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Entanglement entropy for a Dirac field in a black shell
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A quantum field of s = 1/2 in the vicinity of a dust shell contracting at a distance r(z,) to near its
gravitational radius r, as seen by a FIDO observer is considered. Such an observer perceives a batch of
particles around the event horizon. The origin of the particles around the spherical surface of radius
r = ry + € lies in the thermal excitations in the Boulware vacuum state, |0) 5 for an external observer. The
foregoing is done based on thermo field dynamics, as it allows one to explain the origin of Sgy as a state of
entanglement between the modes of the fermionic field spreading through the Kruskal variety Sg,; o Spy
with respect to a FIDO observer. A location of the degrees of freedom responsible for Sgy entropy is given.
The occupation number for particles of a half-integer spin s = 1/2 is estimated, and it is compared with the
occupation number of particles of spin s = 0, finding that the occupation number of the Dirac field is
slightly lower than the occupation number of scalar particles in the vicinity of the gravitational radius; this
allows confirming the exclusion principle near event horizons. The other thermodynamic properties of the

field are estimated.
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I. INTRODUCTION

General relativity predicts that spacetime is a
Riemannian manifold, and some of the solutions lead to
the existence of black holes. Such astronomical bodies are
currently the subject of intense study from an observational
and theoretical point of view. A black hole (BH) possesses
unique physical characteristics: it has an event horizon, it
has an intense gravitational field such that nothing can
escape from within it, and it is characterized by only three
physical parameters: its charge Q, mass M, and angular

momentum J. Hence, two black holes look identical to an
external observer.

Recent discoveries have been of gravitational waves for
black holes and compact exotic objects (ECOs) [1,2], as
well as the first direct photograph of the vicinity of a black
hole [3]. They definitely pave the way for a better under-
standing of black holes and the quantum nature of gravity
in the coming decades.

Early in the 1970s, it was possible to identify how the
horizon of a black hole is affected when a bit of information
is added to it. This allows associating entropy with a BH
[4]. By 1972, Hawking introduces the derivative of the
electromagnetic radiation temperature for a Schwarzschild
black hole [5],
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Subsequently Gibbons-Hawking introduced a statistical
derivative of the entropy of a black hole,

kgc?
Sen = 3y (2)
where an analytic extension to the Euclidean sector is used
by imposing a Matsubara period 1/Ty [6,7]. This explains
which microscopic degrees of freedom are responsible
for (1), given that the Euclidean approach suggests some
kind of origin in the topological structure of spacetime [7].
In the same vein, Sy is believed to describe a true
thermodynamic entropy that is given by a generalized
second law of thermodynamics, which expresses the sum of
Sgy and the entropy of the universe never decreases [8,9].
A promising candidate for the origin of Spy corresponds
to entanglement entropy Sg,. It is associated with the
modes and quantum correlations of the field that are hidden
from an external observer in the presence of a horizon.
Under the consideration that a black hole is in an unknown
pure quantum state, there are correlations between the
modes inside and outside the horizon, so it is possible to
determine the entanglement entropy Sg, by counting the
modes outside the horizon, according to the pioneering
work of Bombelli [10], Srednicki [11], Terashima [12], and
others. Having
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SEnt & A? (3)

where A is the partition area of the wall and is not only an
inherent characteristic of black holes, but rather extends to
other types of scenarios [11,12]. In this sense, Srednicki
shows that the base state density matrix for a scalar field,
which is plotted over the degrees of freedom inside an
imaginary sphere, leads to an entropy proportional to
the area

S = KM?A, (4)

where K is a numerical constant that depends on M [11]. In
the same way, Terashima seeks to explain Sgy in terms of
the inner and outer horizon modes. Hence, the thickness
of the inner and outer horizon region is around the Planck
length [p. This makes it possible to obtain an entropy of

A
S~Co (5)

where a corresponds to the horizon fluctuations and C is a
constant [12].

Interpreting the entanglement state is related to the wall
model introduced by 't Hooft [13]. This model is consid-
ered as a black shell, in other words, a spherical shell
compressing from infinity to near its gravitational radius,
where the thermal atmosphere is shown to arise as the
excitations of the Boulware ground state, and a precise
location of such excitations in the Hartle-Hawking state
is also noted [14-17]. One of the explanations for Spy
entropy is related to the physical properties of the vacuum
in strong gravitational fields, where there are always zero-
point field fluctuations in a vacuum state. Thus, an observer
at rest with respect to the horizon sees the vacuum
excitations as an atmosphere around the horizon [18].
Within such a context, the free energy of the quantum
scalar field around the horizon is

7‘[2
Fp) =35 [ Vi (6)

where ¢ is the determinant of the metric (19) and the
temperature is determined by Tolman’s law as

T(r) = ; (7)

where T, is the temperature measured by an observer at
infinity. Thus, for a Schwarzschild black hole, the entropy
is found using standard statistical mechanics as

L OF() 1
S=p op "~ 360re?

(8)

where ff = % € 1s cutoff near the horizon, and A is the

horizon area. Here, the field is considered to be in thermal
equilibrium with the horizon, leading to the field temperature
coinciding with the Hawking temperature, which allows the
entropy of the field external to the horizon to be of around the
same magnitude as the entropy of the horizon Sgy. Under this
model, entropy was related to properties of the vacuum. Its
explanation lies in the fact that a static observer near the
horizon perceives the vacuum as a mixed state. That occurs
because an observer cannot measure beyond the horizon,
since there is a nontrivial density matrix p, which occurs since
the vacuum fluctuations of the field are correlated in an
entangled state between what is observable and what is
nonobservable at the horizon and the loss of information is
quantified by means of the entanglement entropy:

Sew = ~TrpIn . 9)

Hence, the entanglement entropy coincides with thermal
atmosphere entropy, because p is a thermal density matrix. At
this point, Fursaev indicates that if Sk, explains the origin of
Sgu. then the following questions arise:

(1) Entropy S in (8) depends on the cutoff ¢; therefore
there must be a natural reason that explains why e
must be adjusted so that S = Sgy. The fact of
introducing a cutoff means that the quantum field
does not spread entirely throughout spacetime.

(2) In general, S receives contributions from all fields
present in nature. This depends on the total number
of fields and their spins. However, Spy does not
seem to show such dependence [7].

In this same line of research, Arenas and Tejeiro [14] propose
a black shell model where the existence of thermal energy is
strongly concentrated near the horizon with respect to a
uniformly accelerated observer according to the equivalence
principle. For such a model, an interpretation of Sgy entropy
requires a consistent cross-interpretation of the entanglement
state with thermal field dynamics, which allows one to assert
the origin and location of such entropy [14,15,19,20]. In this
sense we extend this research program to a Dirac field.

This research is distributed as follows: in Sec. II, a brief

outline of the nature of thermo field dynamics is discussed.
Section III contains the entanglement entropy for the Dirac
field in a black shell. Section IV describes the thermo field
dynamics for the Dirac field. Similarly, Sec. V provides the
quantum formulation of the Dirac field close to a black
shell. Section VI discusses the thermal energy of the Dirac
field in a black shell. Section VII describes the entangle-
ment entropy Sg,; for s = 1/2 fermions. It ends with the
Discussion and Conclusions, Sec. VIII.

II. NATURE OF THERMO FIELD DYNAMICS

There is a system H, which can be subdivided into two
subsystems H and H,, such that H, and H, are physically
indistinguishable and the subsystems are coupled such that
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the state of H is described as |¥) =|¥;,¥,). Consequently,
H; can be considered the thermal batch of H; at a
temperature 7. Moreover, the subsystem H; has a
Hamiltonian ;, whose eigenvalue equation is

Hi|¥) = E,|¥;). (10)

On the other hand, the pure state |¥) of H at a temperature
T coupling H, and H, is of the form

1
'¥) :ﬁze_E"/ZTPPh‘Pz), (11)

where Z is the partition function of system H,

Z =BT (12)
with the condition that the pure states of H are normal-
ized (P|¥) = 1.

Therefore, the entropy for the pure state W of system H is
zero given that

S=-Trjplnp|]]=0 (13)

when
p=[)(Y| = [¥). Vo) (V. ¥. (14)
Under this same line of action, it is possible to estimate the

reduced density matrix p; for H;, when partially plotted
over the quantum states |¥,). This allows determining the

eigenvalues proportional to the Boltzmann factor e~/
such that the reduced density matrix takes the form
p1 = Try[p] = Try[|¥) (W]
= Try[|¥, ) (¥, 2]
I &
= ——e BT\ (. 15
N A (15)
Consequently, entropy for H; is
E
S(p) = Tyl = 2] + £ (16)

-
The same result can be determined based on (15) and (16)
for H,, then obtaining

SEnt - S] - S2 > 0 (17)

With the condition that the total entropy of the system
H(H,H,) is zero, S(H) = S, + S, =0.

Based on the foregoing, there is a mixed state of the
system H in thermal equilibrium, and it is purified when
Fock space is doubled. This allows converting the statistical
value of an operator (A;) acting on H; with the expected

value of this same operator on the extended Fock space
(W|A;|¥) [16,21-24],

(A;) = Trlp;Ajl.
= Ze_E"/T<\Pi|Ai|\Pi> = (P|A;|Y).  (18)

The key spirit of the thermo field dynamics technique
lies in the ability to encode the bilateral symmetry existing
between H; and H,, which is analogous to the bilateral
symmetry existing between the modes of the @ field
spreading into the two regions R and L of the maximally
extended Schwarzschild spacetime, as shown in Fig. 1.

III. ENTANGLEMENT ENTROPY FOR DIRAC
FIELD IN A BLACK SHELL

An external observer in a flat region sees around the
black shell (BS) spacetime as

ds> = —f(r)dt* + %dr2 + r2d0* + r* sin> d¢?,  (19)
2M
r =122, 20

Thus, for a spherical thin shell of dust collapsing
from infinity to the Schwarzschild radius according to
an external stationary observer, its motion equation for
BS is [25]

+£]2—1, (1)

FIG. 1. Bilateral symmetry existing between the field modes
spreading into the two regions R and L of the maximally
extended Schwarzschild spacetime.

105006-3



W. A. ROJAS C. and J. R. ARENAS S.

PHYS. REV. D 104, 105006 (2021)

where a is the ratio between gravitational mass M and rest
mass u of BS. Also 7 is the proper time for free fall observer
(FFO). Arenas and Castro (AC) proposed an alternative
solution to the motion equation of BS [26],

r(t) = ry + 6re”'/7,

aM

or =ry—ry,

ry =2M,

where 1 is the coordinate time for a BS that is contracting
and measured by a FIDO observer, ry is the initial position
of BSin t = ¢, r, is the Schwarzschild radius, and M is the
mass of BS.

