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We study a set of four-dimensionalN ¼ 2 superconformal field theories (SCFTs) Γ̂ðGÞ labeled by a pair of
simply lacedLiegroupsΓ andG. They are constructed out of gauginganumber ofDpðGÞ and ðG;GÞ conformal
matter SCFTs; therefore, theydonot haveLagrangiandescriptions in general. ForΓ ¼ D4; E6; E7; E8, and some
special choicesofG, the resulting theorieshave identical central charges (a ¼ c)without takingany largeN limit.
Moreover, we find that the Schur indices for such theories can bewritten in terms of that ofN ¼ 4 super-Yang-
Mills theoryuponrescaling fugacities.Especially,we find that theSchur indexof D̂4ðSUðNÞÞ theory forN odd is
written in termsofMacMahon’sgeneralizedsum-of-divisor function,which isquasimodular.Forgeneric choices
of Γ and G, it can be regarded as a generalization of the affine quiver gauge theory obtained from D3-branes
probing singularity of typeΓ.We also comment on a tantalizing connection regarding the theories labeled byΓ in
the Deligne-Cvitanović exceptional series.
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I. INTRODUCTION

It has been a constant desire in modern theoretical physics
to unveil the nonperturbative nature of quantum field theories.
A natural and rich arena for exploring the nonperturbative
aspects of quantum field theory is the realm of four-
dimensional superconformal field theories (SCFTs). One
of the most striking discoveries in theoretical physics in
the past few decades is the understanding of nonconventional
quantum field theories, commonly referred as non-
Lagrangian field theories [1–6]. They arise in various
manners, such as considering the strong-coupling dynamics
of string theory and its compactifications, taking infinite-
coupling limits of ordinary gauge theories, etc. For instance,
the strong-coupling regime of four-dimensional theories is
often studied via higher-dimensional origins utilizing
geometric and algebraic perspectives.
In particular, 4D N ¼ 2 SCFTs have been meticulously

analyzed from a string-theoretic perspective. In this paper,
we present an interesting class of 4DN ¼ 2 SCFTs labeled

by two simply laced Lie groups that we call Γ̂ðGÞ, where
both Γ and G are of type ADE. They are in general non-
Lagrangian theories, but for some choices of Γ and G, the
Γ̂ðGÞ theories reduce to familiar Lagrangian quiver gauge
theories. For example, when Γ ¼ An−1 and G ¼ SUðNÞ, it
is simply given by the circular quiver gauge theory with the
gauge group SUðNÞn and bifundamental matters that
describes the world volume theory on N D3-branes probing
an An−1 singularity [7]. In general, the Γ̂ðGÞ theory does not
necessarily have a weakly coupled gauge theory descrip-
tion, and it follows that the Γ̂ðGÞ theory is generally non-
Lagrangian.
The superconformal Γ̂ðGÞ theory is constructed via

gauging (a subgroup of) the flavor symmetry of a product
of superconformal theories. We focus on a particular set of
(generally non-Lagrangian) SCFTs known as the DpðGÞ
theories [8,9].1,2 The most important feature of the DpðGÞ
theory is that it has a flavor symmetryG that can be coupled
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1These theories are identical to the ðGðh∨Þ½p − h∨�; FÞ theories
of Refs. [10,11] (here, h∨ is the dual Coxeter number of G),
which are obtained by compactifying 6D N ¼ ð2; 0Þ theory of
type G ∈ ADE on a sphere with an irregular puncture (labeled by
p) and a full puncture (F).

2A similar idea of gaugingDpðGÞ theories has been considered
in Ref. [12]. They studied some aspects of trivalently gauged
theories, some of which are identical to our Ê6ðSUðNÞÞ and
Ê7;8ðGÞ theories.
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to a gauge field.3 We also consider the conformal matter
theories that have a flavor symmetry G × G [13]. These
conformal matter theories can be obtained by a torus
compactification of the 6D N ¼ ð1; 0Þ conformal matter
SCFTwith flavor symmetry G ×G. This is also identical to
the 4D theory obtained from compactifying 6DN ¼ ð2; 0Þ
theory of type G on a sphere with two full punctures and
one minimal puncture [14,15].
We find a particularly interesting feature for the theories

with

Γ ¼ D4; E6; E7; E8 ð1:1Þ

and for some choices of G. More precisely, when the dual
Coxeter number h∨G of G and the largest comark αΓ
associated to the affine Dynkin diagram Γ̂ are coprime,
we find that the two central charges a and c for the Γ̂ðGÞ
are equal:

gcdðh∨G; αΓÞ ¼ 1 ⇒ a ¼ c: ð1:2Þ

The largest comarks for the Γ in Eq. (1.1) are given by

αD4
¼ 2; αE6

¼ 3; αE7
¼ 4; αE8

¼ 6: ð1:3Þ

For example, for the choices of G ¼ SUðNÞ, we find that
D̂4ðSUðNÞÞ with N odd or Ê6ðSUðNÞÞ with N ¼
2; 4; 5; 7;… has equal central charges, a ¼ c.
As far as we know, there have been almost no known

genuine N ¼ 2 superconformal field theories with a ¼ c.
With a larger supersymmetry such as N ¼ 3 or N ¼ 4,
superconformal symmetry implies a ¼ c [16], but there is
no such restriction for N ¼ 2 theories. Besides the Γ̂ðGÞ
theories, we are only aware of the ðA2m;D2mþ2Þ ¼
D2mþ2

2mþ2½mþ 1� and a small number of ðEn;GÞ Argyres-
Douglas theories for some special choices of n and
G ∈ ADE (in the notation of Refs. [10,17]) that have
the same a and c central charges.4 It is well known that a
holographic theory which has a weakly coupled gravity
dual in anti-de Sitter (AdS) should have a ¼ c in the large
N limit, but it is rather scarce to find four-dimensional
conformal field theories with a ¼ c even at finite N. Most
known holographic theories, including the familiar N ¼
2 SCFTs obtained from N D3-branes probing ALE
singularities [7,20], have their central charges satisfying

a ∼ c ∼OðN2Þ and a − c ∼OðNÞ: ð1:4Þ

Therefore, a ¼ c in the large N limit, but the value a − c
is of order N and does not vanish for finite N.5 This
particular combination of central charges, (a − c), affects
higher-derivative corrections in the supergravity action
and contributes to the correction of the famous entropy
density-viscosity ratio bound [23,24].6 In fact, we find
that the Γ̂ðGÞ theories, when they are not having a ¼ c,
can have either signs of (a − c), depending on the choice
of Γ and G.
Another interesting aspect of these theories with a ¼ c is

that their Schur indices [27,28] can be written in terms of
the Schur index ofN ¼ 4 super-Yang-Mills theory. In fact,
this relationship holds beyond a ¼ c whenever the Γ̂ðGÞ
theories have no flavor symmetry. More precisely, we find

IΓ̂ðGÞðqÞ ¼ IN¼4
G ðqαΓ ; qαΓ=2−1Þ; ð1:5Þ

where IN¼4
G ðq; xÞ refers to the Schur index for the N ¼ 4

Super Yang–Mills (SYM) with gauge group G and x
denotes the fugacity for the SUð2Þ subgroup of the
SUð4ÞR symmetry. This fact reflects a particularly inter-
esting structure of the spectrum, especially in view of the
correspondence between SCFTs and vertex operator
algebras [29]. In the correspondence, the Schur sector
is described by a vertex operator algebra (VOA) or a chiral
algebra of a 2D CFT, and the Schur index is identical to
the vacuum character of the associated VOA. This
particular relation involving N ¼ 4 SYM was recently
found and studied in Ref. [30] for the G ¼ SUðNÞ case.
We find that it generalizes even further to general ADE
groups. A similar phenomenon between the Schur index
of the D2ðSUðNÞÞ theory with odd N and a free hyper-
mutiplet has been discussed in Refs. [31–33] as well.
We want to note that we discover a surprising connection

between the Schur index and a number-theoretic quantity:
we find that the Schur index for D̂4ðSUðNÞÞ with N odd
(and equivalently that of N ¼ 4 SYM) can be written in
terms of MacMahon’s generalized sum-of-divisor function
[34], which is known to be quasimodular [35].7

Let us remark that our theories can be considered as a
natural generalization of affine quiver gauge theories. For
example, the theories

3In general, the flavor symmetry for the DpðGÞ can be
enhanced to a larger group than G.

4This was noticed in Refs. [18] and [19], for example. We note
that the ðA2m;D2mþ2Þ and the Γ̂ðGÞ do not overlap, except for
ðA2; D4Þ ¼ Ê6ðSUð2ÞÞ. We also find that Ê7ðSUð3ÞÞ ¼ ðE6; A3Þ,
and Ê8ðSUð5ÞÞ ¼ ðE8; A5Þ. We thank Noppadol Mekareeya for
informing us about the ðEn;GÞ Argyres-Douglas theories with
a ¼ c listed in Appendix C of Ref. [19].

5There exist N ¼ 1 theories where the central charges
scale linearly in N: a ∼ c ∼OðNÞ, so that a ≠ c even for
large N [21,22].

6This combination of central charges appears in other contexts
as well [25,26].

