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We study the criticalOð3Þmodel using the numerical conformal bootstrap. In particular, we use a recently
developed cutting-surface algorithm to efficiently map out the allowed space of conformal field theory data
from correlators involving the leading Oð3Þ singlet s, vector ϕ, and rank-2 symmetric tensor t. We determine
their scaling dimensions to be ðΔϕ;Δs;ΔtÞ ¼ ð0.518942ð51Þ; 1.59489ð59Þ; 1.20954ð23ÞÞ, and also bound
various operator product expansion coefficients. We additionally introduce a new “tip-finding” algorithm to
compute an upper bound on the leading rank-4 symmetric tensor t4, which we find to be relevant with
Δt4 < 2.99056. The conformal bootstrap thus provides a numerical proof that systems described by the critical
Oð3Þmodel, such as classical Heisenberg ferromagnets at the Curie transition, are unstable to cubic anisotropy.

DOI: 10.1103/PhysRevD.104.105013

I. INTRODUCTION

Numerical bootstrap methods [1,2] (see Refs. [3,4] for
recent reviews) have led to powerful new results in the study
of conformal field theories (CFTs). In Refs. [5,6] we
developed an approach to large-scale bootstrap problems
which allowed for precise determinations of the CFT data of
the 3D critical Oð2Þ model. In this work, we continue the

exploration of large-scale bootstrap problems by applying the
technology introduced in Ref. [5] to the study of the 3D
critical Oð3Þ model.
Concretely, we apply these methods to study correlation

functions of the lowest-dimension singlet, vector, and
rank-2 scalars in the three-dimensional critical Oð3Þ
model. Using the “cutting surface” algorithm introduced
in Ref. [5], we compute the allowed region for the CFT
data of these leading scalar operators. Our results, together
with comparisons to results from Monte Carlo simula-
tions, are summarized in Table I. We also introduce a new
algorithm and software implementation called tiptop,
which allows us to efficiently test allowed gaps for other
operators across this region. We use it to determine an
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upper bound on the dimension of the lowest-dimension
rank-4 scalar.
The 3D Oð3Þ model is a well-studied renormalization

group (RG) fixed point, and its critical exponents have been
computed using many methods, both theoretical and
experimental. This model describes the critical behavior
of isotropic magnets, such as the Curie transition in
isotropic ferromagnets, and antiferromagnets at the Néel
transition point. Moreover, since disorder corresponds to an
irrelevant perturbation [11], the model also describes
isotropic magnets with quenched disorder.
One of the main open questions about the Oð3Þ model is

its stability under cubic deformations. The majority of
magnets present in nature are indeed not isotropic; this
means that the microscopic Hamiltonian describing the
system in the ultraviolet (UV) is not invariant under the full
Oð3Þ symmetry group, but only under a discrete subgroup,
such as the cubic symmetry group. This implies that
additional terms will be generated at the microscopic level
that are invariant under cubic symmetry but transform in a
nontrivial representation of Oð3Þ. If any of those deforma-
tions turn out to be relevant, the Oð3Þ fixed point would be
unstable and could not be reached without further tuning in
the UV theory. The attractive, stable, fixed point would
instead be the 3D cubic model. Field theory computations
and Monte Carlo simulations have shown that these two
models have very similar critical exponents; hence, if the
cubic perturbation is relevant, it should be very close to

marginality and the RG flow connecting the two theories is
very short. We will come back to this point in Sec. I A 1.
We give a definite answer to the above question: the

Oð3Þ model is unstable under cubic deformations. This
information is encoded in the dimension of the lowest
rank-4 scalar t4, which in the Oð3Þ model satisfies Δt4 < 3.
As we will discuss, this implies that the Oð3Þ model is also
unstable with respect to the biconal fixed point with Z2 ×
Oð2Þ symmetry. The relevance of t4 has been previously
suggested by Monte Carlo [9] and perturbative expansions
[12], but the proximity to marginality and near degeneracy
of the critical exponents between the cubic, biconal, and
Oð3Þ fixed points makes this a subtle question ideal for the
precision and rigor of the conformal bootstrap.

A. Theoretical approaches to the 3D Oð3Þ model

We start by briefly reviewing past approaches to the 3D
Oð3Þ model, including field theory studies, Monte Carlo,
and past results obtained by conformal bootstrap tech-
niques. We also describe related models and motivate the
calculations in this work.
The simplest continuum field theory in the Oð3Þ univer-

sality class is the theory of a scalar field ϕ⃗ transforming in the
fundamental representation of Oð3Þ with the Lagrangian

L ¼ 1

2
j∂ϕ⃗j2 þ 1

2
m2jϕ⃗j2 þ g

4!
jϕ⃗j4: ð1Þ

A large negative mass squared for the scalar induces
spontaneous symmetry breaking and leads to the ordered
phase, while a large positive mass squared leads to the
disordered phase. The critical point is achieved by tuning the
UVmass so that the infrared (IR) correlation length diverges.
The β function of the coupling g has been computed in the ε
expansion and in a fixed-dimension scheme. After a Borel
resummation, both methods predict the existence of an IR
stable fixed point. We will review these results in the next
sections.
The IR limit of the above field theory captures the same

physics as the Heisenberg model. This model consists of a
lattice of classical spins S⃗i, which can take values on a
three-dimensional sphere. The Hamiltonian has only near-
est-neighbor interactions:

H ¼ −J
X
hi;ji

S⃗i · S⃗j þH
X
i

S3i ; ð2Þ

where we also introduced an external magnetic field H in
the third (z) direction. When the parameter J is positive, the
ground state corresponds to all spins aligned, correspond-
ing to ferromagnets. When J < 0, the energy is minimized
when neighboring spins are antialigned, corresponding to
antiferromagnets.
For small J, the line H ¼ 0 separates a ferromagnetic

phase from the paramagnetic one. This line represents a
first-order transition and terminates at a value J ¼ Jc,
where the correlation length of the system diverges, and

TABLE I. Comparison of conformal bootstrap (CB) results
with previous determinations from Monte Carlo (MC) simula-
tions. We denote the leading rank-0, rank-1, rank-2, and rank-4
scalars by s;ϕ; t; t4, respectively. Bold uncertainties correspond
to rigorous intervals from bootstrap bounds. Uncertainties
marked with a � indicate that the value is estimated nonrigorously
by sampling points.

CFT data Method Value References

Δs MC 1.5948(2) [7]
CB 1.5957(55) [8]
CB 1.59488(81) This work

Δϕ MC 0.518920(25) [7]
CB 0.51928(62) [8]
CB 0.518936(67) This work

Δt MC 1.2094(3) [9]
CB 1.2095ð55�Þ [10]
CB 1.20954(32) This work

Δt4 MC 2.987(4) [9]
CB <2.99056 This work

λϕϕs CB 0.5244ð11�Þ [8]
CB 0.524261ð59�Þ This work

λsss CB 0.499ð12�Þ [8]
CB 0.5055ð11�Þ This work

λtts CB 0.98348ð39�Þ This work
λϕϕt CB 0.87451ð22�Þ This work
λttt CB 1.49957ð49�Þ This work
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the transition becomes second order. For J > Jc, there is
only a disordered phase. At J ¼ Jc, the theory in the IR is
in the same universality class of the field theory defined in
Eq. (1). The critical exponents are related to operator
dimensions at the fixed point as

Δϕ ¼ 1þ η

2
; Δs ¼ 3 −

1

ν
; Δt ¼ 3 − Y2: ð3Þ

Here, s ∼ jϕ⃗j2 denotes the lowest-dimension singlet scalar,
while tij ∼ ðϕiϕj − traceÞ denotes the lowest rank-2 scalar.
More generically the exponents Yr are associated to the
dimensions of the lowest rank-r scalar operator [13]. In the
OðNÞ model, the dimension of the lowest traceless sym-
metric operator t describes the instability of the theory
against anisotropic perturbations. Because of this, it plays
an important role in the description of multicritical phe-
nomena. For instance, the critical behavior near a bicritical
point where two critical lines with Oðn1Þ and Oðn2Þ
symmetry meet gives rise to a critical theory with enlarged
Oðn1 þ n2Þ symmetry.
The Hamiltonian (2) is a simplified model of magnetic

interactions, since in a real crystalline solid other inter-
actions are present. For instance, the crystal lattice structure
could give rise to magnetic anisotropy. In cubic-symmetric
lattices this effect produces an interaction localized at each
lattice point i of the form

P
3
k¼1ðSki Þ4. This perturbation

breaks the Oð3Þ global symmetry of the Heisenberg
Hamiltonian, and therefore it cannot be generated by an
RG transformation. As such, the IR fixed point of Eq. (2)
will be described by an Oð3Þ-invariant CFT.

1. OðNÞ vs multicritical models

The Oð3Þ model described above can be generalized to
OðNÞ by promoting ϕ⃗ to anN component field. We can also
consider the closely related cubicmodel, which describes the
continuum limit of the Hamiltonian (2) with the addition of
the OðNÞ breaking term

P
N
k¼1ðSki Þ4. This interaction is

indeed invariant under the symmetries of a hypercubic lattice,
namely, permutations and reflection of the three axes. The
field ϕi, i ¼ 1;…; N, transforms in the fundamental repre-
sentation of the permutation group SN . Moreover, each
component is odd under a reflection of the corresponding
axis. The composition of these transformations gives rise to
the hypercubic symmetry group CN ¼ ZN ⋊ SN .
Compared to Eq. (1), the Lagrangian of the hypercubic

model has an additional term in the potential:

L ¼ 1

2

XN
i¼1

ðð∂μϕiÞ2 þm2ϕ2
i Þ þ

g
4!

�XN
i¼1

ϕ2
i

�2

þ h
4!

