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We demonstrate that the positive frequency modes for a complex scalar field in constant electric field
(Schwinger modes), in three different gauges, can be represented as exact Lorentzian worldline path
integral amplitudes. Although the mathematical forms of the mode functions differ in each gauge, we show
that a simple prescription for Lorentzian worldlines’ boundary conditions dispenses the Schwinger modes
in all three gauges (that we considered) in a unified manner. Following that, using our formalism, we derive
the exact Bogoliubov coefficients and, hence, the particle number, without appealing to the well-known
connection formulas for parabolic cylinder functions. This result is especially relevant in view of the fact
that in a general electromagnetic field configuration, one does not have the luxury of closed-form solutions.
We argue that the real-time worldline path integral approach may be a promising alternative in such
nontrivial cases. We also demonstrate, using Picard-Lefschetz theory, how the so-called worldline
instantons emerge naturally from relevant saddle points that are complex.
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I. INTRODUCTION

The presence of a strong external electromagnetic field
destabilizes the vacuum of quantum-field theory (QFT),
inducing creation of particle pairs [1–4]. The simplest and
earliest known case of this pair creation process, called the
Schwinger effect, corresponds to that in a constant external
electromagnetic background. This phenomenon is one of
the most concrete nonperturbative predictions in QFT.
Although several perturbative results of QFT have been
verified by impressively stringent tests, obscurities are
still abundant in the nonperturbative regime. Therefore,
the Schwinger effect serves as a example for theoretical
explorations on the nonperturbative aspects of several fields
of physics, ranging from particle physics to cosmology
[5–12].
The most satisfactory description of the Schwinger effect

requires a fair amount of QFT gadgetry. One way of
approaching the problem is to compute the effective action
of quantum electrodynamics (QED) in the presence of an
external electromagnetic field (see [13] for a recent review).
In general, one finds that this effective action has a nonzero
imaginary part, from which pair creation rate can be
computed. The real part of the effective action, on the
other hand, leads to vacuum polarization. One can also use

the canonical quantization approach, adapted for fields
interacting with nontrivial external background [14–18].
In the presence of a constant electric field, for instance, one
starts by computing the positive frequency modes of the
appropriate field equation, in the asymptotic past. These
mode functions can then be shown to evolve into linear
combinations of positive and negative frequency modes
in the asymptotic future. The particle number can be
read off from the corresponding coefficients, called the
Bogoliubov coefficients. In addition to solving the exact
mode functions, several elegant methods have been
employed by many investigators to study pair creation
that are especially useful when exact solutions are unavail-
able or overly complicated. These include, Wentzel-
Kramers-Brillouin (WKB) approximation [19], complex
path methods [20,21], instanton techniques [22], the phase
integral method [23], Vlasov equation [24–26], etc.
The approaches to pair creation processes that use the

conventional tools of QFT, although efficient, are seldom
intuitive. Besides, the measurement apparatus in most
experiments and the phenomenon that they observe (say,
for instance, the relativistic particles in an accelerator)
require localized description. On the other hand, the Fock
states (and the associated S matrix) in QFT, are inherently
“extended” in nature. The worldline path integral formal-
ism of QFT, in contrast, offers a better reconciliation with
our particle-based intuitions and broadens our perspective
on QFT. The earliest utilization of the worldline formalism
can be traced back to Feynman [27,28]. In spite of being
known since decades, the particular efficiency of the
worldline formalism, in handling nonperturbative calcula-
tions, got its due attention only relatively recently [29,30].
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The approach was first used to find the effective action for
QED in constant electromagnetic field [31], from which
pair creation rate and vacuum polarizability can be calcu-
lated. This method was then later extended to more realistic
scenarios, namely, the case of inhomogeneous electric field
backgrounds [22,32]. Numerical worldline approaches
have also been helpful to study particle production in more
complicated electric field configurations [33]. Some of the
other important progresses made in the wordline path
integral approach to Schwinger effect can be found in
Refs. [34–40]
However, the vast amount of existing literature on

worldline approach to pair creation is primarily based on
direct application of Euclidean path integrals. While in
some cases imaginary time is invoked in anticipation of
better convergence of the path integral [41], in other cases it
is called upon in view of well-motivated physical insights
[20] or other strong mathematical justifications [42,43].
Although the Euclidean approach seems to be immensely
effectual, both in performing concrete calculations as well
as in yielding useful physical insights, there are potential
issues. For instance, in a general spacetime, transforming a
timelike coordinate to purely imaginary values may lead to
complex metric tensors. A similar issue arises for external
electric field backgrounds as well. Besides, in the context of
quantum cosmology, recent studies [44,45] have shown
that a certain Euclidean path integral amplitude, that was
originally proposed by Hartle and Hawking to define the
“wave function of the Universe” [41], has several issues
when formulated in a more rigorous manner. There, an
alternative approach based on real-time path integrals and
Picard-Lefschetz theory was proposed. We believe that the
success of the Lorentzian path integral approach in quan-
tum cosmology, in extracting meaningful results, should be
a source of inspiration to employ real-time based worldline
approaches to a wider class of problems in relativistic
quantum theories. Into the bargain, when all is said and
done, there is hardly any debate that time is very much real
in the real world! This motivates us to chase the following
goal: find a formalism to study pair creation in external
backgrounds using both (i) the language most naturally
adapted for localized particles, namely, the worldline
approach to QFT, and (ii) the signature of spacetime metric
that is most natural to the real-world physics, namely, the
Lorentzian signature. Towards this objective, in this work,
we illustrate how a real-time, worldline path integral
formulation can be realized for the simplest case of pair
creation in external background, namely, the Schwinger
effect in scalar QED. It is worth mentioning that real-time
worldline path integral approach, supplemented by judi-
cious numerical methods, has been used previously to study
pair creation in electric field background [46]. However,
to our knowledge, a concrete analytic computation of
standard results in the Schwinger effect using the real-time
formalism was hitherto unavailable. We hope that future

extensions of our formalism to other pair creation proc-
esses, like Hawking radiation, may provide new insights.
The structure of this paper is as follows. In Sec. II, we

give a brief review of some of the standard approaches to
study the Schwinger effect. It is well known that, in the
canonical quantization approach, the problem of pair
creation in a constant electric field can be reduced to a
quantum-mechanical scattering problem in an inverted
harmonic oscillator (IHO) potential. Hence, as a warm-
up, we illustrate a real-time path integral approach for
finding the exact scattering wave function in an IHO
potential in Sec. III. Following that, in Sec. IV, we
demonstrate that the positive frequency modes that describe
the Schwinger effect can be represented as an exact, real-
time, worldline path integral amplitude. We also derive the
exact particle number using our formalism. Finally, in
Sec. V, we summarize our findings and discuss future
prospects. We have delegated the mathematical details of
certain results to the Appendixes. [We use the metric
signature ð1;−1;−1;−1Þ, henceforth.]

II. REVIEW OF THE SCHWINGER EFFECT

In this section, we discuss some of the standard
approaches to study the Schwinger effect. For convenience,
we may classify the different approaches broadly into two
categories: (1) effective action approach and (2) canonical
quantization approach. We shall now briefly review these
two approaches separately.

A. Effective action approach

Shortly after the Dirac equation was discovered [47],
Sauter studied its solutions in the background of a constant
external electric field. It was found that negative energy
solutions can tunnel into positive energy solutions, which,
in turn, was interpreted as creation of a hole in Dirac’s sea
[1]. Sauter’s result clearly suggested that the Dirac equation
cannot be interpreted as one describing the evolution of a
one-particle wave function. Later, Heisenberg and Euler
studied the Dirac equation in an electromagnetic field, by
treating the same in quantum field theory settings [2]. They

computed the one-loop effective action Sð1Þ
eff ½Fμν� for

the electromagnetic field and found that the leading-
order correction to the standard action for Maxwell’s
Lagrangian leads to nonlinear corrections to Maxwell’s
equation. These nonlinear correction terms arise due to the
interaction of electromagnetic field with the vacuum
fluctuations. In their work, Heisenberg and Euler also

pointed out that Sð1Þ
eff ½Fμν� has an imaginary part, although

they did not compute it explicitly. Subsequently, in his
seminal paper, Schwinger calculated the imaginary part of

Sð1Þ
eff ½Fμν� for a constant electromagnetic field exactly [4]. A

nonzero imaginary part for the effective action indicates
decay of the vacuum against pair creation process. In the
specific case of constant external electric field of magnitude
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E, the Schwinger’s formula for the vacuum decay rate
ΓðFμνÞ reads

ΓðFμνÞ≡ 2ℏ−1Lð1Þ
eff ¼

ð2sþ 1Þ
ð2πÞ3

�
qEffiffiffi
c

p
ℏ

�
2

×
X∞
n¼1

e
2πiðn−1Þ
ð2sþ1Þ

n2
exp

�
−
�
πm2c
jqEjℏ

�
n
�
; ð1Þ

where q and m are, respectively, the mass and charge, and
the spin s ¼ 0 corresponds to scalar QED and s ¼ 1=2
corresponds to spinor QED. In this work, we shall be
focusing only on the scalar QED case, henceforth.
The vacuum decay rate for scalar QED in an arbitrary

electromagnetic field can also be written as a Euclidean
quantum-mechanical path integral [27,28]:

ΓðFμνÞ ¼ Im

�Z
∞

0

dT
T

e−
mc2
2
T

Z
xμð0Þ¼xμðTÞ

D½xμ�

× exp

�
−
1

ℏ

Z
T

0

�
m
2
δμν _xμ _xν − i

q
c
Aμ _xμ

�
dτE

��
;

ð2Þ

where τE is the Euclidean proper time, Aμ is the electro-
magnetic gauge field, and the path integral is over periodic
trajectories satisfying xμð0Þ ¼ xμðTÞ. Since the above path
integral involves sum over worldlines of a relativistic
particle, the formalism based on such path integrals is
called worldine path integral formalism, or Euclidean
worldine path integral formalism, when the proper time is
taken to be purely imaginary as in Eq. (2) (see [48] for a
recent review). Many years after Schwinger’s work,
Affleck et al. reproduced Eq. (1) for a constant electric
field using the Euclidean worldline path integral approach
[31]. When exact computations are not possible, one
resorts to the saddle-point approximation of Eq. (2) to
calculate the vacuum decay rate. The dominant contribu-
tions to ΓðFμνÞ come from classical trajectories that are
periodic in the Euclidean proper time τE. Such classical
trajectories have been dubbed the “worldline instan-
tons” [22,32].

B. Canonical quantization approach

Amajor drawback of the effective action approach, in the
study of pair creation processes, is that one cannot get the
explicit expression for the number or rate of pairs produced.
To this end, one usually resorts to the canonical quantiza-
tion approach. Consider the Klein-Gordon equation for a
complex scalar field interacting with an electromagnetic
field background described by gauge field Aμ:��

iℏ∂μ þ
q
c
Aμ

�
2

−m2

�
ϕ ¼ 0: ð3Þ

To solve the above equation, we have to make a
gauge choice. For the case of a constant electric field E
along, say, the x direction, there are different choices found
in literature, out of which we shall be focusing on three
most popular ones, namely, the time-dependent gauge:

Að1Þ
μ ¼ ð0; Ect; 0; 0Þ, the space-dependent gauge: Að2Þ

μ ¼
ð−Ex; 0; 0; 0Þ, and the lightcone gauge: Að3Þ

μ ¼ E
2
ð−ct − x;

ctþ x; 0; 0Þ. The standard practice is to solve for a
complete set of positive frequency modes of Eq. (3), which
are orthonormal under the Klein-Gordon inner product. The
presence of electric field brings in certain nontrivial aspects
which, in turn, leads to pair creation. However, this
manifests in seemingly different manners in each choice
of the gauge. Hence, we shall briefly look at the problem in
the three gauges separately.

