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We extend the Kerr-Schild double copy to the case of a probe particle moving in the Kerr-Schild
background. In particular, we solve Wong’s equations for a test color charge in a Coulomb non-Abelian
potential (v/Schw) and on the equatorial plane for the potential generated by a rotating disk of charge

known as the single copy of the Kerr background (v/Kerr). The orbits, as the corresponding geodesics on
the gravity side, feature elliptic, circular, hyperbolic and plunge behavior for the charged particle. We then
find a new double copy map between the conserved charges on the gauge theory side and the gravity side,
which enables us to fully recover geodesic equations for Schwarzschild and Kerr. Interestingly, the map

works naturally for both bound and unbound orbits.
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I. INTRODUCTION

The double copy relation between gauge and gravity
theories was first discovered for quantum scattering
amplitudes [1-3], and in recent years, it quickly became
a formidable tool to tame the complexity of perturba-
tive gravity calculations [4]. While initially applications
of color-kinematics duality were based on the Bern-
Carrasco-Johansson (BCJ) relation, there have been many
further developments in understanding the symmetry prin-
ciples [5-21] and in the implementation of the perturbative
double copy in new contexts like the worldline formalism
[22-28], celestial amplitudes [29,30] and perturbation
theory on special backgrounds [31-33].

Perhaps surprisingly, it turns out that also some exact
classical solutions of Einstein equations can be obtained from
gauge theory solutions in Yang-Mills (YM) theory. One
prominent idea is the Kerr-Schild double copy, first discov-
ered by Monteiro, O’Connell and White [34] and later
developed by a number of authors [35-57]. It was also
clarified in Ref. [45] that the Kerr-Schild double copy is
actually a special case of the Weyl double copy, which was
recently proven using twistorial techniques [55,58,59]. The
simplest example is provided by the map between the
Coulomb-like YM solution (i.e., the non-Abelian % potential)
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to the Schwarzschild spacetime. The single-copy version of
the Kerr metric can also be found, and it corresponds to the
potential field generated by a rotating disk of color charge as
explained in [34] (see also Appendix A). We denote those
solutions as v/Schw and /Kerr, respectively.

Following the discovery of gravitational waves, there was
arenewed interest in getting classical observables from on-
shell scattering amplitudes. In particular, a double copy map
has been explored for the impulse and the spin kick for probe
particles in the Kerr background [60]. A striking connection
of those observables with minimally coupled three-point
amplitudes of massive particles [61] with large (classical)
spin has been noticed in Refs. [60,62,63] and further
developed in Refs. [64-74]. The double copy has now
become also a useful tool in the calculation of observables of
gravitational interest for the binary problem, in particular,
for the construction of integrands [75-92]. While the
scattering problem naturally maps to hyperbolic orbits,
there is an interesting analytical continuation [93—-95] which
makes it possible to directly derive results for the corre-
sponding bound cases [96].

The classical YM theory is usually studied as a toy
model for gravity, but it is also important by itself. One
example is provided by the equations of motion of classical
YM theory that describe the dynamics of the quark-gluon
plasma, which is believed to be the predominant phase of
matter before the entire Universe was formed [97-99]. In
particular, for the description of high energy heavy ion
collisions, the gluon field is also treated classically as a first
approximation [100-104].

In this work, we exploit the Kerr-Schild double copy to
understand the relationship between the geodesic equations

Published by the American Physical Society


https://orcid.org/0000-0001-7285-6295
https://orcid.org/0000-0002-0360-3283
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.105012&domain=pdf&date_stamp=2021-11-15
https://doi.org/10.1103/PhysRevD.104.105012
https://doi.org/10.1103/PhysRevD.104.105012
https://doi.org/10.1103/PhysRevD.104.105012
https://doi.org/10.1103/PhysRevD.104.105012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

RICCARDO GONZO and CANXIN SHI

PHYS. REV. D 104, 105012 (2021)

for a probe particle in the gravity background with a test
charged particle moving in the corresponding gauge back-
ground. In detail, we solve Wong’s equations [105] exactly
for the +/Schw background and for equatorial orbits in
v Kerr by identifying the relevant conserved charges in
terms of which the final solution can be expressed.
Interestingly, we find a direct map of the conserved charges
for probe particles in Schwarzschild and Kerr which makes
possible to recover geodesic equations.