XN
i¼1

ϕ4
i :

ð4Þ
The computation of the two β functions βg and βh reveals the
existence of four fixed points [14]: the trivial fixed point
(g ¼ h ¼ 0), the N decoupled copies of the Ising model
(h ≠ 0, g ¼ 0), theOðNÞ fixed point (g ≠ 0, h ¼ 0), and the

cubic model (g ≠ 0, h ≠ 0). It is straightforward to see that
the first two are unstable since the quartic operator para-
metrized by g is relevant in both theories [15]. Determining
which one of the other two fixed points is stable is a more
complicated issue, and it turns out to be N dependent.
One way to rephrase the above question is to notice that

the additional term in Eq. (4) can be rewritten as

XN
i¼1

ϕ4
i ¼

XN
i¼1

tiiii4 þ 3

N þ 2

�XN
i¼1

ϕ2
i

�2

; ð5Þ

where tijkl4 is the traceless symmetric combination of four
fields. The added term in the potential, in OðNÞ notation,
can be written as a combination of a rank-4 field and a
singlet. We know that the singlet is irrelevant at the OðNÞ
fixed point, by definition. Thus, the stability of the OðNÞ
fixed point or the cubic point is linked to the value of the
dimension of the operator t4.
In the Oð2Þ model the operator t4 is irrelevant. A simple

proof of this is to notice that for N ¼ 2, as long as h ≠ 0,
the cubic Lagrangian can be shown to be equivalent to in
the Lagrangian of two decoupled Ising models by a simple
field redefinition. This cubic fixed point coincides with the
decoupled Ising fixed point, which is unstable. Field theory
and Monte Carlo determinations of the dimension of t4
agree with this argument. This is also consistent with the
assumptions made in Ref. [5]. On the contrary, at large N,
the operator t4 is relevant, and the cubic fixed point is
stable. Thus, it is important to know at which value N ¼
Nc > 2 the operator t4 becomes relevant.
A second closely related model is the multicritical point

withOðn1Þ ×Oðn2Þ symmetry [16]. A field theory descrip-
tion is given in terms of two sets of scalar fields ϕ⃗1 and ϕ⃗2

transforming, respectively, in the fundamental representa-
tion of Oðn1Þ and Oðn2Þ, with the Lagrangian

L¼ 1

2

X2
i¼1

j∂μϕ⃗ij2þ
g1
4!
ðjϕ⃗1j2Þ2þ

g2
4!
ðjϕ⃗2j2Þ2þ

h
4
jϕ⃗1j2jϕ⃗2j2;

ð6Þ
where we have already set all of the mass terms to zero. The
analysis of the perturbative β functions shows the existence
of six fixed points. Some we already know: the free one
(gi ¼ 0, h ¼ 0), the twoWilson Fisher fixed points (g1 ≠ 0,
g2 ¼ h ¼ 0 and the same with 1 ↔ 2), the decoupled fixed
point (DFP, gi ≠ 0, h ¼ 0), the symmetry-enhanced
Oðn1 þ n2Þ Wilson Fisher fixed point, and last the biconal
fixed point (BFP). The latter one also has all couplings
nonvanishing, but the global symmetry is not enhanced.
The problem of understanding the stable fixed point can

again be reduced to studying the (ir)relevance of given
deformations in the various CFTs. For instance, by inspect-
ing the dimension of the composite operator built out of the
lowest-dimension scalar singlets in Oðn1Þ and Oðn2Þ
theories, one can conclude that the DFP is stable for any
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N ¼ n1 þ n2 ≥ 4. It is unstable for N ≤ 3, although the
perturbation is close to being marginal [17].
The issue of the stability of OðNÞ vs the BFP is again

related to the dimension of a certain operator. In the
Lagrangian formulation, this is a combination of quartic
interactions. At the OðNÞ fixed point, the RG flow maps
this term in a combination of the second-lowest rank-0 (S0),
second-lowest rank-2 (t02), and leading rank-4 scalar oper-
ator t4. If any of these operators are relevant, then theOðNÞ
fixed point is unstable. While the former two are known to
be always irrelevant for any N, the latter is the object of
investigations. In particular, if Δt4 < 3 for N ¼ 3, then
among the fixed points, the BFP will be the stable one.

2. Field theory results

Both the Oð3Þ model and the cubic model have been
extensively studied using different expansion techniques.
β functions for these models are known up to high order in
both the ϵ expansion and fixed-dimension expansion, and
critical exponents have been computed by Borel resum-
ming the respective series [18]. We report in Table II the
latest results obtained with field theory techniques.
The question of the stability of fixed points has also been

discussed in the literature. As we discussed in the previous
section, this question can be addressed in two ways: by
computing the dimension of the lowest-dimension rank-4
scalar in the Oð3Þ model, or by computing the value Nc at
which the dimension of the second-lowest rank-0 scalar in
the cubic model becomes exactly marginal [25]. Results
from both methods support the conclusion that Oð3Þ is
unstable while the cubic model is stable. The formula for
Nc in the ε expansion is [26,27]

Nc ¼ 4 − 2εþ 2.58847559ε2 − 5.87431189ε3

þ 16.82703902ε4 þO½ε5�; ð7Þ

and after resummation it gives Nc ¼ 2.89ð2Þ.
Analysis of the ε expansion or fixed-dimension pertur-

bative series in the cubic model [23,28,29] shows that the
critical exponents of the two models are very close [30]:

νOð3Þ − νcubic ¼ 0.0003ð3Þ; ηOð3Þ − ηcubic ¼ 0.0001ð1Þ:
ð8Þ

These differences are much smaller than the typical
experimental error (e.g., Ref. [33]). This makes distinguish-
ing the two models experimentally very challenging.
Curiously, the first few terms of the ε expansion of the
critical exponents in Eq. (8) are quite different, and it is
only after the Borel resummation that the two values appear
quite close.
Similarly, the biconal Z2 ×Oð2Þ model and the Oð3Þ

critical exponents are also very close, as the flow connect-
ing the two is driven by the same almost marginal operator
as in the cubic case:

jνOð3Þ − νBFPj≲ 0.001; jηOð3Þ − ηBFPj ¼ 0.0005;

jηOð3Þ − η0BFPj ¼ 0.0001; ð9Þ

where ηBFP and η0BFP correspond to the two relevant order
parameters charged, respectively, under Z2 or Oð2Þ.

3. Monte Carlo results

Using Monte Carlo (MC) techniques, it is possible to
obtain precise estimates of the critical exponents for both
theOð3Þmodel and the cubic model, as well as information
about their stability. Such determinations can also be
improved when combined with finite-size scaling (FSS)
or high-temperature expansion (HT) methods. A precise
determination of the ν and η critical exponents was made
using MC and FSS methods in Ref. [34]. A more precise
analysis combining MC with HT techniques was carried
out in Ref. [35], while a more precise MC and FSS study
was performed in Ref. [9]. A very precise MC and FSS
analysis of an icosahedral model, as well as improved MC
and HT analyses, were recently presented in Ref. [7].
Several other less precise determinations can be found in
Ref. [33]. The dimensions relevant to anisotropic pertur-
bations of rank-2,3,4 were computed in Refs. [9,36] using
MC and FSS methods, and support the conjecture that the
Oð3Þ model is unstable under cubic deformations. These
results are summarized in Table I.

4. The conformal bootstrap

Three-dimensional Oð3Þ models have been studied with
bootstrap methods in a series of papers [8,10,37], first by

TABLE II. Comparison of field theory results using various
techniques: fixed-dimensional expansion in three dimensions
(d ¼ 3 exp), epsilon expansion (ε exp), and high-temperature
expansion (HT). We denote the leading rank-0, rank-1, rank-2,
and rank-4 scalars by s;ϕ; t; t4, respectively. Another estimate of
Δt in the fixed-dimensional expansion can be found in Ref. [19]
in terms of the crossover exponents ϕT ¼ Y2ν, with Y2 ¼ 3 − Δt.
We do not report it here because the errors depend on the value of
ν used.

CFT data Method Value References

Δs d ¼ 3 exp 1.5840(14) [20]
ε exp 1.580(11) [21]
HT 1.603(4) [22]

Δϕ d ¼ 3 exp 0.5175(4) [20]
ε exp 0.5188(23) [21]
HT 0.5180(35) [22]

Δt d ¼ 3 exp 1.20(3) [23]
ε exp 1.210(3) [23]
HT 1.24(2) [24]

Δt4 d ¼ 3 exp 2.987(6) [12]
ε exp 2.997(4) [12]
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considering the correlation function hϕiϕjϕkϕli, where ϕi

is the lowest-dimension scalar transforming in the vector
representation of OðNÞ, and then by also including corre-
lation functions involving the lowest-dimension singlet
scalar s. The most precise determination of the critical
exponents was obtained in Ref. [8], which isolated a three-
dimensional region in the space fΔϕ;Δs;λsss=λϕϕsg¼
f0.51928ð62Þ;1.5957ð55Þ;1.205ð9Þg, under the assump-
tion that ϕi and s are the unique relevant scalar operators in
their representations. In addition, by scanning over this
island, Ref. [8] determined the magnitude of the leading
OPE coefficient to be λϕϕs ¼ 0.5244ð11Þ.
Theories invariant under the cubic symmetry group were

also studied using bootstrap methods using single corre-
lators [38,39] and mixed correlators [40,41]. In particular,
Ref. [39] analyzed the bootstrap equations assuming the
hypercubic symmetry group CN ¼ ZN ⋊ SN and observed
a series of kinks for various values of N. However, the
locations of the kinks in the singlet sector were degenerate
with the OðNÞ kinks [and hence compatible with Eq. (8)],
likely reflecting a symmetry enhancement in the extremal
bootstrap solutions [42–46], while the bounds in other
sectors did not seem to be saturated by the cubic model.
The mixed-correlator analysis of Refs. [40,41] also did not
manage to isolate the cubic model, but rather found
evidence of a new theory, called the “Platonic CFT,” with
cubic symmetry and operator dimensions not matching any
known CFT.
In this work, we study the Oð3Þ model with numerical

bootstrap techniques using a larger system of correlation
functions than before; in addition, toϕi and s, we incorporate
the lowest-dimension rank-2 scalar tij ∼ ϕðiϕjÞ. This setup is
similar to the one leading to the successful results obtained in
Ref. [5] for theOð2Þ model. Following the strategy detailed
in Ref. [5], we first scan over the three operator dimensions
fΔϕ;Δs;Δtg and the OPE coefficients fλsss; λϕϕs; λtts;
λϕϕt; λtttg (or, more precisely, their ratios) and we determine
a three-dimensional island in the space of operator dimen-
sions, along with an associated allowed set of OPE coef-
ficient ratios. Next, we compute upper and lower bounds on
themagnitude λϕϕs, aswell as on the current and stress-tensor
central chargesCJ andCT . Finally, we enlarge the parameter

space to include one more parameter: the dimension of the
lowest rank-4 scalar Δt4. Using the new tiptop algorithm,
whichwedescribe inSec. III,we carve out the allowed region
in the enlarged four-dimensional space and obtain an upper
bound on Δt4 .