1. The time-dependent gauge

In the time-dependent gauge, we can seek solutions of
the form

ϕðxμÞ ∝ e
i
ℏk:xξð1Þk ðtÞ; ð4Þ

where ξð1Þk ðtÞ satisfies the following differential equation:

−
ℏ2

2m
d2ξð1Þk

dðctÞ2 −
1

2
mω2

�
ct −

kxc
qE

�
2

ξð1Þk ¼ ϵk⊥ξ
ð1Þ
k ; ð5Þ

where we have defined

ω≡ jqEj
mc

; k2⊥ ≡ k2y þ k2z and ϵk⊥ ≡ ðk2⊥ þm2c2Þ
2m

.ð6Þ

The exact solutions to Eq. (3) that correspond to the
positive (and negative) frequency modes in the asymptotic

past Uð1Þ
k ðxμÞ [and Uð1Þ�

−k ðxμÞ], which we shall call past
positive (negative) modes, for short, can be written in terms
of parabolic cylinder functions [49]:

Uð1Þ
k ðxμÞ ∝ e

i
ℏk:xDνk

�
e
3πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r �
ct −

kxc
qE

��
;

νk ≡
�
−
1

2
þ iϵk⊥

ℏω

�
: ð7Þ

Similarly, one can also find the positive (and negative)

frequency solutions say Vð1Þ
k ðxμÞ [and Vð1Þ�

−k ðxμÞ] in the
asymptotic future. Then, using the properties of parabolic

cylinder functions, one can show that Uð1Þ
k ðxμÞ can be

written as a linear combination of Vð1Þ
k ðxμÞ and Vð1Þ�

−k ðxμÞ,
such that
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Uð1Þ
k ðxμÞ ¼ αkV

ð1Þ
k ðxμÞ þ βkV

ð1Þ�
−k ðxμÞ: ð8Þ

Hence, the vacua, and consequently the associated particle

definition, corresponding to the modes Uð1Þ
k ðxμÞ and

Vð1Þ
k ðxμÞ are inequivalent. Using the principles of canonical

quantization, we can show that the vacua corresponding to

Uð1Þ
k ðxμÞ are populated by a distribution nk of Vð1Þ

k -type
particle pairs, where

nk ¼ jβkj2 ¼ exp

�
−
cðk2⊥ þm2c2Þ

jqEjℏ
�
: ð9Þ

Note that Eq. (5) can be interpreted as a fixed-energy
Schrödinger equation, for a particle in an IHO potential,
with the energy being positive. Therefore, the problem of
finding the positive/negative frequency modes reduces to a
quantum-mechanical scattering problem in IHO potential.
Specifically, the solution of Eq. (5) corresponding to

Uð1Þ
k ðxμÞ can interpreted as the “wave function“ for a

fictitious quantum-mechanical particle incident towards
the “left” (i.e., with respect to the time axis) from
t → ∞. The particle number nk, in this picture, gets the
interpretation of the ratio of reflection probability Pr to
transmission probability Pt. This ratio, in turn, has been
reproduced by several elegant methods, without resorting
to exact solutions. These include complex path methods
[20], instanton techniques [50], etc.

2. Space-dependent gauge

In the space-dependent gauge, we can look for solutions
of the form

ϕðxμÞ ∝ e−
i
ℏktte

i
ℏðkyyþkzzÞξð2Þkt;k⊥ðxÞ; ð10Þ

where kt > 0 and ξð2Þkt;k⊥ðxÞ satisfy the following differential
equation:

−
ℏ2

2m

d2ξð2Þkt;k⊥
dx2

−
1

2
mω2

�
x−

kt
qE

�
2

ξð2Þkt;k⊥ ¼−ϵk⊥ξ
ð2Þ
kt;k⊥ : ð11Þ

The exact solutions to the above equation can be written
in terms of parabolic cylinder functions. For instance,

the positive frequency solution Uð2Þ
k ðxμÞ that corresponds

to purely left-moving wave along the x axis as x → ∞ is
given by [49]

Uð2Þ
kt;k⊥ðxμÞ ∝ e−

i
ℏktte

i
ℏðkyyþkzzÞDν�k

�
e
πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r �
x −

ktc
qE

��
:

ð12Þ

The above mode function is then interpreted as describing
an antiparticle particle incident towards the right from

x → −∞, which, in turn, gets reflected and transmitted in
the electromagnetic potential. One finds that in addition to a
nonzero transmission coefficient T , the reflection coeffi-
cient R is greater than unity, which is attributed to particle
production. An exact calculation yields

T ¼ exp

�
−
cðk2⊥ þm2c2Þ

jqEjℏ
�
;

R ¼ 1þ exp

�
−
cðk2⊥ þm2c2Þ

jqEjℏ
�
: ð13Þ

3. The lightcone gauge

This is the choice of gauge in which the mode functions
have the simplest form [20,51]. Let us first define the
lightcone coordinates u and v as

u ¼ ct − x; v ¼ ctþ x: ð14Þ

Then, we can look for solutions to Eq. (3) of the following
form:

Uð3Þ
kv;k⊥ðxμÞ ¼ e−

i
ℏ
kv
2
ue

i
ℏðkyyþkzzÞξð3Þk ðvÞ; ð15Þ

where ξð3Þk ðvÞ satisfies the following linear differential
equation:

dξð3Þk

dv

�
v −

ckv
qE

�
þ ξð3Þk

�
1

2
−
iϵk⊥
ℏω

�
¼ 0: ð16Þ

The solutions Uð3Þ
kv;k⊥ðxμÞ, which are positive frequency

modes with respect to v in the limit v → −∞, are given by

Uð3Þ
kv;k⊥ðxμÞ ∝ e−

i
2ℏkvue

i
ℏðkyyþkzzÞ

�
1 −

qE
ckv

v

�
νk
. ð17Þ

Note that the above solution diverges at v ¼ ckv=qE,
which turns out to be an asymptote for the projection of
appropriate classical solution in the t-x plane. In this gauge,
the number nk is then read off from the probability for
quantum-mechanical tunnelling to the classically forbidden
region v > ckv=qE. Specifically,

nk ¼
						
Uð3Þ

kv;k⊥ðv > ckv
qEÞ

Uð3Þ
kv;k⊥ðv < ckv

qEÞ

						
2

¼ exp

�
−
cðk2⊥ þm2c2Þ

jqEjℏ
�
; ð18Þ

which is consistent with the results found using the other
gauges. It is worth mentioning that mode functions in the
lightcone gauge have a striking similarity to the scalar field
modes near a black hole horizon. However, there are also
some important distinctions, a discussion of which can be
found, for instance, in Ref. [20].
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One of the main goals of this paper is to show that, using
a unifying principle, all the three positive frequency mode

functions Uð1Þ
k , Uð2Þ

kt;k⊥ , and Uð3Þ
kv;k⊥ can be represented as

real-time worldline path integral amplitudes. Before doing
that, in light of the relevance of the IHO system in our
discussion so far and as a warm-up exercise, in the next
section we shall review a rather unconventional approach
for studying the quantum-mechanical scattering problem in
an IHO potential.

III. QUANTUM SCATTERING IN THE IHO
POTENTIAL

Scattering in a static potential is usually studied using the
time-independent Schrödinger equation. In the case of
IHO, the appropriate equation is given by

−
ℏ2

2m
d2ψ
dx2

−
1

2
mω2x2ψ ¼ ϵψ : ð19Þ

One then proceeds to solve the above equation with the
boundary condition appropriate for a scattering problem. For

instance, thewave functionψ ðLÞ
ϵ that corresponds to a particle

incident towards the left from x → ∞, which is then reflected
and transmitted in the IHO potential, is found to be [49]

ψ ðLÞ
ϵ ðx1Þ ∝ Dν

�
e
3πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r
x1

�
; ∀ x1 ∈ R; ð20Þ

where

ν ¼ iϵ
ℏω

−
1

2
: ð21Þ

The path integral formulation of the quantum scattering
problem is often not given its due share in most textbook
discussions. In the case of IHO, for instance, one would

expect that ψ ðLÞ
ϵ ðx1Þ can be expressed as a path integral, over

paths that satisfy a certain boundary condition. We shall
shortly see that this can be done explicitly. Prior to that, let us
briefly explore the classical dynamics of the IHO system,
keeping in mind that we are ultimately interested in the
scattering problem.

A. Classical dynamics in IHO

The classical equation of motion for IHO is given by

ẍ − ω2x ¼ 0: ð22Þ

The general solution to the above equation can be written as

xðtÞ ¼ x−e−ωt þ xþeωt; ð23Þ

where, x� are arbitrary constants. Be reminded that we are
in pursuit of a path integral representation for the wave

function ψ ðLÞ
ϵ ðx1Þ. What are the boundary conditions

appropriate to this problem? Since ψ ðLÞ
ϵ ðx1Þ is the quan-

tum-mechanical amplitude at the point x1, it is clear that the
final boundary condition should be

xðTÞ ¼ x1; ð24Þ

where the instant T corresponds to the final time. We have
to impose one more boundary condition, namely, that at the
initial time, say, t ¼ T0. The requisite boundary condition
at T0 should be such that imposing the same unambigu-
ously dispenses the classical solution corresponding to a
particle incident towards the left from x → ∞.
For better clarity of the problem, it is instructive to look

at the classical trajectories in the phase space, which we
have presented in Fig. 1. The solutions to Eq. (22) of our
current interest have been shown in black continuous
curves. The contours of the function p −mωx are also
represented in color coded shadings. Notice that, at any
instant, the black curves satisfy

p −mωx < 0; ∀ t ∈ R: ð25Þ

Equivalently, we find that along the black curves we also
have

d
dt

ðp −mωxÞ > 0; ∀ t ∈ R: ð26Þ

Hence, the initial condition that unambiguously fixes the
solution to be a left-moving classical trajectory can be
imposed as

_xðT0Þ − ωxðT0Þ ¼ σ0 < 0; or equivalently

ẍðT0Þ − ω_xðT0Þ ¼ σ̄0 > 0: ð27Þ

We shall be working with the former condition and,
for convenience, write the constant σ0 in the form
σ0 ¼ −ωu0e−ωT0 , where u0 > 0.
The solution to the equation of motion Eq. (22) satisfy-

ing the boundary conditions Eq. (27) and Eq. (24) turns out
to be:

xLðtÞ ¼
1

2
u0e−ωt −

ϵ

mu0ω2
eωt; ð28Þ

where

ϵ ¼ 1

2
mu0ω2e−Tωðu0e−Tω − 2x1Þ ð29Þ

is the total energy and the subscript “L” indicates that
the solution describes particle moving towards the left in
the asymptotic past. It is interesting to see that the
initial time T0 does not appear explicitly in the solution
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xLðtÞ, implying that we are at liberty to choose it at any
value. The positive/negative energy solutions are charac-
terized by ðe−ωTu0 − 2x1Þ being positive/negative, respec-
tively. It is worth mentioning that the right-moving solution
xRðtÞ can be obtained by replacing u0 → −u0 in xLðtÞ, to
obtain

xRðtÞ ¼ −
1

2
u0e−ωt þ

ϵ

mu0ω2
eωt. ð30Þ

We shall now see how the boundary conditions Eq. (27) and
Eq. (24) can be naturally incorporated into the variational
problem by adding an appropriate boundary term to the
action.
The standard action for the IHO system is given by