II. DOUBLE COPY OF THE
CONSERVED CHARGES

In this section, we derive the relation between the
conserved charges of a test charged particle in the YM
potential and the corresponding charges for a probe particle
in the Kerr-Schild gravitational background. For conven-
ience, we express the non-Abelian gauge potential in a
suitable basis of generators of the SU(N) algebra

A, = ALT. (1)

A point charge moving in a YM background Af(x) is
governed by the worldline Lagrangian [106,107]

where v* = dx*/dr, e(r) is the einbein, g,, is the flat
background metric,' and ¢4 = w Ty is the color charge of
the point particle. Note that Eq. (2) is valid for both m > 0
and m = 0. For massive particles, we set e(z) = 1/m, and z
will be just the proper time. In the massless case, we choose
an affine parametrization so that e() is just a constant. For
simplicity, we can set e(7) = 1, but keep in mind that e has
mass dimension —1. The constraint on the velocity is

k=-1 form>0

GV’ =k 3
I {K_O for m = 0. 3)

‘We now consider a static YM field that takes the form of a
Kerr-Schild “single copy”,

AG(x) = - e p()k, (). 4)
where k,(x) is a null vector in Minkowski space, ¢(x) is a
scalar field and ¢ is the static color charge of the source of
the YM field. For a charged test particle moving in this
background, we crucially require the coupling constant to
be small enough to not affect the gauge field configuration.
Interestingly, perturbations on a (Coulomb) static YM
potential beyond some critical value of the coupling can
produce instabilities due to the color charge screening, as

'"We use the “mostly plus” signature for the spacetime metric.

was first noticed by Mandula [108] and then further
developed by several authors [109-111].

Suppose we have a cyclic coordinate £, which does not
appear explicitly in the Lagrangian. From Noether’s theo-
rem, we know that the corresponding conserved charge is?

s Ot

LN o0 (G0 P
=T = (M - L o). 9

In our convention, the Kerr-Schild double copy relation is

2
g——)ZG,

o & — Mk, (6)

The corresponding gravitational field reads

G = g/w =+ hmﬂ h;w = 2GM¢(x)ku(x)ku(x) (7)

The flat metric g, is the same as in the Yang-Mills theory.
The Lagrangian of the point mass in this background reads
(gm/ + h/w)vﬂ v* em2

LGR -
2e 2’

(8)

where again the einbein is e = 1/m for massive particles,
and e = 1 for massless particles. Meanwhile, the relativ-
istic constraint is

k=-1 form>0

G + hy )" =«
(G + P {K:o

for m = 0.
)

It is clear that & is also a cyclic coordinate for LOR, so we
have a conserved charge for the point mass

2GM
4—————-¢kyvvkﬂ>. (10)
e

PR — ILOR _ % Guv*

¢ F f\ e
From Egs. (5) and (10), we can derive the double copy
relation between the conserved charges in Yang-Mills and
gravity background by supplementing (6) with

n M
c“—)—v— sothat C:=c-¢—>——k-v. (11)
e e

We note that the double copy map works for both C > 0 and
C < 0, corresponding to repulsive and attractive forces,
respectively. Nevertheless, in the analysis of solutions of the
equations of motion, we focus on the case C < 0 to resemble
gravity, where the interaction is always “attractive”
(see Fig. 1).

See Refs. [112,113] for alternative approaches on how to
derive the conserved charges.

105012-2



GEODESICS FROM CLASSICAL DOUBLE COPY

PHYS. REV. D 104, 105012 (2021)

\. c* c* m >0
.\ Double .\
c c? opy M >0
() [ @
C=c"c¢>0 C=c'ct"<0

FIG. 1. For a massive charged particle, we can have both
attractive and repulsive gauge theory forces depending on the
sign of the charges. This suggests to focus on the case C < 0,
because masses in gravity are always positive.

In the case where the dynamics is integrable, knowing the
conserved charges is sufficient to fully solve the equations of
motion. In particular, this is true for v/ Schw and equatorial
orbits in v/Kerr. In the following sections, we apply (11) to
obtain the conserved energy and angular momentum for a
probe particle moving in the Schwarzschild background and
on the equatorial plane of the Kerr background.

III. CHARGED TEST PARTICLE IN
A NON-ABELIAN COULOMB POTENTIAL

As proposed in the original work on the black hole
double copy [34], the single copy of the Schwarzschild
solution corresponds to a Coulomb-like potential. In the
standard spherical coordinates x*(7) = (¢, r, 0, ¢), it reads
E,ll
_2-

ar—a=St o L (12)
3 Az r

All the other components of the field strength are
vanishing.