Consider a Dirac field in a curved spacetime with the
metric (19) [27-63]. Based on the foregoing, the Dirac
equation [iy*V, + m|¥ = 0, y* = y“e,/ is rewritten as

[y“ea"(aﬂ + Qﬂ) +m]¥ =0, (23)
where the tetrads are determined as
9 = nabeﬂaevbv n= diag(_L L1, 1)’ (24)

furthermore, the matrices y* are

0_ —i 0) i:<0 —i6i> 55
y(Oi’y o o) &

where i = 1, 2, 3. And the Pauli matrices are

() -
o? = (? :)i), (27)

(0 -

Hence, according to (24), the tetrads for the Schwarzschild
spacetime are

el = < 7). ,r,rsin9>, (29)

1
f(r)
where €, is called the spin connection

1
Qﬂ = g [ya’ yb]eayebv;/r (30)
The radial equation given in (34) describes particles
whose positive and negative frequency modes, respectively,
have the same energy spectrum in the vicinity of the
horizon [28,64] (for specific details see Appendix A).

Thus, for this research, we assume that the radial equations
are identical for the positive and negative frequency
particles F(r) = G(r). Thus, in the high-frequency limit,
obtaining

1

o(r) = —41(‘(2)5}" [w? = V(r,k,m, )], (31)
where
2k, (K>
W= 5 (; + m2) or, (32)
dw
Vir,k,m,w) = 2K05rd— + W2 (33)
r
Hence,
d (dF
iy il F=0. 4
o (5) +emr =o (34

Explicitly, obtaining

261 [ w? m? Kk’
20 7 o3+ =70 09
where
1 1
Tk)=zr | —/—=oxo—1]. 36
(k) = o Ry (36)

Thus, under the Wentzel-Kramers-Brillouin approxi-
mation (WKB) approximation, the radial solution for
(34) is [65-68]

FO) =gy TV e

The condition of validity for (37) is given by

o(r)'
V()

Solving Eq. (34) for the Dirac field in the Schwarzschild
spacetime, (35) and (37), the modes of the Dirac field,
according to

) (0.0
o(t.r.0.4) =" ( " ((9 (m))e—twt, (39)

with F(r) defined in (37), Q(r) and T (k) in (35) and (36)
such that these are normalized under the inner product
defined as [69]

1
6013

< 1Q(r)|. (38)
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(Po(1,x), Po(r. X)) = /d%@sz(f, X)7o@q(t,x),  (40)
the Dirac adjoint is defined as
Dg(t.x) = D (1. )7’ (41)

In addition, the harmonic spinors Yj are orthogonal
when [70]

/ Yir Yy, dQ = 86, (42)
4
On the other hand, the field modes (39) are rewritten as

F(r) ( i, (0. ) ) |

Pa(t.x) = a(e Gl === (2"
Jm\Y>

(43)

where x = (r,0,¢) and Q = w,«(1), 1, m.
The modes (43) are taken to the null coordinates
U, V [14,71,72],

Dy (U, x) = O(—€) DY (1, X),
D) (V,x) = B(e) D (v, ), (44)

such that ® defines the unit step function with ¢ = +1.
Consider two representations for the fermionic field
given in terms of the Killing-Boulware modes (KB),
CDS)(U ,x) and CDS)(V, x), and the Hartle-Hawking modes
(HH), lI’S)(U ,X) Y lI’g)(V, x). The modes are orthogonal
under the inner product [44], leading to orthogonality

relations for the modes of frequency @ >0 and w <0
defined as [46]

(@5(x). @G (x) =0, (45)

(D (x). Dy (x')) = (P (x). Py (X)) = Sggr- (46

The transformation between the HH and KB modes in the
form [14,16,21,69,72]

P (1, x) = \/sinycos g x e~ @ewed(x),  (47)

In the Fig. 2, we can see the modes of fermionic field for
FIDO and FFO

tany = e P02 = g7m/%0, (48)

In the Fig. 3, the modes of fermionic field in the Carter-
Penrose diagram can be expanded in terms of creation and
annihilation operators

1 Ko
f=— d T=Tyg=—. 49
/ T an H= 5 (49)

|0>H U T \ |0>H
A
0Sw) 0 v)
0
0, 0 ,
o) o)

FIG. 2. Modes of the fermionic field in terms of FIDO and FFO
observers.

IV. THERMO FIELD DYNAMICS FOR DIRAC
FIELD IN A BLACK SHELL

Under the canonical quantization scheme, the fermionic
field expands into [31,55-57,59,65,73,74]

®(1,x) = Y _[baFao + diGal, (50)
Q
O(1,x) = Y _[bauge™ + dhvge™],  (51)
Q

defining for (50)

FQ = uQe_i“”, GQ = vgei“”, (52)

and
. _F(r)(ifﬂf,m(e’(ﬁ)) ) _F(r)(i(p;m(&rﬁ))
T \e0.0)) % \el0.9))
(53)

Thus, the bispinors ug and vq contain the harmonic spinors
defined in (A4). Moreover, they are orthogonal under the
spinor product [50-53,60,62,70], then

O (1) = Y |bg Fa + dg7Ga|. e==. (54
Q

and they satisfy the anticommutator properties for frac-
tional spin particles s = 1/2 [59,61-63],

{¢S)(t, x), @11, él)} = 8o 8 (xx'), (55

{0 (nx). 0 (n.x) } = {0 (1.x). 0[7(1.x) } =
(56)
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I ¢§{)(t.5) = z [bg)Fn + dgz(‘)Gn]

®)(6,x) = 3 [b)Fa + dfV 6o 1v
Q Q

FIG. 3. The modes of the field d>£§) (t,x) in each region R and L
of the Penrose diagram can be extended in terms of operator
creation and annihilation.

Once the field operator (IDS)(t, x) under the KB scheme
has been established, it is possible to apply the trans-
formation (47) to determine the field operator under the HH
scheme. This leads to

W (1. = \/Sing cosge 3 lbaFg + dyGal.
Q
(57)
where ¢ = £ and y is defined by (48).

The Lagrangian density £ for the Dirac field in the
vicinity of a shell in the form [27,29-32,69]

i _ _
L= ¥V~ (VO] - mP¥.  (58)

where the covariant derivatives of Vﬂ‘P and Vﬂ\i‘ are in
the form
VY¥Y=90¥Y+QY¥  VY=9Y-Q¥. (59

In addition, the spin connection defined above allows
expressing the Lagrangian density £ as

_ o - -1
L=i¥/0,¥Y—-m¥P¥Y+ V¥ [4 e“"""wahcifsm] ¥,

9, = <a";a">. (60)

Thus, for (60), a Lagrangian density for a classical Dirac
field is defined as [59,61-63]

-1
L= 'Cclassic +¥ |:Z eadewabcysyd:| Y, (61)
where
Dype = ee [nadegell;;ﬂ]' (62)
If we estimate the antisymmetric part of @,,., we obtain

a)[abc] =0. (63)

Therefore, the Lagrangian density £ in (61) is

L= %0, ¥ — mPY. (64)

At this point, the following comment regarding the term
€@ -7’74 is noteworthy:

€ab6dwabcy5yd' (65)

1

iehy'Q, = 1

Such a term is associated with a spin tensor current. In this

particular case, we have wj,,, =0, which implies that

the spin connection term is zero in the case of the
Schwarzschild spacetime and also for the Minkowski

spacetime. Thus, for the Schwarzschild spacetime there

is no spin-gravitational field interaction [31,75].

Near the gravitational radius r,, the Hamiltonian density
can be rewritten as (for specific details see Appendix B)
i

H=—' wigw (66)

2k6r

V. QUANTUM FORMULATION OF DIRAC
FIELD CLOSE TO BLACK SHELL

Additionally, for the Ansatz considered above

O(tx).  W(tx) =

1
Yo(t,x) =
oloX) =75 70

(1, x)
(67)
allow rewriting the Hamiltonian density as

H= 2fl(l"> [q_)(th)yoaO<q)Q(tv§)) _80(6)9([,§>)7/0(I)Q([’§)}_

(68)

Moreover, it has previously been written that the field
@, (1, x) has been promoted to a field operator in the form
given in (54)

O (1.x) = Y[ bl Fa + difGal,
Q

o) (1x) =Y [b§§€>FQ n d§§>ég], e=+.  (69)
Q

Consequently, the field operator H¢) for the R and L
regions of the maximally extended Schwarzschild space-
time is written as

e T(e) 4. (e F(e) 4(e 0w o
HE = ;{b; D w + dlf >d§2)m—§—§} (70)

105006-6
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If, in addition, we define for (70) the occupation number
operator as NS> = bg€>bg) for particles with frequencies
@ > 0 and NS) = dzz(e)dg> with frequencies @ < 0, addi-
tionally for (70) we identify the zero-point energy
defined as Z.P.E. =2+ %, which corresponds to each
contribution for the considered particles. Thus, finally
arriving at [76]

HO =Y [No+ Nyo-zPE|. (1)
Q

Given the thermo field dynamics (TFD) scheme, it is
necessary to introduce a copy system (accent), which is
identical to the original one, with a Hamiltonian denoted H
and state vectors |71) obey an eigenvalue equation. Con-
sequently, under this scheme and by considering the
Schwarzschild variety in Kruskal coordinates, it is neces-
sary to consider H(*) as the real system and H(~) as the
copy system. This is why their eigenvalue equations are
[21-24,36,77-79]

H(+)|n(+)> = E(+)|n(+)> ER, (72)
HOn)y = EQn) e L. (73)

Under such conditions, based on (72) and (73), the
entire Hamiltonian of the Dirac field can be expressed in
the form

H=HY = HO =3 [N - NG+ N - N o
Q

(74)

On the other hand, for the region R, the Dirac field has four
incoming and four outgoing modes and similar modes for
the region L. Hence, 16 modes are needed to describe the
whole Dirac field in the Schwarzschild spacetime as shown
in Fig. 4.

A
- (+)
oS w) 0 v)
./

(=) (+)
C0Jw) o)
'Qoo 0606

‘hy. S

2 &
%, s

FIG. 4. Incoming and outgoing modes in the maximal repre-
sentation of the Schwarzschild spacetime in Kruskal coordinates.

In addition, the anticommutation rules for the creation
and annihilation operators are in the form {6, p7(€)} =
{d©),d"©)} =1, and the other combinations that may
arise  are {b<e>, b(c)} = {d(€>, d(s)} = {b+(e>’ bT(e)} =
{d"© d"€)} = ... = 0.