B. Structure of this work

The remainder of this work is structured as follows. In
Sec. II we describe the crossing equations and relevant
Oð3Þ representation theory. In Sec. III we describe the new
tiptop algorithm that we use in order to bound Δt4 . In
Sec. IV we describe the results of our numerical bootstrap
calculations, and in Sec. V we describe directions for future
research. Various Appendices describe the code availabil-
ity, software setup, and details about our tensor structures,
and give a list of allowed and disallowed points that we
have computed.

II. THE Oð3Þ MODEL

A. Crossing equations

We begin by describing the representation theory of
Oð3Þ ¼ Z2 × SOð3Þ. We label the irreducible representa-
tions q� of Oð3Þ by the usual SOð3Þ rank-q tensor of
dimension 2qþ 1 for q ∈ 1

2
Z≥0, as well as the Z2 parity�.

Tensor products of these irreps are given by

q1
� ⊗ q2

� ¼ ⨁
q1þq2

qa¼jq1−q2j
qa

þ;

q1
� ⊗ q2

∓ ¼ ⨁
q1þq2

qa¼jq1−q2j
qa

−; ð10Þ

where if q1
� ¼ q2

�, then the even/odd qa are in the
symmetric/antisymmetric part of the tensor product.
The operators Oq�ðxÞ in the irrep q� can be written in

terms of SOð3Þ fundamental indices i ¼ 1, 2, 3 as rank-q

symmetric traceless tensors O
i1…iq
� ðxÞ with the extra Z2

labels �. Four-point functions of scalar operators φ
i1…iq
� ðxÞ

can be expanded in the s channel in terms of conformal
blocks as [47]

hφi1…iq1
�1

ðx1Þφj1…jq2
�2

ðx2Þφk1…kq3
�3

ðx3Þφl1…lq4
�4

ðx4Þi

¼
ðx24x14

ÞΔ12ðx14x13
ÞΔ34

xΔ1þΔ2

12 xΔ3þΔ4

34

X
O

ð−1Þlλφ1φ2Oλφ3φ4OT
R;i1…iq1 ;j1…jq2 ;k1…kq3 ;l1…lq4
R1R2R3R4

gΔ12;Δ34

Δ;l ðu; vÞ; ð11Þ

where Δij ≡ Δi − Δj, the conformal cross ratios u, v are

u≡ x212x
2
34

x213x
2
24

; v≡ x214x
2
23

x213x
2
24

; ð12Þ

and the operators O that appear in both OPEs φ1 × φ2 and
φ3 × φ4 have scaling dimension Δ, spin l, and transform in
an irrepR that appears in both of the tensor productsR1 ⊗
R2 andR3 ⊗ R4. For eachR, the SOð3Þ structure TR can
be constructed using the SOð3Þ Casimir and normalized to
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give consistent OPE coefficients under crossing using the
free theory, as described in Appendix C. The Z2 irrep of O
follows from trivial multiplication of �1 and �2, and so
does not require a structure. If φ1 ¼ φ2 (or φ3 ¼ φ4), then
Bose symmetry requires thatO have only even/odd l forR
in the symmetric/antisymmetric product of R1 ⊗ R2 (or
R3 ⊗ R4).

We are interested in four-point functions of the lowest-
dimension scalar operators transforming in the 0þ, 1−, and
2þ representations, which we will denote (following
Refs. [8,10,37]) as s, ϕ, and t, respectively [48]. These
operators are normalized via their two-point functions as

hsðx1Þsðx2Þi ¼
1

x2Δs
12

; hϕiðx1Þϕjðx2Þi ¼
δij

x
2Δϕ

12

; hti1i2ðx1Þtj1j2ðx2Þi ¼
δi1j1δi2j2

x2Δt
12

; ð13Þ

where x12 ≡ jx1 − x2j and all indices of the same letter should be symmetrized with their trace removed. In Table III we list
the four-point functions of s, ϕ, and t that are allowed by Oð3Þ symmetry [49] and whose s- and t-channel configurations
lead to independent crossing equations, along with the irreps and spins of the operators that appear in the OPE, and the
number of crossing equations that they yield. These four-point functions can be written explicitly as in Eq. (11), where the
explicit SOð3Þ structures TR are computed in Appendix C. Equating each of these s-channel four-point functions with their
respective t channels yields the crossing equations

0 ¼
X

O0þ ;l
þ
ð λssO0þ λϕϕO0þ λttO0þ ÞV⃗0þ;Δ;lþ

0
B@

λssO0þ

λϕϕO0þ

λttO0þ

1
CA

þ
X

O1þ ;l
−

ð λϕϕO1þ λttO1þ ÞV⃗1þ;Δ;l−

� λϕϕO1þ

λttO1þ

�
þ

X
O1− ;l�

ð λtϕO1−
λϕsO1− ÞV⃗1−;Δ;l�

�
λtϕO1−

λϕsO1−

�

þ
X

O2þ ;l
þ
ð λϕϕO2þ λttO2þ λtsO2þ ÞV⃗2þ;Δ;lþ

0
B@

λϕϕO2þ

λttO2þ

λtsO2þ

1
CAþ

X
O2þ ;l

−

λ2tsO2þ
V⃗2þ;Δ;l−

þ
X

O2− ;l�
λ2tϕO2−

V⃗2−;Δ;l� þ
X

O3þ ;l
−

λ2ttO3þ
V⃗3þ;Δ;l− þ

X
O3− ;l�

λ2tϕO3−
V⃗3−;Δ;l� þ

X
O4þ ;l

þ
λ2ttO4þ

V⃗4þ;Δ;lþ ; ð14Þ

TABLE III. Four-point function configurations that give independent crossing equations under equating their s
and t channels, along with whether even or odd spins l� appear for each irrep in each channel, and the number of
crossing equations that each configuration yields.

Correlator s channel t channel Eqs.

hϕϕϕϕi ðlþ; 0þÞ, ðl−; 1þÞ, ðlþ; 2þÞ Same 3
htttti ðlþ; 0þÞ, ðl−; 1þÞ, ðlþ; 2þÞ, ðl−; 3þÞ, ðlþ; 4þÞ Same 5
htϕtϕi ðl�; 1−Þ, ðl�; 2−Þ, ðl�; 3−Þ Same 3
httϕϕi ðlþ; 0þÞ, ðl−; 1þÞ ðl�; 1−Þ, ðl�; 2−Þ, ðl�; 3−Þ 6
hssssi ðlþ; 0þÞ Same 1
hϕsϕsi ðl�; 1−Þ Same 1
htstsi ðl�; 2þÞ Same 1
httssi ðlþ; 0þÞ ðl�; 2þÞ 2
hϕϕssi ðlþ; 0þÞ ðl�; 1−Þ 2
hϕsϕti ðl�; 1−Þ Same 1
hϕϕsti ðlþ; 2þÞ ðl�; 1−Þ 2
hsttti ðl�; 2þÞ Same 1
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where l� denotes which spins appear, and the V’s are
28-dimensional vectors of matrix or scalar crossing equa-
tions that are ordered as in Table III and written in terms of

Fij;kl
∓;Δ;lðu; vÞ ¼ v

ΔkþΔj
2 g

Δij;Δkl

Δ;l ðu; vÞ ∓ u
ΔkþΔj

2 g
Δij;Δkl

Δ;l ðv; uÞ:
ð15Þ

The explicit form of the V’s is given in the attached
Mathematica notebook [50].

B. Ward identities

The OPE coefficients of Jμ and Tμν are constrained by
Ward identities in terms of the two-point coefficients CJ
and CT . In our conventions, we have

λ2OOT ¼ Δ2
O

3CT=Cfree
T

; λ2OOJ ¼
q2O

2CJ=Cfree
J

; ð16Þ

whereCfree
J;T are the two-point coefficients ofJ andT in the free

Oð3Þmodel described in Appendix C. Thus, the contribution
of these operators to the crossing equation can be para-
metrized purely in terms of CT and CJ, together with the
dimensions and charges of the external scalars ϕ; s; t.

III. THE TIPTOP ALGORITHM

While our primary search for the Oð3Þ bootstrap island
will follow the same methods and software tools used for
the Oð2Þ model described in Ref. [5], we will also need to
compute the maximum value of the scaling dimension Δt4
over this island. This employs a new search strategy and
software implementation that we describe in this section.

A. Software and algorithm

tiptop is a program to assist in finding the maximum
value of a coordinate achieved in a region in (N þ 1)-
dimensional space, where testing whether a point is in the
region is computationally expensive. Given a set of inside
(allowed), outside (disallowed), and unknown points,
tiptop generates successive points to narrow down the
boundary of the top of the region. It is meant to be invoked
by a driver that takes these points, computes whether they
are allowed, and then asks for more points to check.
tiptop is freely available (see Appendix A).
The number of dimensions is arbitrary but fixed at

compile time. For concreteness and ease of visualization,
we assume that N þ 1 ¼ 3 for the rest of this discussion,
where the dimensions are Δϕ;Δs, and Δgap. The algorithm
operates unchanged for higher dimensions.
We start with at least one allowed point, a cloud of

disallowed points, a cloud of points that are in-progress,
and a maximum gap (Δmax gap). In-progress points are
points that the driver already knows about and is working

on, but does not yet know if they are allowed. For example,
those calculations may have been submitted as calculations
to an HPC cluster but not yet completed.
We assume that there are no allowed points with

Δgap ≥ Δmax gap. We also assume that islands only shrink
at larger gaps. This allows us to assert that if a point is
disallowed at one gap, it will continue to be disallowed at
larger gaps.
The last assumption is that each N-dimensional island at

a fixed value of Δgap is convex and simply connected, so
each island never becomes a horseshoe or splits into two
pieces. We have observed this behavior for a wide variety of
theories, as long as the theory is well approximated.
The basic outline of the algorithm for generating points

is as follows.
(1) Set Δallowed to the largest Δgap with an allowed point.
(2) Explore parameters at Δallowed to find the size of the

island there. If there are any corners of parameter
space left to map out, return one point from there
(Sec. III B).