A. Massive probe

The Euler-Lagrange equations of (2) give us Wong’s
equations,

d’x* g
I+ VP — — L pafau v 1
= + I, 0" mc LY, (13)
dc*
I gfevabe (o), (14

where I, is the Christoffel symbol for spherical coor-
dinates. Moreover, we have already fixed v? = —1. Thanks
to the spherical symmetry of the problem, we can restrict
our analysis to the x-y plane by setting 8 = z/2 and
dO@/dzr = 0. Then, the @ component of (13) is simply

d [ ,dp\ _ 2,
%<FE>—O d L.—}"U, (15)

which corresponds to the conservation of the z component
of the angular momentum L. Explicitly, Wong’s equations
restricted to the § = /2 plane are

dv’(r)_ L2 B g ()¢ (2)
dt () dam r(z)? v
dv'(t) g c(r)e
dr  4zm r(7)? o),
de(t) G ve 10 E0cC(2)
dr Ef (@) r(r) (16)

where we have made manifest the explicit dependence on
the proper time z. A crucial ingredient in solving the
equations of motion is to observe that the scalar product of
the two color vectors C = ¢?(7)¢“ is always conserved,

AP e P20

dr 4z r(z)

In the following, we consider color charges of opposite sign
so that the force is attractive; therefore, C < 0. Another
conserved charge is the energy which can be defined from
the ¢t component of Wong’s equation,

dv'(s)  d {92 ca(T)aa}

- dzm r(7)

(17)

C
—)/’l:: 1][+g—,
mr

(18)

dr Cdr

where for conciseness we define a = ¢*>/4x. The energy
(18) and angular momentum charge (15) could be derived
also directly from the Lagrangian approach as (5).

Thanks to Eq. (17), the non-Abelian Coulomb potential
problem can be effectively reduced to the Abelian case,
where the strength of the potential is determined by C. Even
though the structure of the solution is fully known in the
Abelian case since long ago [114], we display it here to
show the features of the orbits. Using the » component of
the equations of motion we have

d>  r(t)>  mr(o)?

Irit) > a C( ﬁi), (19)

“m r(z)

1

r

TP 4 u) =25 (n-2D). 2o

mL?

and changing variable to u := - as a function of ¢,

where we have used the simple relation du/d¢ =
—(1/L)dr/dz. Moreover, u(¢) is constrained by the
relativistic condition v*v, = —1 which effectively reduces
the degrees of freedom to the ones of a first order differ-
ential equation. If we define the critical value of the angular
momentum as

aC
Lyiy = — >
m

(21)

then, Eq. (20) can be rewritten as
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Lu(p) L du(@)\> _ 1
(@) =Tt @) (22 (Tg") = 0k L) = 2utg 1), (23)
The analytical solution of the differential equation (22) for
while v#v, = —1 gives | L < L 1s
B,L sinh <¢+2‘L2> (B;ﬂ(Lz —12) - hLCm> cosh (¢—VLZ‘L2> .
H(p) = 24
u (d)) Lgm — L2 + L2 _ Lgrj[ ’ ( )
where
du(¢)
By = u(¢)|s—0 By = p ‘ .
$=0
1
+
B — iz\/(h—f—Ble-t)z _BL 1. (25)

The last equation is directly deduced from Eq. (24). A similar result holds for L > L by using analytical continuation

arguments,

2_72 2_712
B,Lsin (L s Lcm> (BSE)(L2 —12) - thrit> cos (L o Lﬂ“) + MLy

crit

u ) (¢) +

L>— 12

crit

while the critical case L = L, instead gives

hep?
2Lcrit ’

W (p) = BS + By + (27)

where B; and Bgi) are again given by Eq. (25). The
presence of a critical value of the angular momentum,
which is crucial for the classification of the orbits, is related
to the relativistic nature of the problem (see the analysis in
Ref. [115]). It is convenient to analyze the nature of the
orbits by looking at the zeros of the potential, which is
instructive in preparation for the next section. We have

du(¢)\* _ 1
<W> =l + Leiu(¢))* = L2u($)* — 1]
L2, — 1
= Lo B ) - )l - ).
. thrit + \/(h2 - 1)L2 + Lgrit 28
Uy = L2 L2 > ( )
— erit
where %|,_, = 45 ,—,_ = 0. From this, we can deduce

that the possible orbits are as follows:
(i) Elliptic bound orbits (see Fig. 2) which require

two positive roots u, > 0 with L‘f—(/)’ﬁ lu—u, <0 and
;%‘; | > 0, that is
1

Lo <|L| < L, 0<|hl<1. (29)

V1 —h?

