, and vðaÞ, a ¼ 1, 2, 3, as given in (4.7).
But, that is an orthogonal matrix that diagonalizes
the matrix h, as in (4.9). Therefore, we indeed have
that M ¼ dðWÞ, and so the quantities ðF a

μν; ðDμΦÞaÞ and
ððFW

μνÞa; ½ðDμΦÞW �aÞ, given, respectively, in (3.24) and
(3.35), coincide for the field configurations in the
’t Hooft-Polyakov radial Ansatz (4.1).

Another way of getting such results is to calculate the
covariant derivatives of the vectors vðaÞ, a ¼ 1, 2, 3, given
in (4.6) and (4.7), i.e., DivðaÞ ¼ ∂ivðaÞ þ iedðAiÞ · vðaÞ,
with Ai given in (4.1). One can check that

DrvðaÞ a ¼ 1; 2; 3 ð4:33Þ

and

Dθvð1Þ ¼ −KðrÞvð3Þ
Dθvð2Þ ¼ 0

Dθvð3Þ ¼ KðrÞvð1Þ ð4:34Þ

and

Dϕvð1Þ ¼ cos θvð2Þ

Dϕvð2Þ ¼ − cos θvð1Þ − KðrÞ sin θvð3Þ
Dϕvð3Þ ¼ KðrÞ sin θvð2Þ: ð4:35Þ

We can have vð3Þ covariantly constant in all three directions at
spatial infinity sincewe are assuming the boundary condition
KðrÞ → 0 as r → ∞. Since vð1Þ and vð2Þ span the degenerate
subspace we can take linear combinations of them. So,
assuming Kð∞Þ ¼ 0, we impose that Dϕ½Fvð1Þ þGvð2Þ� ¼
½∂ϕF − cos θG�vð1Þ þ ½∂ϕGþ cos θF�vð2Þ ¼ 0. Therefore,
∂2
ϕF þ cos2 θF ¼ 0 and ∂2

ϕGþ cos2 θG ¼ 0. Thus, F and
G have to be sine and/or cosine of ðϕ cos θÞ. Taking

v̂ð1Þ ¼ cos ðϕ cos θÞvð1Þ − sin ðϕ cos θÞvð2Þ;
v̂ð2Þ ¼ sin ðϕ cos θÞvð1Þ þ cos ðϕ cos θÞvð2Þ; ð4:36Þ

we get, at spatial infinity,

Dθv̂ðaÞ ¼ 0 for ϕ¼ 0; Dϕv̂ðaÞ ¼ 0; a¼ 1;2: ð4:37Þ

Therefore, the matrix M ¼ ðv̂ð1Þ; v̂ð2Þ; vð3ÞÞ, which is the
same as in (4.32), satisfies the same equation asW, given in
(3.30) [see (3.36)], on the curves described above (4.23).

V. TOROIDAL SOLUTIONS

We now construct an Ansatz based on the three-
dimensional conformal symmetry of the model, discussed
in the Appendix. Given an infinitesimal space transforma-
tion xi → xi þ ζi, we say it is a symmetry of the equations
of motion; if AðxÞ≡ AiðxÞdxi and ΦðxÞ are solutions, then
ÃðxÞ ¼ Aðx − ζÞ and Φ̃ðxÞ ¼ Φðx − ζÞ are also solutions.
Therefore,

ÃðxÞ¼ ½AiðxÞ−ζj∂jAiðxÞ�½dxi−∂jζ
idxj�

¼AðxÞ− ½ζj∂jAiðxÞþ∂iζ
jAjðxÞ�dxiþOðζ2Þ; ð5:1Þ
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and so the variation of the fields are

δAi¼−ζj∂jAiðxÞ−∂iζ
jAjðxÞ; δΦ¼−ζj∂jΦ: ð5:2Þ

Following [30], we shall consider two commuting Uð1Þ
subgroups of the conformal group corresponding to the
vector fields, Vζ ¼ Vζi∂i, given by

∂ϕ ≡ Vϕ ¼ x2∂1 − x1∂2;

∂ξ ≡ Vξ ¼
x3
a
ðx1∂1 þ x2∂2Þ þ

1

2a
ða2 þ x23 − x21 − x22Þ∂3;

ð5:3Þ

where a is an arbitrary length scale factor. Note that we
have introduced two angles, ϕ and ξ, with translations
along ϕ corresponding to rotations on the plane x1x2.
The vector field Vξ is a linear combination of the special
conformal transformation x3xi∂i − 1

2
x2j∂3 and the trans-

lation ∂3. One can check that they indeed commute,
i.e., ½∂ϕ; ∂ξ� ¼ 0. One can use such angles as coordinates
on R3, and complete the system with a third coordinate z,
orthogonal to them, i.e., ∂ϕz ¼ ∂ξz ¼ 0. It turns out that
those are the toroidal coordinates given by

x1 ¼
a
p

ffiffiffi
z

p
cosϕ; x2 ¼

a
p

ffiffiffi
z

p
sinϕ; x3 ¼

a
p

ffiffiffiffiffiffiffiffiffiffi
1− z

p
sinξ;

ð5:4Þ

with p ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
cos ξ, and 0 ≤ z ≤ 1, 0 ≤ ϕ; ξ ≤ 2π.