(3) If the island at Δallowed is thoroughly mapped out,
generate one point at a higher gap (Sec. III C).

The nongap dimensions (Δϕ;Δs) are represented as
regular floating-point numbers, while the gap dimension
(Δgap) has been rescaled to a 64-bit integer. This reduces
numerical errors where two points at very similar gaps are
mistakenly considered to be at the same gap.
tiptop will not return a point in two cases:
(1) The current gap Δallowed might be fully explored, but

it needs to know the outcome of some in-progress
points to be sure.

(2) There are no valid larger gaps left. For example,
consider the case where Δallowed ¼ 10 000 and
tiptop has ruled out any jumps to Δgap ¼ 10 001.
There are no integers between 10 000 and 10 001, so
the algorithm terminates.

B. Exploring the current gap

1. Rescaling

The islands often have extreme aspect ratios in the
“natural” coordinates. This causes difficulties when explor-
ing an island, so tiptop rescales the coordinates. The first
step in rescaling is to get an overall scale for all of the points
(allowed, disallowed, and in-progress) from all gaps. We
define Δmax as a scalar equal to the largest absolute
coordinate value in all dimensions, as shown in Fig. 1.
For a given Δallowed, we define Δprevious as the largest gap

with allowed points but less than Δallowed. This is usually a
previous value for Δallowed. Figure 2 shows an example of
allowed points at Δallowed, Δprevious, and lower gaps.
Using the m allowed points at Δprevious, we scale the

points using a principle component analysis. Specifically,
we construct the matrix
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M ¼

0
BBBBBBBB@

Δϕ0 Δs0

Δϕ1 Δs1

Δϕ2 Δs2

Δϕ3 Δs3

..

. ..
.

1
CCCCCCCCA
:

We then compute the singular value decomposition of this
matrix,

M ¼ UΣV�; ð17Þ

where Σ is a rectangular m × N diagonal matrix with non-
negative real numbers σi ¼ Σii on the diagonal ranging
from the smallest (σmin) to the largest (σmax).U is anm ×m
unitary matrix, and V is an N × N (here 2 × 2) unitary
matrix.
We define the N × N matrix Ω as the first N rows of Σ.

This is a diagonal matrix with the entries σi, so the inverse
is trivial. Putting this all together, we define the rescaling
matrix

R≡ σminΩ−1VT=ð1.75 × ΔmaxÞ: ð18Þ

It may be that there are so few points at Δprevious that they
are not linearly independent. For example, in the beginning,
there may not be any points at Δprevious. If the ratio between
the smallest (σmin) and largest (σmax) of these singular
values is less than a tolerance (we use 10−8), then we only
scale by Δmax,

R≡ I=ð1.75 × ΔmaxÞ; ð19Þ

where I is the identity.
Everything is scaled by the largest coordinate value Δmax

to guarantee that all points are mapped into a box with
extents ð−1; 1Þ in every dimension. The factor of 1.75
(about

ffiffiffi
3

p
) is to ensure that all points will fit into the unit

box even after rotation.
The transformation has the effect of a rotation and then

rescaling of the rotated coordinates, so the allowed region
remains convex. However, the allowed points should out-
line a more circular shape than the extended ellipse we
started with, as shown in Fig. 3.
One concern with this rescaling algorithm is that it

weighs dense regions with more points more than equiv-
alently sized regions with fewer points. So it may not
produce an optimal transform. In practice, the later steps
spread out the points very evenly, so this concern turns out
not to be a problem in practice.

2. Adaptively meshing the box

While the distribution of points in Fig. 3 no longer has
extreme aspect ratios, the points are still clustered in a small
region of the unit box.
Based on the assumption that the allowed island only

shrinks as the gap increases, we now only consider three
sets of points: allowed at the current Δallowed, disallowed at

FIG. 2. Different types of allowed points. Only the points
allowed at Δgap ¼ Δprevious are used for rescaling.

FIG. 3. Points from Fig. 1 after rescaling.

FIG. 1. Max coordinates Δmax for a collection of allowed,
disallowed, and in-progress points.
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Δgap ≤ Δallowed, and in-progress. For the rest of this step,
we will be treating in-progress and disallowed points
identically.
The strategy is to place points in regions that are empty.

To quantify this emptiness, we create a hierarchy of meshes
covering all of the points. Empty regions are then cells that
have no points.
The mesh hierarchy starts with a single coarse cell

covering the entire unit box. The next level has 2N cells
(4 for our example), the level after that has 22N cells, and so
on. This subdivision continues up to our predefined limit of
47 levels. This implies a relative minimum cell width of
2−47. This is quite small, but still significantly larger than
the minimum resolution of an IEEE-754 double-precision
number (2−53). This helps reduce errors as points get
rotated and scaled.
Next, we compute the coordinate extents of the allowed

points in the transformed frame. In the transformed
coordinates discussed in Sec. III B 2, the coordinate extent
in a given direction is given by the difference between the
smallest and largest horizontal coordinates for the allowed
points. This gives us a list of N numbers. In Fig. 3, these
extents are about 0.2 in both the vertical and horizontal
directions.
We then define a minimum cell size as the minimum of

theseN extents multiplied by a fixed fraction fcutoff . We use
fcutoff ¼ 2, which is deliberately very coarse. This tends to
double the size of the allowed region at each step. Also, if
fcutoff is too small, then the algorithm will completely fill in
internal regions, even though, by assumption, the internal
spaces do not need to be checked. This minimum cell size
corresponds to a level lmax in the hierarchy of meshes.
Just after a jump to a higher gap, there is only one

allowed point at Δallowed. In this case, the extents are zero,
so we set lmax ¼ 47, the finest level.
Restricting our search to cells at level l < lmax, we look

for any empty cells adjacent to the allowed points. There
will, in general, be multiple empty cells at multiple levels.
We choose the largest empty cell.
If there are multiple candidates, we choose the cell

adjacent to the first allowed point given to tiptop. So
when driving tiptop, we always list the allowed points in
the same order. If there are multiple candidates for a single
point, then we select a new cell in the order

ðþ;þÞ; ð−;−Þ; ðþ;−Þ; ð−;þÞ:

We only check diagonals, so points get laid out in a
checkerboard pattern, as in Fig. 4.
The new point is not placed at the center of the new cell,

but rather simply offset from the existing allowed point. So
if the allowed point is in a corner of a cell, the new point
will be in the same corner of the empty cell.
In practice, the implementation does not explicitly create

the mesh at all levels. Rather, the points are stored in a tree.

A node in the tree can have up to 2N leaves, but leaves are
only created if there is a point in that leaf. Adding a point to
the tree adds it at all levels, so that it is easy to determine if a
cell is occupied at any level.
The observed behavior of this algorithm is that it quickly

finds a rough estimate for the boundary between allowed
and disallowed, but can spend a lot of effort finding the
exact boundaries. In-progress points are treated as disal-
lowed, so too many in-progress points will lead to extra
work. In practice, we have up to 16 points in-progress at
any one time.

C. Jumping to a larger gap

If the previous section does not yield a new point, and
there are no in-progress points at that gap, then we try to
jump to a larger gap.
We start by rescaling the points as in Sec. III B 1. We

draw a coordinate box around all of the points allowed at
Δallowed and shrink it by a factor of 2. Then, we find the
largest gap Δceiling that can accommodate this box without
containing any disallowed or in-progress points with
Δgap ≤ Δceiling. At the beginning, there are no disallowed
points at large gaps, so Δceiling ¼ Δmax gap.
Defining Δdiff ≡ Δceiling − Δallowed, we return the center

of the box at Δgap ¼ Δallowed þ Δdiff=2, thus bisecting the
range of allowed gaps. This underscores the need for a good
estimate of Δmax gap. If the estimate is too high, then the
algorithm will recommend too many points that are far
too large.
One thing to note is that when running with multiple in-

progress points, each subsequent point will be at a smaller
Δgap. So if there are three points running concurrently, they
will be placed at Δallowed þ Δdiff=2, Δallowed þ Δdiff=4, and
Δallowed þ Δdiff=8. If the first point at Δallowed þ Δdiff=2

FIG. 4. Points from Fig. 3 with an adapted mesh. Points
that are allowed at Δgap < Δallowed have been removed. The
blue spiral indicates an empty candidate cell. The other empty
cells are not diagonal from an allowed cell, so they are not
considered.
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succeeds, then any effort towards verifying the latter two
points will be wasted.
This partition procedure means that a rough estimate for

the upper bound is Δceiling. This assumes both that the
island itself is convex and that the allowed region near the
tip of the allowed region is convex, as in Fig. 7.
Overall, we have found this approach to work reasonably

well. More importantly, it is very robust. It is very easy to
be too clever, resulting in odd failures.