L*— 12 ’ (26)

crit

(i1) Circular orbits (see Fig. 3), which correspond to
d*u

uy = u_ = u, with 2% lu=u, = 0, ie.,
L=+ ! L 0<|hl <1, (30)

FIG. 2. Elliptic orbit for the massive charged particle in the

v/Schw potential.
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FIG. 3. Circular orbit for the massive charged particle in the

v/Schw potential.

(iii) Hyperbolic-type unbound orbits where the probe
escapes to infinity (see Fig. 4), which require just one

root to be real and positive u_ > 0 with % weu. <0
|L| > Lcrit. h>1
L|<Lew,  h>1.  By=BS". (32)

(iv) Plunge-type orbits for the probe particle (see Fig. 5)
provided u, <0 for h>1 or u_>0>u, for

O<h<l1
IL|<Lg, 0<|hl <1
IL| <Ly h>1. B,=B). (33)

We observe that for |h| < 1 we always have bound orbits;
i.e., the massive particle cannot escape to timelike infinity.
This is not surprising since in the limit » — oo, from
Eq. (18) we have h = o', which for causality reasons has to
be greater than 1. For the same reason, hyperbolic orbits are
allowed only when 2 > 1.

B. Massless probe

In the massless limit, we effectively need to make the
replacement
a/m — a,

T—>7 (34)

to get the new radial equation of motion for the massless
charged particle (22),

CUD) ) = 8 0+ L), 69

with

W=+ ag, L' = r*?,
r
L. =—aC. (36)

The constraint equation is

(HAP) — 0+ L) = (LPu(P). (7

and the explicit solution is given by Egs. (24), (26) and (28)
but with the new constraint Eq. (37) in place of Eq. (25).
At this point we can easily study the nature of the
solutions. We then have the following:
(i) Circular orbits for
Ll — L/

crit, h/ = O’ (38)
with the surprising feature that the radius of the orbit
is not constrained.

(ii) Hyperbolic-type unbound orbits for

IL'] > Ly or

| <Ly, By=BS". (39)
(iii) Plunge behavior for

Ll <Ll — B=By (40)

These type of orbits are well represented by the pictures in
Figs. 2, 4, and 5, respectively. We note that here, compared
to the massive case, elliptic orbits are not allowed, and
circular orbits are allowed only in the very degenerate
limit 7/ = 0.

C. Double copy to Schwarzschild geodesics

With Egs. (15) and (18), we are now ready to derive
the corresponding conserved quantities of a (massive or

10 05 L/ 05 10

FIG. 4. Hyperbolic-type orbit for the massive charged particle
in the v/Schw potential.
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FIG. 5. Plunge orbit for the massive charged particle in the

v/Schw potential.

massless) probe moving on the equatorial plane in a
Schwarzschild black hole background. From Eq. (12),
we identify the k,(x) and ¢(x) of the Kerr-Schild form
(4) as

k, = (1,1,0,0). (41)

As one can easily check, the Kerr-Schild double copy gives
us the Schwarzschild metric in Eddington-Finkelstein
coordinates. Applying Eqgs. (6) and (11) to’

LVSehw r2v?, (42)
RVShw — pt 4 ae%, (43)
we get
LS — 12, (44)
pSchw — (1 - 2€M> ' — ZciM v (45)

The constraint (9) can be written in terms of the conserved
charges as

(02 =k (52 (1 + (LSCZW)2> <1 —ZCiM). (46)

r

Since the dynamics is integrable, with Egs. (44), (45) and
(46), one can fully solve the geodesic problem in
Schwarzschild. In particular, this implies that the impulse
60]] and other observables in the probe limit are completely
determined by the double copy map.

3We would like to remind the reader that e is the vielbein here.

IV. CHARGED TEST PARTICLE
IN A vKerr POTENTIAL

As proposed in [34], the single copy of the Kerr solution
is given by the following potential

o _ 9 el rx+ay ry—ax z (7)
odnrt 4+ a??\ P +a* P+ at’r)’

where r is defined implicitly through the following
constraint

x2_|_y2 Z2
r2+02 r2
r=0, ¥(x,y,z)€{x’+y*<a’,z=0}. (48)