The Hilbert space for the Dirac field allows building the
vacuum state [80,81]

100 = [0)57" @ [0)5)", (75)

where |0)(*)* corresponds to the vacuum state for positive
frequency particles in the region R and |O>(‘)‘ corresponds
to the vacuum state for positive frequency particles in the
region L. Also know that the state is normalized when
5(0|0); = 1 for regions R and L including the positive and
negative frequency modes particles

b<+)b(‘>|0(+), 0(—>>§ =0,
d(+)d(—)|()(+), ()(—)>1—9 =0. (76)

Therefore, the thermal vacuum state |0(f)) for the Dirac
field is defined as

08))% = 10(8)))5 ® [0(8) )3
0(8))5 = 10(A) )5 ® [0(8) )3, (77)

which corresponds to the entanglement state between the R
and L regions for particles of positive frequency modes.
Consequently, the most general possible full vacuum state
including particles with positive and negative frequency
modes corresponds with [22-24,28,64,78-80,82]

1
0(8)) g = =——[1 + e PE/2p1(+)pT ()]

Z(p)
x [1 4 e PE/2@t ) g (=) jot+), 0y
® |00, 00)) 5. (78)

Finally, once the Bogoliubov coefficients have been
determined, it is possible to estimate the expected value

of the occupation numbers (N, (5)> and (N g)) (for specific
details see Appendix C),

(NG = (V$)) = (0(B) b b 10(8))
— (0B d 0(p)) = 2(p) = —

VI. THERMAL ENERGY OF DIRAC FIELD
IN A BLACK SHELL

Therefore, the momentum-energy tensor of the Dirac
field for a spacetime is [69,83,84]

105006-7
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T¢ =~
e Seb (80)
which allows obtaining
i _ <~ _ <~
T, = 3 Py, V¥ + ¥y, VY. (81)

Estimating the value of the Wightman function for the
Dirac field in a curved spacetime is [14,69,85-87]

Wap (X, X) g = 1 (0] (x) ¥ (x')]0) 1. (82)
Wap(x. %) g = 5(0]@ (x) @, (x')[0) 5, (83)

where a and b are the indexes that run 1-4 for the spinor
space. On the other hand, the field y,(x) is expressed as

o) = 3[4+ ] 005 5) = 37 19+ 48| #h o),

€,

(84)

Based on the foregoing, we find that (for specific details see
Appendix D)

E 4np?
— =P
1 + B/T0) (21)

~(rje) = [

0 E 4zp?
_A Treomo 3 @ (8

We know the T, component of the energy-momentum
tensor is associated with the matter-energy density of the
field, p = —(TH(x,x")). Hence, we have

0 E 4np?
o= | e a9

which corresponds to a remarkable finding since the energy
density of the fermionic field coincides with that reported
by [7,14] for scalar fields. If, in addition, considering that
the modeled Dirac field corresponds to Majorana fermions,
which are weakly interacting, then the energy-momentum
tensor 7, can be considered as an ideal fluid such that
p = —(T{(x.x')) and the pressures p =} (T%(x,x')) = 1p.
The foregoing necessarily leads to

1 [ E 4z p?
P=y A e dp. (87)

Following Mukohyama [7] with the ultrarelativistic
approximation for massive particles whose velocities are
v~c and p>m, we get E~ pv; hence, Eq. (87) is
simplified to

1 e pv 4z p?

Now, recalling (D29), which corresponds to the spatial
components of the Wightman function [14],

(T (x, )| yor = 0. (89)

VII. ENTANGLEMENT ENTROPY
OF DIRAC FIELD

Considering the partition function Zg(f) per mode,
given in (C1), for when Q= w,«(I),m [14,22,23,78,88,89],

1

Zo(p) =[] = (14 eE), (90)

n=0

where n = {ng V Q,® > 0}. Moreover, under the high
energy range, we have

E,= ana). (91)

‘w>0

Consequently, we find that the partition function for the
Dirac field in the vicinity of the shell corresponds to the
product of the partition functions for each mode with
quantum numbers Q = w, k([), m [88,89], which is equally
valid for bosons and fermions. Therefore, the partition
function becomes

z=1[zalp)= I Dl = [ (1 + "),
Q

>0 Q;0>0 n=0 Q>0

(92)

We require that (for specific details see Appendix E)

sin [ / + \/@dr} ~0, (93)

which is equivalent to

o vV O(r)dr= - V O(Tens@en k(1))dr=nm,  (94)

ryte ryt+e

where Q(r) is defined by (35) and (36) for the fermionic
field in the vicinity of the shell. Arenas and Tejeiro propose
the case of a scalar field as [14]

1 [e* I(I+1) (r2f)"
o[-

Figure 5 shows the surface diagram for Q(r,[) and k(r,[)
near the gravitational radius. It is possible to make the
following comments regarding the model:

(95)
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L k(r).scalar field
& Q(r), fermionic field

FIG.5. Comparison of Q(r) and k(r) for fermionic and bosonic
fields, respectively, in the vicinity of a shell that has contracted
from infinity to near its gravitational radius r;.

(1) The behavior of Q(r) and k(r) is similar in the high
energy range, @ — oo.

(2) Q(r) and k(r) are increasing when r — r,. This
allows one to confirm that for the fields under study,
the field modes are strongly concentrated very close
to the horizon [14,21].

(3) Q(r) and k(r) decrease with distance, r — oo.

(4) Q(r) and k(r) exhibit similar behavior and are
independent of spin [90].

On the other hand, taking (E12)

V O(Fens Wns k(1)) = Q' (rins @, k(1)) (96)
Therefore, Eq. (94) is rewritten as
/ " O (Fops e (1)) dr = . (97)
ryte

s

Next, we must change the independent variables (k,n)
to other independent variables (k,®) with n = n(w, k).
Hence, Eq. (97) is rewritten as

n(w, k) = 1 / O'(F(w.x),w.k(l))dr',  (98)

T Jrote

1 r(w.x)
8”(“”")_—/// dwdrdr' (21 + 1) In |1 + ¢P2|
Ow o Jx Jrote
(r'(

» [8Q’ (o, K),a),l((l)):|’

9 (99)

where Q*(,w,x(l)) =0 when ¥ = r,+¢ and ¥ =R,
Y w,x > 0 (for specific details see Appendix F).

On the other hand, the Helmholtz free energy is related to
the partition function as

1
F=—--Inl|Z|
p
— _or / = N 4, (100)
0 eP 1

It is also true that according to (D37), we find that (F9) is
rewritten as

A LA B
a I ———=Lmax
3n ryte r\/f(r)

R
= / Ni(w)dr.
ryte

Based on (F8), we define the occupation number per unit
frequency for fermions in the vicinity of a shell, N*(w), as

N(w) =

(101)

=5 ()]
4 P

[® = m2f ()], (102)

3 f(r)?

It is possible to compare the occupation number per unit
frequency for bosons (103) and fermions (F9),

Ny = [ Ny@)dr.

ryte

(103)
where Ni () is

Ni(0) = %f;—(zr) [0)2 - <m2 + (i?”) f} 3/2. (104)

Figure 6 shows the comparison between the occupation
numbers per unit frequency for bosons Nj (@) and fermions
Ni(w). It shows that for the high frequency range
N§(w) > Ni(w). This type of behavior is expected, since
the fermions are subject to the exclusion principle in the
vicinity of the shell, since only a few fermions can be
located per energy level provided they do not have the same

N*(w)
8x1020 1
\
.
[ . i
1620 \ Ng(w),bosonic field
R U NE(w),fermionic field
.
4x1020 \
A
2x10%0
o, TTtSmeeeseSToEEEEEs r

2.1 22 23 24 25

FIG. 6. Comparison between the occupation numbers per unit
frequency for bosons Nj;(w) and fermions Nj:(w).
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quantum numbers. In the case of bosons, the occupation

number in the vicinity of the shell is higher. It is interesting

to note that Nj;(w) and Nj:(w) decrease when r — oo.
Consider the internal energy U if the form

U= —21n|Z|

op
=1 ON(w)
= A Py la) o dw,

where the quantity 0< @) is obtained from (101)

(105)

ON(w)

Jw
(R 4 P2 o? 21/2
—[ﬁedr;f(r)yza)[m—m] '

Consequently, the internal energy U is simplified to

N'(w) =

(106)

o N’
U= / oN'(@) 40 (107)
o e 41
Revisiting (D37)
2 2
2@ M 108
P = 2f (e~ 288 (108)
such that
1)
dp = dw. 109
PEP = 2f(ror ™ (109)
Based on the foregoing, taking (107) we obtain
0o N/
U= / _a)} (@) do
0 e/m +1
R
= 25r\/25/ drrtdrp(r), (110)
ryte

where, for (110), the quantity p(r) given in (86) is
acknowledged; consequently we find

R
U= cte/ 4rrtdrp(r). (111)
ryte

The foregoing makes it possible to calculate the Dirac field
entropy as [67]

S=plU-F
ePe

_ﬂZA a)N(w)(—2da).

o1 1) (112)

To solve (112), the variables (r, ) need to be substituted
by (r, p). Therefore,

R 4 2
- / dr—— _psrp?P2. (113)
ry+e 3n f(r)

Inserting (101) into (112) with wdw = f(r)pdp,

R 4gr?
= d
S /rere 0 rs(r),

where s(r) is identified as the entropy density of the
fermionic field in the vicinity of the shell as

(114)

2 0 S 4

st =510 [ i ;’i,,jl) (ﬂf . (115)

Moreover, the term
1
pf(r) = 0 (116)
and then
1 o p2efr  Agp?
S(r) = 3T2(1") f(r)[) (eiﬂw I 1>2de. (117)

Considering again the energy density of the Dirac field
given by (86)

% E  4np?
p= A T B 7 9P (118)
with the condition that
E p
N——— = 119
070 e
leads to (119)
47 o x?
— T4 d
o) =510 [T
Tn?
= T4(r). 120
240 ) (120
Similarly, for the entropy density defined in (117)
pa 4
p’e zp’
() = g7 700 [ e
771
T3(r). 121
= tsow L) (121)

The combination of (120) and (121) leads to
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(122)

Now, at this point of the discussion, it must be assumed that
the energy-momentum tensor (7',,) of the Dirac field in the
vicinity corresponds to a perfect fluid [7] such that the
equation of state of the Dirac field corresponds to Tr[T,,],
which yields the relationship between the pressure P and
the energy density p, and is in the form

P=2p. (123)

3

Hence, the entropy density s(r) is simplified to [7,14]

s(r) = p(r)lp + PJ, (124)
167Tk3 o E‘3
- dE. 125
S 3h3c3kBT/0 ETT {1 (125)

For an ideal gas fluid, the existing relationship between the
energy density p and the pressure P is in the form

dr o E3
P = h3c3A BT | dE, (126)
1 1 4n o0 E3
P=—p=— dE. 127
37 3h3c3/0 cERT { ] (127)

It is possible to determine the entropy of the quantum field
once the proper distance « is known [7,14,15,19,20,91,92]

32k%e (T3 A
Sttt = —=2— [ —2 ) 26, 128
field h3a2 <K_(3)) 4 1 ( )
where
1 153 _
G, =1 / eiltdt. (129)
T I3
Hence
Sfield = SBH- (130)

VIII. DISCUSSION AND CONCLUSIONS

In the absence of a quantum gravity theory, it is useful
to propose a classical approximation that allows one to
explain the effects of quantum fields in high curvature
scenarios. The model proposed herein corresponds to a
statistical quantum description of a fermion field with spin
s = 1/2 near the gravitational radius r.