IV. RESULTS

A. Dimension bounds with OPE scans

Next we present our conformal bootstrap island com-
puted using SDPB [52,53], along with its comparison with
various Monte Carlo results. Computing the conformal
bootstrap island requires scanning over the three operator
dimensions fΔϕ;Δs;Δtg using the Delaunay search algo-
rithm described in Ref. [5], and for each point using the
“cutting surface” algorithm presented in Ref. [5] to decide
if there exists an allowed point in the space of OPE

coefficient ratios fλsss
λϕϕs

; λtts
λϕϕs

; λϕϕtλϕϕs
; λttt
λϕϕs

g.
When computing the island we make the following

assumptions about the spectrum unless stated otherwise.
We assume that ϕ, s, and t are the only relevant operators in
their respective symmetry representations, so that
Δϕ0;s0;t0 ≥ 3. In addition, we assume that the leading
rank-4 scalar has a dimension satisfying Δt4 ≥ 2. We
assume an Oð3Þ current with ΔJ ¼ 2 and stress tensor
with ΔT ¼ 3, with coefficients satisfying the Ward identity
constraints. We also impose a twist gap above them, as well
as in all other sectors not mentioned above, of size 10−6.
In Fig. 5 we show the conformal bootstrap island we

have computed at Λ ¼ 43 using these assumptions,

compared to the Monte Carlo results of Refs. [7,9]. In
Fig. 6 we show various 2D projections of the bootstrap
island. In Appendix D we give the full set of allowed and
disallowed points we computed at Λ ¼ 43, along with
Fig. 9 which shows the convergence of the allowed points
as a function of Λ after performing an affine transformation
to make the allowed regions roughly spherical.
In these plots we show our best determination of the

allowed region at a given Λ, constructed by computing a
Delaunay triangulation of the tested points, choosing
triangles that contain both allowed and disallowed points,
and plotting the convex hull of the points that are midway
between the allowed and disallowed vertices in these
triangles. At Λ ¼ 43, this “best-fit” region gives

Δϕ ¼ 0.518942ð51�Þ;
Δs ¼ 1.59489ð59�Þ;
Δt ¼ 1.20954ð23�Þ: ð20Þ

A more rigorous determination can be made by taking the
convex hull of the disallowed points in these boundary
Delaunay triangles. This region gives the rigorous error
bars

Δϕ ¼ 0.518936ð67Þ; ð21Þ

Δs ¼ 1.59488ð81Þ; ð22Þ

Δt ¼ 1.20954ð32Þ; ð23Þ

which we have quoted in Table I.
The allowed points at Λ ¼ 43 are associated with OPE

coefficient ratios which live in the ranges [54]

λsss
λϕϕs

¼ 0.9643ð20�Þ;

λtts
λϕϕs

¼ 1.87593ð53�Þ;

λϕϕt
λϕϕs

¼ 1.66808ð23�Þ;

λttt
λϕϕs

¼ 2.86034ð61�Þ: ð24Þ

These should be viewed as an approximation to the full
allowed region of OPE coefficients, which may be slightly
larger.

B. Central charges and λϕϕs
Next, we compute upper and lower bounds on the

magnitude of the OPE coefficient λϕϕs, the central charge
CT , and the current central charge CJ. We compute these
bounds over a small sample of points in our allowed region

FIG. 5. The Λ ¼ 43 conformal bootstrap dimension island
(black) compared with the Monte Carlo results [7,9] (green).
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FIG. 6. Comparison between the conformal bootstrap islands at Λ ¼ 19, 27, 35, 43 projected to the fΔϕ;Δsg, fΔϕ;Δtg, and fΔs;Δtg
planes and the Monte Carlo results of Refs. [7,9].
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so the results will be inherently nonrigorous. However, we
believe that this treatment gives reasonable estimates for
these quantities that are more precise than previous results.
The strategy is similar to the method we employed in

Ref. [5]. We take seven primal points in the Λ ¼ 43 island,
consisting of the scaling dimensions and allowed OPE
coefficients. The points are chosen to be sufficiently
symmetrized and sparse across the Λ ¼ 43 island we have
computed. For each of these points, we extremize CT , CJ,
and the external OPE norm parametrized by λϕϕs to obtain
upper and lower bounds. This calculation was limited to
Λ ¼ 35 due to our available computational resources. The
data points and SDPB parameters we used are summarized
in Tables VIII and V, respectively.
There is an important comment we want to make about

the upper bound computation on CT and CJ (a similar
comment was made in Ref. [5]). For computing upper
bounds on CT and CJ, we have to assume a gap ΔT 0=J0

above the unitarity bound for the next operators in the T or
J sectors. Note that this gap was not assumed in our OPE
scan, so this extra constraint might turn an allowed point
into a disallowed point. If we do not have such a gap, the
upper bound is loose and may not give reasonable results.
On the other hand, large gaps can make SDPB unable to
find a solution.
In Table VIII, we summarize the gaps ΔT 0=J0 we assume

in the upper bound calculations. From spectrum determi-
nations using the extremal functional method (see
Refs. [55,56]), we have noticed that a gap ΔT 0=J0 ¼ ΔT=J þ
1 above T and J is generally favored. We were able to
compute bounds with this gap for three of the points, but for
the other four we could not find solutions. For those points,
we adopted the weaker assumption Δext;TðJÞ ¼ ΔT=J þ 0.1.
Following this procedure, we obtain our estimates of CT ,

CJ, and λϕϕs in the critical Oð3Þ model,

CJ=Cfree
J ¼ 0.90632ð16�Þ;

CT=Cfree
T ¼ 0.944524ð28�Þ;

λϕϕs ¼ 0.524261ð59�Þ: ð25Þ

These results agree with and are more precise than previous
determinations of these quantities (see Refs. [8,10,37]).

C. Upper bound on Δt4

Our last result is the maximum value of the rank-4 scalar
dimension Δt4 . In conjunction with the tiptop algorithm
described in Sec. III, we computed points at Λ ¼ 19, 27,
and 35. Allowed points at lower values of Λ were used to
initiate the search at larger values of Λ. Figure 7 shows a
projection of a subset of the 1311 disallowed points and
172 allowed points at Λ ¼ 35, and Fig. 8 shows how the
island shrinks as we approach the maximum Δt4 .

FIG. 7. Two-dimensional projection of the results of the
tiptop search at Λ ¼ 35. The x coordinate is related to the
three scalar dimensions via Eq. (D1). Projections in y and z look
similar. We have superimposed a convex hull encompassing the
allowed points on top, obscuring some of the disallowed points.
We can see the behavior of the tiptop algorithm, exploring the
island at one Δt4 before jumping to a larger Δt4. The jumps
become progressively smaller, indicating convergence. We com-
puted 16 points simultaneously, and this calculation took several
months during which the tiptop algorithm was being devel-
oped. So the points reflect occasional crashes and small ineffi-
ciencies in the set of computed points.

FIG. 8. Three-dimensional islands of allowed points at different
Δt4 at Λ ¼ 35, demonstrating how the islands shrink as we
approach the maximum Δt4 . The x, y, and z coordinates are
related to the three scalar dimensions via Eq. (D1). The values for
Δt4 , from the largest region to smallest, are 2.989, 2.99025, and
2.9905, with smaller values including all allowed points at larger
values.
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The largest allowed value of Δt4 was a single point at
2.99052 with the scaling dimensions fΔϕ;Δs;Δtg ¼
f0.518962; 1.59527; 1.20969g. The limit from Δceiling

(see Sec. III C) is

Δt4 < 2.99056: ð26Þ
This implies that the leading rank-4 tensor in the critical
Oð3Þ model is relevant, in agreement with other studies.

V. FUTURE DIRECTIONS

In this work we have applied the methods developed in
Refs. [5,6] for large-scale bootstrap problems to the critical
Oð3Þ model in three dimensions. This has led to results for
scaling dimensions which are competitive with the most
precise Monte Carlo simulations, and results for OPE
coefficients which are significantly more precise than
previous determinations. In addition, we have computed
a rigorous bound on the scaling dimension of the leading
rank-4 tensor, showing that it is relevant. Thus, any Oð3Þ
system with cubic anisotropy should flow to the cubic fixed
point (discussed in Sec. I A 1) instead of the Heisenberg
fixed point.
An interesting direction for future research will be the

application of conformal perturbation theory to this flow. The
cubicmodel can be reached by perturbing theOð3ÞCFTwith
the operatorX ≡P

3
i¼1 t

iiii
4 , which breaksOð3Þ symmetry to

the discrete symmetryZ3 ⋊ S3. From theOð3Þ point of view,
this term is a certain component of the Oð3Þ rank-4 tensor
with dimension Δt4 ≃ 2.99. On the other hand, at the cubic
fixed point conformal perturbation theory predicts
ΔX ≃ 3.01. Because this term is marginally irrelevant with
δ ¼ ΔX − 3 ≃ 0.01, if we want to reach the cubic fixed point
by a Monte Carlo simulation, the size of the lattice has to be
around the order of 21=δ, which is impractical to implement.
An alternative way to estimate the cubic CFT data is

using conformal perturbation theory. We start with the
perturbed action S ¼ SOð3Þ þ g

R
d3xX. Using the formal-

ism in Ref. [57], one finds the beta function to be

βg ¼ −δg −
vol Sd−1

2
λXXXg2: ð27Þ

The dimension of an operator O at the cubic fixed point is
then given at linear order in δ byΔO ¼ Δ0 þ 2δλOOX=λXXX,
where Δ0 is the dimension of the corresponding operator in
the Oð3Þ CFT. Specifically, one obtains ΔX ¼ Δ0 þ 2δ,
which justifies the estimate ΔX ≃ 3.01.
The OPE coefficient λXXX is proportional to λt4t4t4 .