=1, V(x,,2) eRN\{x*+y*<a? z=0},

The field is singular on a ring of radius a in the x-y plane,
where in fact the source of the field is located. In this
section, we always assume a > 0. We adopt spheroidal
coordinates,

x = /1* + a®sin() cos(¢).
y = \/msin(e) sin(¢),

z = rcos(0), (49)

which turn the flat metric 7 = diag(—1,1,1,1) into
diag(—1,7490) 42 4 12c052(9), (a? + r*)sin?(6)). In

r’+a®
the limit where a — 0, this recovers the standard spherical
coordinates. The components of the gauge field in these

coordinates are

w9 rct w9 rc?
" dnr? + dPcos?(6)’ " 4x 4+ a®’
~a
Ay =7 e asin?(0),  AS=0.  (50)

4xr? 4 dPcos?(6)

For simplicity, from now on we focus on equatorial orbits
by setting 0 = /2. We stress that the problem can be
solved in full generality, but the complexity is higher for
nonequatorial orbits exactly like for Kerr geodesics. The
nonvanishing components of the field strength are

~da

gc

& o
2 0= Y an 2

g
Fé =—— 51
rt 471'7" ( )

In the following, we consider only orbits which lie outside
the ring singularity at x*> + y*> = a? on the equatorial plane
where (50) is always well defined.

105012-6
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A. Massive probe

Wong’s equations on the equatorial plane are

dv’_aC .
dr mi2
v 1., 1 a2
__ ¢\2 - r\2
dr ra+r)(v)+ra2+r2(v>
aC_
(22
1 - a4 )
d@
i:()’
dr
dv? r a C
v ot =a® (52
dr+ r2+azvv amrz(rz—l-az)v (52)

As in the Coulomb potential case, there is a notion of
conserved energy and angular momentum,

C
he=o + 22 (53)
myr
c
L= +a)?+al=. 54
(r*+a*)v —l—amr (54)

In particular, the angular momentum now also includes
contributions from the parameter a which is perfectly
analogous to the Kerr case.

At this point, we can use those conserved charges to
derive the equation of motion for u(z) using Eq. (52). We
find
dv" <Lr + a(Lcrit - rvr))(Lr + a(Lcrit + rvr))
dr r(a*+r?)

= - “ a(ah — L) 4 r{Lgy + )] (55)

The constrained equation for »” gives

2

(v')? = (1 +—) (h=V,)(h=V_) - (1 +_>

1 |Lr + aL .|
Vyi=—|—-L.t———rou—]. 56
+ r |: crit /7}’2 T a2 ( )

It is worth noticing here that the leading term in 1/r on the
rhs of (55) is proportional to a and to ah — L, which is a
feature shared also by Kerr equatorial orbits [116].

In the limit a — 0, the solution collapses to the Coulomb
non-Abelian potential we already considered in the last
section because

a=0 1
Ve — ;(—Lcmi IL]). (57)

Regarding the case L = ah, an analytical solution for 7 as a
function of r exists (similarly to Kerr black hole equatorial
geodesic), but we do not display it here.

A pressing question is whether circular orbits exist, and
what the corresponding values are for the energy and the
angular momentum in these cases. The condition for
the existence of circular orbits at r = r,, meaning that

the radius /72 + a?) is given by the common solution of

dv”
r=r, =0 dr

|

v

= 0. (58)

r=r,

With some algebra, we can reduce this system of
equations to

Lcrit

RP=1- 5 (ax+hr?), x:=L-—ah,
L.
(02—x2)2:—%m(az‘kri)('x2+rg)(4a~x—Lcritr*)v (59)

*

where the last equation is a quartic polynomial in x. As
proved in Appendix B, for every a > O, there are two
distinct real (and therefore other two complex) solutions for
(59). We call the real roots x; and x,, and we order them as
X; > x,. The values of the energy and the angular momen-
tum for such circular orbits are given by Eq. (59), i.e.,
explicitly

1 a
hli,2 = 2_’,* (_Lcrit + \/Lgm +4r: - 4r—Lcmx1,2>,

*

Ly, = xi, + ahi,, (60)

where only (hf,L]) always satisfies the causality con-
straint. As we see later, this solution will indeed be related
with stable circular orbits.