7We want to make a remark that it is on the 100th anniversary
of MacMahon’s discovery of the generalized sum-of-divisors
function and that it is first appearing in the physics literature.
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D̂4ðSUð2NÞÞ; Ê6ðSUð3NÞÞ;
Ê7ðSUð4NÞÞ; and Ê8ðSUð6NÞÞ ð1:6Þ

are simply the world volume theory on N D3-branes
probing C2=Γ orbifold, where we abuse notation and use
Γ to refer to both the ADE group and the discrete subgroup
of SUð2Þ [7]. There also exists a circular quiver ÂlðSUðNÞÞ
and an affine D̂lþ4ðSUð2NÞÞ Dynkin diagram shaped
quiver. Apart from these cases, theories corresponding to
Γ ¼ Al; Dlþ4 for l > 1 and G ≠ SUðNÞ need another
extra ingredient: the conformal matter of type ðG;GÞ. We
discuss these cases in detail later in Sec. V.
The sequence of affine Lie groups that we consider in

Eq. (1.1) can be extended to the Deligne-Cvitanović
exceptional series of simply laced Lie groups [36,37]:

H0 ⊂ H1 ⊂ H2 ⊂ D4 ⊂ E6 ⊂ E7 ⊂ E8: ð1:7Þ

We have used the common notation ofH0 for the trivial Lie
group, H1 for SUð2Þ, and H2 for SUð3Þ for notational
convenience. The Deligne-Cvitanović exceptional series
comes up surprisingly often in physics, and a particularly
interesting realization is in the rank-1 4D N ¼ 2 SCFTs
obtained from a D3-brane probing an F-theory singularity
[5,6,38–40]. In fact, this hints that these 4D theories will
have their origins from 6D (1,0) SCFTs as well as (2,0)
SCFTs and hence broadens the scope studied in Ref. [41].
To each group appearing in the Deligne-Cvitanović

exceptional series, there is an associated rational number,

ΔΓ ¼ 1þ h∨Γ
6
; ð1:8Þ

which we list in Table I. This ΔΓ corresponds to the scaling
dimension of the Coulomb branch operator of the corre-
sponding rank-1 N ¼ 2 superconformal theory. The cen-
tral charge c of the four families Γ̂ðGÞ of theories with Γ as
in Eq. (1.1) can be written as

c ∼
ΔΓ − 1

ΔΓ
dimðGÞ: ð1:9Þ

This expression for c suggests the existence of theories with
the same dependence of the central charge c to the choice of
Γ and G as in Eq. (1.9) in the Deligne-Cvitanović excep-
tional series; namely,

Ĥ0ðGÞ; Ĥ1ðGÞ; Ĥ2ðGÞ: ð1:10Þ

In fact, we find the corresponding theories for Ĥ0ðGÞ and
Ĥ1ðGÞ are a gauge node with no matter and the N ¼ 4
super-Yang-Mills theory, respectively. We further propose a
candidate theory corresponding to the Ĥ2ðGÞ, when G is a
classical group, as a gauge node G coupled to the correct
number of fundamental hypermultiplets to cancel the one-
loop β function.
The organization of the remainder of the paper is as

follows. In Sec. II A, we first review the theories DpðGÞ
and discuss the limited number of ways these theories can
be gauged together, which yields the SCFTs Γ̂ðGÞ. In
Sec. II B, we determine the central charges, the scaling
dimensions of the Coulomb branch operators, and other
physical information about the Γ̂ðGÞ. We then explore in
Sec. III in more detail the Γ̂ðGÞwhich have a ¼ c, and we
determine the Schur index of these theories in Sec. III A.
We then explain how the Schur indices can be written as
the Schur index of N ¼ 4 super-Yang-Mills with rescaled
fugacities in Sec. III B. In Sec. IV, we explore some of the
theories with a ≠ c, and we discuss a generalization where
Γ takes values in the simply laced Deligne-Cvitanović
series of Lie groups. In Sec. V, we discuss the extension to
Γ being an arbitrary ADE group, which gives a generali-
zation of all the affine quivers. Finally, we conclude with
possible future directions in Sec. VI.

II. CONSTRUCTING Γ̂ðGÞ SCFTs
We construct the superconformal theories Γ̂ðGÞ by

gluing (multiple) copies of the DpðGÞ theories, which
we introduce and explain in Sec. II A and further explore
their properties and physical significance in Sec. II B.

A. Gauging DpðGÞs
In this section, we perform the construction of the

superconformal theories that we call Γ̂ðGÞ. The Γ̂ðGÞ theory
is built out of gluing copies of the DpðGÞ SCFTs; these
theories were introduced in Ref. [8] and explored further in
Ref. [9].8 TheDpðGÞ theory is labeled by a simply laced Lie
group G ∈ ADE and a positive integer p. This theory has a
flavor symmetry that is at least G. In the class S framework,
the theory DpðGÞ can also be constructed as a compacti-
fication of a 6D (2,0) SCFTon a sphere with one regular and
one irregular puncture. In that construction, they are written
as ðGb½p − h∨G�; FÞ [10], where b ¼ h∨G and F denotes a full
puncture. From this perspective, the flavor symmetry G
arises from the full puncture, and any extra or enhanced
symmetry is due to the irregular puncture that is labeled by p.

TABLE I. The rational invariants ΔΓ associated to each entry,
Γ, in the Deligne-Cvitanović exceptional series given in Eq. (1.7).

Γ H0 H1 H2 D4 E6 E7 E8

ΔΓ
6
5

4
3

3
2

2 3 4 6
8We denote this theory using the calligraphicD instead ofD to

avoid any possible confusion with the Lie group of D type.
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See Table II for the condition for DpðGÞ not to have any
enhanced symmetry besides G.
Let us explore the ways in which a collection of theories

Dpi
ðGÞ can be gauged together by their common flavor

symmetryG. To obtainN ¼ 2 superconformal theory upon
gauging, we require the beta function for the gauge
coupling to vanish, which turns out to be highly
constraining.
To show that the conformal gauging of the common G

flavor symmetry is restrictive, we begin by gauging
together the G of Dpi

ðGÞ for i ¼ 1;…; n. The conformal
gauging condition is given by

Xn
i¼1

ki ¼ 4h∨G: ð2:1Þ

where h∨G is the dual Coxeter number of the gauge groupG.
The dual Coxeter numbers, together with the other relevant
group-theoretic quantities, are listed in Table III. The
flavor central charge ki for each of the Dpi

ðGÞ is deter-
mined as [9,11]

ki ¼
2ðpi − 1Þ

pi
h∨G: ð2:2Þ

The conformal gauging condition (2.1) is then simply the
constraint

Xn
i¼1

1

pi
¼ n − 2: ð2:3Þ

The DpðGÞ theories are associated to integers p > 0, and
the theory D1ðGÞ is taken to represent the trivial theory. It
follows that n ≥ 2 as the left-hand side of the equation (2.3)
is non-negative. Since if ðp1;…; pnÞ is a solution then
ðp1;…; pn; pnþ1 ¼ 1Þ is also a solution, we restrict no

more than one pi to be 1 for n ≥ 4 to avoid repetitions.
(This allows n ¼ 3 solutions to be counted as a solution
with n ¼ 4with one pi as 1.) It is straightforward to see that
Eq. (2.3) then does not have any solution for n > 4 with
this restriction. We can see that all possible solutions with
finite pi are

ðp1;p2;p3;p4Þ¼ð2;2;2;2Þ;ð1;3;3;3Þ;ð1;2;4;4Þ;ð1;2;3;6Þ;
ð2:4Þ

as was also demonstrated in Ref. [9]. We label these
solutions as D̂4, Ê6, Ê7, and Ê8, respectively. This is because
they correspond to the type of quivers forming, respectively,
D̂4, Ê6, Ê7, and Ê8, once we considerDpðGÞ theory that has
a Lagrangian description. We will explain and discuss this
point later in this section.
There are also solutions where some of the pi are

infinite,

ðp1; p2; p3; p4Þ ¼ ð1; 2; 2;∞Þ; ð1; 1;∞;∞Þ; ð2:5Þ

however, it is presently unclear what the theories D∞ðGÞ
are in the sense of superconformal field theories. These
would be putative theories with a dense Coulomb branch
spectrum and a flavor symmetryG with level 2h∨G. It would
be intriguing to explore the potential existence of such
theories, which we leave for future work.
The diagonal gauging of the common flavor symmetryG

leads to a quiverlike structure

ð2:6Þ

TABLE II. The condition for DpðGÞ to have no extra symmetry besides G. Equivalently, the condition for the
irregular puncture not to carry any flavor symmetry.

G SUðNÞ SOð2NÞ E6 E7 E8

No additional symmetry ðp;NÞ ¼ 1 p ∉ 2Z>0 p ∉ 3Z>0 p ∉ 2Z>0 p ∉ 30Z>0

TABLE III. The relevant data associated to an ADE Lie groupG. We list for eachG the dimension (dG), rank (rG),
dual Coxeter number (h∨G), the order of the finite ADE subgroup of SUð2Þ (ΛG), and the degrees of the Casimir
invariants.