The origin of the particles around the spherical surface of
radius r = rg + € lies in the thermal excitations of the

Boulware vacuum state |0); for an external observer
(FIDO). The foregoing is done based on thermo field
dynamics, as it allows one to explain the origin of Sy as a
state of entanglement between the modes of the fermionic
field spreading by the Kruskal manifold (see Fig. 4). We
show that for the case of a fermionic field s = 1/2, the
entropy of the field is
Skt v=1:5=1/2 ® SpH- (131)
Arenas and Tejeiro [14] calculate that the case of a scalar
field s = 0 has an entropy
SentlN=1:=0 ~ SpH- (132)
In the case of the superposition of two or more quantum
fields near the gravitational radius r,, we believe that
Sentlv=23.....0=0.1/2.... ® SpH, (133)
Eq. (133), leads to the species problem, a question still not
clearly understood. Furthermore, consider there is some
kind of particle responsible for gravity, graviton. Such
particles must be in a certain quantum state forming a Bose-
Einstein condensate. The foregoing results in total entropy,
as proposed by Chen et al. [93], in the form
S = Spare + Satm> (134)
where Sy, is the entropy associated with spacetime and
therefore to gravitons (if they exist) and Sy, in the entropy
is associated with thermal atmosphere, such that if the

Boltzmann principle is valid even in the gravitational
context, which allows asserting

Share & 1IN |Qpare |, (135)
where Q.. is the quantum state of the gravitons forming
the Bose-Einstein condensate.

This study is possible since we can build the Hilbert
space for the quantum field under consideration, which
allows obtaining a self-consistent result with the tech-
niques of quantum field theory on a curved spacetime.
The use of typical methods of second quantization applied
directly to the gravitational field leads to a nonrenorma-
lizable theory [94]. However, recently Ulloa et al. cal-
culate the energy-momentum tensor T, for the gravita-
tional field based on thermo field dynamics, such that
they are able to directly estimate the thermal properties
to the spacetime and intuit a corpuscular structure of
spacetime [95].

This model allows providing a precise location of the
field modes responsible for Sy, since we found that such
field modes are strongly concentrated in a thin layer
r=ry+¢€ around the horizon; see Fig. 6 [7,14,15,19,20].
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The components of T, for the fermionic field were
calculated where it was possible to determine that

{Too (%, X)) s=v & p, (136)
(Tij(x, XD ]sew = 0, (137)
based on the quantum vacuum states |0); and |0) . These

vacuum states are associated with the quantum state |0)1yp.
which corresponds to the generalization of a Hartle-
Hawking vacuum state,

(T/w)TUB = (Tuu)B - ATﬂIJ’ (138)

where (7,,), is associated with the quantum field near
the horizon and is associated with the source AT,
[7,14,15,19,20]. According to the above mentioned, it is
important to note that the role of FIDO is remarkable in
this study.

Data Availability—Data analyzed in this study were a
reanalysis of existing data, which are openly available at
locations cited in the reference section. Further documen-
tation about data processing is available at [96].
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APPENDIX A: RADIAL EQUATION FOR DIRAC
FIELD IN SCHWARZSCHILD SPACETIME

The Dirac equation for the Schwarzschild spacetime is
obtained inserting (30) into (23) [28],

{raﬂr< ot )

(D (L Leoo) 4 (——) 24
(7 ) get2% "\ sing) o

Equation (A1) is simplified when using the Ansatz
Y =

m}‘{‘:O.

(A1)

1
Lo
V. (r)

4 ﬁaﬁ F(ar )

+ 1 0 —+ 1cot9 ! g—i—
r 90" 2 rsind) o
Consider as a solution [60]

iGH(r) (&) 0
O(1,1,0,¢) = (F&r) (/’(,;m>( v¢)>e_iEt’ (A3)
0 (0.9)

m](l)zo.

(A2)

where j =1+1/2,

[14+1/24+my; m—1/2
(+) 20+1 Y Y

(ij = 1) . ’ (A4)
—m
\/ 20+l YIWr /
Jl+1/2— mym 1/2
) o (AS)
qo]m - 5

_J1H1/24my mt1)2
20+1 Y

which allows obtaining the radial equations

d [ F® /1 2M (K] T m F&)

dr*<G(i)>_ _T< m —K(ﬂE)/r)(G(i))
0 —E\/F®

(e 0 )(6)

Consider the turtle coordinate

’
= 2MIn|— —1 A6
r,=r-+ n T , (A6)
and also, constant x is [57,58,60,97]
—(j+1/2), j=1+1/2,
K(+) :{ .(J /2) J / (A7)
(G+1/2), j=1-1/2

Again, we consider a rotation for (A6) in the form

F) B sin((4)/2)  cos(01)/2) F&)
(62) = oo “sio) ()
(A8)
= tan~! 2L

‘K+|

defining 6, ) = Therefore (A6) is simplified to
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1 OMN (0 =1\ (FHN  mlk

=—-E(l14+—(1—-—— A9
(2 (=20 0 ) ()2 5en) )

At this point, it is possible to further rewrite (A9) as \/ | —2M (@ )2 + m?
1 Wi = 1 : M ’ ( (A19)

mkK -)
P, =r, +-=tan”! < - > (A10) L= (1=5) ("?—ﬁ”‘z’z)
2E k(4]

Hence, the radial equations are ultimately rewritten as

d [ E _p) G+
dr, <G<+>> i W‘”( G ) - E<—ﬁ<+>)’ (At

defining the superpotential W) as

W e

+ - .
1 amy [ Mkl
1 + 2E (1 — T) (K?+)+m2r2>

(Al12)

These equations for #(*) and G are decoupled as

d? R .
(— prols v<+)1> F) = g2 (A13)
and
d? A R
<_W + v(m) G = E2G™. (A14)
Additionally,
AW )
Vina == . + W%H (A15)
If (—) yields
d? . .
<— ot V(_)I)F(‘) = E2F0), (A16)
d? A
where
dw
— =)
V(—)1,2 ==+ a7 + W<2_), (AIS)
then

The integers are represented as (+) and (—) with

o1 o1 . 1
K+ =J+3 K(+)_—<J+§> and j=I+3. (A20)

APPENDIX B: HAMILTONIAN DENSITY FOR
DIRAC FIELD IN SCHWARZSCHILD
SPACETIME

Using the Lagrangian density given in (64), it is possible
to estimate the Hamiltonian density H by a Legendre
transformation [59] if the form H = H.P‘i‘ + ‘i’H@ - L

where the canonically conjugate moments are Ty = % =

v
f9y0 and Mg = g—é = —4y"%. Moreover, having that

0¥ = ¥ and 0¥ = ‘i',
H = % [(0,%/'W) - P9, %] + mPW.  (BI)

Considering the Dirac equation [iy”ﬁﬂ —m]¥ = 0 and the
Dirac adjoint equation ‘i’[iy”@,l +m] =0 are given by
(59), they can also be broken down into their temporal and

spatial components. Based on the foregoing, the
Hamiltonian density is transformed as

_ o _ |1
H = I\P}/Oﬁolp —+ Y |:Z €ab6d0)abc}/5}/d:| ¥
i |1 abcd 5
= Hclassic* +¥ Ze WDabe? " Vd ¥, (B2)
where

Hclassic* = llilyo 80‘P = i@yoegaﬂqj' (B3)

Moreover, it has been written for (B3) that the gamma
matrices y* = ehy?, ¢ = —L— (y9)2 =1, and the Dirac
Y al a /—. ) (}’ )

adjoint written as ¥ = W'y, Consequently, Eq. (B3) is
reduced to
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1 <~
Hclassic* s [llPT 80lp] =

Hclassic-
f(r)

(B4)

1
VI(r)

Therefore, having that H,j,ei. = %P7 9P corresponds to
the Hamiltonian density of the Dirac field in the
Minkowski spacetime [62], those field modes are
defined by (35), (36), and (37). In this context, it is
possible to conclude that the Hamiltonian density of
the Dirac field in the vicinity of a shell of matter, which
has contracted to near the Schwarzschild radius ry,
corresponds to the Hamiltonian density of the gravita-
tionally adjusted classical fermionic field by a factor

;( 5 with f(r) =1—2 Under the foregoing condi-

tions, we obtain

1 i
Ilim —— [ll}l[aoql] = HclassiC'
r—o0o 1 _2Mm

(BS)

This result is important since it is possible to per-
form the second quantization scheme of the fermionic
field in the Schwarzschild spacetime analogously to the
Minkowski spacetime [31]. The Hamiltonian H is
obtained integrated over the three-volume as

H= /d3~XHclassic*- (B6)

APPENDIX C: THE BOGOLIUBOV
COEFFICIENTS FOR DIRAC FIELD IN
SCHWARZSCHILD SPACETIME

The partition function Z(f) is in the form [78,88]

Z(B) = (1 + ePEn). (C1)
The relation between the Boulware vacuum state
|0(B))p given in (78) and the Hartle-Hawking vacuum
state |0(f))yy is determined by a transformation in
the form

08))um = U(B)10(B)) -

U(p) = UB) Up)- = e 00 60 (C2)
where

GOt = 9(ﬂ)+[b(‘>b(+) - b(’“ﬁb(‘)*],

G(9)~ = 0(B)"[d)dH) —dH)Tad-)T, (C3)

Also, the Bogoliubov coefficients allow building the
canonical transformation that leaves the Hamiltonian
invariant defined as

1
1 + — si = =
sin@t = sinf N v(f),
1
cos@T =cosf™ = W = M(ﬂ) (C4)

For the thermal vacuum state |0(53))yy = U(S)|0(f)), it is
expressed as

0(8)) = [sin @ + cos 0].10(8)) - (C5)
Additionally, from (C5) we obtain
v(p)
tanf = ——~ = e P0/2, C6
u(p) (6)
such that it fulfills
sin? @ + cos? @ = v (B) + u*(B) = 1. (C7)

The temperature-dependent creation and annihilation oper-
ators are obtained as
b (B) = e iCPIp(e)iGO) )T (B) = IGI) ple)T iG(O)

(C8)

’

and

d€(f) = e=10B)g(e) ¢iG16),

which leads to
()= (i (5. ew
()= Cin () e
APPENDIX D: THE WIGHTMAN FUNCTION

OF DIRAC FIELD IN SCHWARZSCHILD
SPACETIME

The Dirac adjoint is defined as

@)=Y [b;(f) + d'ﬁ”] ) (). (D)
i) =3[ + 0 |a ). (D2)

Based on the foregoing, it is possible to determine the
Wightman function in the modes of the Boulware scheme.
Inserting (84) and (D1) in (83) allows finding
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Wap(x,x')p = Z (0| [bg) + dé?] [b = + d ! }|O>

Q. Q)
x @ (x) B, (x). (D3)

fermions
Once the

Consider the anticommutation rules for
{by) by} = {dg) dy} = ee(w)beuaar
anticommutator has been developed as

bg)bgf,) + b"'(f')bg) = e€(w)dee Sae (D4)

and likewise for the anticommutator {d<€), d;rz(,e/)}, we get

that the Wightman function is rewritten as

Woap(x. )5 = Y [2e€(0)5,0800 105 L ()P0, (+')

= 20(cw) @ () D) o (). (D5)
€,Q
with the condition that e(@) = sing(w) = O(ew), Sqo =

(o) Ox(1)e (1)011> Oy for the possible values of x(+£)
defined in (A7) [28,60] and Q = w,«(l), m. Moreover
Q=Q e=¢€,and e = 1.