In order to study the general case, we need to analyze the
nature of the roots of the rhs of the constraint equation (56).
Specifically, we have

1
(v =5 P(r),
P(r) = (h* = 1)r* + 2hLr?
+ (a*(h* = 1)+ L%, — L*)r

crit

+ 2aLcrit(ah - L)’ (61)

that defines a third order polynomial P(r), to which we can
apply the tools developed in Appendix B in order to
understand the nature of the roots. By computing the
reduce discriminant Ag(P(r)) [see (B5)], we can establish
whether
(i) P(r) has three simple real roots (Az(P(r)) > 0),
(ii) P(r) has one simple real root (Agz(P(r)) < 0),
(iii) P(r) has a double or triple root (Ag(P(r)) = 0),

105012-7
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and by using Descartes’ rule of signs we can also under-
stand the number of positive/negative roots. We note that in
the case Ag(P(r)) = O there are circular orbits with radius
given by solving Eq. (59). However, P(r) by itself is a
polynomial in £ of degree 8, which is not possible to solve
analytically. Therefore, we can only qualitatively analyze
the real solutions of P(r) = 0. We find that the properties
of the solution depend on the values of L.; and L.
Specifically, we find exactly two cases:

(1) Case 1, L. < a: for a given value of L there are at
most four real solutions for £, and only two of them
can be positive. We denote them as h,, hp with
hy < hp when they exist.

(i) Case 2, L. > a: for a given value of L, there are
either two or four real solutions for 4. One of these
real solutions is k], which is defined by Eq. (60).

In addition, as discussed before h = L/a represents
another critical value of the energy since having 4 > L/a
or h < L/a will change of the sign of the constant term in
the polynomial P(r). A detailed analysis for the orbits
shows that we can have the following cases:

(i) Elliptic orbits for*

hA <h< min{hB, 1},
h{ <h <min{L/a,1},

Lcrit <a

Lcrit > a,

(ii) Hyperbolic-type orbits for # > 1 in all cases,

(iii) Plunge behavior for &2 > L/a in all cases,
where hy can be identified with the stable circular orbit
value hfr, and it is understood that when two intervals
overlap we can have different types of orbits according to
the boundary conditions (like the sign of the initial velocity
or also the initial radial coordinate). We have represented
the typical behavior of those solutions in Figs. 6, 7 and 8§,
where we have also highlighted in red the ring singularity at
r = 0 where the gauge potential has a singular behavior.

An interesting limit is the one which corresponds to
marginally bound circular orbits with 4 = 1 (see Fig. 9); in
such a case, we can find a simple analytical solution for the
value of the radius and of the charges,

2
Lyl =a- (\/53t vV Lcrit) .
Fitlpey = a £ v/ale, (62)

where r, _ exists only when L; < a. Since our main goal
is to connect the conserved charges on the gauge side with
the ones on the gravity side, we leave a full analytical
analysis of the generic orbits for massive particles in the
case a > 0 for a future study.

*When L. = a, hp becomes equal to L/a.

¢/
A
77
o
=

>

\
N\
N

-2 -1 0 1 2

FIG. 6. Elliptic orbit for the massive charged particle in the

v/Kerr potential.

T
/.
Y

)

-2 -1 0 1 2

FIG. 7. Hyperbolic-type orbit for the massive charged particle
in the v/ Kerr potential.

-2 -1 0 1 2

FIG. 8. Plunge orbit for the massive charged particle in the
v/Kerr potential.

105012-8



GEODESICS FROM CLASSICAL DOUBLE COPY

PHYS. REV. D 104, 105012 (2021)

B. Massless probe

Using Eq. (34), we can derive the corresponding
equations of motion for a massless charged test particle
in the v/Kerr potential. In particular, the relativistic con-
straint equation becomes

(v)? = (1 + ‘:—2) W=V )K=V,  (63)

where the potential and the conserved quantities in the
massless case are

1 |IL'r 4+ aLl .|
Vi == |-L . 4+ ——— 64
+ r |: crit m ( )
!/ t C !/
=04+ a—, L =—aC, (65)
r
C
L= (P +a) + 25 (66)
r

Causality requires v' > 0, and therefore, the conserved
energy has to satisfy A’ > —L.,/r. Meanwhile, from
Eq. (63), we know the region V. < i’ < V', is forbidden
otherwise the right-hand side is negative. Since V. <
—-L!./r <V, the physically meaningful value of the
energy is constrained as 4’ > V’,. Taking the time deriva-
tive of Eq. (63), we can derive

dv” a\[avy . . . dv_ .,
——<1+ﬁ>{dr (W' =V_)+ P (h'=V")

(= Vi) = V"), (67)

%w| Q

and therefore, the condition to have circular orbits at » = r,
is equivalent to

av',

h/|r=r* = Vg—‘r:r*’ dr

=0. (68

r=r,

We find that a circular orbit requires the energy and angular
momentum to satisfy

271 2

a’L’_. r
W=t g1+
= r a’

, (69)

L, =

a3L’ri 2r2 r2\3/2
——3“(1—1— " + (1—|—¥> ) (70)

I

As it is easy to show, in the vicinity of the singular ring
r — 0, we have

!