G dG rG h∨G ΛG Casimir degrees

SUðKÞ K2 − 1 K − 1 K K 2; 3; � � � ; K
SOð2KÞ Kð2K − 1Þ K 2K − 2 4K − 8 2; 4; � � � ; 2K − 2; K
E6 78 6 12 24 2,5,6,8,9,12
E7 133 7 18 48 2,6,8,10,12,14,18
E8 248 8 30 120 2,8,12,14,18,20,24,30
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and for the three cases with pi ¼ 1, the corresponding node is omitted as D1ðGÞ is trivial. For each case in Eq. (2.4), the
gauging is depicted in Table IV. There are special cases where DpðGÞ is given by a Lagrangian quiver. For instance, by
taking G to be

G ¼ SUðNÞ for N ¼ pl; ð2:7Þ

we can utilize the relation

ð2:8Þ

which is a Lagrangian theory. Then, we are left to find
which choices of pi and G can make the quiver in Eq. (2.6)
to be a Lagrangian quiver.
In fact, we find that the four solutions in Eq. (2.4), with

a particular choice of G to yield a Lagrangian theory, give
rise to the known affine D4, E6, E7, and E8 quivers,
respectively. When ðp1; p2; p3; p4Þ ¼ ð2; 2; 2; 2Þ and
G ¼ SUð2lÞ, we get the Lagrangian quiver corresponding
to D̂4 as depicted in Fig. 1(a). When ðp1; p2; p3; p4Þ ¼
ð1; 3; 3; 3Þ and G ¼ SUð3lÞ, we have Fig. 1(b), which
shows the Lagrangian quiver of type Ê6. Similarly, for

ðp1; p2; p3; p4Þ ¼ ð1; 2; 4; 4Þ and G ¼ SUð4lÞ, we
find that it gives rise to the Lagrangian quiver of type
Ê7 as Fig. 1(c); for ðp1; p2; p3; p4Þ ¼ ð1; 2; 3; 6Þ and
G ¼ SUð6lÞ, we see the Lagrangian quiver of type Ê8,
as represented in Fig. 1(d). In each of these cases, these are
the Lagrangian quivers known to arise as the world
volume theory on a stack of l D3-branes probing a
C2=Γ orbifold [7].
We therefore conclude that there are only four combi-

nations of finite pi for which such a gauging leads to a
conformal theory. Using the interpretation of Dpi

ðGÞ as a

TABLE IV. All the solutions with finite pi and the corresponding Γ̂ðGÞ theories when a ¼ c. The theories have
a ¼ c when gcdðαΓ; h∨g Þ ¼ 1, which restricts the G to be those in Table VI.

ðp1; p2; p3; p4Þ Γ̂ðGÞ Quivers via gauging DpðGÞs a ¼ c

(2,2,2,2) D̂4ðGÞ 1
2
dimðGÞ

(1,3,3,3) Ê6ðGÞ 2
3
dimðGÞ

(1,2,4,4) Ê7ðGÞ 3
4
dimðGÞ

(1,2,3,6) Ê8ðGÞ 5
6
dimðGÞ
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two-punctured sphere, this gauging involves connecting the
regular punctures in a multivalent vertex. It is important to
note that such a gauging is not something that happens
inside the class S construction [4,10,11,42,43] where, for
example, a trivalent vertex occurs when one includes a copy
of the TN theory. In the examples where we know the
resulting theory after gauging, we can see that the remain-
ing three irregular punctures coalesce into a new kind of
irregular puncture; however, we emphasize that we do not
observe this behavior in general. For example, Ê6ðSUð2ÞÞ
theory is formed by gluing three copies of D3ðSUð2ÞÞ ¼
H1 Argyres-Douglas theories. The gauged theory turns out

to be identical to the D6
4½3� Argyres-Douglas theory

[10,33]. See Fig. 2 for the illustration.
In turn, we may find the overlap between Γ̂ðGÞ and Jb½k�.

The theories Jb½k� are obtained by compactifying the 6D
(2,0) SCFT of type J on a sphere with a single irregular
puncture, where J is an ADE Lie group. The values of b
and k specify the choice of irregular solution of Hitchin’s
equation [44–48] that defines an irregular puncture. It has
been established in Refs. [49,50] that the theories Jb½k� are
realized as the end point of an N ¼ 1 deformation of
Refs. [49,51,52] (i.e., an N ¼ 1-preserving principal nil-
potent deformation followed by a renormalization group

FIG. 1. When the gauge group G appearing in the quiver in Eq. (2.6) is an SUðNÞ group such that each pi divides N, then one can use
the description in Eq. (2.8) to rewrite (2.6) as a Lagrangian quiver. We depict such Lagrangian quivers and observe that these are the
standard affine quiver gauge theories that arise on the world volume of D3-branes probing C2=Γ orbifolds [7]. Here, we introduce the
shorthand notation of writing N inside of a gauge node to represent an SUðNÞ gauge group.

FIG. 2. The trivalent gauging of the common G flavor symmetry of Dp1
ðGÞ, Dp2

ðGÞ, and Dp3
ðGÞ is depicted in (a). Each of the three

theories has an interpretation as a sphere with an irregular puncture and a regular puncture, where the latter contributes the flavor
symmetry, G. The regular punctures are glued together to gauge G, and the three irregular punctures, denoted by crosses, remain. In
known examples, this is equivalent to a one-punctured sphere, depicted in (b), where the puncture (denoted as a boxed cross) is formed
by coalescing the three irregular punctures.
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flow after which supersymmetry is enhanced back to
N ¼ 2) of the SCFTs Db

kðJÞ.9

B. Properties of Γ̂ðGÞ
In this section, we study the properties of the Γ̂ðGÞ

theories. We focus on the cases where

Γ ¼ D4; E6; E7; E8; ð2:9Þ

which are typically non-Lagrangian theories. [For specific
choices of G, the Lagrangian quivers corresponding to
these Γ̂ðGÞ are depicted in Fig. 1.] As shown in Eq. (2.6),
these theories can be constructed via gauging the diagonal
of the common G flavor group of a set of Dpi

ðGÞ theories.
The physical features of the Γ̂ðGÞ can be written in terms of
the properties of the constituent Dpi

ðGÞs. In this section,
we study the flavor symmetry, the Coulomb branch
operator dimensions, and the central charges of these Γ̂ðGÞ.
First, we determine the rank of the flavor symmetry of

the theories Γ̂ðGÞ by utilizing the knowledge of the flavor
symmetries of the Dpi

ðGÞ. Since the DpðGÞ theory always
has G as (a part of) the flavor symmetry, the rank of the
flavor symmetry can be written as

rankðGÞ þ fðpi; GÞ; ð2:10Þ

where the fðpi; GÞ is the “extra symmetry” the DpðGÞ
theory has besides G [9]. In terms of the class S description
of Argyres-Douglas theory [10,11], the flavor symmetry G
arises from the full puncture (F), and the rest comes from the
irregular puncture of type Gb½p − h∨G�, with b ¼ h∨G. Along
with the choice ofG, the parameter p determines the order of
the singularity of the Seiberg-Witten (SW) geometry corre-
sponding to the DpðGÞ theory. When it is possible to have a
deformation parameter of the SW curve to be of dimension
1, this parameter corresponds to the mass parameter. When
the irregular singularity gives rise to such a mass parameter,
we have nonvanishing fðp;GÞ. Considering as an example
when G ¼ SUðNÞ, if p and N are coprime, the irregular
singularity is free of such an extra mass parameter so that
fðp;GÞ ¼ 0; however, if p and N are not coprime, there
exist gcdðp;NÞ − 1 mass parameters associated with the
irregular singularity. For the values of p relevant to our
interest (i.e., for p ¼ 2, 3, 4, 6), we have

fðp; SUðNÞÞ ¼ gcdðp;NÞ − 1; ð2:11aÞ

fðpeven; SOð2NÞÞ ¼ gcdðpeven; 2N − 2Þ
− gcdðpeven; N − 1Þ þ 1; ð2:11bÞ

fðpodd; SOð2NÞÞ ¼ 0; ð2:11cÞ

fðp; E6Þ ¼ gcdðp; 3Þ − 1; ð2:11dÞ

fðp; E7Þ ¼ gcdðp; 2Þ − 1; ð2:11eÞ

fðp;E8Þ ¼ gcdðp; 1Þ − 1 ¼ 0: ð2:11fÞ

After the gauging by which we construct the theory Γ̂ðGÞ, we
find the rank of the remaining flavor symmetry to be simply

fðΓ̂ðGÞÞ ¼
X
i

fðpi; GÞ: ð2:12Þ

The scaling dimensions of the operators that parametrize
the Coulomb branch can also be determined from the
Dpi

ðGÞ building block theories. We denote by Cðpi; GÞ the
collection of the Coulomb branch scaling dimensions of
the theory Dpi

ðGÞ; we further define CasðGÞ to be the set
composed of the degrees of the Casimirs of G. The Casimir
degrees for each G are summarized in Table III. Then, the
Coulomb branch operator spectrum Cðp;GÞ for the DpðGÞ
theory can be easily determined from the Seiberg-Witten
geometry and can be written as

Cðp;GÞ ¼
�
j −

h∨G
p

s

����j − h∨G
p

s > 1; j ∈ CasðGÞ;

s ¼ 1;…; p − 1

�
: ð2:13Þ

The dimension of the Coulomb branch or the rank of
DpðGÞ theory is now given as

rankðDpðGÞÞ ¼
1

2
ððp − 1ÞrankðGÞ − fðp;GÞÞ: ð2:14Þ

In terms of these quantities, we find that the Coulomb
branch operators of Γ̂ðGÞ have scaling dimensions

CasðGÞ ⊕ ⨁
i
Cðpi; GÞ: ð2:15Þ

The CasðGÞ part comes from the gauge group G. By using
the relation between the parameters pi and the Γ,

X
i

ðpi − 1Þ ¼ rankðΓÞ; ð2:16Þ

we find the rank of the Γ̂ðGÞ theory, which is simply the
dimension of the Coulomb branch, to be

rankðΓ̂ðGÞÞ ¼ rankðGÞ
�
1þ rankðΓÞ

2

�
−
1

2
fðΓ̂ðGÞÞ:

ð2:17Þ

9When b ¼ h∨J , then we drop b from the notation. These are
then the DpðGÞ theories which we have been gauging to obtain
the Γ̂ðGÞ.
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For the DpðGÞ theories without any extra global symmetry
besides G, we have fðp;GÞ ¼ 0. When we form Γ̂ðGÞ
theory from such theories, the last term in (2.17) vanishes.
Finally, we turn our attention to determining the central

charges of Γ̂ðGÞ. The central charges of each individual
Dpi

ðGÞ, which we write as aðpi;GÞ and cðpi; GÞ, are

somewhat intricate expressions [9,11,53]; however, we
observe a pleasant simplification on these central charges
when combined to express the central charges for the Γ̂ðGÞ
theories. In fact, we find that the central charges of the Γ̂ðGÞ
are given by

aðΓ̂ðGÞÞ ¼ 5

24
dimðGÞ þ

X
i

aðpi; GÞ ¼
p4 − 1

p4

dimðGÞ − bðΓ̂ðGÞÞ − 5

48
fðΓ̂ðGÞÞ;

cðΓ̂ðGÞÞ ¼ 1

6
dimðGÞ þ

X
i

cðpi; GÞ ¼
p4 − 1

p4

dimðGÞ − 1

12
fðΓ̂ðGÞÞ: ð2:18Þ

We note that the expressions in Eq. (2.18) simplify once
both bðΓ̂ðGÞÞ and fðΓ̂ðGÞÞ vanish. In fact, these super-
fluous terms are nonzero only if at least one of the pi > 1

divides the dual Coxeter number of G. The specific values
that bðΓ̂ðGÞÞ takes, when it is nonzero, are written in the
Table V.
Finally, we point out that for each of these four choices

for Γ̂ the quantity p4 is nothing other than the ΔΓ, as
written in Table I, associated to that element of the

Deligne-Cvitanović exceptional series. In this way, we
can see that the leading-order contribution to the central
charges has the form

a ∼ c ∼
ΔΓ − 1

ΔΓ
dimðGÞ; ð2:19Þ

as claimed in Eq. (1.9).

TABLE V. The Γ̂ðGÞ theories have a subleading contribution to the central charge aðΓ̂ðGÞÞ which is encoded in the coefficient
bðΓ̂ðGÞÞ as written in Eq. (2.18). In these tables, we list the values of these coefficients, which are determined from the central charges of
the gauged together DpðGÞ theories.

G SUðNÞ SOðNÞ E6 E7 E8

N ¼ 2l N ¼ 4l N ¼ 4lþ 2

D̂4: bðD̂4ðGÞÞ 1
8

l
4

2l−1
8

1
4

7
8

1

G SUð3lÞ SOð6lþ 2Þ E6 E7 E8

Ê6: bðÊ6ðGÞÞ 1
6

− 1
6

1
2

1
3

2
3

G SUðNÞ SOðNÞ
N ¼ 4l N ¼ 4l − 2 N ¼ 8l N ¼ 8lþ 2 N ¼ 8lþ 4 N ¼ 8lþ 6

Ê7: bðÊ7ðGÞÞ 3
16

1
16

l
4

4l−3
16

2lþ1
8

4lþ3
16

G E6 E7 E8

bðÊ7ðGÞÞ − 1
8

7
16

1
2

G SUðNÞ E6 E7 E8

N ¼ 6l N ¼ 6lþ 2; 6lþ 4 N ¼ 6lþ 3

Ê8: bðÊ8ðGÞÞ 5
24

1
24

1
12

1
4

7
24

1
3

G SOðNÞ
N ¼ 12l − 4 N ¼ 12l − 2 N ¼ 12l N ¼ 12lþ 2 N ¼ 12lþ 4 N ¼ 12lþ 6

bðÊ8ðGÞÞ 3l−1
12

2l−1
8

l
4

6l−5
24

3lþ1
12

6lþ1
24
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III. INFINITELY MANY SCFTS WITH a = c

In this section, we explore the theories Γ̂ðGÞ which have
a ¼ c.10 We first recall the formula for the central charges
of Γ̂ðGÞ given in Eq. (2.18). It is clear to see that a theory
with a ¼ c occurs whenever we have

fðΓ̂ðGÞÞ ¼ 0 and bðΓ̂ðGÞÞ ¼ 0: ð3:1Þ

The theories Γ̂ðGÞ satisfying a ¼ c are listed in Table VI
with their central charges. It is noteworthy that these central
charges are all even integers and thus the central charges of
the associated chiral algebras are a multiple of 24:

c2D ¼ −12c ∈ 24Z−: ð3:2Þ

Aspects of some of the non-Lagrangian 4D N ¼ 2 SCFTs
in Table VI have been explored in previous works. For
example, the chiral algebra of the Ê6ðSUð2ÞÞ theory has
been studied in Refs. [30,54]; the construction of Γ̂ðGÞ
from the minimal 6D (1,0) SCFTs compactified on a torus
appears in Ref. [55].
For a few specific choices of Γ and G, the Γ̂ðGÞ theories

have an alternative construction, as theories Jb½k�, as we
have already discussed in Sec. II B. Among the theories
with a ¼ c we study, we list the three examples where this
“dual” description occurs in Table VII. Interestingly, a scan
of the central charges of the Jb½k� reveals that they generally
have rational central charge c, instead of being an integer,
and these three cases are the only examples we have found
where there is overlap with Γ̂ðGÞ.
The theory with the lowest central charges in Table VI is

Ê6ðSUð2ÞÞ, which has a ¼ c ¼ 2. This theory has a rank-4
Coulomb branch generated by operators of conformal
dimensions

�
4

3
;
4

3
;
4

3
; 2

�
: ð3:3Þ

In fact, this particular theory is rather well known. It is
composed via gauging together the diagonal subgroup of
three copies of

D3ðSUð2ÞÞ ¼ H1; ð3:4Þ

where on the right-hand side we have the rank-1 Argyres-
Douglas theory with SUð2Þ flavor symmetry H1. The
Ê6ðSUð2ÞÞ theory is identical (or dual) to D6

4½3� ¼ D4
4½2�

and ðA2; D4Þ in the notation of Refs. [10] and [17],
respectively.
Notice that the Ê6ðSUð2ÞÞ theory has several different

realizations. First, we obtain this theory via gauging
three copies of the D3ðSUð2ÞÞ ¼ H1 theory. The H1 ¼
ðA1; A3Þ ¼ ðA1; D3Þ theory has at least two N ¼ 1
Lagrangian descriptions in terms of SUð2Þ gauge theories
resulting from the principal nilpotent Higgsing of SUð4Þ
[51] and a nonprincipal nilpotent Higgsing of SOð8Þ [49].
As a result, we can describe this Ê6ðSUð2ÞÞ theory as an
SUð2Þ4 gauge theory with appropriate matter contents
and interactions. On the other hand, since this theory is
identical (or dual) to ðA2; D4Þ theory, one can obtain
another N ¼ 1 Lagrangian description via a deformation
of SOð4Þ −USpð4Þ quiver gauge theory [18],

ð3:5Þ

This provides an IR duality of the Ê6ðSUð2ÞÞ theory.
The Ê7ðSUð3ÞÞ theory has a ¼ c ¼ 6. This theory is

obtained by gauging together two copies ofD4ðSUð3ÞÞ and
one copy of D2ðSUð3ÞÞ ¼ H2. Similar to the analysis for
the Ê6ðSUð2ÞÞ theory, the Ê7ðSUð3ÞÞ theory is found to be
(dual to) the E12

6 ½4� theory. We note that D2ðSUð3ÞÞ ¼ H2

has a Lagrangian description, and in turn, we can write this
Ê7ðSUð3ÞÞ theory with a partially Lagrangian quiver. It
would be interesting to see if there is a fully Lagrangian
description to this theory.

A. Superconformal index

In this section, we study the superconformal index [56,57]
of our Γ̂ðGÞ theories. The superconformal index captures
the spectrum of short multiplets in a superconformal theory.
We focus on Γ ¼ D4; E6; E7; E8 in this section. Generally,
the Γ̂ðGÞ theory involves non-Lagrangian DpðGÞ Argyres-
Douglas theory, which makes it rather difficult to evaluate
the superconformal index in full generalities. Apart from
some special cases with known N ¼ 1 Lagrangian descrip-
tions [49,51,52], the full indices for these theories are still
lacking. Instead, we compute the Schur limit [27,28] of the
superconformal index, defined as

TABLE VI. All Γ̂ðGÞ theories satisfying a ¼ c with the values
of their central charges, where l is an arbitrary positive integer.