S0½x� ¼
Z

T

T0

�
1

2
m_x2 þ 1

2
mω2x2

�
dt: ð31Þ

Let us now define a modified action S½x;T0�, by adding a
boundary term B½xðT0Þ� to the standard action, where

B½xðT0Þ; u0� ¼
mω

2
½xðT0Þ − u0e−ωT0 �2: ð32Þ

The modified action then becomes

S½x; u0� ¼ S0½x� þ B½xðT0Þ�: ð33Þ

Therefore, the variation of S takes the form

δS ¼
Z

T

T0

ð−mẍþmω2xÞδxdtþm_xðTÞδxðTÞ

þm½−_xðT0Þ þ ωxðT0Þ − ωu0e−ωT0 �δxðT0Þ: ð34Þ

When xðT0Þ is not fixed, the above equation shows that the
modified action S is suited for the variational problem in
which the Dirichlet condition, say xðTÞ ¼ x1, is applied at
t ¼ T and a Robin boundary condition _xðT0Þ − ωxðT0Þ þ
ωu0e−ωT0 ¼ 0 is applied at t ¼ T0. Note that addition of a
boundary term to fix the state is not new; for instance, see
[52], where a similar approach was utilized to generate
coherent states. In what follows, we shall find that S½x;T0�,
by virtue of naturally imposing the requisite boundary
condition appropriate to the scattering problem, makes the
path integral formulation straightforward.

B. The scattering wave function as a
path integral amplitude

Let us consider the path integral amplitude ΨðLÞ
ϵ ðx1; TÞ

that naturally follows from the action S½x;u0�:

ΨðLÞ
ϵ ðx1; TÞ≡

Z
xðTÞ¼x1

D½x�ei
ℏS½x;u0�; ð35Þ

where, once again, the superscript “(L)” indicates that the
solution describes particle moving towards the left. Note
that while there is a fixed final boundary condition for the
paths that are being summed over in Eq. (35), the initial
value xðT0Þ can take all values in the real line. The above
path integral can be explicitly evaluated to get

(a) (b)

FIG. 1. The classical trajectories of IHO in phase space: the cases of positive and negative energies are shown in (a) and (b),
respectively. The black continuous curves are solutions corresponding to particle incident towards the left from x → ∞, while the red
continuous curves represent particle incident towards the right from x → −∞. The arrows represent the positive sense of time. The lines
of p2 −mω2x2 ¼ 0 are shown in dashed black. The color-coded shadings represent contours of the function p −mωx; darker shades of
blue represent more negative values and lighter shades of orange represent more positive values.
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ΨðLÞ
ϵ ðx1jTÞ ¼ e−

1
2
ωðT−T0Þ exp

�
i
ℏ
S½xL; u0�

�
; ð36Þ

where S½xL; u0� is the modified action evaluated at the
classical solution xLðtÞ. The above wave function is not
normalizable, but that is not surprising for a scattering
solution of the Schrödinger equation. Besides, the scatter-
ing amplitudes can be found out without fixing the
normalization, so we shall not bother about the same.
Another point worth mentioning is that the fluctuation
factor in Eq. (36), viz., F ðT; T0Þ≡ e−ωðT−T0Þ=2, is simply
one over square root of the determinant of IHO operator
ð∂2

t − ω2Þ. However, the relevant space of fluctuations, on
which ð∂2

t − ω2Þ acts, are those that satisfy the boundary
conditions δx0ðT0Þ − ωδxðT0Þ ¼ 0 and δxðTÞ ¼ 0, in view
of Eq. (27) and Eq. (24). In contrast, while solving for the
propagator of IHO, one considers space of fluctuations that
satisfy δxðT0Þ ¼ δxðTÞ ¼ 0. In the case of the propagator,
the Gelfand-Yaglom formula dictates that the determinant
is proportional to DðTÞ, where DðtÞ is the solution of the
IHO equation, satisfying the initial condition DðT0Þ ¼ 0.
In an analogous way, the determinant that leads to the
fluctuation factor in Eq. (36) is proportional to D̃ðTÞ, where
D̃ðtÞ is a solution of the IHO equation, satisfying the initial
condition D̃0ðT0Þ − ωD̃ðT0Þ ¼ 0. The solution D̃ðtÞ is
easily found to be D̃ðtÞ ∝ eωðt−T0Þ, which leads
to F ðT; T0Þ ∝ ½D̃ðTÞ�−1=2 ∝ e−ωðT−T0Þ=2.
We shall now construct a stationary solution of the

Schrödinger equation that corresponds to the scattering
problem in inverted harmonic oscillator potential. A sta-
tionary solution of energy ϵ, may be interpreted as
describing a steady influx of incident particles, which
are reflected and transmitted in the potential. If

ΨðLÞ
ϵ ðx1jTÞ describes a particle P1 incident on the potential

barrier, then ΨðLÞ
ϵ ðx1jT − τÞ describes a particle incident on

the potential barrier after a time τ that the particle P1 was
incident. Therefore, a stream of particles can be described
by the following superposition:

Ψ̄ðLÞ
ϵ ðx1jTÞ ¼

Z
∞

−∞
fðτÞΨðLÞ

ϵ ðx1jT − τÞdðωτÞ; ð37Þ

where fðτÞ is some function. However, for the above
superposition to describe a stationary state, the function
fðτÞ should have the form fðτÞ ¼ f0e−iϵτ, in which case
the above integral, after a change of variable, reduces to

Ψ̃ðLÞ
ϵ ðx1jTÞ ¼ f0e−iϵT

Z
∞

−∞
ΨðLÞ

ϵ ðx1jτÞeiϵτdðωτÞ ð38Þ

≡f0e−iϵTψ
ðLÞ
ϵ ðx1Þ; ð39Þ

where, ψ ðLÞ
ϵ ðx1Þ is the solution to time-independent

Schrödinger equation with the fixed energy ϵ. This implies

that the wave function ψ ðLÞ
ϵ ðx1Þ has the following path

integral representation:

ψ ðLÞ
ϵ ðx1Þ∝

Z
∞

−∞

Z
x1
exp

�
i
ℏ
S½x;u0�þ

i
ℏ
ϵðT−T0Þ

�
D½x�dT:

ð40Þ

Using Eq. (36), followed by a suitable variable change, we

can show that the path integral amplitude ψ ðLÞ
ϵ ðx1Þ above is,

in fact, the same standard scattering wave function in IHO
that we have introduced in Eq. (20). We have delegated the
details of this calculation to Appendix A.

C. Semiclassical scattering amplitudes from
Picard-Lefschetz theory

Let us first rewrite Eq. (40) in the following form:

ψ ðLÞ
ϵ ðx1Þ ¼ N

Z
∞

−∞
e−

ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT; ð41Þ

where we have used Eq. (36), then absorbed all the constant
factors into a single normalization coefficient N and
defined

iS̃ðT;ϵ;x1;u0Þ¼
imω

2
ðx1−u0e−ωTÞ2−

imu20ω
4

e−2ωTþ iϵT:

ð42Þ

In a similar fashion, one can also obtain the “right-moving”

solution ψ ðRÞ
ϵ ðx1Þ by replacing u0 → −u0 in the right-hand

side of Eq. (41), which yields

ψ ðRÞ
ϵ ðx1Þ ¼ N

Z
∞

−∞
e−

ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1;−u0Þ

�
dT: ð43Þ

The above wave function describes a stream of particles
incident towards the right from x → −∞ which, in turn,
gets reflected and transmitted in the IHO potential. Note
that the T integrals in Eq. (41) and Eq. (43) are not
absolutely convergent, owing to the oscillatory exponen-
tial factors in the integrands. In real-time based path
integral approaches, one ought to be confronted with
oscillatory integrals such as the above. In such cases,
investigators are often intimidated by the fact that the
relevant integral is not absolutely convergent and migrate
to the Euclidean version of the problem to make progress.
Although the T integral in Eq. (41) is not absolutely
convergent, as it turns out, it is conditionally convergent.
In this section, instead of resorting to the Euclidean
approach, we shall transform the right-hand side of
Eq. (41) into an absolutely convergent integral by utilizing
Picard-Lefschetz theory. Further, we shall derive the
semiclassical scattering amplitudes by performing the
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saddle-point approximation. A similar analysis can also be
done for Eq. (43) as well, but we shall not elaborate the
same here. It is worth mentioning that the application of
real-time path integral formalism and Picard-Lefshetz
theory for studying tunneling is well explored in several
other contexts (for instance, see [53–55]). However, to our

knowledge, the particular analysis presented in this
section has not appeared at this level of detail elsewhere.
Following Picard-Lefschetz theory, we start by interpret-

ing S̃ðT; ϵ; x1; u0Þ as a holomorphic function in the com-
plex T plane. This leads to the following expressions for the
real and imaginary parts of S̃ðT; ϵ; x1; u0Þ:

iS̃ðT; ϵ; x1; u0Þ ¼
�
−mx1e−Xu0ω sinðYÞ þ 1

4
me−2Xu20ω sinð2YÞ − Yϵ

ω

�

þ i

�
1

2
mx21ω −mx1e−Xu0ω cosðYÞ þ 1

4
me−2Xu20ω cosð2YÞ þ Xϵ

ω

�
; ð44Þ

where ωT ≡ ðX þ iYÞ. The saddle points of S̃ðT; ϵ; x1; u0Þ,
which are the point at which ∂T S̃ðT; ϵ; x1; u0Þ ¼ 0, turns
out to be

ωTn;�¼−log

�
x1
u0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

mω2u20
þx21
u20

s �
þ2πin;n∈Z: ð45Þ

For oscillatory integrals such as Eq. (41), Picard-Lefschetz
theory offers a prescription to determine the saddle points
that are relevant. We shall not attempt to make this article
self-contained on the subject of Picard-Lefschetz theory;
for a useful discussion, the reader may consult [44]. The
key result that we require here may be summarized as
follows: the relevant saddle points are those whose steepest
ascent curves intersect the original integration contour an

odd number of times. There is a caveat, though: In our
specific problem, the steepest descent/ascent contours are
degenerate, which means that the steepest ascent/descent
curve originating from certain saddle points end up
intersecting other saddle points. This is due to the perio-
dicity of Im½iS̃ðT; ϵ; x1; u0Þ� along the Euclidean direction.
When the degeneracies of the steepest ascent/descent
contours can be traced to a certain symmetry, a standard
strategy is to add an infinitesimal term to iS̃ðT; ϵ; x1; u0Þ
that breaks this symmetry, which, in turn, breaks the
degeneracy of the ascent/descent contours. In the present
case, the most convenient way to achieve this is to add a
small positive imaginary component to the energy1:
ϵ → ϵþ iδ, where δ > 0. The real and imaginary parts
of iS̃ðT; ϵ; x1; u0Þ now becomes:

Re½iS̃ðT; ϵ; x1; u0Þ� ¼ −mx1e−Xu0ω sinðYÞ þ 1

4
me−2Xu20ω sinð2YÞ − δX

ω
−
Yϵ
ω

; ð46Þ

Im½iS̃ðT; ϵ; x1; u0Þ� ¼
1

2
mx21ω −mx1e−Xu0ω cosðYÞ þ 1

4
me−2Xu20ω cosð2YÞ þ Xϵ

ω
−
δY
ω

. ð47Þ

Clearly, Im½S̃ðT; ϵ; x1; u0Þ� is not a periodic function of Y
now. The saddle points, on the other hand, become

ωTðδÞ
n;� ¼ ωTn;� þOðδÞ: ð48Þ

1. A manual to interpret the figures

To facilitate the application of Picard-Lefschetz theory,
we have introduced a simple scheme for visualizing the
saddle points and their steepest descent/ascent contours in
the complex T plane. Before going into the details of the

calculations, we present a summary of this scheme: (i) the
saddle points are represented by small solid circles of black

and red colors, denoting the saddle points TðδÞ
n;þ and TðδÞ

n;−,
respectively; (ii) steepest ascent/descent contours emanating

from saddle points TðδÞ
n;þ are represented by black curves,

while those from TðδÞ
n;− are represented by red curves; (iii) in

addition, the steepest ascent/descent contours from relevant
saddle points are denoted by continuous curves, while those
fromother saddle points are denoted by dotted curves; (iv) to
better visualize the ascent/descent directions, contours of
Re½iS̃ðT; ϵ; x1; u0Þ� are also shown in color-coded shadings;
lighter shades of orange correspond to more positive values,
while darker shades of blue correspond to more negative
values; (v) the original, real-time contour in Eq. (41) is
denoted by horizontal, continuous green line; and (vi) the

1One could have, instead, added an infinitesimal negative
imaginary component to the energy. The analysis follows almost
exactly the same way, with only minor departures. The final
results, however, remain exactly the same.
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complex contours, to which the real-time contour should be
deformed, are denoted by dashed green curves.
When we apply the above scheme and make the relevant

plots in the complex T plane, we see that the cases of
positive and negative energy are visibly different. This is
related to the fact that the nature of classical trajectories in
an IHO potential are quite different for the cases of negative
and positive energies, as can be seen in Fig. 1. Specifically,
while there are real turning points for the former case, the
same are absent in case of the latter. The presence or
absence of real turning points acquire interesting interpre-
tations in terms of the nature and relevance of the saddle
points of S̃ðT; ϵ; x1; u0Þ. Hence, it is instructive to consider
the positive and negative energy cases separately.

2. Case 1: Over-the-barrier reflection (ϵ > 0)

One finds that the saddle point T0;þ is always real for all
values of x1. In fact, it corresponds to the classical solution
in Eq. (28), as can be seen by writing

x1 ¼
1

2
u0e−ωT0;þ −

ϵ

mu0ω2
eωT0;þ ; ð49Þ

which is not surprising. Hence, one would expect that
ωT0;þ will always contribute to the saddle-point approxi-
mation of ϕϵðx1Þ. However, as we shall shortly see,
depending on whether x1 is negative or positive, one gets
a contribution from another saddle point as well. This is
nothing but manifestation of the well-known Stokes phe-
nomenon. In view of this, let us study the wave function

ψ ðLÞ
ϵ ðx1Þ in the two regions x1 < 0 and x1 > 0, separately.

3. The region x1 < 0

The relevant plot for this case is given in Fig. 2(a). Note

that the steepest ascent contour from only TðδÞ
0;þ is intersect-

ing the original integration contour. Using Picard-Lefschetz
theory, we conclude that the only relevant saddle point is

TðδÞ
0;þ. Hence, the original, real-time contour can be

smoothly into the green dashed contour in Fig. 2(a), which
we shall denote as T a. Therefore, when x1 < 0, the wave

function ψ ðLÞ
ϵ ðx1Þ can be written as

ψ ðLÞ
ϵ ðx1Þ ¼ N

Z
T a

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT; ; x1 < 0:

ð50Þ

Since T a is defined along the steepest descent contour of
the relevant saddle point, the above integral is absolutely

convergent. The semiclassical limit of ψ ðLÞ
ϵ ðx1Þ can be

obtained from the saddle-point approximation of the above
integral, which yields

ψ ðLÞ
ϵ ðx1Þ ∝ exp

�
iS̃ðT; ϵ; x1; u0Þ

h
−
1

2
ωT

�				
TðδÞ
0;þ

¼ N 1

e−
i
ℏSþðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂x1Sþðx1Þj

p ; ð51Þ

where N 1 is a constant prefactor and

Sþðx1Þ ¼
ϵ

ω
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

mu20ω
2
þ x21
u20

s
þ x1
u0

1
CA

þ 1

2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmx21ω

2 þ 2ϵÞ:
q

ð52Þ

Note that the semiclassical limit of ψ ðLÞ
ϵ ðx1Þ has the form of

a purely left-moving wave. This is expected, since the only

relevant saddle point is TðδÞ
0;þ, which corresponds to the left-

moving classical solution xLðtÞ.

4. The region x1 > 0

The plots for this case are given in Fig. 2(b). We find that
steepest ascent contours from both TðδÞ

0;þ and TðδÞ
0;− intersect

the original contour once. However, unlike TðδÞ
0;þ, the saddle

point TðδÞ
0;− is complex.

ωTðδÞ
0;− ¼ − log

0
B@x1
u0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

mω2u20
þ x21
u20

s
− i0þ

1
CA

¼ − log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

mω2u20
þ x21
u20

s
−
x1
u0

− i0þ

1
CAþ iπ; ð53Þ

where 0þ denotes the infinitesimal correction introduced
by δ. The real-line contour can now be deformed into one
that has two parts, denoted henceforth by T b;þ and T b;−,

which are curves along steepest descent contours of TðδÞ
0;þ

and TðδÞ
0;−, respectively. The deformed contour T b ¼

T b;þ þ T b;− is represented by the dashed green curve in

Fig. 2(b). The wave function ψ ðLÞ
ϵ ðx1Þ can now be written as

ψ ðLÞ
ϵ ðx1Þ ¼ N

Z
T b

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT ð54Þ

¼ N
Z
T b;þ

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT

þN
Z
T b;−

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT: ð55Þ

Note that the above integrals are absolutely convergent. The

semiclassical limit of ψ ðLÞ
ϵ ðx1Þ, in the region x1 > 0, can be

obtained by performing the saddle-point approximation to
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both parts of Eq. (55). The contribution from TðδÞ
0;− gives a

reflected wave of the form

N
Z
T b;−

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT

∝ exp

�
S̃ðT; ϵ; x1; u0Þ

h
þ 1

2
ωT

�				
TðδÞ
0;−

ð56Þ

¼ e−
πϵ
ℏωe−i

π
2N 1

e
i
ℏSþðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂x1Sþðx1Þj

p ð57Þ

≈e−πϵ
ℏωe−i

π
2ψ ðRÞ

ϵ ðx1Þ; ð58Þ

where ψ ðRÞ
ϵ ðx1Þ is the “right-moving” wave function

introduced in Eq. (43). Comparing Eq. (51) and
Eq. (57), we conclude that the ratio of semiclassical
probability for transmission Pt, to that for reflection Pr,
must be given by

Pr

Pt
¼ e−

2πϵ
ℏω ; ð59Þ

(a) (b)

(c)

FIG. 2. Plots of saddle points and steepest descent/ascent lines when ϵ > 0, using the convention described in Sec. III C 1. (a) Region
x1 < 0. The dashed green curve is T a. (b) Region x1 > 0. While the contour T b;þ is represented by the dashed green curve passing

through ωTðδÞ
0;þ, the contour T b;− is represented by the dashed green curve passing through ωTðδÞ

0;−. (c) Region x1 > 0. The horizontal
dashed contour C− is required for exact computations described in Appendix C.
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from which one can easily compute Pt and Pr, using the
identity Pt þ Pr ¼ 1.

5. Case 2: Quantum tunneling (ϵ < 0)

In this case, the saddle points are given by

ωTn;� ¼ − log
�
x1
u0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21
u20

−
2jϵj

mω2u20

s �
þ 2πin; n ∈ Z:

ð60Þ

The nature of saddle points is qualitatively different from
the over-the-barrier reflection case. In particular, real saddle
points exist only for x1 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jϵj=mω2Þ

p
, which corre-

sponds to the classically allowed region. On the other
hand, for x1 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jϵj=mω2Þ

p
, all the saddle points are

complex. We shall now see how to determine the relevant

saddle points that contribute to ψ ðLÞ
ϵ ðx1Þ. For this purpose, it

is convenient to define three distinct regions of space,
namely left, middle, and right, as follows:

Left∶ −∞ < x1 < −
ffiffiffiffiffiffiffiffiffi
2jϵj
mω2

r
; Middle∶ −

ffiffiffiffiffiffiffiffiffi
2jϵj
mω2

r
< x1 <

ffiffiffiffiffiffiffiffiffi
2jϵj
mω2

r
; Right∶

ffiffiffiffiffiffiffiffiffi
2jϵj
mω2

r
< x1 < ∞: ð61Þ

The steepest ascent/descent contours for this case are
presented in Fig. 3. As we have already remarked, the
relevant saddle points are the ones whose steepest ascent
contours intersect the original real-time contour an odd
number of times.

6. The left region

From Fig. 3(a), we see that the only relevant saddle point
is TðδÞ

0;þ, which is complex. To determine the real and

imaginary parts of TðδÞ
0;þ, we write

ωTðδÞ
0;þ ¼ − log

0
B@−

jx1j
u0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21
u20

−
2jϵj

mω2u20

s
þ i0þ

1
CA

¼ − log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21
u20

−
2jϵj

mω2u20

s
−
jx1j
u0

− i0þ

1
CA − iπ; ð62Þ

which is consistent with Fig. 3(a). Hence, an absolutely

convergent integral representation for ψ ðLÞ
ϵ ðx1Þ can be

obtained by deforming the real-time contour to that
represented by the dashed green curve in Fig. 3(a), which

moves along steepest descent contours of TðδÞ
þ;0. We shall

denote this contour by ϒa, so that

ψ ðLÞ
ϵ ðx1Þ ¼ N

Z
ϒa

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT: ð63Þ

The semiclassical limit of ψ ðLÞ
ϵ ðx1Þ, in the left region, can

be found by the saddle-point approximation of the above
integral, which yields

ψ ðLÞ
ϵ ðx1Þ ∝ exp

�
iS̃ðT; ϵ; x1; u0Þ

h
−
1

2
ωT

�				
TðδÞ
0;þ

¼ e−
πjϵj
ℏωe

iπ
2N 1

e−
i
ℏS−ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂x1S−ðx1Þj

p ; ð64Þ

where

S−ðx1Þ ¼
ϵ

ω
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

2jϵj
mu20ω

2
þ x21
u20

s
þ x1
u0

1
CA

þ 1

2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmx21ω

2 − 2jϵjÞ
q

. ð65Þ

7. The middle region

From Fig. 3(b), we see that the only relevant saddle point
is TðδÞ

0;þ in this case as well. Hence, an absolutely convergent

integral representation for ψ ðLÞ
ϵ ðx1Þ can be obtained by

deforming the real-time contour to that represented by
the dashed green curve in Fig. 3(b), which we shall denote
by ϒb.