Unfortunately, using the setup of the present paper, we
do not have access to λt4t4t4 . To access λt4t4t4 , one needs to
bootstrap all four-point functions involving fϕ; s; t; t4g,
which is a concrete task for future research. Here we can
estimate that the correction to Δt at the cubic fixed point is
of order δ ¼ 0.01. On the other hand, the corrections to

Δϕ;Δs start at order δ2 ≃ 0.0001 since λϕϕt4 ¼ λsst4 ¼ 0.
Note that in this work the error bar for Δt is much smaller
than δ. Therefore, a careful study of the fϕ; s; t; t4g system
should yield a solid prediction for the correction toΔt in the
cubic model.
Of course, it will also be interesting to understand how to

isolate the cubic fixed point more directly using the
conformal bootstrap, perhaps using a larger system of
correlators than was considered in Refs. [38,40,41]. One
can also straightforwardly apply the large-scale bootstrap
techniques we have developed to other OðNÞ models, as
well as to 3D CFTs with fermions (using the newly
developed software [58]) or to study conserved currents
[59–61]. Using these methods, one can also continue
exploring larger systems of correlators that may help us
to isolate CFTs containing gauge fields, such as 3D QED
[62,63] and 4D QCD.
Now that we have precisely isolated the Oð3Þ model, we

are also in position to do amore detailed studyof its low-twist
trajectories of operators as a function of spin, which can be
compared to analytical calculations using the Lorentzian
inversion formula [64,65], following the approach of
Refs. [6,66,67]. Such analytical techniques can also be used
to estimate the leading Regge intercepts and related
Lorentzian data of the Oð3Þ model. In future work it will
also be important to understand how to better incorporate
insights from the analytical bootstrap, such as our precise
understanding of the large-spin asymptotics, into making
large-scale numerical methods even more powerful.
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APPENDIX A: CODE AVAILABILITY

All code used in this work is available online. This
includes the various codes described in Appendix A of
Ref. [5], as well as tiptop, available at https://gitlab.com/
bootstrapcollaboration/tiptop. tiptop is implemented in
C++17 and uses the Boost [68], Eigen [69], and VTK [70]
libraries. The version used in this paper has the Git
commit hash23774017b8726699bd838cf138a65e2
9405f0907.

APPENDIX B: SOFTWARE SETUP AND
PARAMETERS

The computations of theOð3Þmodel islands described in
Sec. IVA with Λ ¼ 19, 27 were performed on the Caltech

HPC Cluster, the Yale Grace Cluster, and the EPFL SCITAS
cluster. For the computations with Λ ¼ 35, 43, we tested
possible primal points using the Caltech and Yale clusters.
After finding a few initial primal points, the main Delaunay
triangulation search was performed on the XSEDE Comet
Cluster [71] at the San Diego Supercomputing Center
through allocation PHY190023. Together, the computations
of the Λ ¼ 35 island, the Λ ¼ 43 island, and the Λ ¼ 35

tiptop search took 2.94M CPU hours on the Comet
Cluster. The optimization computations of Sec. IV B were
performed atΛ ¼ 35 and completed on the Caltech and Yale
clusters.
We used the following choices for the set of spins at each

value of Λ:

S19 ¼ f0;…; 26g ∪ f49; 50g;
S27 ¼ f0;…; 31g ∪ f49; 50g;
S35 ¼ f0;…; 44g ∪ f47; 48; 51; 52; 55; 56; 59; 60;

63; 64; 67; 68g;
S43 ¼ f0;…; 64g ∪ f67; 68; 71; 72; 75; 76; 79; 80;

83; 84; 87; 88g: ðB1Þ

The SDPB parameters used in our computations are given
in Tables IV and V.

APPENDIX C: TENSOR STRUCTURES

In this Appendix we compute the SOð3Þ tensor struc-
tures TR that appear in the conformal block expansions
(11) for the four-point functions listed in Table III. We start
by defining a basis of tensors for each configuration in
Table III:

TABLE IV. Parameters used for the computations of the conformal bootstrap islands in Sec. IVA. The sets SΛ are
defined in Eq. (B1).

Λ 19 27 35 43
ckeptPoleOrder 14 14 32 40
order 60 60 80 90
spins S19 S27 S35 S43
precision 768 768 960 1024
dualityGapThreshold 10−30 10−30 10−30 10−75

primalErrorThreshold 10−200 10−200 10−200 10−200

dualErrorThreshold 10−200 10−200 10−200 10−200

initialMatrixScalePrimal 1040 1050 1050 1060

initialMatrixScaleDual 1040 1050 1050 1060

feasibleCenteringParameter 0.1 0.1 0.1 0.1
infeasibleCenteringParameter 0.3 0.3 0.3 0.3
stepLengthReduction 0.7 0.7 0.7 0.7
maxComplementarity 10100 10130 10160 10200

TABLE V. Parameters used for the optimization computations
in Sec. IV B. The set S35 is defined in Eq. (B1).

Λ 35
keptPoleOrder 30
order 60
spins S35
precision 768
dualityGapThreshold 10−20

primalErrorThreshold 10−50

dualErrorThreshold 10−60

initialMatrixScalePrimal 1050

initialMatrixScaleDual 1050

feasibleCenteringParameter 0.1
infeasibleCenteringParameter 0.3
stepLengthReduction 0.7
maxComplementarity 10160
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BI
ϕϕϕϕ ¼

0
B@

δijδkl

δikδjl

δilδjk

1
CA;

BI
tttt ¼

0
BBBBBB@

δi1j1δi2j2δk1l1δk2l2
δi1k1δi2k2δj1l1δj2l2
δi1l1δi2l2δk1j1δk2j2
δi1j1δi2k2δk1l1δj2l2
δi1j1δi2l1δj2k1δk2l2

1
CCCCCCA
;

BI
tϕtϕ ¼

0
B@

δi1k1δi2k2δj1l1
δi1j1δi2k2δk1l1
δi1l1δi2k2δj1k1

1
CA;

BI
ttϕϕ ¼

0
B@

δi1j1δi2j2δk1l1
δi1k1δi2j2δj1l1
δi1l1δi2j2δk1j1

1
CA;

Bssss ¼ 1;

Bϕsϕs ¼ δik;

Btsts ¼ δi1k1δi2k2 ;

Bttss ¼ δi1j1δi2j2 ;

Bϕϕss ¼ δij;

Bϕsϕt ¼ δil1δkl2 ;

Bϕϕst ¼ δil1δjl2 ;

Bsttt ¼ δj1k1δj2l1δk2l2 ; ðC1Þ

where the indices for each of the four operators are labeled
as i, j, k, l, respectively, all indices with the same letter
should be symmetrized with the trace removed, and for
simplicity we suppress the indices on the left-hand side. For
the first four configurations with nontrivial bases, we can
find the tensor structure using the rank-2 SOð3Þ Casimir C
acting on a basis B with n, m number of i, j indices,
respectively, as

CBI ¼
X
J

MIJBJ;

C≡ ðGi1
i0
1
⊕ … ⊕ Gin

i0n
⊕ Gj1

j0
1
⊕ … ⊕ Gjm

j0m
Þ2; ðC2Þ

where G are the usual SOð3Þ generators. The K eigenvec-
tors ðTKÞJ of MIJ are eigenvectors of C:

ðCTKÞI ¼
X
J

MIJðTKÞJ ¼ cKðTKÞI; ðC3Þ

where the eigenvalue c for a rank-q SOð3Þ irrep is
qðqþ 1Þ, which allows us to identify each TK with an
irrep. Up to an overall normalization, these TK are then the
desired tensor structures. For the last eight configurations

there is only one basis element, so the tensor structure is
simply that element also up to an overall normalization.
The final list of tensor structures is then

hϕϕϕϕi∶ T0þ
1−1−1−1− ¼ B1

ϕϕϕϕ;

T1þ
1−1−1−1− ¼ B2

ϕϕϕϕ − B3
ϕϕϕϕ;

T2þ
1−1−1−1− ¼ B2

ϕϕϕϕ þ B3
ϕϕϕϕ −

2

3
B1
ϕϕϕϕ;

htttti∶ T0þ
2þ2þ2þ2þ ¼ B1

tttt;

T1þ
2þ2þ2þ2þ ¼ B4

tttt − B5
tttt;

T2þ
2þ2þ2þ2þ ¼ B4

tttt þB5
tttt −

2

3
B1
tttt;

T3þ
2þ2þ2þ2þ ¼ B5

tttt − B4
tttt −

5

4
B3
tttt þ

5

4
B2
tttt;

T4þ
2þ2þ2þ2þ ¼ −B5

tttt − B4
tttt þ

7

12
B3
tttt

þ 7

12
B2
tttt þ

13

30
B1
tttt;

htϕtϕi; hϕttϕi∶ T1−
2þ1−2þ1− ¼ 2B2

tϕtϕ;

T2−
2þ1−2þ1− ¼ −4B1

tϕtϕ þ 2B2
tϕtϕ þ 4B3

tϕtϕ;

T3−
2þ1−2þ1− ¼ 10B1

tϕtϕ − 8B2
tϕtϕ þ 20B3

tϕtϕ;

httϕϕi∶ T0þ
2þ2þ1−1− ¼ B1

ttϕϕ;

T1þ
2þ2þ1−1− ¼ B2

ttϕϕ − B3
ttϕϕ;

T2þ
2þ2þ1−1− ¼ B2

ttϕϕ þB3
ttϕϕ −

2

3
B1
ttϕϕ;

hssssi∶ T0þ
0þ0þ0þ0þ ¼ Bssss;

hϕsϕsi; hsϕϕsi∶ T1−
1−0þ1−2þ ¼ Bϕsϕs;

htstsi; hsttsi∶ T2þ
2þ0þ2þ0þ ¼ Btsts;

httssi∶ T0þ
2þ2þ0þ0þ ¼ Bttss;

hϕϕssi∶ T0þ
1−1−0þ0þ ¼ Bϕϕss;

hϕsϕti; hsϕϕti∶ T1−
1−0þ1−2þ ¼

ffiffiffi
2

p
Bϕsϕt;

hϕϕsti∶ T2þ
1−1−0þ2þ ¼

ffiffiffi
2

p
Bϕϕst;

hsttti; httsti∶ T2þ
0þ2þ2þ2þ ¼

ffiffiffi
2

p
Bsttt: ðC4Þ

The overall normalization of these tensor structures has
been chosen so that the OPE coefficients λφ1φ2O and λφ3φ4O

in Eq. (11) are consistent under permutation of their
subscripts. This can be checked using the free theory,
where we have the operators

sðxÞ≡ 1ffiffiffi
6

p ϕiðxÞϕiðxÞ; tijðxÞ≡ 1ffiffiffi
2

p ϕiðxÞϕjðxÞ − trace;

ðC5Þ
which have been normalized consistent with the two-point
function normalization in Eq. (13). We can then compute
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all of the four-point functions in Table III using Wick
contractions and expand in blocks as in Eq. (11) using the
tensor structures in Eq. (C4) to verify this consistency [72].