The metric is

ds2 ¼ a2

p2

�
dz2

4zð1 − zÞ þ ð1 − zÞdξ2 þ z2dϕ2

�
: ð5:5Þ

There are some subtleties about the toroidal coordinates
that are worth pointing out. Note that

r2 ¼ x21 þ x22 þ x23 ¼ a2
ð1þ ffiffiffiffiffiffiffiffiffiffi

1 − z
p

cos ξÞ
ð1 − ffiffiffiffiffiffiffiffiffiffi

1 − z
p

cos ξÞ ;

p ¼ 2

1þ r2=a2
; ð5:6Þ

and so, the spatial infinity corresponds to z ¼ 0 and ξ ¼ 0
(or 2π). In addition, for z ¼ 0 the angle ϕ loses its meaning,
and so the toroidal coordinates contract all points on the
two-sphere S2∞ at spatial infinity to just one point.
Consequently, it is perhaps correct to say that they are
coordinates on the three-sphere S3 instead of R3. That has
consequences in what follows.
We shall consider two Ansätze based on the conformal

symmetry of our system. The first requires that the
solutions are invariant under the two commuting vector
fields (5.3). So, taking ζi to be ð0; 0; εϕÞ and ð0; εξ; 0Þ,

respectively, with εϕ and εξ constants, we get from (5.2)
that the fields should not depend upon ϕ and ξ, i.e.,

Ai ¼ Âa
i ðzÞTa; Φ ¼ Φ̂aðzÞTa; ð5:7Þ

with Ta being the generators of the gauge group.
For the second Ansatz we shall require the solutions to

be invariant under the joint action of the two commuting
vector fields (5.3) and a gauge transformation, i.e.,
Ai → gAig−1 þ i

e ∂igg−1 and Φ → gΦg−1. Taking g to be
infinitesimally close to the identity element of the
group, i.e., g ∼ 1þ iη, we get that δAi ¼ − 1

e Diη, with
Di ¼ ∂i þ ie½Ai; � and δΦ ¼ i½η;Φ�. We have to choose
two commuting Uð1Þ subgroups in the gauge group to
compensate the action of the two commuting vector
fields (5.3), generating two commuting Uð1Þ subgroups
in the conformal group. We shall consider the case of
G ¼ SUð2Þ, where we can have, at most, one (commuting)
Uð1Þ subgroup. So, taking ζi to be ð0; 0; εϕÞ and
η ¼ εϕnϕT3, with εϕ constant, we get that the invariance
of the solutions under the joint action of such Uð1Þ’s
require that

∂ϕAi ¼ inϕ½T3; Ai�; ∂ϕΦ ¼ inϕ½T3;Φ�: ð5:8Þ

Similarly, taking ζi to be ð0; εξ; 0Þ and η ¼ εξnξT3, with εξ
constant, the invariance of the solutions require

∂ξAi ¼ inξ½T3; Ai�; ∂ξΦ ¼ inξ½T3;Φ�: ð5:9Þ

The solutions satisfying those conditions have the form

Ai ¼ Ã3
i ðzÞT3 þ Ãþ

i ðzÞeiðnξξþnϕϕÞTþ
þ ðÃþ

i ðzÞÞ�e−iðnξξþnϕϕÞT−;

Φ ¼ Φ̃3ðzÞT3 þ Φ̃þðzÞeiðnξξþnϕϕÞTþ
þ ðΦ̃þðzÞÞ�e−iðnξξþnϕϕÞT−; ð5:10Þ

with T� ¼ T1 � iT2 and with Ta, a ¼ 1, 2, 3 being the
generators of SUð2Þ, i.e., ½Ta; Tb� ¼ iεabcTc. In order
for the fields to be single valued we need nξ and nϕ to
be integers. In addition, note that z ¼ 1 corresponds to the
circle of radius a on the plane x1x2, and the angle ξ loses its
meaning there. Also, z ¼ 0 corresponds to the x3-axis plus
the spatial infinity, and the angle ϕ loses its meaning there.
Therefore, for the solution to be single valued we need

Ãþ
i ð0Þ ¼ Ãþ

i ð1Þ ¼ 0; Φ̃þð0Þ ¼ Φ̃þð1Þ ¼ 0: ð5:11Þ

Note that by performing a gauge transformation with
g ¼ e−iðnξξþnϕϕÞT3 , the fields (5.10) become
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Aξ ¼
�
Ã3
ξðzÞ þ

nξ
e

�
T3 þ Ã1

ξðzÞT1 þ Ã2
ξðzÞT2;