ψ ðLÞ
ϵ ðx1Þ ¼ N

Z
ϒb

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT: ð66Þ

Hence, the semiclassical limit of ψϵðx1Þ takes the form

ψ ðLÞ
ϵ ðx1Þ ∝ exp

�
iS̃ðT; ϵ; x1; u0Þ

h
−
1

2
ωT

�				
TðδÞ
0;þ

¼ e−
πjϵj
ℏωe

iπ
2N 1

e
SEðx1Þ

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂x1SEðx1Þj;
p ð67Þ

where
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SEðx1Þ ¼ −
iϵ
2ω

log

�
2jϵj

mω2u20

�
þ cos−1

 ffiffiffiffiffiffiffiffiffi
mω2

2jϵj

s
x1

!

þ x1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð2jϵj −mx21ω

2Þ:
q

ð68Þ

The decaying nature of ψ ðLÞ
ϵ ðx1Þ, known from standard

WKB analysis, is reproduced in our approach.

8. The right region

From Fig. 3(c), we see that the relevant saddle points in
this case are TðδÞ

0;þ and TðδÞ
0;−, respectively, corresponding to

the incident and reflected waves. The real-line contour can
now be deformed into one that has two parts, denoted by
ϒc;þ and ϒc;−, which are curves along steepest descent

contours of TðδÞ
0;þ and TðδÞ

0;−, respectively. Hence, we obtain
the following absolutely convergent integral representation

for ψ ðLÞ
ϵ ðx1Þ, for x1 in the right region:

ψ ðLÞ
ϵ ðx1Þ ¼ ψ i

ϵðx1Þ þ ψ r
ϵðx1Þ; ð69Þ

where the incident and reflected parts ψ i
ϵðx1Þ and ψ r

ϵðx1Þ
are, respectively, given by

(a) (b)

(c)

FIG. 3. Plots of saddle points and steepest descent/ascent lines when ϵ < 0, using the convention described in Sec. III C 1 (Plots are
generated for values ω ¼ m ¼ u0 ¼ 1, ϵ ¼ −3 and δ ¼ 0.1.) (a) The left region (plots are for x1 ¼ −6). The green dashed contour
represents ϒa. (b) The middle region (plots are for x1 ¼ 1). The green dashed contour represents ϒb. (c) The right region (plots are for

x1 ¼ 6). While the green dashed curve passing through ωTðδÞ
0;þ represents ϒc;þ, the one through ωTðδÞ

0;− represents ϒc;−.
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ψ i
ϵðx1Þ ¼ N

Z
ϒc;þ

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT; ð70Þ

ψ r
ϵðx1Þ ¼ N

Z
ϒc;−

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT: ð71Þ

The reflected part, in particular, has the following semi-
classical limit:

ψr
ϵðx1Þ ∝ exp

�
iS̃ðT; ϵ; x1; u0Þ

h
−
1

2
ωT

�				
TðδÞ
0;−

¼ N 1

e
i
ℏS−ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂x1S−ðx1Þj

p . ð72Þ

By comparing Eq. (72) and Eq. (67), the ratio of trans-
mission and reflection probabilities can be evaluated to get

Pt

Pr
¼ e−

2πjϵj
ℏω; ð73Þ

from which one can easily derive Pt and Pr, using
Pt þ Pr ¼ 1.

9. The emergence of instantons

Recall that the paths contributing to ψ ðLÞ
ϵ , by definition,

satisfy the boundary condition:

xðTÞ ¼ x1: ð74Þ

The saddle points Tn;� correspond to those classical
trajectories for which the total energy is ϵ. When a
relevant saddle point is complex, it means that in order
to meet the above boundary condition, the corresponding
classical trajectory has to evolve along imaginary time
direction. To illustrate our point, we shall now consider
only the positive energy case, but a similar argument
can be easily extended to negative energy as well.
In the case of positive energy, one of the relevant saddle
points, namely, T0;−, is complex when x1 is in the region
x1 < 0. The real part of this saddle point satisfies the
condition

xLðRe½T0;−�Þ ¼ −x1: ð75Þ

Now, one can imagine the complex time T0;− ¼
Re½T0;−� þ iπ=ω as describing the time evolution of xLðtÞ
along the real-time direction until t ¼ Re½T0;−�, followed
by an evolution along imaginary time for a duration
iπ=ω. Defining the Euclidean time tE through
t ¼ Re½T0;−� þ itE, we get the imaginary time evolution
of xLðtÞ to be described by

xLðRe½T0;−� þ itEÞ≡ xEðtEÞ ¼ −x1 cosðωtEÞ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ

ϵ

mω2

r
sinðωtEÞ; 0 < tE <

π

ω
. ð76Þ

The Euclidean solutions, such as the above, are called
instantons. The left-moving solution xLðtÞ, after evolution
along imaginary time for a duration iπ=ω, turns into the
right-moving solution xRðtÞ:

xLðtþ iπ=ωÞ ¼ xRðtÞ: ð77Þ

Therefore, one interprets the instanton as a bridge between
the two solutions xLðtÞ and xRðtÞ, which are otherwise
disconnected in phase space. Hence, they offer a natural
semiclassical description for quantum tunneling and over-
the-barrier reflection processes. In particular, for ϵ > 0, one
finds that the semiclassical limit of the ratio Pr=Pt can be
written in terms of the exponential of the (Eulidean)
Hamilton-Jacobi action evaluated at the instanton solution
xEðtEÞ. For the case of negative energy, a similar argument
can be made for the ratio Pt=Pr. The instanton-based
approaches, often discussed in literature, makes use of this
observation as a starting point to evaluate the semiclassical
transition amplitudes. However, in the real-time path
integral approach, one does not have to invoke the

instantons a priori. Instead, as we have seen here, it
emerges naturally through complex saddle points that are
relevant.

IV. SCHWINGER EFFECT FROM REAL-TIME
PATH INTEGRAL AMPLITUDES

In this section, we shall accomplish the main objective of
this paper: furnish a real-time worldline path integral-
based representation for the positive frequency modes
that give rise to the Schwinger effect. Following that, we
also demonstrate how the exact value of Bogoliubov
coefficients and hence, particle number nk can be calcu-
lated. Let us start by looking at the classical dynamics of a
charged particle interacting with an electromagnetic
background. The motion is described by the following
action:

SEM ¼
Z

T

T0

�
m
2
ημν _xμ _xν þ

q
c
_xμAμ þ

mc2

2

�
dτ; ð78Þ
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where ημν ¼ diagð1;−1;−1;−1Þ, Aμ is the electromagnetic
gauge potential, and τ is the proper time. The equation of
motion that follows from varying the action is given by

mẍμ ¼ q
c
Fμ
ν _xν; ð79Þ

where Fμν is the electromagnetic field tensor, defined as
Fμν ¼ ∂μAν − ∂νAμ. The above equation needs to be
supplemented by the following constraint equation, which
may be obtained by contracting the above equation with _xμ:

_xμ _xμ ¼ c2: ð80Þ

For a constant electric field of magnitude E along, say, the x
axis, the equations of motion reduce to

ðü; v̈Þ ¼ ωð− _u; _vÞ; ω≡ qE
mc

; ð81Þ

mẍ⊥ ¼ 0; ð82Þ

where u ¼ ct − x, v ¼ ctþ x, and x⊥ ≡ ðy; zÞ. For defi-
niteness, we shall assume that ω > 0, henceforth.
If a positive frequency modeUðxμ1Þ can be represented as

a path integral amplitude, the boundary condition at the
final value of proper time, say τ ¼ T, for the trajectories
that make up such a path integral, must be given by

xμðTÞ ¼ xμ1 ¼ ðct1; x1; y1; z1Þ: ð83Þ

We have to impose one more set of boundary conditions,
namely, those at the initial value of proper time, say,
τ ¼ T0. To this end, we start by noting that, in the worldline
picture, a positive frequency solution describes a particle
moving backward in time. Following Stueckelberg [56] and
Feynman [57], this can also be interpreted as an anti-
particle moving forward in time. Therefore, the requisite
initial condition should be such that it unambiguously
dispenses a solution describing a particle moving towards
the negative t direction. If we also assume that the particle
is initially moving towards the positive x direction, it is
easy to show that, along the classical trajectories of this
form, _uðτÞ < 0, for all values of τ [this is analogous to
ð _p − ω_xÞ being positive along classical trajectories of the
IHO system]. Therefore, the appropriate initial condition
becomes2

du
dτ

				
T0

¼ γ0 < 0: ð84Þ

For convenience, we write γ0 ¼ −ωu0e−ωT0 , where u0 > 0.
Out of the remaining three initial conditions, we can use
two to fix the initial momentum along the x⊥ directions:

m_x⊥ðT0Þ ¼ −k⊥; ð85Þ

where k⊥ ¼ ðky; kzÞ. We shall shortly fix the last remaining
initial condition in a convenient way, when we look at the
analysis in different gauges. The antiparticle solution xμapðτÞ
of Eq. (79) that satisfies the boundary conditions Eq. (83),
Eq. (84), and Eq. (85) is found to be

uapðτÞ ¼ u1 þ u0ðe−ωτ − e−ωTÞ; ð86Þ

vapðτÞ ¼ v1 −
1

u0m2ω2
ðC0 þ k2⊥Þðeωτ − eωTÞ; ð87Þ

ðyapðτÞ;zapðτÞÞ¼
�
y1−

ky
m
ðτ−TÞ;z1−

kz
m
ðτ−TÞ

�
; ð88Þ

where C0 is an arbitrary constant, to be fixed by the
remaining boundary condition and k2⊥ ≡ jk⊥j2. Note that
we have not imposed the constraint Eq. (80) yet. Hence, in
general, the solution xμapðτÞ could describe timelike and
spacelike trajectories, when C0 > and C0 < 0, respectively.
In particular, for the on-shell solutions, we obtain
C0 ¼ m2c2. One can also find a solution xμpðτÞ describing
a particle moving forward in time, by simply replacing
u0 → −u0 in xμapðτÞ, which yields

upðτÞ ¼ u1 − u0ðe−ωτ − e−ωTÞ; ð89Þ

vpðτÞ ¼ v1 þ
1

u0m2ω2
ðC0 þ k2⊥Þðeωτ − eωTÞ; ð90Þ

ðypðτÞ; zpðτÞÞ ¼
�
y1 −

ky
m
ðτ − TÞ; z1 −

kz
m
ðτ − TÞ

�
: ð91Þ

Motivated by our analysis of the IHO problem, we shall
now modify the action SEM by adding an appropriate
boundary term that naturally imposes our initial conditions
Eq. (84) and Eq. (85). It turns out that the relevant boundary
term is dependent on the choice of gauge. In this work, we
shall be concerned with three commonly used gauges,

namely, the time-dependent gauge: Að1Þ
μ ¼ ð0; Ect; 0; 0Þ,

the space-dependent gauge: Að2Þ
μ ¼ ð−Ex; 0; 0; 0Þ, and the

lightcone gauge: Að3Þ
μ ¼ E

2
ð−ct − x; ctþ x; 0; 0Þ. Let us

denote by BðiÞ½xμðT0Þ� the appropriate boundary term

corresponding to the gauge AðiÞ
μ , where i ¼ 1, 2, 3.