With a procedure identical to the one described above,
we determine the Wightman function under the HH
scheme, which is

Wy (2. H—Zw cw) ¥ h (0¥ (). (D6)

The relationship between the two modes ‘PS)(I, x) and
CI)S)(I, X) is

WL (1, x) = B (1, x) cosy + BT (1,x)siny (D7)

and the adjoint is
il

t,Xx) = (i),(;zz(t, x)cosy + ég,’_é)(t, x)siny. (D8)

Substituting (D7) and (DS8) in (D5), we obtain
Wap (%, X ) g
— ZZ (ew) { o(t,x)cosy + d>( I(1.x) sin;d
€,Q,
x [Cf)gfgz(t, Xx)cosy + éﬁ,;? (t,x) sin ;d ,
with the following products for (D9)

D) (x) = Py (1, X)0,(x),

and

0 (x) = Pa(£x)0_(x), B (x) = Pa(1.x)O_(x).

(D11)
Thus, for (DY), we determine products, with the con-
dition that x € R, x’ € L, such that ©,(x)0O_.(x') =

0.(x)®_.(x) =0, as it is in different regions of the
Kruskal manifold

= D1, x)Pq (7', X)O (x)O_(x') = 0

(D12)

;) (x) 0 (x) = Da(r, )P (1, X)0,(x)O_(x) = 0.

(D13)

Based on the foregoing, the Wightman function for the
Dirac field under the HH scheme is simplified to

W (x, X))y = Z2®(ew) X [<I>((;22(x)<i>§f22(x) cos? y
€.Q
+ O (@) (x)sin . (D14)
The difference between W, (x,x")y; — W (x, X'

leads to

Wab (x’x/)H - Wab (X,X’)B
== 20 (ew)sin’ g [® 4 (1) DY 4 () + DS (x)Bh ) ().
€,Q

(D15)
Moreover, it holds that W, (x,x")y — Wy, (x,x")z =
(Wy — Wg),p(x,x), and it is also true that e = +1 € R

and € = —1 € L can be restricted to one of the regions of
the Kruskal manifold as

(Wi = Wpg)p(x,x) ZZsm ;([ )@ég;( )]
(D16)

(Wi = Way4) = =32 [0l QB[]
(D17)

On the other hand, we have already considered the explicit
form of the energy-momentum tensor (7,,) in (81) as [98]
i _ <~ _ <~

5 [ProVo¥ + ¥y, VoY,
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where p is the energy density and for this study it is
rigorously p > 0, since no foreign forms of matter energy
are considered. Therefore, we get that (To(x, x'))|,_ & p,
which leads to (Wy —Wp),;,(x,x") >0 [99]. Consequently,
(D16) is rewritten as

@B, ()].

1
AN
(Wh = Wg) g (x, %) = ;ZW

(D19)

At this point, Wightman’s function for the Dirac field [14]
must be expressed as

T, = é Py, 0,% + ¥y,0,¥], (D20)
which is rewritten as
- i < <
Ty (x.x') = ¥() S 11,00 + 71,0, ¥ (), (D21)
where
5, =13,-5)
v — 2 v 1%
and
pas 1 - -
0, = B (aﬂ - 8ﬂ/)’

which is why (D21) is rewritten as [7,14,69,85,86,100]

_X—)_X/

, i i ,
(T (x. X)) = hmTr{ [Ey(ﬂ&,) - 5]/(,,/8,/)] }Wab(x,x ).
(D22)

According to harmonic spinors, we get [60]

irpﬁ,f (0.9)

®§@%ﬂ%Aﬂ< ), (D23)

i (0.9
¢Q®=%W%?ﬁ v. (D24)
(pj.m (07 ¢)

Therefore, the most general solution is in the form
Dg(x) = O (x) + Pg(x), and then

i@ﬁ«%@)
@\ (0.0) ’

ip\”)
+<I>M(r)< (p(’:;’(e’ d))). (D25)
Pjm (0,9)

q)Q(X) = q)m,x(r) (

At this point, it is necessary to mention that in line
with Bjorken [60], for the hydrogen atom, there is a
relationship between the spherical harmonics in the form
Yy, = (=1)"™Y,_,, and that the solution ¢~ only exists
for values of [ > 0. Hence, the form of such an operator
is 2F, and that allows expressing the relationship between

as [31,82]

6r (_ (-
o) =Tt =i (D26)

jm
They allow expressing (D22) as

i {Tr [7/4 0%alx) Do (') + 71, 0al ég(ﬂ)}

4 ox* ox*
8@9()5) a(i)g(xl):| }
oxV OxH ’

+ vy (I)Q <x>

= Tr [7,/ D (x)

(D27)

In turn, each term contained in (D27) is separated into its

-)
Pim(0:9) temporal and spatial components of
, 1 0Dg(x) - ODg (¥
(Too(x, X)) | =y = lljil, ;; ZWZ x 2Tr {Yo 8%5)@9()5/) — 70 Dq(x) %} (D28)
and
(T;i(x, X)),y = lim Zsz
EAN = x—x' PXe) 1+ €/jE4
D) - Do) - 9Pq(¥) 0Pq(x)
x Tr [}’i ™ Do (x') +7; o 2o (x') = 7 Pq(x) o 7y Pa(x) oW, (D29)
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According to the properties of the spinor spherical
harmonics we obtain

<TOO ()C, X’)> |x=x’

(D30)

Now, the sum over the frequency @ in (D30) at the limit
to the continuum can be expressed as an integral in the form

Z @ —>/ @ da)—Z/ @ dw
1 + ef e 1 + &P o 14 e

(D31)

Inserting (D31) into (D30), we obtain

/ _ * w
(TNl =42 [ -  o]

SV @I (D32)

On the other hand, under the WKB approximation,
we obtain

It should be noted that the values of x are bounded as

Ky == +1), k) =1, ko) > Kk(4). We want (35) to
adopt the maximum possible values of & ~ naxs
261 [ o m> Koy
-—-21 (D36
o0 =7 [Zf( r)or 207 2r26r} (D36)

The fact that k — K, leads to Q(r) =0,

267 [ o m> Ky

or e _m_ — 0.

f(r)y [2f(r)sr 26r 2r%6r
K2 @° m? 5

=p>  (D37)

2r25r  2f(r)ér  26r

where p? defines the centrifugal potential. Accordingly,
inserting (D37) into (D36) we obtain

Kmdx 1
r? 26r|

(D38)

o0 \/2&

On the other hand, the sum over « contained in (D34) is
transformed into an integral when x — oo and K, ~ [,

f(r km | f(r)
Ql+1) > 21+ )dc,  (D39)
|(Dw1<(r)|2 = @ S (D33) z;(: Q(r> 0 r)
2712/ Q(r)
Substituting (D33) in (D32), we obtain / x| (1) / o[ f(r)
20+ 1)dk = 20+ 1)dl
0 ’”)( ) 0 Q(”)( )
w© @’ da) 1 (r)
Too(x, X)) =42 20+1), (D40)
Tt =42 [ oo\ [
(D34) Inserting (D40) into (D35)
where f(r) = 1+ 2% and Q(r) is defined by (35) and T (k) (Too(x.)) = 4|2 © @ do
(36). Consequently, near the gravitational radius r, = 2M, 001X, X o 1+el 2
considering that is under the approach f(r) ~ 2K05re"/ T
We get that lim,_,, f(r) = 2k(6r, where k, = z3;. Based on / m | f(7) 21 +1 (D41)
the foregoing, we get that T'(x) is rewritten as 47”’ (r)
lim T'(x) = _L (D35) Developing the integral over [ in (D41) according
K—00 20r to (D38)
|
llﬂﬂX lmax 2l 1
/ IO o pyar =0 2L,
0 o(r) Vor — Jo 2p%ror — I
rf(r){ 2,2 2.2 2 —1[ Imax }}
= 24/2p°roor — 24/ 2p~r-dr — 5, + tan , D42
7 Y v SRR ey A
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where the term tan~![——lzs__] can be written as
V 2p2r25r_l%mx
l 1
tan™! [ n } = tan™! {} ,
\/2p2r25r - lfnax x2 -1

5 2r2p25r
xX- =

, (D43)

2
lmax

which can be transformed into a Taylor series at zero
to [101]

1
tan—l[ ] :cot_l[ - 1} ~Z.  (D44)
x2 =1 2
Substituting (D44) in (D42)
/ max 21 +
= 24/2p%r28r — 24/ 2p2 2 6r — 2
\/6_ { \/ p r r— \/ p r r max + 2}
(D45)

For (D45), the term 2r226r — 2, = 0, given that
2p226r = 2,4, which was defined in (D37). Therefore,
we have that the integral contained in (D42) is

/ (r)
(r)
Inserting (D47) in (D41)

(Ton( X)) = 4[ / Ww_zd_w}

21+1)dl~ (){2pr\/27+ } (D46)

1+ef” 2
1
X rf;fs_:) {2(21)1’\/?5}’4»72[)]. (D47)

Consider the centrifugal potential defined earlier p, (D37).
We obtain that (D47) is simplified to

1 o @?
Too(x,x')) = =—2 d
(Do) = 5152 [ g

AR o 3.

where f(r) can be recovered in (D48) in the following
manner: f(r) & 2ky0r, 2 = 2r2 p?5r, and also the surface

gravity on the horizon xj = z5;. Therefore

1 © o f(r)
Too(x,x')) ==—=2 d A. (D49
< OO(X X )> 27[2 |:/) 1+ eﬂ(u (D:| f(l‘) p ( )

Defining in (D49) A as

(D50)

2
A ==./8kjor? <2r\/ 26r + 2£> = cte.
r 4

On (D50), two conditions are required:
1) K0|r.‘ e = cte, which implies that the surface gravity
on the horizon is constant.
(i) pl, e = cte, the momenta distribution near the
gravitational radius is uniform.
Based on the foregoing, the Wightman function for the
Dirac field in the vicinity of a shell of mass M, which has
contracted to near its gravitational radius ry, is in the form

1 © @
/ P dw f(r) cte.
222 | Jo 1+ e f(r
Again, we have that
(i) The local energy per field mode is

E = Gh - w=E\/f(r).

(Too(x,x")) =

(D51)

(i) The temperature is mediated by Tolman’s law,

_Tu 1,1
T(r) - f(r) ) TH —ﬁ ﬂ TH.
Then
E
Po = o) (D52)

(iii) The relativistic energy E> = m?* + p?; therefore it
can be written according to the foregoing

wdw
—— = pdp. D53
70 (D33)
Consequently (D51)
Tuoxi ) = s [ D dpES(). (034)
X, X — r).
00 272 Jo 1+ eE/T() p
In addition, we know that for the metric (19), g% = — ﬁ,
so (D54) is rewritten as
1 fe E
—(TQ(x,x')) = Py A 15 B P dp, (Ds55)

where the term

1 4z h
L R
27 (2x)} 2z
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APPENDIX E: THE ENTROPY OF THE DIRAC
FIELD IN SCHWARZSCHILD SPACETIME

Once the partition function Z has been established, the
entropy of the Dirac field is determined as

S:—ﬂ%an|+ln|Z, (El)
and the average value of internal energy as
W) ==Lz, (E2)
dap
Let f(w) be a function such that
Tim f (o) = (E3)

Consequently, the contribution of f(w) for each state with
Q values allow stating

- A ” No)f(o)do (E4)
On the other hand, taking (92)
|z =m| ] zg(/;)‘
Q>0
=Y o) = [T M@)o, (£
Q 0
which leads to
fl@)=1+e.  (E6)

Y In|Zo| =) flw)
Q Q

The foregoing is valid when the number of modes, N (w) of
the field ®g(x*), lie within the interval @ and w + dw.
Accordingly, the partition function given in (E5) is sim-
plified to [89]

In|Z| (E7)

=> I|z,|.