Aϕ ¼
�
Ã3
ϕðzÞ þ

nϕ
e

�
T3 þ Ã1

ϕðzÞT1 þ Ã2
ϕðzÞT2;

Az ¼ Ãa
z ðzÞTa;

Φ ¼ Φ̃aðzÞTa; ð5:12Þ

where we have denoted Ãþ
i ðzÞ ¼ ðÃ1

i ðzÞ − iÃ2
i ðzÞÞ=2,

and Φ̃þðzÞ ¼ ðΦ̃1ðzÞ − iΦ̃2ðzÞÞ=2.
Therefore, the Ansätze (5.7) and (5.12) are essentially

the same, except that functions of the Ansatz (5.12) are
subjected to the condition (5.11). Note in addition that if
we take the z-component of the gauge potential to vanish,
then gauge transformations with group elements of the
form g ¼ e−iðnξξþnϕϕÞT3 keep that component zero.
Therefore, we shall work with the Ansatz (5.7), which is
not subjected to conditions of the form (5.11), with a
vanishing z-component of the gauge potential [dropping
the hat from the notation of (5.7)],

Az ¼ 0; Aξ ¼ Aa
ξðzÞTa

Aϕ ¼ Aa
ϕðzÞTa; Φ ¼ ΦaðzÞTa: ð5:13Þ

The field tensor is then given by

Fzξ¼∂zAξ; Fzϕ¼∂zAϕ; Fξϕ¼ ie½Aξ;Aϕ�; ð5:14Þ

and the covariant derivatives of the Higgs field are

DzΦ¼ ∂zΦ; DξΦ¼ ie½Aξ;Φ�; DϕΦ¼ ie½Aϕ;Φ�:
ð5:15Þ

As we commented above (5.6), the spatial infinity corre-
sponds to z ¼ 0 and ξ ¼ 0. Therefore, the solutions in
the Ansatz (5.13) are constant on the two-sphere S2∞, at
spatial infinity, as well as on the x3-axis, since they do not
depend upon ξ. That means that the topological magnetic
charge (3.1) vanishes for all such solutions. Indeed,
denoting ½r2 bTrðBiΦÞ�z→0 ≡ ci ¼ constant, one gets

Z
S2∞

dΣi
bTrðBiΦÞ ¼

Z
π

0

dθ
Z

2π

0

dϕ sin θ½c1 sin θ cosϕ

þ c2 sin θ sinϕþ c3 cos θ� ¼ 0:

ð5:16Þ

However, we have used the Gauss theorem in (3.1), and the
Bianchi identity to write the topological charge as in (3.3).
So, if our solutions respect that theorem and identity, then
(3.3) must also vanish. We then have [ζi ¼ ðz; ξ;ϕÞ, and
εzξϕ ¼ 1]

Z
R3

d3x bTrðBiðDiΦÞÞ

¼ −
1

2

Z
1

0

dz
Z

2π

0

dξ
Z

2π

0

dϕεζiζjζk bTrðFζiζjDζkΦÞ

¼ −ie4π2
Z

1

0

dz bTrð∂zAξ½Aϕ;Φ� − ∂zAϕ½Aξ;Φ�

þ ½Aξ; Aϕ�∂zΦÞ

¼ −ie4π2
Z

1

0

dz∂z
bTrð½Aξ; Aϕ�ΦÞ: ð5:17Þ

Therefore the solutions have to satisfy

bTr½½Aξ; Aϕ�Φ�z¼1
¼ bTr½½Aξ; Aϕ�Φ�z¼0

: ð5:18Þ

Denoting B≡ Bidxi ¼ Bzdzþ Bξdξþ Bϕdϕ, one gets,
from (3.2) and (5.14), that

Bz ¼ −
p
a

ie
2zð1 − zÞ ½Aξ; Aϕ�;

Bξ ¼ 2
p
a
ð1 − zÞ∂zAϕ;

Bϕ ¼ −2
p
a
z∂zAξ: ð5:19Þ

Therefore, for the Ansatz (5.13) the self-duality equa-
tions (3.5) become

eεbcd
2zð1 − zÞA

c
ξðzÞAd

ϕðzÞĥbaðzÞ ¼ η∂zΦaðzÞ;

2ð1 − zÞ∂zAb
ϕðzÞĥbaðzÞ ¼ −ηeεacdAc

ξðzÞΦdðzÞ;
2z∂zAb

ξðzÞĥbaðzÞ ¼ ηeεacdAc
ϕðzÞΦdðzÞ; ð5:20Þ

where we have introduced the matrix ĥab as

habðz; ξÞ ¼
a
p
ĥabðzÞ: ð5:21Þ

As we have argued, the self-dual solutions in the Ansatz
(5.13), satisfying (5.18), have zero topological charge, and
so, from (3.7), zero static energy. Therefore, if the eigen-
values of h are all positive, we have that the static energy
(3.6) is positive definite, and so the only possibility is that
such solutions are trivial, i.e., Bi ¼ 0 and DiΦ ¼ 0.
However, we now show that it is possible to have nontrivial
self-dual solutions, with vanishing topological and static
energy, but with the eigenvalues of the matrix h not all
positive. Such self-dual solutions are vacua solutions with
nonvanishing magnetic and Higgs fields.
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A. A quasi-Abelian solution