V", (r) = % (71)

r—0

A detailed analysis for the orbits show that we can have the
following:

(i) Hyperbolic-type orbits for any positive value of the
energy h' > 0,

(ii) Plunge behavior for A’ > L’/a both in the corotating
case L'>0 and in the in the counter-rotating
case L' <0,

(iii) Elliptic orbits for h_ < h' < min{0,L'/a} with
L' < Lyj; h_ is determined implicitly in terms of
the minimum of V’,

(iv) Stable circular orbits for (h',L') = (h_,L.) with
L < L and unstable circular orbits for (A, L") =
(W, L") with L < =L,

where when two regions of the parameter space (h',L’)
overlap we can have different types of orbits according to
the initial boundary conditions. This behavior of the
massless probe particle is also (at least qualitatively)
exemplified by the pictures in Figs. 6, 7, 8 and 9 of the
previous section. Unlike null geodesics on the Kerr back-
ground, elliptic orbits are surprisingly allowed in the v/Kerr
case, and there are stable circular orbits.

C. Double copy to Kerr geodesics
on equatorial orbits

We can now obtain the conserved charges for a probe
particle moving in the Kerr black hole background. In the
Kerr-Schild form we have

r

S 72
o(x) a*cos*(0) + r*’ (72)
= (1’ r?+ c212 0022(6)

a - +r

.0, —a sin2(9)). (73)

N
2

2L

-2 -1 0 1 2

FIG. 9. Circular orbit for the massive charged particle in the
v/Kerr potential.
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The conserved quantities in the Kerr spacetime is gained
from Egs. (6) and (11); i.e., from

C
LVReT — (12 4 a2)o? + age—, (74)
r
JyVKerr — v+ aeg’ (75)
r
we get
2GM [ r*v"
LK = (22 4 )P — g <a2—+r2—av¢+yt>, (76)
2,7
hKerr:Ut_zGM< 2}’ v z—av‘ﬁ—l—vt). (77)
ro\a“+r

The null-like and timelike geodesics on the equatorial orbit
can then be obtained by using these two charges and the
four-velocity normalization condition (9).

V. CONCLUSIONS

The color-kinematics duality offers promising ideas to
tackle complex problems in the gravitational setting, in
particular, regarding the two-body problem for two massive
particles in general relativity. In the extreme limit, where
one mass is much bigger than the other, i.e., at leading order
in the expansion in the mass ratio, the problem is equivalent
to a light particle following geodesics in the background
sourced by the other heavy particle. Making use of the
Kerr-Schild double copy, one can derive the background
metric on which the probe massive particle moves from the
corresponding gauge field configuration. In particular, for
Schwarzschild and Kerr, those correspond to a non-Abelian
1/r Coulomb-like potential (v/Schw) and to the potential
generated by a rotating disk of charge (v/Kerr) [34]. The
latter can be also formally derived from the former using
the Newman-Janis shift [60,70,117].

In this work, we consider a test charged probe particle
moving in the v/Schw and the equatorial plane of +/Kerr
potential, and we solve Wong’s equations in terms of the
conserved energy h and the angular momentum L. In
particular, we focus on the case where the color charge
C = ¢“?C” is negative, so that we can correctly reproduce
similar orbits with gravity, which is always attractive. We
can then extend the Kerr-Schild double copy to derive a
mapping between conserved charges of a probe particle in
the YM and in the gravitational background. Specifically,
the map (11) replaces the color charge of the test particle by
its momentum in the spirit of color-kinematics duality. This
allows us not only to recover fully the geodesic equations
for Schwarzschild and Kerr, but also provides the bridge
with the perturbative double copy prescription for charged
particles introduced by Goldberger and Ridgway to relate
the gluon and the graviton radiative field [22]. We believe

that a correspondence of our charge double copy with the
standard BCJ double copy can be done. For example,
we can compare some set of observables in the classical
limit—like the momentum impulse—computed for an
unbound orbit of a test particle with standard scattering
amplitude techniques (i.e., expanding around a straight-line
trajectory). While the double copy was originally discov-
ered in the S-matrix formalism and therefore for unbound-
like orbits, our mapping applies naturally also for bound
problems [118]. This is because explicit solutions of
equations of motion do have a natural analytical continu-
ation in terms of the conserved charges [93,118].