Γ̂ðGÞ a ¼ c

D̂4ðSUð2lþ 1ÞÞ 2lðlþ 1Þ
Ê6ðSUð3l� 1ÞÞ 2lð3l� 2Þ
Ê6ðSOð6lÞÞ 2lð6lþ 1Þ
Ê6ðSOð6lþ 4ÞÞ 2ð2lþ 1Þð3lþ 2Þ
Ê7ðSUð4l� 1ÞÞ 6lð2l� 1Þ
Ê8ðSUð6l� 1Þ) 10lð3l� 1Þ

10When a four-dimensional N ¼ 2 SCFT has a Higgs branch
that can be completely Higgsed, its quaternionic dimension is
given as dH ¼ 24ðc − aÞ ¼ ðnh − nvÞ, where nh and nv are the
(effective) number of hyper and vector multiplets. Theories with
a ¼ c cannot have a Higgs branch where the Coulomb branch is
completely Higgsed.
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ISðqÞ ¼ Trð−1ÞFqΔ−R; ð3:6Þ

where Δ is the scaling dimension and R is the Cartan of the
SUð2ÞR symmetry. The Schur index for the DpðGÞ theories
having no extra flavor symmetry (i.e., G is the only flavor
symmetry of the theory) is computed in Refs. [32,33,58] to
give

IDpðGÞðq; z⃗Þ ¼ PE

�
q − qp

ð1 − qÞð1 − qpÞ χ
G
adjðz⃗Þ

�
; ð3:7Þ

where PE denotes the plethystic exponential and χGadj is the
character for the adjoint representation of the flavor sym-
metry G. When the flavor symmetry of the DpðGÞ theory
becomes larger than G, it has additional Uð1Þ factors.11

In this case, we do not have a concise expression for the
Schur index as in Eq. (3.7). Still, the Schur index for such
theories can be computed using the method of topological
quantum field theory [32,58–61]. In this section, we focus on
the Γ̂ðGÞ theories without flavor symmetry that are built out
of gauging DpðGÞ theories without extra flavor symmetry.
We further restrict ourselves to the theories with equal central
charges a ¼ c.
We observe that the growth of the coefficients in the

Schur index is rather slow; specifically, they do not grow
exponentially large. This is consistent with the formula for
the Cardy-like limit [25,60,62,63]

lim
q→1

IðqÞ ∼ e
8π2

ω ðc−aÞ ∼
a¼c

1; ð3:8Þ

where we have defined ω via q ¼ e−ω. Even though the
Schur limit of the index grows very slowly, the full super-
conformal index does exhibit exponential growth even for
a ¼ c theories. The asymptotic expression for the “high-
temperature” behavior of the full superconformal index for
4D superconformal theory has been recently obtained to
give [64–66]

lim
ω1;2→1

log Iðω1;ω2Þ ∼
8Δ3

27ω1ω2

ð5a − 3cÞ þ 8π2Δ
3ω1ω2

ða − cÞ;

ð3:9Þ

where Δ ¼ ω1þω2

2
− πi and ω1;2 are the chemical potentials

for the combinations of angular momentum and Uð1ÞR
charge.12 In our case, we have a ¼ c ∼OðjGjÞ so that the
full superconformal index should exhibit exponential
growth ejGj.

1. D̂4ðGÞ theories
For the D̂4ðGÞ theory, the Schur index can be computed

using the following integral:

ID̂4ðGÞðqÞ ¼
Z

½dz⃗�IGvecðq; z⃗ÞID2ðGÞðq; z⃗Þ4

¼
Z

½dz⃗� PE
��

−2q
1 − q

þ 4ðq − q2Þ
ð1 − qÞð1 − q2Þ

�
χGadjðz⃗Þ

�

¼
Z

½dz⃗� PE
�
2q − 2q2

1 − q2
χGadjðz⃗Þ

�
: ð3:10Þ

Here, we assumed that p ¼ 2 does not divide h∨G so that the
D2ðGÞ does not have any other flavor symmetry besides G.
A remarkable thing to notice here is that this Schur index is
identical to that of theN ¼ 4 super-Yang-Mills theory with
the gauge group G (with flavor fugacity turned off) upon
rescaling q → q2:

IN¼4
G ðqÞ ¼

Z
½dz⃗� PE

�
2q1=2 − 2q

1 − q
χGadjðz⃗Þ

�
: ð3:11Þ

This phenomenon is similar to the relation between the
Schur index of D2ðGÞ theory versus that of a free hyper-
multiplet, where the former is given by the latter with
q → q2 rescaling.
Let us list a few cases upon evaluating the integral

explicitly:

ID̂4ðSUð3ÞÞ ¼ 1þ 3q2 þ 4q4 þ 7q6 þ 6q8 þ 12q10

þ 8q12 þ 15q14 þ 13q16 þOðq22Þ; ð3:12aÞ

TABLE VII. Physical properties and alternative constructions for some of the SCFTs Γ̂ðGÞ with a ¼ c. These
three theories are the only known theories which have an overlap with the Jb½k� theories of Ref. [33].

Γ̂ðGÞ a ¼ c Coulomb branch operator dimensions Alternative name

Ê6ðSUð2ÞÞ 2 f4
3
g⊕3 ⊕ f2g D6

4½3� ¼ D4
4½2� ¼ ðA2; D4Þ

Ê7ðSUð3ÞÞ 6 f5
4
; 9
4
g⊕2 ⊕ f3

2
g⊕3 ⊕ f2; 3g E12

6 ½4� ¼ ðA3; E6Þ
Ê8ðSUð5ÞÞ 20 f3

2
; 5
2
; 4
3
; 7
3
; 10
3
; 5
3
g⊕2 ⊕ f7

6
; 13
6
; 19
6
; 25
6
; 2; 3; 4; 5g E30

8 ½6� ¼ ðA5; E8Þ

11It is possible to have a symmetry enhancement to a larger
non-Abelian group as well.

12For this formula to hold, one actually needs to replace ð−1ÞF
by ð−1ÞR in the definition of the index. It does not change the
physical content of the index, which counts the short multiplets
up to recombination. However, it does simplify the expression to
the above universal form.
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ID̂4ðSUð5ÞÞ ¼ 1þ 3q2 þ 9q4 þ 15q6 þ 30q8 þ 45q10

þ 67q12 þ 99q14 þOðq16Þ; ð3:12bÞ

ID̂4ðSUð7ÞÞ ¼ 1þ 3q2 þ 9q4 þ 22q6 þ 42q8 þ 81q10

þ 140q12 þ 231q14 þOðq16Þ: ð3:12cÞ

Remarkably, we find that the leading terms of the
Schur indices are given by the generating function of
MacMahon’s generalized sum-of-divisor function [34],
which is defined as

AkðqÞ ¼
X

0<m1<m2���<mk

qm1þ���mk

ð1 − qm1Þ2 � � � ð1 − qmkÞ2 : ð3:13Þ

For k ¼ 1, this becomes the generating function of the
sum-of-divisor function

A1ðqÞ ¼
X∞
n¼1

σ1ðnÞqn ¼
X
m¼1

qm

ð1 − qmÞ2 ; ð3:14Þ

where σ is responsible for the name sum of divisor:

σkðnÞ ¼
X
djn

dk: ð3:15Þ

In terms of AkðqÞ, which was shown to be quasimodular
in Ref. [35], we find that the Schur index for the
D̂4ðSUð2kþ 1ÞÞ theory is given as

ID̂4ðSUð2kþ1ÞÞðqÞ ¼ q−kðkþ1ÞAkðq2Þ: ð3:16Þ

Notice that a ¼ c ¼ 2kðkþ 1Þ so that the prefactor is
qc2D=24 where c2D ¼ −12c is the central charge for the
associated chiral algebra or VOA. Also notice that the
Schur index for N ¼ 4 SYM theory with gauge group
SUð2kþ 1Þ is simply written in terms of AkðqÞ, without
rescaling:

IN¼4
SUð2kþ1ÞðqÞ ¼ q−

kðkþ1Þ
2 AkðqÞ: ð3:17Þ

From this evidence of the quasimodularity of the
D̂4ðSUðNÞÞ and SUðNÞ N ¼ 4 SYM (with N odd), it
is a natural extension to wonder if the other cases contain
quasimodularity (and hence number-theoretic properties
for the Schur indices), which has yet to be explored.
We want to point out that the coefficients of q2 in (3.12)

are all equally 3. One out of these three contributions to the
q2 term originates from the stress-tensor multiplet (Ĉ0ð0;0Þ in
Dolan-Osborn notation [67]). We find the other two can
only come from D1

2
ð0;1

2
Þ and D̄1

2
ð1
2
;0Þ multiplets, which are

fermionic. These three multiplets become generators when
passed on to the associated VOA. We also notice that in the

absence of a flavor current, the coefficient of the q2 term
can be either 1 or 3, since these three multiplets are the only
possible short multiplets in the Schur sector that can
contribute to the q2 term. The case of having 2 is excluded
since it breaks parity invariance.

2. ÊnðGÞ theories
The Schur index for the Ê6ðGÞ theory is given as

IÊ6ðGÞ ¼
Z

½dz⃗�IGvecðq; z⃗ÞID3ðGÞðq; z⃗Þ3

¼
Z

½dz⃗� PE
��

−
2q

1 − q
þ 3ðq − q3Þ
ð1 − qÞð1 − q3Þ

�
χGadjðz⃗Þ

�

¼
Z

½dz⃗� PE
�
qþ q2 − 2q3

1 − q3
χGadjðz⃗Þ

�
; ð3:18Þ

where we assume p ¼ 3 does not divide h∨G. We list the first
few terms for the indices of Ê6ðGÞ theories of low rank:

IÊ6ðSUð2ÞÞ ¼ 1þ q2 þ q3 þ 2q6 þ q8 þ q11 þ 2q12

þ q15 þ 2q18 þ 2q20 þ � � � ; ð3:19aÞ

IÊ6ðSUð4ÞÞ ¼ 1þ q2 þ 2q3 þ 2q4 þ q5 þ 6q6 þ 2q7

þ 4q8 þ 7q9 þ 7q10 þ 4q11 þ � � � ; ð3:19bÞ

IÊ6ðSUð5ÞÞ ¼ 1þ q2 þ 2q3 þ 2q4 þ 2q5 þ 7q6 þ 2q7

þ 8q8 þ 10q9 þ 8q10 þ � � � ; ð3:19cÞ

IÊ6ðSUð7ÞÞ ¼ 1þ q2 þ 2q3 þ 2q4 þ 2q5 þ 8q6 þ 4q7

þ 9q8 þ 14q9 þ 15q10 þ � � � ; ð3:19dÞ

IÊ6ðSOð8ÞÞ ¼ 1þ q2 þ q3 þ 2q4 þ 2q5 þ 4q6 þ 3q7

þ 6q8 þ 5q9 þ 8q10 þ 7q11 þ � � � : ð3:19eÞ

Likewise, the Schur index for the Ê7ðGÞ theory is given
as

IÊ7ðGÞ ¼
Z

½dz⃗�IGvecðq; z⃗ÞID2ðGÞðq; z⃗ÞID4ðGÞðq; z⃗Þ2

¼
Z

½dz⃗� PE
��

−
2q

1 − q
þ q − q2

ð1 − qÞð1 − q2Þ

þ 2ðq − q4Þ
ð1 − qÞð1 − q4Þ

�
χGadjðz⃗Þ

�

¼
Z

½dz⃗� PE
�
qþ q3 − 2q4

1 − q4
χGadjðz⃗Þ

�
: ð3:20Þ

As before, we assume p ¼ 2, 4 does not divide h∨G. Upon
evaluating the integral, we obtain the Schur indices. We list
some cases where G is a low rank SUðNÞ:
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IÊ7ðSUð3ÞÞ ¼ 1þ q2 þ q3 þ 2q4 þ 3q6 þ q7 þ 3q8