Within the Ansatz (5.13), let us take

Aξ ¼
1

e
IðzÞT3; Aϕ ¼ 1

e
JðzÞT3; ð5:22Þ

and so, the condition (5.18) is trivially satisfied. Then the
first equation in (5.20) implies that the Higgs field must be
constant, i.e.,

Φ ¼ 1

e
γaTa; γa ¼ constant: ð5:23Þ

The other two equations in (5.20) lead to (primes denote
z-derivatives)

2ð1−zÞJ
0

I
¼−2z

I0

J
¼ η

γ2
ĥ13

¼−η
γ1
ĥ23

; ĥ33¼0; ð5:24Þ

and the components ĥ11, ĥ22, and ĥ12, as well as the
constant γ3, are not constrained by the self-duality equa-
tions (5.20). Such relations can be solved algebraically,
without any integration, by taking

I ¼ −m1½1 − gðzÞ�; J ¼ m2gðzÞ ð5:25Þ

and leading to

g ¼ m2
1z

m2
1zþm2

2ð1 − zÞ ð5:26Þ

and

ĥ13 ¼ −γ2f; ĥ23 ¼ γ1f

f ¼ η

2m1m2

½m2
1zþm2

2ð1 − zÞ�: ð5:27Þ

The matrix ĥ, defined in (5.21), and its inverse are given by

ĥ¼

0
BB@

ĥ11 ĥ12 −γ2f
ĥ12 ĥ22 γ1f

−γ2f γ1f 0

1
CCA

ĥ−1¼ 1

ϑ

0
BBB@

γ21 γ1γ2 −γ1ĥ12þγ2ĥ22
f

γ1γ2 γ22
γ1ĥ11þγ2ĥ12

f

−γ1ĥ12þγ2ĥ22
f

γ1ĥ11þγ2ĥ12
f

ĥ212−ĥ11ĥ22
f2

1
CCCA; ð5:28Þ

where ϑ ¼ γ21ĥ11 þ 2γ1γ2ĥ12 þ γ22ĥ22.

The gauge potential for such a solution is

Az ¼ 0;

Aξ ¼ −
1

e
m1m2

2ð1 − zÞ
m2

1zþm2
2ð1 − zÞT3;

Aϕ ¼ 1

e
m2m2

1z
m2

1zþm2
2ð1 − zÞT3: ð5:29Þ

From (5.19) we get that the magnetic field is

Bi ¼ αAi; α ¼ −2
p
a

m1m2

½m2
1zþm2

2ð1 − zÞ� : ð5:30Þ

As we have seen, the spatial infinity corresponds to
z → 0 and ξ → 0. Then, using (5.6), one can check that
Bξ → 1=r2 and Bϕ → 1=r4, as r → ∞. Despite the
Coulomb-like tail of the ξ-component of the magnetic
field, the integrated magnetic flux on a two-sphere at spatial
infinity vanishes as argued in (5.16).
Note that we are working with the components of the

one-forms, i.e., A ¼ Aidxi and B ¼ Bidxi. If we work
instead with the components of the vectors, in terms of the
unit vectors of the coordinate system, i.e., A⃗ ¼ Āie⃗i and
B⃗ ¼ B̄ie⃗i, the relation above is kept unchanged, i.e.,
B⃗ ¼ αA⃗, since both sides change the same way. We are
working with Abelian gauge fields and so the magnetic
field is the curl of A⃗. Therefore, the vector A⃗ is a force-free

field, i.e., ∇⃗ ∧ A⃗ ¼ αA⃗, and the solution we have may be of
interest in magnetohydrodynamics [8,31].
The components of the magnetic vector field in terms

of the unit vector of the coordinate systems, i.e., B⃗ ¼
B̄ie⃗i ¼ B̄ζi e⃗ζi , with ðζ1; ζ2; ζ2Þ ¼ ðz; ξ;ϕÞ, are given by

B̄z ¼ 0;

B̄ξ ¼
2

e
p2

a2
m2

1m
3
2

ffiffiffiffiffiffiffiffiffiffi
1 − z

p

½m2
1zþm2

2ð1 − zÞ�2 T3;

B̄ϕ ¼ −
2

e
p2

a2
m3

1m
2
2

ffiffiffi
z

p
½m2

1zþm2
2ð1 − zÞ�2 T3: ð5:31Þ

Again, using (5.6), one can check that B̄ξ → 1=r4 and
B̄ϕ → 1=r5, as r → ∞.
In Figs. 4–6 we plot the magnetic vector (5.31) for