Therefore, the modified action SðiÞ
EM, for the gauge choice

AðiÞ
μ , takes the form

2If, instead, we had assumed that the particle is initially
moving towards the negative x direction, Eq. (84) will be replaced
by _vðT0Þ ¼ γ0 < 0.
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SðiÞ
EM½xμ; u0; ζ� ¼

Z
T

T0

�
m
2
ημν _xμ _xν þ

q
c
_xμAμ þ

mc2

2

�
dτ

þ BðiÞ½xμðT0Þ; u0; ζ�; ð92Þ

where ζ denotes the set of parameters that the modified
action may depend upon. In what follows, we shall prove
that the positive frequency modes UðiÞðxμ1Þ in the asymp-

totic past, in the gauge choice AðiÞ
μ , can be written as the

following path integral amplitude:

UðiÞðxμ1Þ ¼
Z

∞

−∞

Z
xμðTÞ¼xμ

1

exp

�
i
ℏ

�Z
T

T0

�
m
2
ημν _xμ _xν þ

q
c
_xμAμ þ

mc2

2

�
dτ þ BðiÞ½xμðT0Þ; u0; ζ��

�
D½xμ�dT: ð93Þ

It is worth mentioning that a path integral formalism has
already been used to study the Schwinger effect in [46].
Before moving into further details of our approach, let us
review the progress made in [46] and compare it with the
present work. After developing the general formalism for
worldline approach to the Schwinger effect in a general
electric field, the special case of constant electric field,
which is switched on only for a finite time, is considered in
[46]. Therein, using a numerical approach, they study the
evolution of a Gaussian wave function, with the position
and momentum spread around specific values and then also
visually show that the electric field facilitates a tunneling of
a particle mode to an antiparticle mode. They also numeri-
cally investigated the different physical aspects of the wave
function, which would be measured in a “weak measure-
ment,” to further establish their findings. Here, going
significantly beyond the analysis in [46], we have shown
that by imposing the boundary conditions that are most
natural to worldlines relevant to positive frequency modes,
we can perform exact analytical computations. Such an
approach has the added advantage that it makes direct
contact with the standard positive frequency modes that are
considered in the context of the Schwinger effect.
Moreover, we shall shortly apply Picard-Lefschetz theory
to show how the worldline instantons emerge naturally in
our formalism and explicitly see the manner in which they
facilitate particle production.

A. Time-dependent gauge

The boundary term appropriate to time-dependent gauge
turns out to be

Bð1Þ½xμðT0Þ; u0; k� ¼
mω

2

�
ctðT0Þ −

kx
mω

− u0e−ωT0

�
2

þ k:xðT0Þ; ð94Þ

where k ¼ ðkx; ky; kzÞ ¼ ðkx; k⊥Þ. The details of how
Bð1Þ½xμðT0Þ; u0; k�, introduced above, naturally leads to
the desired boundary conditions, viz., Eq. (83), Eq. (84),
and Eq. (85), have been delegated to Appendix B 1. We can
now calculate the corresponding positive frequency mode

Uð1Þ
k ðxμ1Þ using Eq. (93). After performing the exact

Gaussian path integral over xμ we arrive at

Uð1Þ
k ðxμ1Þ ¼

Z
∞

−∞
e−

1
2
ωðT−T0Þ exp ½ i

ℏ
Sð1Þ
EM½xμap; u0; k��dT; ð95Þ

where xμap is the classical solution that we introduced in the
beginning of this section. Ignoring an overall normalization

constant, we can express Uð1Þ
k ðxμ1Þ in the concise form

Uð1Þ
k ðxμ1Þ ¼ e

i
ℏk:x1ξð1Þk ðt1Þ; ð96Þ

where

ξð1Þk ðt1Þ ¼
Z

∞

−∞
e−

1
2
ωT exp

�
i
ℏ
S̃
�
T; ϵk⊥ ; ct1 −

ckx
qE

; u0

��
dT;

ð97Þ

where S̃ðT; ϵk⊥ ; x; u0Þ is the function that we have intro-
duced in Eq. (42), with the energy ϵ replaced by
ϵk⊥ ¼ ðk2⊥ þm2c2Þ=ð2mÞ. The normalization can be fixed
by demanding that the modes are orthonormal under the
Klein-Gordon inner product, but, since particle production
can also be studied without fixing the normalization, we
shall not worry about the same henceforth. We have already
seen in Sec. III B that the integral in Eq. (97) can be
expressed in terms of parabolic cylinder functions (see
Appendix A for details). Therefore, we get the final result:

Uð1Þ
k ðxμÞ ∝ e

i
ℏk:xDνk

�
e
3πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r �
ct −

kxc
qE

��
;

νk ≡
�
−
1

2
þ iϵk⊥

ℏω

�
; ð98Þ

which is in perfect agreement with the standard result,
Eq. (7). Similarly, one can also find the negative frequency

solution in the asymptotic future, Vð1Þ�
−k ðxμÞ. We can spare

ourselves some labor by observing that these later modes
can be obtained by simply replacing u0 → −u0 in Eq. (97).
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Vð1Þ�
−k ðxμ1Þ ¼ e

i
ℏk:x1

Z
∞

−∞
e−

1
2
ωT exp

�
i
ℏ
S̃
�
T; ϵk⊥ ; ct1

−
ckx
qE

;−u0
��

dT ð99Þ

≡ e
i
ℏk:x1χð1Þ�k ðt1Þ; ð100Þ

where we have, once again, ignored an overall normaliza-
tion constant. The positive frequency modes of asymptotic
past and asymptotic future are related by a Bogoliubov
transformation of the form

Uð1Þ
k ðxμÞ ¼ αkV

ð1Þ
k ðxμÞ þ βkV

ð1Þ�
−k ðxμÞ: ð101Þ

Once the Bogoliubov coefficients αk and βk are computed,
the number of particles produced nk can be found
via nk ¼ jβkj2.

B. Space-dependent gauge

In the space-dependent gauge, the boundary term appro-
priate for a particle moving backward in time and that starts
towards the positive x direction is given by

Bð2Þ½xμðT0Þ;u0;k⊥;kt�¼−
mω

2

�
xðT0Þ−

kt
cmω

þu0e−ωT0

�
2

−kttðT0Þþk⊥:x⊥ðT0Þ; ð102Þ

where kt > 0. The details of how Bð2Þ½xμðT0Þ; u0; k�,
introduced above, naturally leads to the desired boundary
conditions, viz., Eq. (83), Eq. (84), and Eq. (85), have been
delegated to Appendix B 2. We can now calculate the

corresponding positive frequency mode Uð2Þ
kt;k⊥ðxμÞ using

Eq. (93). After performing the exact Gaussian path integral
over xμ, we arrive at

Uð2Þ
k ðxμ1Þ ¼

Z
∞

−∞
e−

1
2
ωðT−T0Þ exp

�
i
ℏ
Sð2Þ
EM½xμap; u0; k⊥; kt�

�
dT;

ð103Þ

where xμap is the classical solution that we introduced in the
beginning of this section. Ignoring an overall normalization

constant, we can express Uð2Þ
kt;k⊥ðx

μ
1Þ in the concise form

Uð2Þ
kt;k

ðxμÞ ¼ e−
i
ℏktte

i
ℏk⊥:x⊥ξð2Þkt;k⊥ðxÞ; ð104Þ

where

ξð2Þkt;k⊥ðx1Þ ¼
Z

∞

−∞
e−

1
2
ωT exp

�
−
i
ℏ
S̃
�
T;−ϵk⊥ ;

x1 −
kt
qE

;−u0
��

dT; ð105Þ

where S̃ðT; ϵk⊥ ; x; u0Þ is the function that we have intro-
duced in Eq. (42), with the energy ϵ replaced by
ϵk⊥ ¼ −ðk2⊥ þm2c2Þ=ð2mÞ. Comparing the above integral

with Eq. (43), it seems that ξð2Þkt;k⊥ is analogous to the

complex conjugate of the IHO wave function ψ ðRÞ
ϵ that we

introduced in Sec. III. There, we found that the corre-
sponding integral evaluates to parabolic cylinder functions
(the details are delegated to Appendix A). Therefore, we get
the final result:

Uð2Þ
kt;k

ðxμ1Þ ∝ e−
i
ℏktt1e

i
ℏk:x1Dν�k

�
e
iπ
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r �
x1 −

kt
qE

��
: ð106Þ

C. The lightcone gauge

The boundary term takes the simplest form in the
lightcone gauge:

Bð3Þ½xμðT0Þ;u0;k⊥;kv�¼−
1

2
mωu0e−ωT0vðT0Þ−

1

2
kνuðT0Þ

þk⊥:x⊥ðT0Þ; ð107Þ

where the lightcone coordinates are defined as u ¼ ct − x
and v ¼ ctþ x. The details of how Bð3Þ½xμðT0Þ; u0; k�,
introduced above, naturally leads to the desired boundary
conditions, viz., Eq. (83), Eq. (84), and Eq. (85), have been
delegated to Appendix B 3. We can now calculate the

corresponding positive frequency mode Uð3Þ
kv;k⊥ðxμÞ using

Eq. (93). After performing the exact Gaussian path integral
over xμ, we arrive at

Uð2Þ
k ðxμ1Þ ¼

Z
∞

−∞
e−

1
2
ωðT−T0Þ exp

�
i
ℏ
Sð3Þ
EM½xμap; u0; k⊥; kv�

�
dT;

ð108Þ

where xμap is the classical solution that we introduced in the
beginning of this section. Ignoring an overall normalization

constant, we can express Uð3Þ
kv;k⊥ðx

μ
1Þ in the concise form

Uð3Þ
kv;k

ðxμÞ ¼ e−
i
2ℏkvue

i
ℏk⊥:x⊥ξð3Þkv;k⊥ðvÞ: ð109Þ

The v-dependent part can further be simplified to

ξð3Þkv;k⊥ðv1Þ ¼
Z

∞

−∞
e−

1
2
ωT exp

�
i
ℏ
A
�
T; v1 −

ckv
qE

; u0

��
dT;

ð110Þ

where

AðT; z; u0Þ ¼
1

2
mωzu0e−ωT þ ϵk⊥T: ð111Þ
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The integral in Eq. (110) can be easily recast into the
standard integral representation of Gamma function, to
finally arrive at

Uð3Þ
kv;k

ðxμÞ ∝ e−
i
2ℏkvue

i
ℏðk⊥:x⊥Þ

�
1 −

qE
ckv

v

�
νk
; ð112Þ

which is in perfect agreement with Eq. (17).