Also, under the condition that the fermions do not interact,
the partition function explicitly is in the form [88]

=D 3> @+ )|l + e,
n=+ k n

where 7 = &+ has been included, which corresponds to the
number of incoming and outgoing field modes in the
Kruskal variety (see Fig. 4).

On the other hand, the field modes under the WKB
approximation

In|Z| (E8)

4 f+ \/_dr]
4ﬂQ( )

F(r) = (E9)

such that they become null on the shell with a Dirichlet
condition [13]

F(r)‘rgre = 07 (EIO)
requires that
/ VO dr = nx. (E11)
ryte
and also
Qz(rxnvwlcnvk(l))lr:rx—&-e =0 (ElZ)

evaluated on the shell. And outside of the shell, we get

Q2<rKn7wKn7K(l>)|r:r’ >0, r< Tyn- (E13)

According to the foregoing, the modes become null on
the shell [13], and therefore we get

2
4

F(r) = (E14)

APPENDIX F: THE SURFACE AND
VOLUMETRIC CONTRIBUTIONS OF THE
PARTITION FUNCTION OF DIRAC FIELD IN
SCHWARZSCHILD SPACETIME

The integration by parts of (99) with respect to @ is

a /
/dwln|1 —|—e/"’“|a—Q
w

_ / ﬁw / lB
=Q'In|l +e +/Qeﬂ‘“+1

do. (FI)

Inserting (F1) into (99), we find

In|Z| = /// " dwdrdr' (21 +1)Q’ ﬂwﬁH
w JK +e

/ dwodkdr' Q'In|1 + e#?|. (F2)

K

For (F2), the first integral corresponds to the volumetric
contribution in the space of Q'(r'(w,«),w,x(l)) and the
second one to the surface enclosing said volume, under
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the condition that the partition function In |Z| receives its
main contribution from the volume of Q'(¥(w, x), w, k(1))
and not from the enclosed area. It is possible to approxi-
mate (F2) as

In|Z| ~ /// " dwdrdr (21 +1)Q' ﬂ‘”ﬁ+1

Again, the integral in (F3),

(F3)

/ de(21+ 1)Q'(F(w, k), ,k(1)), (F4)

K

is developed according to condition (E12) and (D38). So,

e lss®

The foregoing under the condition x = L < L, (@', 1)
is [14]

2 12 2 2
oL [0 1) g
r’ér  r°dr (r)or 6r

Therefore, integral (F4) is simplified to

/d,c (2 + 1)/ (@, 1), 0, k(1))

1/ / dL(2L + 1) L%nax L?

= 7 f(r) 3 Lmam (F7)

where or = ry, — r,. Substituting (F7) in (F3), we find

1 or 4 4
In |Z| __Lmax-
eﬂ“’ +17r\ f(r)3
ﬂ [ 4 [R 1 ]
do——"— |\/6r— dr———L3 .. |.
/ e +1 37 Jrve 1 /f(r)

Acknowledging in (F8) quantity N(w),

4 (R 1 \
— dr Liax- (F9)
3 ryte r f(r)

Consequently, the partition function is written as

N(w) =

= pN(@) dwV/sr.

In|Z| = ]

(F10)

[1] V. Cardoso and P. Pani, Testing the nature of dark compact
objects: A status report, Living Rev. Relativity 22, 4
(2019).

[2] B.P. Abbott et al., Observation of Gravitational Waves
from a Binary Black Hole Merger, Phys. Rev. Lett. 116,
061102 (2016).

[3] D. Castelvecchi, Black hole pictured for first time—in
spectacular detail, Nature (London) 568, 7752 (2019).

[4] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[51 S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[6] G. W. Gibbons and S. W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[7] S. Mukohyama and W. Israel, Black holes, brick walls and
the Boulware state, Phys. Rev. D 58, 104005 (1998).

[8] W.H. Zurek and K.S. Thorne, Statistical Mechanical
Origin of the Entropy of a Rotating, charged Black Hole,
Phys. Rev. Lett. 54, 2171 (1985).

[9] J. D. Bekenstein, Generalized second law of thermody-
namics in black-hole physics, Phys. Rev. D 9, 3292 (1974).

[10] L. Bombelli, R.K. Koul, J. Lee, and R.D. Sorkin,
Quantum source of entropy for black holes, Phys. Rev.
D 34, 373 (1986).

[11] M. Srednicki, Entropy and Area, Phys. Rev. Lett. 71, 666
(1993).

[12] H. Terashima, Entanglement entropy of the black hole
horizon, Phys. Rev. D 61, 104016 (2000).

[13] G.’t Hooft, On the quantum structure of a black hole, Nucl.
Phys. B256, 727 (1985).

[14] J.R. Arenas and J. M. Tejeiro, Entanglement entropy of
black shells, Nuovo Cimento B 125, 1223 (2010).

[15] F. Pretorius, D. Vollick, and W. Israel, An operational
approach to black hole entropy, Phys. Rev. D 57, 6311
(1998).

[16] W. Israel, Thermo field dynamics of black holes, Phys.
Lett. 57A, 107 (1976).

[17] S. Liberati, Quantum vacuum effects in gravitational fields:
Theory and detectability, arXiv:gr-qc/0009050.

[18] D. V. Fursaev, Can one understand black hole entropy
without knowing much about quantum gravity? Phys. Part.
Nucl. 36, 81 (2005), http://www1.jinr.ru/publish/Pepan/
2005-v36/v-36-1/pdf/v-36-1_06.pdf.

105006-20


https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1038/d41586-019-01155-0
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.58.104005
https://doi.org/10.1103/PhysRevLett.54.2171
https://doi.org/10.1103/PhysRevD.9.3292
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevD.61.104016
https://doi.org/10.1016/0550-3213(85)90418-3
https://doi.org/10.1016/0550-3213(85)90418-3
https://doi.org/10.1393/ncb/i2010-10922-3
https://doi.org/10.1103/PhysRevD.57.6311
https://doi.org/10.1103/PhysRevD.57.6311
https://doi.org/10.1016/0375-9601(76)90178-X
https://doi.org/10.1016/0375-9601(76)90178-X
https://arXiv.org/abs/gr-qc/0009050
http://www1.jinr.ru/publish/Pepan/2005-v36/v-36-1/pdf/v-36-1_06.pdf
http://www1.jinr.ru/publish/Pepan/2005-v36/v-36-1/pdf/v-36-1_06.pdf
http://www1.jinr.ru/publish/Pepan/2005-v36/v-36-1/pdf/v-36-1_06.pdf
http://www1.jinr.ru/publish/Pepan/2005-v36/v-36-1/pdf/v-36-1_06.pdf
http://www1.jinr.ru/publish/Pepan/2005-v36/v-36-1/pdf/v-36-1_06.pdf

ENTANGLEMENT ENTROPY FOR A DIRAC FIELD IN A BLACK ...

PHYS. REV. D 104, 105006 (2021)

[19] W. A. Rojas C, Tesis de Maestria: Termodindmica de un
gas de fotones en la vecindad de una superficie de
Schwarzschild. Observatorio Astronémico Nacional. Uni-
versidad Nacional de Colombia. Director: J. R. Arenas S.
(2010).

[20] W. A. Rojas C, Tesis de Doctorado: Mecdnica Estadistica
de la Termodindmica Black Shells. Departamento de
Fisica. Universidad Nacional de Colombia. Director: J.
Robel Arenas S. (2018), available at https://repositorio
.unal.edu.co/handle/unal/63982.

[21] W. Israel, Black Hole Thermodynamics (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003).

[22] Y. Takahashi and H. Umezawa, Thermo field dynamics,
Int. J. Mod. Phys. B 10, 1755 (1996).

[23] H. Umezawa, Advanced Field Theory: Micro, Macro, and
Thermal Physics (Springer, 1995), https://www.springer
.com/gp/book/9781563964565.

[24] S.N. Biswas and A. K. Das, Thermo field dynamics and
para statistical mechanics, Mod. Phys. Lett. A 03, 549
(1988).

[25] W. Israel, Gravitational collapse and causality, Phys. Rev.
153, 1388 (1967).

[26] J.R. Arenas S and F. Castro, Euclidean approach for
entropy of black shells, arXiv:1606.06786.

[27] D.R. Brill and J. A. Wheeler, Interaction of neutrinos and
gravitational fields, Rev. Mod. Phys. 29, 465 (1957).

[28] H.T. Cho, Dirac quasinormal modes in Schwarzschild
black hole space-times, Phys. Rev. D 68, 024003
(2003).

[29] L. Parker and D. Toms, Quantum Field Theory in Curved
Spacetime: Quantized Fields and Gravity, Cambridge
Monographs on Mathematical Physics (Cambridge Uni-
versity Press, Cambridge, England, 2009), https://doi.org/
10.1017/CB0O9780511813924.

[30] D.-M. Sjgstrgm, Bosons and Fermions in Curved Space-
time (Department of Physics, Norwegian University of
Science and Technology, Supervisor: Kare Olaussen, IFY,
2013), http://hdl.handle.net/11250/246917.

[31] S. A.B. Ahmad, Fermion Quantum Field Theory in Black
Hole Spacetimes (Faculty of the Virginia Polytechnic In-
stitute and State University, Lay Nam Chang, Chair, 1997),
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
411.4072&rep=rep1 &type=pdf.

[32] D. G. Boulware, Spin- % quantum field theory in Schwarzs-
child space, Phys. Rev. D 12, 350 (1975).

[33] S. Xu, X.k. Song, J.d. Shi, and L. Ye, Probing the
quantum correlation and Bell non-locality for Dirac
particles with Hawking effect in the background of
Schwarzschild black hole, Phys. Lett. B 733, 1 (2014).

[34] W. L. Bade and H. Jehle, An introduction to spinors, Rev.
Mod. Phys. 25, 714 (1953).

[35] Y. Lyu and Y.-X. Gui, Dirac equation and its solution
around schwarzschildde sitter black hole, Int. J. Theor.
Phys. 43, 975 (2004).

[36] I. Shirai, M. Jimbo, and T. Kon, Dirac fields in non-
equilibrium thermo field dynamics, J. Phys. Soc. Jpn. 58,
2597 (1989).

[37] J. Li, M. Hong, and K. Lin, Dirac quasinormal modes in
spherically symmetric regular black holes, Phys. Rev. D
88, 064001 (2013).

[38] R. Sini, N. Varghese, and V. C. Kuriakose, Quasi normal
modes of spherically symmetric black hole spacetimes
with cosmic string in a Dirac field, arXiv:0802.0788.

[39] K. Jusufi, Dirac particles tunneling from black holes with
topological defects, Gen. Relativ. Gravit. 48, 105 (2016).

[40] Z. Y. Liu and J. R. Ren, Fermions tunnelling with quantum
gravity correction, Commun. Theor. Phys. 62, 819 (2014).