ðm1;m2Þ¼ð1;1Þ, ðm1;m2Þ¼ð1;10Þ, and ðm1;m2Þ¼ð10;1Þ,
respectively, for z ¼ 0.3.
Note that we can take either γ1 or γ2 to vanish, but we can

not take both to vanish, since the matrix h would not be
invertible.
From (3.17), (5.5), (5.29), and (5.30), one can check

that all components of the matrix τab vanish except for

τ33 ¼ η
e2

p4

a4
m1m2

2f3 . Therefore, the matrices τ and h do not

commute, and σ is not symmetric. In fact, all components

L. A. FERREIRA and H. MALAVAZZI PHYS. REV. D 104, 105016 (2021)

105016-14



of the matrix σ vanish except for σ31 ¼ − γ2
e2

p3

a3
m1m2

2f2

and σ32 ¼ γ1
e2

p3

a3
m1m2

2f2 .

One can check, using (5.23), (5.28)–(5.30), that the two
terms of the energy density in (3.6) vanish independently,
i.e., habBa

i B
b
i ¼ 0 and h−1abðDiΦÞaðDiΦÞb ¼ 0, and so the

static energy of such a solution is indeed zero, as well as its
topological charge (3.3).
However, such a solution does possess another topo-

logical charge which is the winding number of the maps
S3 → S3T , where S

3 is R3 with the spatial infinity identified
to a point, and S3T is the target three-sphere parametrized
by two complex fields Za, a ¼ 1, 2, such that
jZ1j2 þ jZ2j2 ¼ 1. Let us now consider the following
configurations of such fields as

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gðzÞ

p
eim1ξ; Z2 ¼

ffiffiffiffiffiffiffiffiffi
gðzÞ

p
e−im2ϕ: ð5:32Þ

Consider the vector field

Ai ¼
i
2
ðZ†

a∂iZa − Za∂iZ
†
aÞ ¼ iZ†

a∂iZa: ð5:33Þ

One can check that

Ai ¼ e bTrðAiT3Þ; ð5:34Þ

with Ai given in (5.29). The topological charge is given by
the integral representation of the Hopf invariant, i.e.,

QH ¼ 1

4π2

Z
d3xεijkAi∂jAk: ð5:35Þ

However, we do not perform the projection of S3T into S2T
as ðZ1; Z2Þ → u≡ Z2=Z1, with u parametrizing a complex
plane, which is the stereographic projection of S2T .
Therefore, QH, given in (5.35), is indeed the winding
number of S3 → S3T , where S

3 is R3 with the spatial infinity
identified to a point. Such an identification can be done
because the solutions go to a constant at spatial infinity.
Evaluating the topological charge (5.35) on the solutions

(5.29) and (5.34), one gets

QH ¼ m1m2; ð5:36Þ

where we have used the fact that d3xεijkAi∂jAk ¼
d3ζεζiζjζkAζi∂ζjAζk , with ðζ1; ζ2; ζ3Þ ¼ ðz; ξ;ϕÞ and
εzξϕ ¼ 1.
Note that the solutions (5.29) and (5.34) are the same

as the ones obtained in [8] for a modified SUð2Þ
Skyrme model.
So, despite the fact that we have vacuum solutions with

vanishing energy and magnetic charge, such solutions do
present a nontrivial topological charge, given by (5.35), and
nontrivial toroidal magnetic fields. Note that even though

0.10 0.15 0.20 0.25 0.30 0.35

FIG. 4. The magnetic field vector (5.31) for m1 ¼ 1 and
m2 ¼ 1, and for z ¼ 0.3. The colors refer to the modulus of
the magnetic field.

0.01 0.02 0.03 0.04 0.05 0.06

FIG. 5. The magnetic field vector (5.31) for m1 ¼ 1 and
m2 ¼ 10, and for z ¼ 0.3. The colors refer to the modulus of
the magnetic field.

0.05 0.10 0.15 0.20

FIG. 6. The magnetic field vector (5.31) for m1 ¼ 10 and
m2 ¼ 1, and for z ¼ 0.3. The colors refer to the modulus of the
magnetic field.
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the energy vanishes, its density does not, and so the energy
can not be positive definite, and consequently the eigen-
values of the h-matrix can not be all positive. It would be
interesting to investigate the stability of such solutions, and
find if the nontrivial topological charge (5.35) may impose
some selection rules.
Note that the components ĥ11, ĥ12, and ĥ22 appearing

in the matrix (5.28) were not fixed by the self-duality
equations as functions of the gauge and Higgs fields.
Therefore, the matrix M that diagonalizes h, as in
(3.21), will not depend only on the gauge fields, and
consequently M can not be related to the adjoint matrix of
the Wilson line W.