D. Nonperturbative pair creation from
real-time path integral approach

We have already seen in Sec. II that pair creation
manifests itself in seemingly different ways in the three
gauges that we considered here. The conventional approach
to study the Schwinger effect, using canonical quantization
formalism, boils down to exploiting the known properties
of the standard functions in terms of which the positive/
negative modes can be represented. For instance, in the
time-dependent gauge, one uses the connection formula of
parabolic cylinder functions to read off the Bogoliubov
coefficients αk and βk, following which, the particle
number nk is computed. Off course, it is also possible to
use the standard asymptotic methods [58], thereby directly
arriving at the asymptotic results, without the use of special
functions, which is precisely the WKB approach. The path
integral approach, that we introduced here, supplies an
alternate perspective on such asymptotic methods, wherein
the role of “paths” (or trajectories) is significantly more
transparent. Although the manner in which particle pro-
duction is inferred varies in different gauges, the algebraic
aspects are essentially the same. Hence, to illustrate our
point, we shall now focus only on the time-depen-
dent gauge.
In the conventional treatment of the Schwinger effect,

one concludes that the solutions Uð1Þ
k ðxμÞ are, in fact, the

positive frequency modes of the infinite past, by looking at
their asymptotic limit as t → −∞. A similar analysis can

also be done for Vð1Þ
k ðxμÞ to verify that they realize positive

frequency solutions in the infinite future. The aforemen-
tioned approach explicitly utilizes the theory of parabolic
cylinder functions to accomplish the task at hand. However,

the path integral representation of Uð1Þ
k ðxμÞ, in conjunction

with Picard-Lefschetz theory, can be used to accomplish
the same in a more transparent way. Let us start by looking

at the asymptotic behavior of Uð1Þ
k ðxμÞ or equivalently

ξð1Þk ðtÞ as t → −∞. In view of Eq. (40) and Eq. (97), we find

that ξð1Þk ðtÞ has the same functional form of ψ ðLÞ
ϵ ðxÞ, with

the identifications ϵk⊥ ↔ ϵ and ðt − kx=ðqEÞÞ ↔ x. Hence,
risking a mild abuse of notations, we shall be freely lending

the terminology that we used for ψ ðLÞ
ϵ ðxÞ for the discussions

to follow. The t → −∞ limit of ξð1Þk ðtÞ follows from
Eq. (51) and takes the form

ξð1Þk ðtÞ ∝ jtj
iϵk⊥
ℏω −1

2e
icqEt2

2ℏ ; t → −∞: ð113Þ

Since, in the t → −∞ limit, the phase of the above function
is decreasing with respect to time t, we conclude that

Uð1Þ
k ðxμÞ describes a positive frequency solution in the

asymptotic past.
Now, in the region ðt − kx=ðqEÞÞ > 0, a convergent

integral representation for ξð1Þk ðtÞ can be obtained as
follows:

ξð1Þk ðtÞ¼
Z
T b;þ

e−
ωT
2 exp

�
i
ℏ
S̃ðT;ϵk⊥ ;ðt−kx=ðqEÞÞ;u0Þ

�
dT

þ
Z
T b;−

e−
ωT
2 exp

�
i
ℏ
S̃ðT;ϵk⊥ ;ðt−kx=ðqEÞÞ;u0Þ

�
dT;

ð114Þ

where T b;þ and T b;− are, respectively, curves along
steepest descent contours of the relevant saddle point
T0;þ and T0;− [see Fig. 2(b)]. Next, we shall deform
T b;− to the horizontal line C1 shown in Fig. 2(c), which
is defined by ImðωTÞ ¼ iπ. Therefore, the integral along
T b;− in Eq. (114) reduces to

Z
T b;−

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵk⊥ ; ðt − kx=ðqEÞÞ; u0Þ

�
dT ð115Þ

¼
Z
C−

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵk⊥ ; ðt − kx=ðqEÞÞ; u0Þ

�
dT ð116Þ

¼ exp

�
−i

π

2
−
ϵk⊥
ℏω

�
χð1Þ�k ðtÞ; ð117Þ

where we have used Eq. (100). Since the remaining

contribution to ξð1Þk ðtÞ, coming from the integral along
T b;þ, corresponds to a wave that is purely left moving in

time, it must be proportional to χð1Þk ðtÞ. This leads to

ξð1Þk ðtÞ ¼ αkχ
ð1Þ
k ðtÞ þ βkχ

ð1Þ�
k ðtÞ; ð118Þ

where

βk ¼ exp

�
−i

π

2
−
ϵk⊥
ℏω

�
; ð119Þ

from which particle number nk ¼ jβkj2 can be computed to
get precisely Eq. (9). We emphasize that the above
computation of βk (hence, of nk) is exact. In fact, one
can also compute the exact value of αk using our approach.
The details of this computation can be found in
Appendix C. The exact value of αk is useful for evaluating
the effective action.
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1. The emergence of instantons

Another remarkable aspect of our formalism is the
manner in which instantons emerge. We have already seen
an example of this in Sec. III C 4. In the case of the
Schwinger effect, as in the case of the IHO, the nontrivial
quantum effects may be attributed to relevant saddle point
(s) that is/are complex. In the time-dependent gauge, for
instance, the coefficient in front of ξð1Þk ðtÞ in Eq. (117),
which leads to particle production, arises due to the fact that
T0;− is complex. Recall that the final boundary condition
that we introduced reads xμðTÞ ¼ ðct1; x1; y1; z1Þ. Since the
interesting features occur in the t–x plane, let us consider
the projection of the on-shell solution x̃μapðτÞ on to the t–x
plane. Then, we have

cðt̃apðτÞ − t̃0Þ ¼
1

2
u0e−ωτ −

ϵk⊥
mω2u0

eωτ; ð120Þ

ðx̃apðτÞ − x̃0Þ ¼ −
1

2
u0e−ωτ −

ϵk⊥
mω2u0

eωτ; ð121Þ

where t̃0 and x̃0 > x1 are constants. Now, the complex
saddle point T0;− can be imagined as describing the
evolution of the on-shell solution along real values of
proper time until τ ¼ Re½T0;−�, followed by that along
imaginary values of proper time for a duration
Im½T0;−� ¼ iπ=ω. Therefore, the entire evolution of an
on-shell worldline corresponding to the saddle point T0;−
takes the form

cðt̃apðτÞ − t̃0Þ ¼
8<
:

1
2
u0e−ωτ −

ϵk⊥
mω2u0

eωτ ; τ < Re½T0;−�

−cðt1 − t̃0Þ cosðωτEÞ − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt1 − t̃0Þ2 þ ϵk⊥

mω2

q
sinðωτEÞ ; 0 < τE < π

ω

ð122Þ

ðx̃apðτÞ − x̃0Þ ¼
8<
:

− 1
2
u0e−ωτ −

ϵk⊥
mω2u0

eωτ ; τ < Re½T0;−�

ðx1 − x̃0Þ cosðωτEÞ − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x̃0Þ2 − ϵk⊥

mω2

q
sinðωτEÞ ; 0 < τE < π

ω

; ð123Þ

where we have defined the Euclidean proper time τE
through τ≡ Re½T0;−1� þ iτE for, 0 < τE < π=ω. In fact,
more generally, one could imagine the complex saddle
point T0;− as describing a complex worldline with three
parts, namely, the evolution of the on-shell antiparticle
worldline (1) along real direction of proper time until
τ ¼ Re½T0;−� − δT, then (2) along imaginary direction of
proper time from τ ¼ Re½T0;−� − δT to τ ¼ Re½T0;−�−
δT þ iπ=ω, and finally, (3) along the real direction
of proper time from τ ¼ Re½T0;−� − δT þ iπ=ω to
τ ¼ Re½T0;−� þ iπ=ω ¼ T0;−, where δT is an arbitrary real
number. The complex trajectories of this form are often
called the wordline instantons.
One finds, from Eq. (122) and Eq. (123), that the

(on-shell) antiparticle worldline x̃μapðτÞ, after evolving
along the Euclidean proper time for a duration iπ=ω, turns
into the (on-shell) particle worldline x̃μpðτÞ. Hence, the
Euclidean segment of the worldline instanton acts as a
bridge, between the otherwise disconnected particle and
antiparticle worldlines. Moreover, we can write the particle
number nk in terms of the action SEM½x̃μap� evaluated at the
Euclidean segment of the worldline as

nk¼
					exp

�
i
ℏ

Z
T0;−

Re½T0;−�

�
m
2
ημν _̃x

μ
ap
_̃xνapþ

q
c
_̃xμapAμþ

mc2

2

�
dτ

�					
2

:

ð124Þ

Consequently, nk can also be directly related to the
probability of transition from the antiparticle worldline
to a particle worldline. Most available discussions on
instanton-based approaches to the Schwinger effect make
use of the observation that nk can be attributed to
evolution along imaginary time, right from the start.
Notice, however, that we did not have to invoke the
concept of instantons a priori to derive βk. On the other
hand, they are found to emerge, as dictated by Picard-
Lefschetz theory, from relevant saddle points that are
complex. Therefore, in a way, the real-time approach
presents us with a more rigorous justification for the
efficacy of instanton methods.
It is worth mentioning that analytic continuations to

imaginary time, usually employed in literature, are made
in two distinct manners. The first one corresponds to
analytically continuing the Schwinger proper time τ to
imaginary values, along with analytically continuing from
Minkwoski to Euclidean signature for the metric. The
second one corresponds to complexing only the proper
time τ, while retaining the Minkowski signature of the
metric. For instance, in passing from the appropriate
Lorentzian worldline path integral to the Euclidean world-
line path integral given Eq. (2), one executes the first kind
of analytic continuation [21,31,59]. However, as is evi-
dent from our discussion so far, it is the second kind of
analytic continuation that is of direct relevance to this
work. For instance, one can directly see that from
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Eq. (124) that the metric is still Minkowskian, although
the proper time integral appearing in the exponential
factor therein is performed along the imaginary direction.
Although the two approaches are related, it is important to
emphasize that they are distinct.

V. CONCLUSION

The Schwinger effect is the simplest instance of pair
creation process induced by a classical external back-
ground. Moreover, it is one of the most concrete non-
perturbative predictions of quantum field theory. Therefore,
the Schwinger effect has been a subject of intense theo-
retical and experimental investigation for decades. Several
approaches, of differing mathematical and physical impli-
cations, have been proposed for the theoretical study of this
problem. However, the more conventional approaches,
based on the standard tools of QFT, seldom offer a
satisfactory reconciliation with our point-particle intuitions.
On the other hand, the available literature on worldline path
integral approach, which offers elegant and more intuitive
interpretations for the pair creation process, often invokes
imaginary time a priori. In this work, we proposed a
Lorentzian worldline path integral approach to the
Schwinger effect, which is, by construction, based on
sum over worldlines of a charged particle, evolving in
real proper time.
In particular, we have explicitly shown that the standard

Schwinger modes, in different gauges, can be expressed as
worldline path integral amplitudes. It is well known that a
positive frequency solution, in the worldline formalism,
translates to a particle moving backward in time. This
condition, in turn, can be mathematically imposed on the
worldine by an initial condition given by Eq. (84), which is
also supplemented by the initial conditions that correspond
to fixing momenta in different spatial directions. In order to
naturally implement the aforementioned initial conditions
in the classical variational problem, we modified the
standard worldline action by introducing appropriate boun-
dary terms. Remarkably, this simple procedure leads to the
positive frequency Schwinger modes for all the three
gauges that we considered, despite the fact that mode
functions have different mathematical forms in each choice
of gauge.
Following this, using our formalism, we derived the

exact values of Bogoliubov coeffiects and, hence, the
particle number. We emphasize that, for the purpose of
this calculations, we did not have to explicitly use any
knowledge of the theory of parabolic cylinder functions. To
rephrase it, the path integral approach affords a means to
quantitatively compute/infer pair creation, even if we had,
hypothetically, no knowledge of the representation of
positive/negative Schwinger modes in terms of standard
functions. This is remarkable, especially when we consider
the fact that, in a general electromagnetic field configura-
tion, we do not have the luxury of having the analytical

form of mode functions at our disposal. In light of this, we
believe that exploration of pair creation in more compli-
cated backgrounds using real-time path integral approach is
a promising avenue. It would also be interesting to see how
one can extend our approach to study the backreaction of
produced pairs on the electromagnetic field. Another
avenue worth exploring would be to seek how subtler
aspects of the problem, like renormalization and the effect
of internal photons, may be dealt with in the Lorentzian
path integral approach. These topics will be explored in a
future publication.
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APPENDIX A: EXACT COMPUTATION OF THE
IHO SCATTERING WAVE FUNCTION