þ q9 þ 3q10 þ � � � ; ð3:21aÞ

IÊ7ðSUð5ÞÞ ¼ 1þ q2 þ q3 þ 3q4 þ q5 þ 5q6 þ 2q7

þ 8q8 þ � � � ; ð3:21bÞ

IÊ7ðSUð7ÞÞ ¼ 1þ q2 þ q3 þ 3q4 þ q5 þ 6q6 þ 3q7

þ 10q8 þ 6q9 þ 15q10 þ � � � : ð3:21cÞ

Finally, the Schur index for the Ê8ðGÞ theory is given as

IÊ8ðGÞ¼
Z

½dz⃗ �IGvecðq;z⃗ ÞID2ðGÞðq;z⃗ ÞID3ðGÞðq;z⃗ ÞID6ðGÞðq;z⃗ Þ

¼
Z
½dz⃗ �PE

��
−

2q
1−q

þ
X

p¼2;3;6

q−qp

ð1−qÞð1−qpÞ
�
χGadjðz⃗ Þ

�

¼
Z

½dz⃗ �PE
�
qþq5−2q6

1−q6
χGadjðz⃗ Þ

�
: ð3:22Þ

For example, we get first terms of the Schur index for the
Ê8ðSUð5ÞÞ and Ê8ðSUð7ÞÞ theories as

IÊ8ðSUð5ÞÞ ¼ 1þ q2 þ q3 þ 2q4 þ 2q5 þ 4q6 þ 2q7

þ 6q8 þ � � � ; ð3:23Þ

IÊ8ðSUð7ÞÞ ¼ 1þ q2 þ q3 þ 2q4 þ 2q5 þ 5q6 þ 3q7

þ 7q8 þ � � � : ð3:24Þ

Unfortunately, we do not find a closed-form expression for
the indices of ÊnðGÞ theories except for the Ê6ðSUð2ÞÞ
theory, which was already studied in Ref. [54] as a character
for theAð6Þ chiral algebra of Feigin-Feigin-Tipunin [68,69].

B. Connection with the Schur index of N = 4
super-Yang-Mills

We observe an intriguing relationship between the Schur
limit of the superconformal index of Γ̂ðGÞ and the Schur
limit of the superconformal index of N ¼ 4 super-Yang-
Mills with gauge group G. Writing this more concretely,

IΓ̂ðGÞðqÞ ¼ IN¼4
G ðqαΓ ; qαΓ=2−1Þ: ð3:25Þ

Here, the Schur index forN ¼ 4 SYMwith gauge groupG
can be written as

IN¼4
G ðq;xÞ

¼
Z

½dz⃗ �PE
��

−
2q
1−q

þ q
1
2

1−q
ðxþx−1Þ

�
χGadjðz⃗Þ

�
; ð3:26Þ

where ½dz⃗� is the Haar measure for the group G and x is the
fugacity of the additional SUð2Þ flavor symmetry ofN ¼ 4

SYM from the N ¼ 2 perspective. To compare with the
Γ̂ðGÞ theories, we can rearrange to find that

IN¼4
G ðqαΓ ; qαΓ=2−1Þ

¼
Z

½dz⃗ � PE
��

qþ qαΓ−1 − 2qαΓ

1 − qαΓ

�
χGadjðz⃗ Þ

�
: ð3:27Þ

We find that this relationship holds for all the Γ̂ðGÞ theories
that lack any flavor symmetry, a superset of a ¼ c theories,
which can be derived using Sec. II as the following:

Γ̂ðSUðNÞÞ with gcdðαΓ; NÞ ¼ 1;

Ê6ðSOð2NÞÞ; D̂4ðE6Þ; Ê6ðE7Þ; Ê7ðE6Þ;
D̂4ðE8Þ; Ê6ðE8Þ; Ê7ðE8Þ; Ê8ðE8Þ: ð3:28Þ

It is straightforward to see that IΓ̂ðGÞ with Γ ¼ D4; E6; E7; E8

given in Eqs. (3.10), (3.18), (3.20), and (3.22) indeed satisfy
the relation (3.25). A particular example of such a relation-
ship has been studied for the theories Γ̂ðSUðNÞÞ with
gcdðαΓ; NÞ ¼ 1 [30].
It is perhaps surprising that the theories Γ̂ðGÞ, which are

obtained by gauging the diagonal G of a collection of non-
LagrangianDpðGÞ theories, have a Schur index which can
be determined from the Schur index of N ¼ 4 super-
Yang-Mills. We do not know any physical motivation for
this correspondence, and we hope to return to this
question in the future. Inspired by Ref. [30], we suspect
that this identification of the Schur indices indicates the
existence of a graded vector space isomorphism between
the chiral algebras of the respective theories.

IV. BEYOND a= c: DELIGNE EXCEPTIONAL
SERIES AND G ∈ ADE

Thus far, we have established the 4D N ¼ 2 SCFTs
Γ̂ðGÞ that have a ¼ c. For each Γ̂, the equality condition
of the two central charges a ¼ c requires the constraints in
Eq. (3.1) to be satisfied, which in turn restrict the choices
of G to be those appearing in Table VI. When we go
beyond these choices of G, then we find theories that are
no longer a ¼ c.

A. Γ=D4;E6;E7;E8 with a generic G of type ADE

For a theory Γ̂ðGÞ to have a ¼ c, we have shown that a
sufficient condition is that the dual Coxeter number (h∨G) of
G and the largest comark (αΓ) of Γ̂ are coprime. Then, to
consider beyond these a ¼ c cases, we first examine the
cases where the largest comark of Γ̂ divides the dual
Coxeter number of G. These cases occasionally lead to
Lagrangian quivers. If we take G ¼ SUðαΓlÞ, then we
obtain the affine quiver gauge theories that we have seen in
Fig. 1. We also get Lagrangian quivers when we take
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G ¼ SOð2αΓlþ 2Þ; ð4:1Þ

which has dual Coxeter number 2αΓl; these quivers are
shown in Fig. 3. These quivers take the form of an affine Γ̂
Dynkin diagram where the gauge nodes are alternating SO
and USp gauge groups.
We have considered the cases where gcdðh∨G; αΓÞ ¼ αΓ,

where one typically obtains Lagrangian quivers, and at the
other extreme, we have considered the Γ̂ðGÞ theories which
have gcdðh∨G; αΓÞ ¼ 1. The latter leads to theories which

are non-Lagrangian and have a ¼ c. Between these two
extremes, we can consider the cases where

1 < gcdðh∨G; αΓÞ < αΓ: ð4:2Þ

These configurations can only exist when Γ is E7 or E8.
When G ¼ SUðNÞ and the condition in Eq. (4.2) is
satisfied, then one of the three legs of the Γ̂ðGÞ quiver
becomes a Lagrangian quiver. The quiver description of
these theories can be written as

ð4:3aÞ

ð4:3bÞ

FIG. 3. The SCFTs Γ̂ðSOð2αΓlþ 2ÞÞ have Lagrangian quiver descriptions in terms of alternating SO and USp groups. We depict
these quivers here.
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ð4:3cÞ

A similar analysis can be performed for G ¼ SOð2NÞ,
and depending on the value gcdðh∨G; αΓÞ, some of the legs
can become quivers with alternating SO and USp gauge
nodes, similar to Fig. 3.
A subset of the theories with a ≠ c that we are interested

in are those that lack any flavor symmetry. For such
theories, it is particularly simple to determine the Schur
index, as we have seen in Sec. III B. Here, we briefly focus
on the class of examples with G ¼ E8, as Γ̂ðE8Þ theories
never have any flavor symmetry, regardless of the choice of
Γ. First, we note that the difference of the central charges
for each theory is given by

Γ D4 E6 E7 E8

24ðc − aÞ 24 16 12 −8
: ð4:4Þ

For Ê8ðE8Þ, we notice that a > c, indicating the presence of
fermionic generators of the associated VOA or chiral
algebra [54]. Computing the explicit expansion of the
Schur indices for each of these four theories is straightfor-
ward, in principle, using the methods explained in
Sec. III A. However, they are computationally intensive,
and we leave their determination for future work.