APPENDIX D: COMPUTED POINTS

In Table VI we list the 38 primal points we have
computed in the Λ ¼ 43 island and in Table VII we list
the 270 dual points we computed at Λ ¼ 43. In Table VIII
we list the seven primal points we use for the optimization
computations described in Sec. IV B.

In Fig. 9 we show a plot of the allowed regions at
Λ ¼ 19, 27, 35, 43 after performing an affine transforma-
tion which makes theΛ ¼ 19 region roughly spherical. The
precise affine transformation is given by

x ¼ 228.67 − 107.177Δs − 43.8661Δt − 8.77302Δϕ;

y ¼ −1061.39 − 694.406Δs þ 1612.44Δt þ 420.885Δϕ;

z ¼ 2590.87 − 221.685Δs þ 2629.52Δt − 10439.6Δϕ:

ðD1Þ

TABLE VI. Allowed points in the Λ ¼ 43 island.

Δϕ Δs Δt
λsss
λϕϕs

λtts
λϕϕs

λϕϕt
λϕϕs

λttt
λϕϕs

0.5189783882 1.5953612741 1.2097311776 0.9658557781 1.8764272526 1.6683150562 2.8608280295
0.5189583670 1.5949959168 1.2096121876 0.9637866930 1.8759071995 1.6681321958 2.8604010933
0.5189461401 1.5949711389 1.2095536502 0.9650503920 1.8758868056 1.6680723076 2.8601976693
0.5189272852 1.5948074081 1.2094888929 0.9652812111 1.8758487781 1.6680235398 2.8603061675
0.5189613339 1.5952564268 1.2096662222 0.9662461846 1.8763712143 1.6682528867 2.8607475247
0.5189198114 1.5946719225 1.2094285955 0.9639220579 1.8755694851 1.6679344313 2.8599409571
0.5189172850 1.5946165394 1.2094312995 0.9634877179 1.8756194443 1.6679524398 2.8599835329
0.5189500473 1.5951798121 1.2096307308 0.9661780974 1.8763286685 1.6682360908 2.8607267382
0.5189649901 1.5951958587 1.2096821376 0.9647455098 1.8763265571 1.6682560921 2.8608385887
0.5189431822 1.5950799657 1.2095793546 0.9658559545 1.8761787760 1.6681550694 2.8604066434
0.5189526027 1.5949370220 1.2096034154 0.9633651701 1.8758925982 1.6681462865 2.8605568949
0.5189301757 1.5949315300 1.2095370407 0.9653175705 1.8761152596 1.6681181238 2.8605816730
0.5189168372 1.5946844827 1.2094296026 0.9642949506 1.8756631385 1.6679573604 2.8599418324
0.5189483062 1.5950509260 1.2095711164 0.9654214538 1.8760347497 1.6681115766 2.8602582414
0.5189153515 1.5946825124 1.2094352034 0.9643765341 1.8757126829 1.6679642216 2.8601068005
0.5189440155 1.5949715807 1.2095885922 0.9644538043 1.8760784038 1.6681817119 2.8607365030
0.5189150284 1.5945099455 1.2094139921 0.9622684128 1.8754680443 1.6679176085 2.8599290431
0.5189347282 1.5947841912 1.2094914029 0.9639498317 1.8756547299 1.6679896459 2.8599829650
0.5189802791 1.5952998277 1.2097251950 0.9649312284 1.8762516023 1.6682831892 2.8609105511
0.5189248611 1.5948368279 1.2094835818 0.9649249785 1.8759055628 1.6680304724 2.8600899846
0.5189306747 1.5946954535 1.2094799696 0.9630209667 1.8756016368 1.6679818979 2.8600556364
0.5189217812 1.5947698290 1.2094894198 0.9646493947 1.8759369337 1.6680732162 2.8603682382
0.5189121284 1.5945494559 1.2093932170 0.9632128469 1.8754599512 1.6678971836 2.8597295069
0.5189738261 1.5953116389 1.2096932265 0.9658322350 1.8762663003 1.6682491526 2.8606277206
0.5189145348 1.5947341024 1.2094532479 0.9650247104 1.8759430722 1.6680183536 2.8602402387
0.5189014384 1.5944048949 1.2093555400 0.9627737264 1.8753951336 1.6678520403 2.8597952050
0.5189305457 1.5947604700 1.2094652572 0.9640748832 1.8756103384 1.6679623986 2.8598809964
0.5189623990 1.5950949062 1.2096629593 0.9640070854 1.8761554772 1.6682313428 2.8608189553
0.5189460789 1.5950582403 1.2095808918 0.9654253734 1.8761261589 1.6681362224 2.8605045135
0.5189301505 1.5949452685 1.2095278745 0.9657542568 1.8760854806 1.6681017321 2.8604962327
0.5189685635 1.5953320391 1.2097096529 0.9660028358 1.8764583565 1.6683135549 2.8609575117
0.5189497511 1.5949209137 1.2095606097 0.9638109344 1.8758202300 1.6680711351 2.8601899822
0.5189337664 1.5947155621 1.2095107201 0.9623655424 1.8757184969 1.6680386790 2.8602450223
0.5189453714 1.5951023898 1.2096147301 0.9659065454 1.8763651079 1.6682206940 2.8607919521
0.5189862601 1.5954028918 1.2097515683 0.9654844905 1.8763339257 1.6683105873 2.8607881451
0.5189476979 1.5949533896 1.2096010827 0.9637175659 1.8760304271 1.6681861098 2.8606729585
0.5189346015 1.5950348003 1.2095678602 0.9659534043 1.8763062992 1.6681684361 2.8606248190
0.5189598320 1.5951484795 1.2096664021 0.9647455098 1.8763265571 1.6682560921 2.8608385887
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TABLE VII. Disallowed points computed at Λ ¼ 43.

Δϕ Δs Δt

0.5187966798 1.5921850401 1.2086228804
0.5189025751 1.5940361780 1.2092959408
0.5189114364 1.5946504985 1.2093872462
0.5189189599 1.5941920882 1.2093299741
0.5189288736 1.5938535802 1.2091078506
0.5186945881 1.5924442671 1.2084245865
0.5187373587 1.5921586352 1.2084312743
0.5187762022 1.5918820333 1.2086546805
0.5187826937 1.5914255278 1.2085310641
0.5188353864 1.5934222782 1.2090020249
0.5188362222 1.5935429810 1.2089818386
0.5188416799 1.5933781659 1.2089481869
0.5188478354 1.5938857812 1.2091362879
0.5188535569 1.5932852248 1.2088214042
0.5188541349 1.5932916366 1.2089652272
0.5188547707 1.5939362783 1.2090312421
0.5188571369 1.5930390946 1.2090569647
0.5188574085 1.5927203987 1.2089917699
0.5188612075 1.5939110280 1.2091455740
0.5188615055 1.5937167137 1.2090909898
0.5188768144 1.5938159784 1.2090216235
0.5188830465 1.5941282784 1.2092443533
0.5188846453 1.5942465723 1.2092589387
0.5188859294 1.5941864473 1.2092761662
0.5188862012 1.5941115729 1.2092255065
0.5188873828 1.5941812791 1.2092506161
0.5188874108 1.5939452740 1.2091859961
0.5188875107 1.5943066473 1.2093007022
0.5188888052 1.5938613363 1.2092121233
0.5188955343 1.5940894591 1.2092127567
0.5188965815 1.5941441764 1.2092975081
0.5189023610 1.5945285422 1.2093834019
0.5189038211 1.5934538031 1.2090700892
0.5189054986 1.5948072619 1.2094576026
0.5189068088 1.5944337603 1.2092909633
0.5189083086 1.5946728229 1.2094131489
0.5189105727 1.5946476632 1.2094486445
0.5189114164 1.5934097919 1.2091414652
0.5189153608 1.5942042741 1.2092982492
0.5189179786 1.5948735383 1.2094980056
0.5189191601 1.5945565549 1.2094640368
0.5189241090 1.5941509824 1.2094002783
0.5189333103 1.5939599259 1.2094523297
0.5189333930 1.5943501521 1.2094232463
0.5189346097 1.5944851028 1.2095740716
0.5189237305 1.5944279251 1.2093905391
0.5188043639 1.5926034786 1.2087905625
0.5188819788 1.5940503654 1.2091664050
0.5189348544 1.5939659673 1.2093605905
0.5189331311 1.5945586909 1.2094861373
0.5188609431 1.5938359757 1.2091138392
0.5189041783 1.5931200581 1.2091359461
0.5189211553 1.5940068208 1.2093711976
0.5188230608 1.5930667503 1.2087833097
0.5187918880 1.5920291631 1.2086556637
0.5187954081 1.5933857238 1.2088722712

(Table continued)
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TABLE VII. (Continued)