B. A simple non-Abelian solution

Again within the Ansatz (5.13), let us take

Aξ ¼
1

e
ð1 − zÞH1ðzÞT1;

Aϕ ¼ 1

e
zH2ðzÞT2;

Φ ¼ 1

e
H3ðzÞT3; ð5:37Þ

and the condition (5.18) leads to

½zð1 − zÞH1H2H3�z¼0 ¼ ½zð1 − zÞH1H2H3�z¼1; ð5:38Þ

which is satisfied as long as the functions Ha, a ¼ 1, 2, 3
are finite at z ¼ 0 and at z ¼ 1.
The self-duality equations (5.20) imply that the matrix h

is diagonal, i.e.,

ĥab ¼ λaðzÞδab; ð5:39Þ

and its diagonal elements are completely determined in
terms of the functions HaðzÞ as

λ1 ¼
η

2

H2H3

½ð1 − zÞH0
1 −H1�

;

λ2 ¼
η

2

H1H3

½zH0
2 þH2�

;

λ3 ¼ 2η
H0

3

H1H2

: ð5:40Þ

The self-duality equations (5.20) do not impose any
condition on the functions Ha. The only requirement on
such functions is that none of the λa, a ¼ 1, 2, 3 given in
(5.40) can vanish identically, since that would imply that
the matrix h is not invertible.
The magnetic field (5.19) and the covariant derivative of

the Higgs field become

Bz ¼
1

2e
p
a
H1H2T3;

Bξ ¼
2

e
p
a
ð1 − zÞ½zH0

2 þH2�T2;

Bϕ ¼ −
2

e
p
a
z½ð1 − zÞH0

1 −H1�T1;

DzΦ ¼ 1

e
H0

3T3;

DξΦ ¼ 1

e
ð1 − zÞH1H3T2;

DϕΦ ¼ −
1

e
zH2H3T1: ð5:41Þ

From (3.17), (5.5), and (5.41) one observes that, in this
case, the matrices τ and σ are also diagonal.
Note that the eigenvalues (5.40) of h can not have all the

same sign if the condition (5.18), or equivalently (5.38), is
satisfied. Indeed, if all the eigenvalues (5.40) of h have the
same sign, then it follows that H1H2H0

3, H1½zH0
2 þH2�H3,

and ½ð1 − zÞH0
1 −H1�H2H3 all have the sign. Since z and

(1 − z) are positive, it follows that ∂z½ð1 − zÞH1zH2H3� is
either strictly positive or strictly negative, and so its integral
on the interval z ∈ ½0; 1� can not vanish. But, that contra-
dicts the condition (5.38).
One can check, using (5.21), (5.39), and (5.40), that

d3xhabBa
i B

b
i ¼ d3xh−1abðDiΦÞaðDiΦÞb ¼ ðη=e2Þdzdξdϕ ×

∂z½zð1 − zÞH1H2H3�. Therefore, the static energy (3.6)
indeed vanishes for such solutions, if the functions Ha,
a ¼ 1, 2, 3 are finite at z ¼ 0 and z ¼ 1, i.e., they satisfy
(5.18) or, equivalently, (5.38).
Using (5.6), and the fact that the spatial infinity corre-

sponds to z → 0 and ξ → 0, one gets that if the functions
Ha, a ¼ 1, 2 remain finite at z ¼ 0, then Bz → 1=r2,
Bξ → 1=r2, and Bϕ → 1=r4 as r → ∞. Despite the fact
that the z and ξ-components of the magnetic field present a
Coulomb-like tail, the magnetic flux, integrated over a two-
sphere at infinity, vanishes. The reason, as argued in (5.16),
is that since the magnetic field depends on z and ξ only, and
since those have a fixed value at spatial infinity, namely
z ¼ 0 and ξ ¼ 0, it has a constant direction in space and in
the algebra, and so the integrated flux vanishes.
Note that the components of the magnetic field given in

(5.41) are the components of the one-form B ¼ Bidxi ¼
Bζidζ

i, with ðζ1; ζ2; ζ2Þ ¼ ðz; ξ;ϕÞ. If we write the mag-
netic field vector in terms of the unit vectors of the
coordinate systems, i.e., B⃗ ¼ B̄ie⃗i ¼ B̄ζi e⃗ζi , we get that

B̄z ¼
1

e
p2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
H1H2T3;

B̄ξ ¼
2

e
p2

a2
ffiffiffiffiffiffiffiffiffiffi
1 − z

p ½zH0
2 þH2�T2;

B̄ϕ ¼ −
2

e
p2

a2
ffiffiffi
z

p ½ð1 − zÞH0
1 −H1�T1: ð5:42Þ
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Again using (5.6), and if the functions Ha, a ¼ 1, 2 remain
finite at z ¼ 0, one gets that B̄z → 1=r5, B̄ξ → 1=r4, and
B̄ϕ → 1=r5 as r → ∞. In Figs. 7–9 we plot the components
of the magnetic field vector (5.42) in the direction of the
generators T1, T2, and T3, respectively, of the SUð2Þ Lie
algebra for z ¼ 0.3 and H1 ¼ H2 ¼ 1.