The v/ Schw and v/ Kerr potentials are of interest on their
own, in particular, to understand better the YM dynamicsina
nonperturbative setting. Indeed, stabilities of these types of
potentials have been investigated by Mandula er al.
[108,110], Sikivie and Weiss [109] and Jackiw et al. [111]
long ago in relation to the confinement mechanism. For our
work, we keep the coupling constant small enough so that the
probe particle does not affect the gauge background. While
for v/ Schw we have found an analytical solution for any type
of orbit, for v/Kerr we have discussed qualitatively the
behavior of the probe particle moving in equatorial orbits.
For both potentials, we have found that massive test particles
can move in elliptic, circular, hyperbolic-type or plunge
orbits depending on the values of the conserved charges. For
massless particles, the situation is similar, but with a surprise;
while elliptic orbits are not allowed and circular orbits

become unstable in v/Schw, there are instead elliptic and

stable circular orbits for v/ Kerr. With this exception in mind,
what is striking to us is the similarity of those solutions for
both backgrounds with the behavior of timelike and null-like
geodesics of Schwarzschild/Kerr [116], which is evident
both from intermediate stage calculations and also from the
explicit analytical results. It would be very interesting to
extend our analysis to generic nonequatorial orbits in Kerr,
perhaps by looking for a gauge theory analogue of the Carter
constant [119].

Summarizing, the probe limit contains much information
on full two-body problem in general relativity [86,120,121],
and our results provide another indication that such data are
entirely encoded in the simpler gauge theory dynamics via
the double copy map. This is supported also by previous
evidence coming from the derivation of the impulse [60] and
the multipoles [55] using double copy techniques. While we
have considered only the leading order contribution in the
so-called self-force expansion, it would be nice to under-
stand whether double copy can help to shed light also on the
higher order terms in the expansion in the mass ratio. We
leave this interesting problem for a future discussion.
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APPENDIX A: SHAPE OF THE
v Kerr POTENTIAL

We would like to show here the structure of the time
component of the potential A, for v/Kerr, projected along
the x-z plane (there is always an azimuthal symmetry).
While for a > 0 at large distances from the singularity A,
has an ellipsoidal shape, closer to the singularity line of
width a the potential develops a dipole-type configuration
(see Fig. 10).

APPENDIX B: CIRCULAR ORBITS
FOR THE v Kerr POTENTIAL

The goal of this section is to recap some basic notions of
some linear algebra that is useful to understand the nature
of the roots of a third and fourth order degree univariate
polynomial. For the polynomial

x4 X3 + Ayx? + Agx + 45 = 0, (B1)
the explicit roots are given by
A 1 q
=——=—S4+—,/-45-2 =,
X12 4, 2 p+ S
A 1 q
== 4+ S4—\[-48?-2p -, B2
Y ==t SES Py (B2)

-1 0 1

3 -2 2 3

FIG. 10. Regions of the same color on the x-z-plane (with z
pointing upwards) are divided by lines of constant A,. The left
figure shows the result for a = 0, the right one for a = 0.7.

where we have defined

8443 — 313

o8

3 = A dgds + 83

B 843 '

Ag =23 = Ay + 122425,

Ay =23 = 9pA3dy + 27325 + 272,43 — 122, A3 2s,

A+ /A2 —4A}
Q.

= 2 .

q :

1 2 1 A
st -2+ (0+20). B3
2\/ 3p+3/11<Q+Q> (B3)
It turns out that if the discriminant [122] is
1
A= oo (483 - A7) <0, (B4)

27

then the Eq. (B1) has two distinct real roots and two
complex (conjugate) roots. In the particular case 4; = 0, we
can use the reduced discriminant Ag,

Ag 1= 202 — 40,03 — 41305 + 184y 030uhs — 271222, (B5)

which is positive when the third order degree polynomial
has three real roots and negative when it has one real and
two complex conjugate roots. We can apply these tools to
find how many real solutions we have for the x variable in
the case of circular orbits in +/Kerr; using from the
polynomial equation (59) where

A = mu,
Xy = 4aLgmu®(a*u® + 1),
Ay = —Lgﬂtmu(azuz + 1) - 2612’7114’

Ay = 4aLgm(a*u® + 1),

L2_ 2.2 1
As = a*mu — Logm(a’u” +1) , (B6)
u
we find that

A = —16m®(a*u* + 1)*(2a®Loqu*(2a®> + L2,) + L3 .)?

crit crit
) 4 4 2 2.4
x {Lu*27a*u® + L7, a*u

+36a’u® + L2 u* + 8] + 16}

crit

(B7)

is always manifestly negative.
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