[41] S. Chen, B. Wang, and R. Su, Influence of Lorentz
violation on Dirac quasinormal modes in the Schwarzs-
child black hole spacetime, Classical Quantum Gravity 23,
7581 (2006).

[42] M. Saleh, B. T. Bouetou, and T. C. Kofane, Quasinormal
modes of a quantum-corrected Schwarzschild black hole:
gravitational and Dirac perturbations, Astrophys. Space
Sci. 361, 137 (2016).

[43] W.M. Jin, Scattering of massive Dirac fields on the
Schwarzschild black hole space-time, Classical Quantum
Gravity 15, 3163 (1998).

[44] D. Ahn, Y. H. Moon, R. B. Mann, and I. Fuentes-Schuller,
The black hole final state for the Dirac fields In Schwarzs-
child spacetime, J. High Energy Phys. 06 (2008) 062.

[45] M. Casals, S. R. Dolan, B. C. Nolan, A. C. Ottewill, and E.
Winstanley, Quantization of fermions on Kerr space-time,
Phys. Rev. D 87, 064027 (2013).

[46] P.M. Alsing, 1. Fuentes-Schuller, R. B. Mann, and T.E.
Tessier, Entanglement of Dirac fields in non-inertial
frames, Phys. Rev. A 74, 032326 (2006).

[47] G. G. Nyambuya, New curved spacetime dirac equations,
Found. Phys. 38, 665 (2008).

[48] F. W. Hehl and B. K. Datta, Nonlinear spinor equation and
asymmetric connection in general relativity, J. Math. Phys.
(N.Y.) 12, 1334 (1971).

[49] V.M. Villalba and U. Percoco, Separation of variables
and exact solution to dirac and weyl equations in
robertson-walker space-times, J. Math. Phys. (N.Y.) 31,
715 (1990).

[50] G.E. T. del Castillo, Una introduccién a los armoénicos
esféricos espinoriales, Rev. Mex. de Fis. 36, 446 (1990),
https://www.researchgate.net/profile/Gerardo-Torres-Del-
Castillo/publication/268173198_An_introduction_to_spin-
weighted_spherical_harmonics/links/5498be380cf2eeefc30
f9cc3/An-introduction-to-spin-weighted-spherical-harmonics
.pdf.

[51] G.T. del Castillo, Solucién de la ecuacion de dirac en
términos de los armdnicos esféricos espinoriales, Rev.
Mex. de Fis. 38, 162 (1992), https://rmf.smf.mx/ojs/index
.php/rmf/article/view/2231.

[52] G.T. del Castillo, Espinores en espacios de dimension
arbitraria, Rev. Mex. de Fis. 35, 123 (1989), https://rmf
.smf.mx/ojs/index.php/rmf/article/view/2039.

[53] E. Ley-Koo and R. C. Wang, Dirac equation in ortogonal
curvilinear coordinates, Rev. Mex. de Fis. 34, 296 (1988),
https://rmf.smf.mx/ojs/index.php/rmf/article/view/1988.

[54] M. D. Pollock, On the dirac equation in curved space-time,
Acta Phys. Pol. B 41, 1827 (2010), http://www.actaphys.uj
.edu.pl/fulltext?series=Reg&vol=41&page=1827.

[55] C.J. Quimbay, R. A. Hernandez, and Y. F. Perez, Canoni-
cal quantization of the dirac oscillator field in (1 + 1) and
(3+ 1) dimensions, Electron. J. Theor. Phys. 11, 19
(2014), https://arxiv.org/abs/1201.3389.

105006-21


https://repositorio.unal.edu.co/handle/unal/63982
https://repositorio.unal.edu.co/handle/unal/63982
https://repositorio.unal.edu.co/handle/unal/63982
https://repositorio.unal.edu.co/handle/unal/63982
https://doi.org/10.1142/S0217979296000817
https://www.springer.com/gp/book/9781563964565
https://www.springer.com/gp/book/9781563964565
https://www.springer.com/gp/book/9781563964565
https://doi.org/10.1142/S0217732388000660
https://doi.org/10.1142/S0217732388000660
https://doi.org/10.1103/PhysRev.153.1388
https://doi.org/10.1103/PhysRev.153.1388
https://arXiv.org/abs/1606.06786
https://doi.org/10.1103/RevModPhys.29.465
https://doi.org/10.1103/PhysRevD.68.024003
https://doi.org/10.1103/PhysRevD.68.024003
https://doi.org/10.1017/CBO9780511813924
https://doi.org/10.1017/CBO9780511813924
https://doi.org/10.1017/CBO9780511813924
https://doi.org/10.1017/CBO9780511813924
http://hdl.handle.net/11250/246917
http://hdl.handle.net/11250/246917
http://hdl.handle.net/11250/246917
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.4072&rep=rep1&type=pdf
https://doi.org/10.1103/PhysRevD.12.350
https://doi.org/10.1016/j.physletb.2014.04.008
https://doi.org/10.1103/RevModPhys.25.714
https://doi.org/10.1103/RevModPhys.25.714
https://doi.org/10.1023/B:IJTP.0000048595.07902.b5
https://doi.org/10.1023/B:IJTP.0000048595.07902.b5
https://doi.org/10.1143/JPSJ.58.2597
https://doi.org/10.1143/JPSJ.58.2597
https://doi.org/10.1103/PhysRevD.88.064001
https://doi.org/10.1103/PhysRevD.88.064001
https://arXiv.org/abs/0802.0788
https://doi.org/10.1007/s10714-016-2101-y
https://doi.org/10.1088/0253-6102/62/6/08
https://doi.org/10.1088/0264-9381/23/24/026
https://doi.org/10.1088/0264-9381/23/24/026
https://doi.org/10.1007/s10509-016-2725-0
https://doi.org/10.1007/s10509-016-2725-0
https://doi.org/10.1088/0264-9381/15/10/018
https://doi.org/10.1088/0264-9381/15/10/018
https://doi.org/10.1088/1126-6708/2008/06/062
https://doi.org/10.1103/PhysRevD.87.064027
https://doi.org/10.1103/PhysRevA.74.032326
https://doi.org/10.1007/s10701-008-9226-0
https://doi.org/10.1063/1.1665738
https://doi.org/10.1063/1.1665738
https://doi.org/10.1063/1.528799
https://doi.org/10.1063/1.528799
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://www.researchgate.net/profile/Gerardo-Torres-Del-Castillo/publication/268173198_An_introduction_to_spin-weighted_spherical_harmonics/links/5498be380cf2eeefc30f9cc3/An-introduction-to-spin-weighted-spherical-harmonics.pdf
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2231
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2231
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2231
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2231
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2039
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2039
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2039
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2039
https://rmf.smf.mx/ojs/index.php/rmf/article/view/1988
https://rmf.smf.mx/ojs/index.php/rmf/article/view/1988
https://rmf.smf.mx/ojs/index.php/rmf/article/view/1988
https://rmf.smf.mx/ojs/index.php/rmf/article/view/1988
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
https://arxiv.org/abs/1201.3389
https://arxiv.org/abs/1201.3389
https://arxiv.org/abs/1201.3389

W. A. ROJAS C. and J.R. ARENAS S.

PHYS. REV. D 104, 105006 (2021)

[56] J. Vignatti and F. Villegas S, Dindmica del oscilador
de Dirac, Rev. Invest. de Fis. 19, 1 (2016), https://
revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/
view/13553.

[57] A. Davydov, Quantum Mechanics, International Series of
Monographs in Natural Philosophy (Pergamon Press,
New York, 1965), https://www.elsevier.com/books/quantum-
mechanics/davydov/978-0-08-020438-3.

[58] W. Greiner, Relativistic quantum mechanics, Theoretical
Physics: Text and Exercise Books (Springer, New York,
1990), https://www.springer.com/gp/book/9783642880827.

[59] B.D. Greiner and J. Reinhardt, Field Quantization
(Springer, Berlin, Heidelberg, 2013), https://www
.springer.com/gp/book/9783642614859.

[60] J. Bjorken and S. Drell, Relativistic Quantum Fields,
International Series in Pure and Applied Physics
(McGraw-Hill, New York, 1965), https://inspirehep.net/
literature/873163.

[61] T. Lancaster and S. Blundell, Quantum Field Theory
for the Gifted Amateur (Oxford University Press,
Oxford, 2014), https://oxford.universitypressscholarship
.com/view/10.1093/acprof:0s0/9780199699322.001.0001/
acprof-9780199699322.

[62] L. Ryder, Quantum Field Theory (Cambridge University
Press, Cambridge, England, 1996), https://inspirehep.net/
literature/220441.

[63] R. Klauber, Student Friendly Quantum Field Theory: Basic
Principles and Quantum Electrodynamics (Sandtrove
Press, 2013), https://books.google.com.co/books?id=
FbpongEACAAJ&dg=Student+Friendly+Quantum+Field+
Theory&hl=es-419&sa=X&redir=y.

[64] I. M. Ternov and A. B. Gaina, Energy spectrum of the dirac
equation for the schwarzschild and kerr fields, Sov. Phys. J.
31, 157 (1988).

[65] J. Wang, Q. Pan, and J. Jing, Projective measurements and
generation of entangled Dirac particles in schwarzschild
spacetime, Ann. Phys. (Amsterdam) 325, 1190 (2010).

[66] J. Mathews and R.L. Walker, Mathematical Methods
of Physics (Addison-Wesley Publishing Company,
Inc, New York, 1970), https://www.worldcat.org/title/
mathematical-methods-of-physics/oclc/90095.

[67] L. Susskind and J. Lindesay, An introduction to black
holes, information and the string, Theory Revolution: The
Holographic Universe (World Scientific, 2004), https://
www.worldscientific.com/worldscibooks/10.1142/5689.

[68] S. Iyer and C. M. Will, Black-hole normal modes: A wkb
approach. I. Foundations and application of a higher-order
wkb analysis of potential-barrier scattering, Phys. Rev. D
35, 3621 (1987).

[69] N. Birrell and P. Davies, Quantum Fields in Curved Space,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England,
1984), https://inspirehep.net/literature/181166.

[70] W.B. Campbell, Tensor and spinor spherical harmonics
and the spins harmonics, J. Math. Phys. (N.Y.) 12, 1763
(1971).

[71] J.R. Arenas and S. Tesis, de Doctorado Termodinamica de
entanglement del efecto Unruh, Departamento de Fisica.
Universidad Nacional de Colombia. Director: J. M. Tejeiro
S. (2005).

[72] J.R. Arenas and S. Agujeros Negros Cudnticos, Universi-
dad Nacional de Colombia, Notas de Clase, Bogota (2014).

[73] L. H. Ford, Quantum vacuum energy in general relativity,
Phys. Rev. D 11, 3370 (1975).

[74] L. H. Ford, Quantum vacuum energy in a closed universe,
Phys. Rev. D 14, 3304 (1976).

[75] E.W. Hehl, P. von der Heyde, G.D. Kerlick, and
J.M. Nester, General relativity with spin and torsion:
Foundations and prospects, Rev. Mod. Phys. 48, 393
(1976).