B. Deligne-Cvitanović exceptional series

The form of the central charges obtained for the theories
Γ̂ðGÞ with Γ ¼ D4; E6; E7, and E8 in Sec. II B is highly
suggestive. The central charge c for the theory Γ̂ðGÞ
behaves like

c ∼
ΔΓ − 1

ΔΓ
dimðGÞ; ð4:5Þ

where ΔΓ are the rational numbers (written in Table I)
associated to the groups Γ appearing in the Deligne-
Cvitanović exceptional series. A natural question to
wonder is then if there exist superconformal gauge
theories, with a single gauge group G and coupled to
some Lagrangian or non-Lagrangian matter, where the
central charge c has the form of Eq. (4.5) for the other
simply laced Γ in the Deligne-Cvitanović exceptional
series. We find that such theories do exist.
If there exists a Lagrangian description of such a quiver

gauge theory, then the central charges, a and c, are given in
terms of the number of vector multiplets nv and the number
of (full) hypermultiplets nh in that Lagrangian description:

a ¼ 5

24
nv þ

1

24
nh; c ¼ 1

6
nv þ

1

12
nh: ð4:6Þ

For non-Lagrangian theories, nv and nh can be nonintegers
and can be regarded as the “effective” numbers of vectors
and hypers. Since we require the theories to have aG gauge
sector, we must have at least nv ≥ dimðGÞ.
The putative Ĥ0ðGÞ SCFT should have a central charge

of the form

c ∼
1

6
dimðGÞ: ð4:7Þ

We can see from the equation (4.6) that this c is precisely
the central charge of a free vector multiplet. In four
dimensions, this constitutes a (free) SCFT, and thus we
determine this to be the theory corresponding to the Ĥ0ðGÞ
theory:

ð4:8Þ

Next, we determine a candidate for the Ĥ1ðGÞ SCFT.
The central charge should have the following form:

c ∼
1

4
dimðGÞ ¼ 1

6
dimðGÞ þ 1

12
dimðGÞ: ð4:9Þ

The latter equality, together with Eq. (4.6), makes it clear
that such a central charge can also be engineered with a
Lagrangian theory—a theory of a single G-vector multiplet
and a massless adjoint hypermultiplet. This matter spec-
trum satisfies the vanishing condition of the one-loop beta
function. In fact, this theory also has an enhanced super-
symmetry; it is the well-known description of N ¼ 4

super-Yang-Mills. Henceforth we define the Ĥ1ðGÞ theory
to be

ð4:10Þ

which does satisfy the desired feature of the scaling of the
central charge c in Eq. (4.5).
For the putative Ĥ2ðGÞ theories, we are able to achieve

our goal only for the classical G. We search for theories
which have

c ∼
1

3
dimðGÞ ¼ 1

6
dimðGÞ þ 1

6
dimðGÞ; ð4:11Þ
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which implies that we should have

nh ∼ 2 dimðGÞ; ð4:12Þ

if we demand a Lagrangian description. Having two adjoint
hypermultiplets seems like a good choice; however, the
one-loop beta function does not vanish with such a matter
spectrum. Instead, we find that G ¼ SUðKÞ gauge theory
with 2K fundamental hypermultiplets, which does have
vanishing beta function, leads to

nh ¼ 2K2 ¼ 2ðK2 − 1Þ þ 2 ¼ 2dimðSUðKÞÞ þ 2: ð4:13Þ

This produces the correct coefficient in the central charge c
at leading order in K. A similar analysis can be done for
G ¼ SOð2KÞ with 4K − 4 half-hypermultiplets in the
vector representation. We then have

nh ¼
ð2KÞð4K − 4Þ

2
¼ 2

�
2Kð2K − 1Þ

2

�
− 2K

¼ 2 dimðSOð2KÞÞ − 2K: ð4:14Þ

Again, this produces the desired central charge at leading
order, consistent with Eq. (4.12). This construction does not
extend to theories with exceptional G, since we lack the
number of hypermultiplets to fulfill the conformality con-
dition. To illustrate this point, let us provide an extreme
example when G ¼ E8. For the G ¼ E8 theory, the number
of hypermultiplets is nh ¼ dimðGÞ, which is smaller than
the required amount in Eq. (4.12). Moreover, the large K
limit is not available. It would be interesting if there exists a
theory with exceptional gauge group that achieves
Eq. (4.12) from gauging a (partially) non-Lagrangian theory.

V. BEYOND a= c: GENERIC G AND Γ

We have established thus far a collection of 4D N ¼ 2

SCFTs that we denote as Γ̂ðGÞ. As it is illustrated in Fig. 1,
the theories

D̂4ðSUð2lÞÞ; Ê6ðSUð3lÞÞ;
Ê7ðSUð4lÞÞ; Ê8ðSUð6lÞÞ; ð5:1Þ

correspond to Lagrangian quivers. In particular, these are
the cases where the gauge group is simply given by

G ¼ SUðαΓlÞ; ð5:2Þ

where l is an arbitrary positive integer and αΓ is the largest
comark of Γ̂. These affine Dynkin diagram shaped quivers
can be realized in string theory as the world volume theory
on a stack of l D3-branes probing a C2=Γ singularity [7].
We refer to these quivers as affine quiver gauge theories, or
just affine quivers associated to Γ̂.
The affine quivers exist for all affine ADE Dynkin

diagrams, not just for D4, E6, E7, and E8. Then, a natural
generalization to the Γ̂ðGÞ construction is to allow Γ to be
any of type ADE. In this section, we introduce a gener-
alization of the remaining affine quivers to non-Lagrangian
theories: we consider Γ̂ an arbitrary affine ADE Dynkin
diagram and G an arbitrary ADE Lie group. In Figs. 4(a)
and 4(b), we depict the Lagrangian affine quivers for ÂN

and D̂Nþ4, respectively. Based on these, we draw the
generalization to arbitrary Γ and G that we shall consider
in Figs. 4(c) and 4(d).
The first subtlety that arises in the generalization,

that we can see directly in Figs. 4(c) and 4(d), is that

we have gauge nodes connected together as .

When G is SUðKÞ, the standard formulation of 4D N ¼ 2

FIG. 4. We show the affine quivers associated to the affine Dynkin diagrams ÂN−1 and D̂Nþ4, together with the generalizations that we
consider. We can take N ≥ 1 and N ≥ 0, respectively, and we remind the reader that an integer K inside a gauge node implies the gauge
group SUðKÞ.

INFINITELY MANY 4D N ¼ 2 SCFTs WITH … PHYS. REV. D 104, 105005 (2021)

105005-15



superconformal quiver gauge theory is to include a bifun-
damental hypermultiplet for each link between two gauge
nodes. Since we consider an arbitrary group G of type
ADE, we need to clarify the notion that corresponds to the
links between two gauge nodes G. Extending the concept
of bifundamental matter, each link corresponds to the G ×
G theory [14]. It is easy to check that when G ¼ SUðKÞ
this generalization does indeed give the bifundamental
hypermultiplet.
The G × G generalized bifundamentals can be con-

structed from both 6D (2,0) SCFTs on a punctured
Riemann surface and 6D (1,0) SCFTs on a torus.13

From the class S perspective, it can be realized as the
6D (2,0) SCFT of type G compactified on a sphere with
two full punctures and one simple puncture [70–75]. The
G ×G flavor symmetry arises from the two full punctures
(F), which correspond to the maximal nilpotent orbits of
G, and the simple puncture corresponding to the sub-
regular nilpotent orbit does not contribute to the flavor
symmetry. The flavor central charge of each G is
kG ¼ 2h∨G, and thus we can conformally gauge two such
Gs together.
We note that this G × G theory can alternatively be

constructed from the 6D (1,0) SCFTs known as rank-1
ðG;GÞ conformal matter [13]. Via torus compactification,
this yields a minimal conformal matter of type ðG;GÞ in the
resulting 4D N ¼ 2 theory [14]. This construction can be
realized with a string-theoretic origin as the world volume
theory of an M5-brane probing an ADE orbifold, compac-
tified on a torus.
Using the generalized notion of bifundamentals, we can

now define the generalized affine quiver theories, that
appear in Figs. 4(c) and 4(d). For these generalized
theories, we are interested in computing the central charges
a and c, that are no longer identical to each other. To this
end, we need to determine the central charges of the G × G
generalized bifundamental theories, which are computed
from either the class S or the 6D (1,0) on T2 perspectives.
They are found to be

aG ¼ 1

24
ð6ΛGðrG þ 1Þ − 5ðdG þ 1ÞÞ;

cG ¼ 1

12
ð3ΛGðrG þ 1Þ − 2ðdG þ 1ÞÞ; ð5:3Þ

where dG is the dimension ofG, rG is the rank ofG, andΛG
denotes the order of the finite ADE subgroup of SUð2Þ
associated toG [76,77]. These quantities are summarized in
Table III. As expected, when G ¼ SUðKÞ, the central
charges become

ð24aSUðKÞ; 12cSUðKÞÞ ¼ ðK2; K2Þ; ð5:4Þ

which are exactly the central charges of a free bifunda-
mental hypermultiplet.

A. ÂN − 1 series

The ÂN−1ðGÞ quivers are circular quivers containing N
gauge nodes associated with the gauge groupG andN links
between pairs of gauge nodes that are associated to the
G ×G generalized bifundamentals. With this structure, it is
straightforward to determine the central charges a and c for
the ÂN−1ðGÞ theories as

aðÂN−1ðGÞÞ ¼
5N
24

dG þ NaG ¼ N
24

ð6ΛGðrG þ 1Þ − 5Þ;

cðÂN−1ðGÞÞ ¼
N
6
dG þ NcG ¼ N

12
ð3ΛGðrG þ 1Þ − 2Þ:

ð5:5Þ

For these theories, we find that the difference of the central
charges does not depend on the choice of G; it is simply

cðÂN−1ðGÞÞ − aðÂN−1ðGÞÞ ¼
N
24

: ð5:6Þ

We want to emphasize that this is strictly positive, and thus
a ≠ c for all the ÂN−1ðGÞ theories.
Except for the case where G ¼ SUðKÞ, the theories

ÂN−1ðGÞ lack any flavor symmetry. As the ÂN−1ðGÞ
theories are obtained by gauging together 4D ðG;GÞ
conformal matter theories pairwise, there is a class S
construction for ÂN−1ðGÞ. Each of the conformal matter
theories is obtained by compactifying the 6D (2,0) SCFTof
type G on a sphere with two full punctures and a simple
puncture, and the gauging procedure involves joining two
of the full punctures with a cylinder. In the end, the circular
quiver ÂN−1ðGÞ can be constructed as the compactification
of the 6D (2,0) SCFT of type G on a torus with N simple
punctures. Other than G ¼ SUðKÞ, they are all non-
Lagrangian theories for N > 1. When N ¼ 1, it is identical
toN ¼ 4 SYM theory of gauge groupG with an additional
free hypermultiplet [78]. Furthermore, the class S realiza-
tion allows us to compute the (Schur limit of the) super-
conformal index utilizing the 4D/2D correspondence of
Refs. [27,28].