1. The Wilson line

We now evaluated the Wilson line for gauge connections
belonging to the toroidal Ansatz (5.37). All the curves we
consider start at the same fixed reference point and are
divided in three parts. Consider a toroidal surface of
thickness z ¼ z0, i.e., the surface obtained, through the
toroidal coordinates (5.4), by fixing the value of the
coordinate z to z0 and varying both angles ξ and ϕ from
0 to 2π. The fixed reference point is the intersection of that
toroidal surface with the x1-axis. The first part of the curve

starts at that reference point and slides on the toroidal
surface on the x1x2-plane (ξ ¼ 0) in the anticlockwise
direction up to an angle ϕ. The second part starts at the end
of the first part of the curve, sliding the toroidal surface
upward (increasing ξ) and keeping the value of the angle ϕ
fixed, up to an angle ξ. Then, the third part starts at the end
of the second part of the curve, leaving the toroidal surface,
either upward or downward, and keeping the values of the
angles ξ and ϕ fixed up to a given value of the coordinate z.
After we take the limit z0 → 0, or z0 → 1, any point of R3

can be reached by a unique curve of such a family of
curves. The parametrization is the following:
Part I:

x1 ¼ a
pI

ffiffiffiffiffi
z0

p
cos σ

x2 ¼ a
pI

ffiffiffiffiffi
z0

p
sin σ 0 ≤ σ ≤ ϕ

x3 ¼ 0;

with pI ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z0

p
.

Part II:

x1 ¼ a
pII

ffiffiffiffiffi
z0

p
cosϕ

x2 ¼ a
pII

ffiffiffiffiffi
z0

p
sinϕ ϕ ≤ σ ≤ ϕþ ξ

x3 ¼ a
pII

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z0

p
sin ðσ − ϕÞ;

with pII ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z0

p
cos ðσ − ϕÞ.

0.050 0.075 0.100 0.125 0.150 0.175

FIG. 7. The component of magnetic field (5.42) in the
direction of the generator T1 of the SUð2Þ Lie algebra for
z ¼ 0.3 and H1 ¼ H2 ¼ 1. The colors refer to the modulus of
the magnetic field.

0.05 0.10 0.15 0.20 0.25 0.30

FIG. 8. The component of magnetic field (5.42) in the
direction of the generator T2 of the SUð2Þ Lie algebra for
z ¼ 0.3 and H1 ¼ H2 ¼ 1. The colors refer to the modulus of
the magnetic field.

0.02 0.04 0.06 0.08

FIG. 9. The component of magnetic field (5.42) in the
direction of the generator T3 of the SUð2Þ Lie algebra, for
z ¼ 0.3, and H1 ¼ H2 ¼ 1. The colors refer to the modulus of
the magnetic field.
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Part III:

x1 ¼ a
pIII

ffiffiffiffiffiffiffiffiffiffi
wðσÞ

p
cosϕ

x2 ¼ a
pIII

ffiffiffiffiffiffiffiffiffiffi
wðσÞ

p
sinϕ ϕþ ξ ≤ σ ≤ ϕþ ξþ 1

x3 ¼ a
pIII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðσÞ

p
sin ξ;

with pIII ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðσÞp

cos ξ and wðσÞ ¼ z0 − ðσ −
ϕ − ξÞðz0 − zÞ. Note that in Part III we can have either
z > z0 or z < z0.
The Wilson line is given byW ¼ WIIIWIIWI whereWa,

a ¼ I; II; III is obtained by integrating (3.30) on each
part I, II, and III. The integration of (3.30) is quite simple
because in Parts I, II, and III the curves are along the ϕ, ξ,
and z directions, respectively, and so Ai

dxi
dσ ¼ Aζ, with ζ

equal to ϕ, ξ, and z, respectively. But, Aϕ and Aξ depend
only on z, and Az ¼ 0. So we get

WI ¼ e−iz0H2ðz0ÞϕT2 ;

WII ¼ e−ið1−z0ÞH1ðz0ÞξT1 ;

WIII ¼ 1: ð5:43Þ

We now consider configurations satisfying the boundary
conditions H1ð0Þ ¼ 0 and H2ð1Þ ¼ 0, which are quite
compatible with the condition (5.38). Therefore, when
we take the limit z0 → 0 (infinitely thick torus), or
z0 → 1 (infinitesimally thin torus), we get that

W ¼ 1: ð5:44Þ

Since for the Ansatz (5.37) the matrix h is already diagonal
[see (5.39)], we get that the matrix M is unity and so we
have in such a case that M ¼ dðWÞ.
Another way of obtaining such a result is to analyze the

covariant derivatives of the matrix M, which in this case is
unity, i.e.,M ¼ 1. For the Ansatz (5.37), where Az ¼ 0, we
get Dz1 ¼ 0 and

Dξ1 ¼ ið1 − zÞH1ðzÞdðT1Þ; Dϕ1 ¼ izH2ðzÞdðT2Þ:

By assuming the boundary conditions H1ð0Þ ¼ 0 and/or
H2ð1Þ ¼ 0, one observes that M ¼ 1 satisfies the same
equation as W, given in (3.30) [see (3.36)], on the curves
described above (5.43) for z0 → 0 or z0 → 1.