Δϕ Δs Δt

0.5188120708 1.5921939042 1.2085475622
0.5188685720 1.5940780889 1.2092200213
0.5188737587 1.5938867482 1.2091282102
0.5188791085 1.5939475441 1.2092269843
0.5188860122 1.5944086593 1.2093118142
0.5188881256 1.5943425103 1.2092606077
0.5188962192 1.5944000610 1.2093036926
0.5188995836 1.5944714851 1.2093479909
0.5189042967 1.5942997732 1.2093450874
0.5189061160 1.5944245329 1.2093054811
0.5189130711 1.5943416289 1.2092938887
0.5189282439 1.5948696505 1.2094354495
0.5189381636 1.5945869176 1.2095373290
0.5189209582 1.5946145623 1.2093971026
0.5188528255 1.5932931016 1.2088647649
0.5188758367 1.5937600844 1.2090694206
0.5189034036 1.5943173907 1.2092753786
0.5187933545 1.5923524886 1.2085851052
0.5188028340 1.5925358527 1.2086181925
0.5188672706 1.5938859690 1.2090784902
0.5188721453 1.5939744974 1.2092114019
0.5188815521 1.5940429270 1.2090230925
0.5188876803 1.5938597752 1.2092439737
0.5188893843 1.5942285412 1.2092430003
0.5188959297 1.5932555635 1.2092613868
0.5189185378 1.5944533142 1.2093899362
0.5189206686 1.5947871150 1.2094529310
0.5189513139 1.5946586522 1.2094523424
0.5189385685 1.5946849443 1.2094603545
0.5189444575 1.5946106034 1.2094426944
0.5189597959 1.5951033035 1.2095684829
0.5190271291 1.5953552765 1.2099320047
0.5191718508 1.5977020194 1.2105467890
0.5189415400 1.5950976756 1.2095440010
0.5189424979 1.5947703013 1.2093601723
0.5189461102 1.5944802637 1.2095417129
0.5189461142 1.5952505758 1.2096113811
0.5189509729 1.5951396676 1.2096608087
0.5189524992 1.5951035671 1.2095733650
0.5189561892 1.5950657026 1.2096530941
0.5189575751 1.5955030599 1.2096401327
0.5189576562 1.5952623581 1.2096851550
0.5189595475 1.5954833608 1.2097148970
0.5189682325 1.5951956784 1.2096321472
0.5189696503 1.5942534718 1.2093617878
0.5189733687 1.5949010519 1.2095786060
0.5189772029 1.5950953535 1.2096440413
0.5189800482 1.5949290496 1.2097035540
0.5189804744 1.5953372481 1.2097875328
0.5189818184 1.5960483373 1.2098711894
0.5189830613 1.5952764767 1.2098175729
0.5189871624 1.5963425034 1.2098915261
0.5189966010 1.5956243058 1.2098589501
0.5190066292 1.5959897652 1.2099481084
0.5190086343 1.5954797940 1.2098872690
0.5190093925 1.5948495201 1.2095311073

(Table continued)
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TABLE VII. (Continued)

Δϕ Δs Δt

0.5190140405 1.5954232716 1.2098887955
0.5190158019 1.5958546312 1.2098800029
0.5190176624 1.5957396035 1.2099524800
0.5190182636 1.5952950369 1.2097197630
0.5190222887 1.5962382824 1.2100406599
0.5190294335 1.5944921267 1.2097386508
0.5190368914 1.5960448579 1.2099540543
0.5190379431 1.5958717009 1.2099655030
0.5190482917 1.5959534075 1.2099669869
0.5190587928 1.5959983074 1.2100169645
0.5190598740 1.5957892478 1.2100080216
0.5190647361 1.5962663027 1.2101521345
0.5190695509 1.5960823090 1.2101350323
0.5190725277 1.5960088046 1.2100991203
0.5190732657 1.5962258325 1.2100744510
0.5190787856 1.5961544869 1.2101199950
0.5190839387 1.5962931060 1.2101834489
0.5190846538 1.5964564464 1.2101823824
0.5190882951 1.5952923328 1.2099488238
0.5191014483 1.5962764902 1.2102433612
0.5191200121 1.5963878404 1.2104254692
0.5191238375 1.5961605267 1.2100960457
0.5191427139 1.5977670021 1.2106878967
0.5191456549 1.5971361619 1.2105308642
0.5191695884 1.5970766016 1.2106595054
0.5191747564 1.5961581015 1.2104165938
0.5191752118 1.5973305922 1.2104827329
0.5191772163 1.5979425702 1.2107834542
0.5191998406 1.5976763974 1.2108343370
0.5192110760 1.5974046747 1.2105784428
0.5192313582 1.5976397828 1.2109134929
0.5192577054 1.5985007420 1.2110602270
0.5192609179 1.5973050662 1.2108724994
0.5192751871 1.5986516951 1.2111693213
0.5193182009 1.5988546582 1.2112832624
0.5193313395 1.5984303509 1.2111533312
0.5193414850 1.5980461969 1.2111569121
0.5193551983 1.5998541317 1.2115697595
0.5193848130 1.5991038253 1.2114973135
0.5193945892 1.5989679837 1.2114217221
0.5190798632 1.5964346557 1.2102061791
0.5189741917 1.5955685395 1.2097697715
0.5189927891 1.5951952177 1.2097372791
0.5189996154 1.5950788378 1.2097054113
0.5190167890 1.5955602397 1.2098873787
0.5190308122 1.5949198011 1.2096389844
0.5190339170 1.5955996031 1.2098749137
0.5190412371 1.5962115376 1.2100681124
0.5191177942 1.5966893312 1.2103147962
0.5192445379 1.5985977149 1.2110282728
0.5192695593 1.5991098729 1.2112586408
0.5193036599 1.5986614215 1.2113279731
0.5192414561 1.5971357017 1.2106354701
0.5189651659 1.5950121240 1.2096667988
0.5191751265 1.5980350400 1.2107387866
0.5189584563 1.5953669776 1.2096954753
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TABLE VII. (Continued)

Δϕ Δs Δt

0.5189653470 1.5950297999 1.2096904832
0.5189699612 1.5955018495 1.2097342211
0.5189780238 1.5954734077 1.2097071812
0.5189801701 1.5956399491 1.2098195524
0.5189846429 1.5956222286 1.2098043739
0.5189848116 1.5942072297 1.2094316101
0.5189955714 1.5956904175 1.2098601902
0.5189970055 1.5958004005 1.2098315960
0.5190050996 1.5957883004 1.2098865696
0.5190163339 1.5957550559 1.2099183538
0.5190199557 1.5956651380 1.2099295296
0.5190607004 1.5962908080 1.2100873837
0.5190663597 1.5958743309 1.2100957055
0.5190718073 1.5963854342 1.2101543103
0.5191015148 1.5964779979 1.2103173913
0.5191201873 1.5971879432 1.2103557329
0.5191327281 1.5966479322 1.2102157357
0.5192390608 1.5990575125 1.2111165018
0.5189384637 1.5945786868 1.2092964612
0.5189388374 1.5949295375 1.2094886518
0.5189406470 1.5951736959 1.2096025578
0.5189435236 1.5946628177 1.2095079568
0.5189591857 1.5937291370 1.2094479043
0.5189690300 1.5947953102 1.2095700139
0.5189782490 1.5955014573 1.2097394518
0.5189785861 1.5948000056 1.2096217602
0.5189943897 1.5951836165 1.2096726879
0.5190020000 1.5955721180 1.2098614948
0.5190031045 1.5956425756 1.2098293707
0.5190089551 1.5959677551 1.2099413822
0.5190264203 1.5960422185 1.2100190836
0.5190349642 1.5958180205 1.2099706558
0.5190621203 1.5957337543 1.2098389282
0.5191180161 1.5968444953 1.2103456280
0.5191470052 1.5962315204 1.2104571613
0.5191921249 1.5963777247 1.2105975545
0.5192666256 1.5975999519 1.2109769054
0.5192834446 1.5981834807 1.2109478678
0.5192153931 1.5971409678 1.2108619123
0.5190126129 1.5960328832 1.2098411820
0.5189956968 1.5952697384 1.2097891345
0.5190907117 1.5964405597 1.2102564468
0.5189972378 1.5954623091 1.2097288249
0.5192342602 1.5977739085 1.2106788412
0.5192967458 1.5978374167 1.2109654958
0.5190531962 1.5957547434 1.2100253487
0.5190597017 1.5959435763 1.2100960808
0.5189393710 1.5943081218 1.2094518082
0.5189538314 1.5947940605 1.2094896280
0.5189547388 1.5948394180 1.2095585036
0.5189639253 1.5945186785 1.2094725381
0.5189836057 1.5957551038 1.2098219526
0.5189905121 1.5953498417 1.2098007194
0.5189919017 1.5941900169 1.2095288310
0.5189979105 1.5956955072 1.2097796040
0.5189995667 1.5957402879 1.2099058216
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TABLE VII. (Continued)

Δϕ Δs Δt

0.5190123754 1.5941042932 1.2095390773
0.5190157406 1.5958569876 1.2099200545
0.5190278431 1.5965081852 1.2100281015
0.5190325131 1.5959081051 1.2099696538
0.5190520384 1.5963152404 1.2100841277
0.5190588609 1.5960509826 1.2099090548
0.5190715439 1.5955912797 1.2101497526
0.5190926525 1.5965090465 1.2102403519
0.5191170800 1.5974916154 1.2105064335
0.5191778676 1.5977308111 1.2107843923
0.5192544590 1.5971285489 1.2107746440
0.5192666631 1.5983714488 1.2109356823
0.5192812420 1.5987160882 1.2111101581
0.5193040795 1.5983604351 1.2112010479
0.5189685870 1.5947440353 1.2095546973
0.5189469362 1.5948003211 1.2094569896
0.5190500327 1.5959140301 1.2100673844
0.5190853457 1.5968203648 1.2103356646
0.5189402432 1.5947339426 1.2095132572
0.5189866072 1.5952602047 1.2097386461
0.5189466850 1.5949712041 1.2095439276
0.5189977538 1.5955819151 1.2098187686
0.5189417109 1.5948151822 1.2095116242
0.5189887395 1.5955311410 1.2097998738
0.5189805152 1.5954860043 1.2097574571
0.5189068037 1.5944354150 1.2093631340
0.5189664963 1.5953900793 1.2097088870
0.5189046136 1.5944739467 1.2093498390
0.5189477115 1.5951943364 1.2096143706
0.5189476015 1.5951048660 1.2095857135
0.5189392465 1.5947339121 1.2095257880
0.5189758138 1.5951810417 1.2097131902
0.5189281878 1.5946813688 1.2094996850
0.5189741332 1.5953607762 1.2097417847
0.5189225607 1.5945597787 1.2094380766
0.5189250556 1.5947901155 1.2094599723
0.5189931813 1.5954181855 1.2097690833
0.5189417323 1.5950007532 1.2095363269
0.5189436065 1.5950358588 1.2096059939
0.5189964571 1.5954554607 1.2098005401
0.5189717084 1.5953355582 1.2096832796
0.5189194848 1.5945704303 1.2094129825
0.5189261393 1.5947676104 1.2095065854
0.5189163665 1.5945874291 1.2093899278
0.5188888691 1.5942500939 1.2092859143
0.5189931888 1.5954995182 1.2097983737
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