We start by shifting the real-time integration contour in
Eq. (41) to the horizontal line Im½ωT� ¼ −iπ=4, so that we
get a more convergent integral:

ψ ðLÞ
ϵ ðx1Þ ¼ N

Z
∞−iπ

4

−∞−iπ
4

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵ; x1; u0Þ

�
dT: ðA1Þ

The above integral can be transformed into one of the
standard integral representations of the parabolic cylinder
functions by the following change of variable:

s≡
ffiffiffiffiffiffiffi
mω

2ℏ

r
u0e−ðωTþiπ

4
Þ; ðA2Þ

so that the integral in Eq. (A1) takes the form

ψ ðLÞ
ϵ ðx1Þ ∝ e−

z2
4

Z
∞

0

e−zs−
s2
2 s−ðνþ1Þ; z ¼ e

3πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r
x

ðA3Þ

∝ Dν

�
e
3πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r
x1

�
; ðA4Þ

which is in perfect agreement with Eq. (20). Similarly, one

can also obtain the right-moving solution ψ ðRÞ
ϵ ðx1Þ by

replacing u0 → −u0 in the right-hand side of Eq. (41),
which yields
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ψ ðRÞ
ϵ ðx1Þ ∝

Z
∞

−∞
e−

ωT
2 exp

�
imω

2
ðx1 þ u0e−ωTÞ2

−
imu20ω

4
e−2ωT þ iϵT

�
dT ðA5Þ

∝ Dν

�
e−

πi
4

ffiffiffiffiffiffiffiffiffiffi
2mω

ℏ

r
x1

�
; ðA6Þ

where u0 > 0 and the proportionality constant in the last
line of the above equation is the same as that in Eq. (A3).

APPENDIX B: VARIATION OF THE
MODIFIED ACTIONS

In this section we shall verify that the action

SðiÞ
EM½xμ; u0; ζ� naturally furnishes a variational problem

for the boundary conditions Eq. (83), Eq. (84), and

Eq. (85), when the choice of gauge is AðiÞ
μ ðxμÞ.

1. Time-dependent gauge

Consider the variation of action Sð1Þ
EM:

δSð1Þ
EM ¼

Z
T

T0

ð−mẍμ þ Fμν _xνÞδxμdτ þmc_tðTÞδtðTÞ − ½m_xðTÞ −mωctðTÞ�δxðTÞ

þ ½−mc_tðT0Þ þmωctðT0Þ − kx −mωu0e−ωT0 �δtðT0Þ þ ½m_xðT0Þ −mωctðT0Þ þ kx�δxðT0Þ
−m_x⊥ðTÞ:δx⊥ðTÞ þ ½m_x⊥ðT0Þ þ k⊥�:δx⊥ðT0Þ: ðB1Þ

Hence, when xμðT0Þ are not fixed, the action Sð1Þ
EM furnishes

a well-defined variational principle for the following
boundary conditions:

xμðTÞ ¼ ðct1; x1; y1; z1Þ; ðB2Þ

−mc_tðT0Þ þmωctðT0Þ − kx −mωu0e−ωT0 ¼ 0; ðB3Þ

m_xðT0Þ −mωctðT0Þ þ kx ¼ 0; ðB4Þ

m_x⊥ðT0Þ þ k⊥ ¼ 0: ðB5Þ

It is easy to verify the above boundary conditions retain
Eq. (83), Eq. (84), and Eq. (85). The remaining boundary

condition is supplied by Eq. (B4), which effectively
fixes the arbitrary constant C0, in the antiparticle solution
xμapðτÞ, to

C0¼mu0ωe−2ωT ½2eωTðkx−mωct1Þþmu0ω�−k2⊥: ðB6Þ

Therefore, the constraint equation, which imposes
C0 ¼ m2c2, essentially fixes the value of T to its on-shell
value.

2. Space-dependent gauge

The variation of action Sð2Þ
EM takes the form

δSð2Þ
EM ¼

Z
T

T0

ð−mẍμ þ Fμν _xνÞδxμdτ þ ½mc_tðTÞ −mωxðTÞ�δtðTÞ −m_xðTÞδxðTÞ þ
�
−mc_tðT0Þ þmωxðT0Þ −

kt
c

�
δtðT0Þ

þ
�
m_xðT0Þ −mωxðT0Þ þ

kt
c
−mωu0e−ωT0

�
δxðT0Þ −m_x⊥ðTÞ:δx⊥ðTÞ þ ½m_x⊥ðT0Þk⊥�:δx⊥ðT0Þ: ðB7Þ

Hence, with xμðT0Þ kept free to vary, the action Sð2Þ
EM

furnishes a well-defined variational problem for the follow-
ing boundary conditions:

xμðTÞ ¼ ðct1; x1; y1; z1Þ; ðB8Þ

−mc_tðT0Þ þmωxðT0Þ −
kt
c
¼ 0; ðB9Þ

m_xðT0Þ −mωxðT0Þ þ
kt
c
−mωu0e−ωT0 ¼ 0; ðB10Þ

m_x⊥ðT0Þ þ k⊥ ¼ 0: ðB11Þ

A straightforward algebra shows that the above boundary
conditions retain Eq. (83), Eq. (84), and Eq. (85). The
remaining boundary condition, on the other hand, is
supplied by Eq. (B9), the effect of which is to fix the
arbitrary constant C0, in the antiparticle solution xμapðτÞ, to
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C0 ¼ mu0ωe−2Tω
�
2eTω

�
kt
c
−mx1ω

�
−mu0ω

�
− k2⊥:

ðB12Þ
Therefore, the constraint equation,which imposesC0 ¼ m2c2,
essentially fixes the value of T to its on-shell value.

3. Lightcone gauge

To verify that Bð3Þ½xμðT0Þ; u0; k⊥; kv� is the desired
boundary condition in lightcone gauge, let us look at the
variation of the corresponding action:

δSð3Þ
EM ¼

Z
T

T0

ð−mẍμ þ Fμν _xνÞδxμdτ þ ½mc_tðTÞ −mωxðTÞ�δtðTÞ −m_xðTÞδxðTÞ þ 1

2
½−m _uðT0Þ −mωu0e−ωT0 �δvðT0Þ

þ 1

2
½−m _vðT0Þ þmωvðT0Þ − kv�δuðT0Þ −m_x⊥ðTÞ:δx⊥ðTÞ þ ½m_x⊥ðT0Þk⊥�:δx⊥ðT0Þ; ðB13Þ

xμðTÞ ¼ ðct1; x1; y1; z1Þ; ðB14Þ

_uðT0Þ þ ωu0e−ωT0 ¼ 0; ðB15Þ

−m _vðT0Þ þmωvðT0Þ − kv ¼ 0; ðB16Þ

m_x⊥ðT0Þ þ k⊥ ¼ 0: ðB17Þ

Hence, Sð3Þ effects the desired boundary conditions,
namely, Eq. (83), Eq. (84), and Eq. (85), in a natural
way, with the remaining initial condition given by
Eq. (B16). The effect of the latter is to fix the arbitrary
constant C0 in the classical solution xapðxμÞ to the value

C0 ¼ mu0ωe−Tωðkv −mv1ωÞ − k2⊥: ðB18Þ

Once again, we find that the constraint equation, which
imposes C0 ¼ m2c2, essentially fixes the value of T to its
on-shell value.

APPENDIX C: DERIVATION OF αk

Here, we present a method to derive the exact value of
αk, without directly using the theory of parabolic cylinder
functions. Since the following argument holds true for any
contour Cþ that can be continuously deformed into T b;þ,
we have also plotted such a curve for representational
purpose in Fig. 2(c). As we have already seen in Sec. IV D,
the (time-dependent part of) positive frequency mode

ξð1Þk ðtÞ can be written as

ξð1Þk ðtÞ ¼
Z
T b;þ

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵk⊥ ; ðt − kx=ðqEÞÞ; u0Þ

�
dT

þ βkχ
ð1Þ�
k ðtÞ: ðC1Þ

The first term on the right-hand sidemust be proportional to

χð1Þk ðtÞ, since the same has contribution from the saddle
point T0;þ only. Hence, by definition, the Bogoliubov
coefficient αk is given by

αk¼
R
T b;þ

e−
ωT
2 exp ½ iℏS̃ðT;ϵk⊥ ;ðt−kx=ðqEÞÞ;u0Þ�dT

χð1Þk ðtÞ
. ðC2Þ

Since the value of t at which the right-hand side of the
above equation is evaluated does not matter, we might as
well fix it to a value of our convenience, say, t ¼ kx

qE. The
expression for αk reduces to

αk ¼
R
T b;þ

e−
ωT
2 exp ½ iℏ S̃ðT; ϵk⊥ ; 0; u0Þ�dTR∞

−∞ e−
1
2
ωT exp

�
− i

ℏ S̃ðT; ϵk⊥ ; 0;−u0Þ�dT
. ðC3Þ

To evaluate the numerator, we introduce the variable
s ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmωu20Þ=ð4ℏÞ

p
e−2ωT , so that

Z
T b;þ

e−
ωT
2 exp

�
i
ℏ
S̃ðT; ϵk⊥ ; 0; u0Þ

�
dT

¼
�
1

2ω

�
4ℏ

mωu20i

�
−νk

2

� Z
−∞þi0þ

−∞−i0þ
ess−

νk
2
−1ds ðC4Þ

¼
�
1

2ω

�
4ℏ

mωu20i

�
−νk

2

�
2πi

Γðνk
2
þ 1Þ ; ðC5Þ

where we have used the following standard integral
representations of the Gamma function:

2πi
ΓðβÞ ¼

Z
−∞þi0þ

−∞−i0þ
ess−βds: ðC6Þ

A similar change of variable can be used to simplify the
denominator to obtain

Z
∞

−∞
e−

1
2
ωT exp

�
−
i
ℏ
S̃ðT; ϵk⊥ ; 0;−u0Þ

�
dT

¼
�
1

2ω

�
4ℏ

mωu20i

�νkþ1

2

�
Γ
�
νk þ 1

2

�
: ðC7Þ
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Therefore, the final expression for αk becomes

αk ¼
−
ffiffiffiffiffiffi
2π

p
ei

πνk
2 exp ½iðγkϵk⊥ℏω Þ�;

Γð1þ νkÞ
ðC8Þ

where γk ¼ logð2ℏ=ðmu20ωÞÞ, which, interestingly, van-
ishes for u0 ¼ 2ℏc=ðqEÞ. It is easy to verify that the
Bogoliubov coefficients that we obtained satisfy
jαkj2 − jβkj2 ¼ 1.
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