VI. CONCLUSIONS

We have explored the concept of generalized self-duality
in the context of the Yang-Mills-Higgs system by the
introduction of NðN þ 1Þ=2 scalar fields, where N is the
dimension of the gauge group G. Those fields are
assembled in a symmetric and invertible matrix hab that

transforms under the symmetric part of the direct product of
the adjoint representation of G with itself. The coupling of
such fields to the gauge and Higgs field is made by the
replacement of the Killing form of G in the contraction of
group indices, by h in the kinetic term of the gauge fields
and by its inverse in the Higgs fields kinetic term. The
theory we consider does not present a Higgs potential,
neither one in the Prasad-Sommerfield limit.
The introduction of the h-fields renders our modified

Yang-Mills-Higgs system conformally invariant in the three-
dimensional spaceR3, bringing interesting new features to it.
The generalized self-duality equations are such that given a
(perhaps any) configuration of the gauge and Higgs fields,
the h-fields adjust themselves to solve those equations. So,
our model possesses plenty of solutions. Indeed, we have
constructed many solutions using the ’t Hooft-Polyakov
spherically symmetric Ansatz in the case G ¼ SUð2Þ,
and also have used the conformal symmetry to build toroidal
Ansätzes to construct vacuum configurations presenting
nontrivial toroidal magnetic field configurations.
The physical role of the h-fields is still far from clear,

and new investigations are necessary to clarify that issue.
We have shown, however, that by diagonalizing h, i.e.,
h ¼ MhDMT , where hD is diagonal and M an orthogonal
matrix, it turns out that the hD-fields play the role of dilaton
fields leading to the conformal symmetry of the theory in
the three-dimensional space R3. The M-fields relate, in
many cases, to the Wilson line operator in the adjoint
representation and lead to dressed quantities, like the field
tensor and covariant derivative of the Higgs field, that
become gauge invariant. Those facts points to an inter-
pretation of the theory (3.8) as an effective Yang-Mills-
Higgs theory. It would be interesting to study that further
and explore its consequences. It would also open up new
ways of studying the Yang-Mills-Higgs system.
The special coupling of the h-fields to the gauge and

Higgs fields, which leads to self-duality, did not allow the
introduction of kinetic and potential terms for them. It
would be interesting to investigate that route of breaking
the self-duality, even in a perturbative way, and explore
the physical consequences of it. The h-fields have been
introduced in the Skyrme model, leading to an exact self-
dual sector [9,10], and they have lead to new applications
of the Skyrme model to nuclear matter [11]. In fact, there
may be a connection to be explored among magnetic
monopoles of the Yang-Mills-Higgs system, presented
here, and Skyrmions in the models [9,10].
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APPENDIX: CONFORMAL SYMMETRY

We show in this Appendix that the self-duality equa-
tions (3.5) and the static energy (3.6) are conformally
invariant in the three-dimensional space R3. We consider
space transformations of the form

δxi ¼ ζi; ðA1Þ

with the infinitesimal parameters ζi satisfying

∂iζj þ ∂jζi ¼ 2Ωδij: ðA2Þ

For spatial rotations and translations we have that Ω ¼ 0,
for dilatations we have that Ω is constant, and for special
conformal transformations we have that Ω is linear in the
Cartesian coordinates xi. The fields transform as

δAi ¼ −∂iζ
jAj; δFij ¼ −∂iζ

kFkj − ∂jζ
kFik;

δDiΦ ¼ −∂iζ
jDjΦ; δhab ¼ Ωhab: ðA3Þ

The magnetic field (3.2) transforms as

δBi ¼ εijk∂jζlFlk ¼ −εijkεlkm∂jζlBm

¼ ∂jζiBj − ∂jζjBi ¼ ∂jζiBj − 3ΩBi: ðA4Þ

Therefore, we have that

δðhabBa
i B

b
i Þ ¼ −3ΩhabBa

i B
b
i ;

δðh−1abðDiΦÞaðDiΦÞbÞ ¼ −3Ωh−1abðDiΦÞaðDiΦÞb: ðA5Þ

Using the fact that the volume element transforms as
δðd3xÞ ¼ 3Ωd3x, we conclude that the static energy (3.6)
is conformally invariant. Denoting the self-duality equa-
tions (3.5) as

Eia ≡ Bb
i hba − ηðDiΦÞa; ðA6Þ

one gets

δEia ¼ ∂jζiBb
j hba − 2ΩBb

i hba þ η∂iζjðDjΦÞa
¼ −∂iζjEja: ðA7Þ

Therefore, the self-duality equations are conformally
invariant. One can check that the static Euler-Lagrange
for the gauge, Higgs, and h-fields are also conformally
invariant in the three-dimensional space R3.
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