[76] 1.J. R. Aitchison, Nothing’s plenty. The vacuum in modern
quantum field theory, Contemp. Phys. 50, 261 (2009).

[77] W. A. Pulido and G. Tesis de Maestria, Dindmica de
Campos Térmicos y Agujeros Negros, Observatorio As-
tronémico Nacional. Universidad Nacional de Colombia.
Director: J.R. Arenas S. (2008).

[78] G. Ribeiro de Melo, Maestrado em Fisica: Dinamica de
Campos Térmicos e Estados Superposi¢ao., Universidade
Federal Da Bahia. Instituto de Fisica (2004), https://
repositorio.ufba.br/ri/handle/ri/10685.

[79] W. Paniago de Souza, Bosonic string at finite temperature,
Ph.D thesis, Sao Paulo, IFT, 2002, https://arxiv.org/abs/
hep-th/0208134.

[80] K. Soutome, Note on fermion propagator in thermo field
dynamics, Z. Phys. C Part. Fields 40, 479 (1988).

[81] E. Martin-Martinez, Relativistic quantum information:
Developments in quantum information in general relativ-
istic scenarios, Ph.D thesis, Waterloo University, 2011,
https://arxiv.org/abs/1106.0280.

[82] A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S.
Dolan, Bound states and decay times of fermions in a
schwarzschild black hole background, Phys. Rev. D 72,
105014 (2005).

[83] T. Ortin, Gravity and Strings, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 2004), https://www.cambridge.org/
core/books/gravity-and-strings/03D4FD92AC7349B1C91
61F53C8922AC3.

[84] D. N. Blaschke, F. Gieres, M. Reboud, and M. Schweda,
The energy-momentum tensor(s) in classical gauge theo-
ries, Nucl. Phys. B912, 192 (2016).

[85] R.M. Wald, Trace anomaly of a conformally invariant
quantum field in curved space-time, Phys. Rev. D 17, 1477
(1978).

[86] C. Dappiaggi, T.-P. Hack, and N. Pinamonti, The extended
algebra of observables for dirac fields and the trace
anomaly of their stress-energy tensor, Rev. Math. Phys.
21, 1241 (2009).

[87] J. Louko and V. Toussaint, Unruh-dewitt detector’s re-
sponse to fermions in flat spacetimes, Phys. Rev. D 94,
064027 (2016).

[88] W. Greiner, L. Neise, and H. Stocker, Thermodynamics
and Statistical Mechanics, Classical Theoretical Physics
(Springer-Verlag, New York, 1995), https://www.springer
.com/gp/book/9780387942995.

[89] J. Kapusta and C. Gale, Finite-Temperature Field Theory:
Principles and Applications, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 2006), https://inspirehep.net/
literature/738588.

105006-22


https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/13553
https://www.elsevier.com/books/quantum-mechanics/davydov/978-0-08-020438-3
https://www.elsevier.com/books/quantum-mechanics/davydov/978-0-08-020438-3
https://www.elsevier.com/books/quantum-mechanics/davydov/978-0-08-020438-3
https://www.elsevier.com/books/quantum-mechanics/davydov/978-0-08-020438-3
https://www.springer.com/gp/book/9783642880827
https://www.springer.com/gp/book/9783642880827
https://www.springer.com/gp/book/9783642880827
https://www.springer.com/gp/book/9783642614859
https://www.springer.com/gp/book/9783642614859
https://www.springer.com/gp/book/9783642614859
https://inspirehep.net/literature/873163
https://inspirehep.net/literature/873163
https://inspirehep.net/literature/873163
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199699322.001.0001/acprof-9780199699322
https://inspirehep.net/literature/220441
https://inspirehep.net/literature/220441
https://inspirehep.net/literature/220441
https://books.google.com.co/books?id=FbpongEACAAJ&dq=Student%2BFriendly%2BQuantum%2BField%2BTheory&hl=es-419&sa=X&redir=y
https://books.google.com.co/books?id=FbpongEACAAJ&dq=Student%2BFriendly%2BQuantum%2BField%2BTheory&hl=es-419&sa=X&redir=y
https://books.google.com.co/books?id=FbpongEACAAJ&dq=Student%2BFriendly%2BQuantum%2BField%2BTheory&hl=es-419&sa=X&redir=y
https://books.google.com.co/books?id=FbpongEACAAJ&dq=Student%2BFriendly%2BQuantum%2BField%2BTheory&hl=es-419&sa=X&redir=y
https://books.google.com.co/books?id=FbpongEACAAJ&dq=Student%2BFriendly%2BQuantum%2BField%2BTheory&hl=es-419&sa=X&redir=y
https://books.google.com.co/books?id=FbpongEACAAJ&dq=Student%2BFriendly%2BQuantum%2BField%2BTheory&hl=es-419&sa=X&redir=y
https://doi.org/10.1007/BF00896542
https://doi.org/10.1007/BF00896542
https://doi.org/10.1016/j.aop.2010.03.001
https://www.worldcat.org/title/mathematical-methods-of-physics/oclc/90095
https://www.worldcat.org/title/mathematical-methods-of-physics/oclc/90095
https://www.worldcat.org/title/mathematical-methods-of-physics/oclc/90095
https://www.worldcat.org/title/mathematical-methods-of-physics/oclc/90095
https://www.worldscientific.com/worldscibooks/10.1142/5689
https://www.worldscientific.com/worldscibooks/10.1142/5689
https://www.worldscientific.com/worldscibooks/10.1142/5689
https://www.worldscientific.com/worldscibooks/10.1142/5689
https://www.worldscientific.com/worldscibooks/10.1142/5689
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.35.3621
https://inspirehep.net/literature/181166
https://inspirehep.net/literature/181166
https://doi.org/10.1063/1.1665802
https://doi.org/10.1063/1.1665802
https://doi.org/10.1103/PhysRevD.11.3370
https://doi.org/10.1103/PhysRevD.14.3304
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1080/00107510902734664
https://repositorio.ufba.br/ri/handle/ri/10685
https://repositorio.ufba.br/ri/handle/ri/10685
https://repositorio.ufba.br/ri/handle/ri/10685
https://repositorio.ufba.br/ri/handle/ri/10685
https://arxiv.org/abs/hep-th/0208134
https://arxiv.org/abs/hep-th/0208134
https://arxiv.org/abs/hep-th/0208134
https://doi.org/10.1007/bf01548864
https://arxiv.org/abs/1106.0280
https://arxiv.org/abs/1106.0280
https://arxiv.org/abs/1106.0280
https://doi.org/10.1103/PhysRevD.72.105014
https://doi.org/10.1103/PhysRevD.72.105014
https://www.cambridge.org/core/books/gravity-and-strings/03D4FD92AC7349B1C9161F53C8922AC3
https://www.cambridge.org/core/books/gravity-and-strings/03D4FD92AC7349B1C9161F53C8922AC3
https://www.cambridge.org/core/books/gravity-and-strings/03D4FD92AC7349B1C9161F53C8922AC3
https://www.cambridge.org/core/books/gravity-and-strings/03D4FD92AC7349B1C9161F53C8922AC3
https://www.cambridge.org/core/books/gravity-and-strings/03D4FD92AC7349B1C9161F53C8922AC3
https://doi.org/10.1016/j.nuclphysb.2016.07.001
https://doi.org/10.1103/PhysRevD.17.1477
https://doi.org/10.1103/PhysRevD.17.1477
https://doi.org/10.1142/S0129055X09003864
https://doi.org/10.1142/S0129055X09003864
https://doi.org/10.1103/PhysRevD.94.064027
https://doi.org/10.1103/PhysRevD.94.064027
https://www.springer.com/gp/book/9780387942995
https://www.springer.com/gp/book/9780387942995
https://www.springer.com/gp/book/9780387942995
https://inspirehep.net/literature/738588
https://inspirehep.net/literature/738588
https://inspirehep.net/literature/738588

ENTANGLEMENT ENTROPY FOR A DIRAC FIELD IN A BLACK ...

PHYS. REV. D 104, 105006 (2021)

[90] R. M. Wald, Quantum Field Theory in Curved Space-Time
and Black Hole Thermodynamics (University of Chicago
Press, 1994).

[91] W. A. Rojas C and J. Robel Arenas S, A conceptual model
for the origin of the cutoff parameter in exotic compact
objects, Symmetry 12, 2072 (2020).

[92] W. A. Rojas C and J. Robel Arenas S, Relativistic origin of
the cutoff parameter in exotic compact objects, Gravitation
Cosmol. 27, 136 (2021).

[93] Y.Z. Chen, W.D. Li, and W.S. Dai, Why the entropy
of spacetime is independent of species of particles—the
species problem, Eur. Phys. J. C 78, 635 (2018).

[94] C. Rovelli, Notes for a brief history of quantum gravity,
arXiv:gr-qc/0006061.

[95] S.C. Ulhoa, E.P. Spaniol, R. Gomes, A.F. Santos, and
AL E. Santana, On regular black holes at finite temperature,
Adv. High Energy Phys. 2020, 1 (2020).

[96] https://repositorio.unal.edu.co/handle/unal/63982.

[97] H. Arslan, Dirac equation and hydrogen atom, M.Sc thesis,
Departament of Physics, Institute of Natural and Applied
Sciences, University of Cukurova, 1998.

[98] C.J. Smith, An Absolute quantum energy inequality for
the Dirac field in curved spacetime, Classical Quantum
Gravity 24, 4733 (2007).

[99] E. Poisson, A Relativist’s Toolkit: The Mathematics of
Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2004), https://www.cambridge.org/
core/books/relativists-toolkit/DA7ED68B971708 AOF782
257F948981E7.

[100] V.E. Ambrus and E. Winstanley, Fermions on adS,
Springer Proc. Phys. 170, 331 (2016).

[101] M. Spiegel and J. Liu, Mathematical Handbook of For-
mulas and Tables, Schaum’s Outline of Theory and
Problems (McGraw-Hill, New York, 1999).

105006-23


https://doi.org/10.3390/sym12122072
https://doi.org/10.1134/S0202289321020122
https://doi.org/10.1134/S0202289321020122
https://doi.org/10.1140/epjc/s10052-018-6108-2
https://arXiv.org/abs/gr-qc/0006061
https://doi.org/10.1155/2020/5712084
https://repositorio.unal.edu.co/handle/unal/63982
https://repositorio.unal.edu.co/handle/unal/63982
https://repositorio.unal.edu.co/handle/unal/63982
https://repositorio.unal.edu.co/handle/unal/63982
https://doi.org/10.1088/0264-9381/24/18/012
https://doi.org/10.1088/0264-9381/24/18/012
https://www.cambridge.org/core/books/relativists-toolkit/DA7ED68B971708A0F782257F948981E7
https://www.cambridge.org/core/books/relativists-toolkit/DA7ED68B971708A0F782257F948981E7
https://www.cambridge.org/core/books/relativists-toolkit/DA7ED68B971708A0F782257F948981E7
https://www.cambridge.org/core/books/relativists-toolkit/DA7ED68B971708A0F782257F948981E7
https://www.cambridge.org/core/books/relativists-toolkit/DA7ED68B971708A0F782257F948981E7
https://doi.org/10.1007/978-3-319-20046-0_39