B. D̂N + 4 series

Finally, let us direct our attention to the D̂Nþ4ðGÞ
generalized affine quivers. These are built from four
D2ðGÞ theories, N þ 1 gauge nodes, and N copies of the
G ×G generalized bifundamental. Putting these constituents
together, one can see that the central charges are

13In fact, the existence of both 6D (2,0) and 6D (1,0) origins
holds not just for the G × G generalized bifundamental but also
for all nilpotent Higgsing of G × G, as was shown in Ref. [41].
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aðD̂Nþ4ðGÞÞ ¼ aðD̂4ðGÞÞ þ
5N
24

dG þ NaG

¼ aðD̂4ðGÞÞ þ
N
24

ð6ΛGðrG þ 1Þ − 5Þ;

cðD̂Nþ4ðGÞÞ ¼ cðD̂4ðGÞÞ þ
N
6
dG þ NcG

¼ cðD̂4ðGÞÞ þ
N
12

ð3ΛGðrG þ 1Þ − 2Þ: ð5:7Þ

We note that we write the central charges here in terms
of the central charges of the D̂4ðGÞ theories determined
in Eq. (2.18). Other than the special case of
D̂4ðSUð2lþ 1ÞÞ, the theories D̂Nþ4ðGÞ for all choices
of G with N > 0 have some flavor symmetry. The Schur
index for the D̂Nþ4ðSUðKÞÞ theory can be easily deter-
mined from the known result for the theory
D2ðSUð2lþ 1ÞÞ, given as Eq. (3.7), and from the fact
that the D2ðSUð2lÞÞ theory is simply identical to the
Lagrangian SUðlÞ gauge theory with 2l fundamental
hypermultiplets.
For other choices of G, the Schur index is not known in

full generality. One of the methods for computing the index
appeals to the TQFT (Topological Quantum Field Theory)
structure of the index, coming from the class S realization
of DpðGÞ theories. For the current case, we need to know
the wave function for the irregular puncture with flavors,

which is unavailable except for G ¼ SUðKÞ case [61]. We
leave the computation of the indices for these theories as a
future work.
Another thing to note is that the D̂Nþ4ðGÞ and ÊNðGÞ

SCFTs do not have known class S constructions, unlike the
ÂN−1ðGÞ SCFTs, whose class S construction is simply
given by the N-punctured torus. It would be interesting to
look for a six-dimensional origin of the other Γ̂ðGÞ theories.

C. Alternative link: Nonminimal bifundamentals

As a final remark in this section, we provide another
possible option for the kind of the theory that we can
associate to each link. As we discussed at the opening of
Sec. V, when generalizing the affine quivers from affine
Dynkin diagrams involving SUðKÞ gauge nodes to those
involving gauge nodes G, we are required to specify what
we mean by the link between two gauge nodes. As we
discussed earlier in this section, a natural generalization to
an SUðKÞ2 bifundamental hypermultiplet is the 4D N ¼ 2
SCFTs known as ðG;GÞ conformal matter. These theories
do exist for all ADE groups G, and in a certain sense, they
are the “minimal” theories that one can introduce as links.
However, when G ¼ SOð2KÞ, there is another option for
the link between two gauge nodes. This is to include a
Lagrangian theory of the form

ð5:8Þ

In this setting, each of the dashed links on the right-hand
side is simply a bifundamental half-hypermultiplet. We
shall refer to these kind of links as orthosymplectic (OSp)
links.
The central charges of these orthosymplectic links can

be determined straightforwardly from their Lagrangian
descriptions and utilizing Eq. (4.6):

8<
:

aOSpð2KÞ ¼ 1
24
ðK − 1Þð14K − 5Þ;

cOSpð2KÞ ¼ 1
6
ðK − 1Þð4K − 1Þ:

ð5:9Þ

It is interestin to note that the different betwwen the
central charge a of the orthosymplectic link and that of
the conformal matter link is

aOSpð2KÞ − aSOð2KÞ ¼ 29

12
> 0; ð5:10Þ

which can be taken as an evidence that the conformal
matter link is a “more minimal” link. Another piece of
evidence is that in the class S perspective the

orthosymplectic link requires an additional puncture,
namely, the twisted null puncture [79]. Therefore, the
ÂN−1-type quivers with orthosymplectic links are realized
from a torus with N (untwisted) minimal punctures and N
twisted null punctures.
For a circular quiver with N gauge nodes and

G ¼ SOð2KÞ, as depicted in Fig. 4(c), connected by this
kind of orthosymplectic matter, we find that the central
charges are

8<
:

a ¼
	
KðK − 1Þ þ 5

24



N;

c ¼
	
KðK − 1Þ þ 1

6



N:

ð5:11Þ

The difference between these central charges is

c − a ¼ −
N
24

; ð5:12Þ

which is strictly negative, and its absolute value can be
arbitrarily large by increasing the number of SOð2KÞ gauge
nodes in the circular quiver. We note that these theories
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have a > c, which implies the existence of fermionic
generators in the associated VOA [54]. A similar determi-
nation of the central charges can be made for the D̂-type
quivers, shown in Fig. 4(d), where the links are taken to be
the orthosymplectic matter instead of the conformal matter.

VI. DISCUSSION

We have constructed a set of four-dimensional N ¼ 2

superconformal theories Γ̂ðGÞ, labeled by a pair of
ADE groups Γ and G. For a generic choice of Γ and
G, these theories involve Argyres-Douglas and conformal
matter theories and thereby do not admit weakly coupled
Lagrangian descriptions.
Among them, theories with Γ ¼ D4; E6; E7; E8 exhibit

particularly interesting aspect. One of the fascinating
features of these (strictly N ¼ 2) SCFTs is their similarity
to N ¼ 4 super-Yang-Mills. When gcdðαΓ; h∨GÞ ¼ 1 with
αΓ being the largest comark of the affine Lie group Γ, then
this similarity is manifest in the central charges a and c:

aðΓ̂ðGÞÞ ¼ cðΓ̂ðGÞÞ ∼ dG: ð6:1Þ

We emphasize that there have been almost no known
examples of genuinely N ¼ 2 SCFTs with equal central
charges a ¼ c. For a holographic theory, the difference
between two central charges (a − c) tends to be subleading
in the 1=N expansion, but it does give a nontrivial
correction to the bulk action. For instance, this can lead
to the violation of the celebrated entropy-viscosity ratio
bound [23,24]. Moreover, for the theories Γ̂ðGÞ with no
flavor symmetry, the Schur index of such a Γ̂ðGÞ is
identical to that of the N ¼ 4 SYM theory upon rescaling
of parameters. More precisely, we find that

IΓ̂ðGÞðqÞ ¼ IN¼4
G ðqαΓ ; qαΓ=2−1Þ: ð6:2Þ

It would be interesting to explore the implications of
this correspondence to determine more about the Γ̂ðGÞ
theories, such as their associated VOAs [30] or their
holographic duals.
In fact, when G ¼ SUðαΓlÞ, we notice that the theory

Γ̂ðSUðαΓlÞÞ is the well-studied affine quiver gauge theory
describing the world volume theory on l D3-branes
probing C2=Γ singularity, which is depicted in Fig. 1.
Its holographic dual is well understood from the pioneering
example of the AdS=CFT correspondence as

AdS5 × S5=Γ ð6:3Þ

with l units of five-form flux through the S5=Γ [20]. We
note that the quotient is the finite ADE group Γ. Then, it is
natural to expect a simple holographic dual description
(or a type IIB realization) of our Γ̂ðSUðNÞÞ theories.
When N is not divisible by αΓ for Γ ¼ D4; E6; E7; E8, one

of the necessary aspects for such a theory Γ̂ðSUðNÞÞ is
that the singularities associated to Γ have to be “frozen”
so that one cannot have any exactly marginal operators
besides the coupling for the SUðNÞ that we gauge. When
considering affine quivers, all the gauge couplings are
marginal, and it follows that there are rΓ þ 1 exactly
marginal couplings. It also looks like a “fractionaliza-
tion” of N into N ¼ αΓlþm, so that we have l number
of D3-branes with extra m=αΓ. It would be extremely
interesting to find a holographic dual or a string-theoretic
realization for the Γ̂ðGÞ theories for generic choices
of Γ and G.
The DpðGÞ Argyres-Douglas theories considered in

this paper have a 6D realization given by (2,0) theory of
type G compactified on a sphere with a regular puncture
and an irregular puncture.14 In particular, the ÂN−1ðGÞ
theory can be realized from 6D (2,0) theory of type
G ∈ ADE on a torus with N punctures. However, we are
not aware of a complete geometric picture of the Γ̂ðGÞ
theories other than Γ ¼ AN−1, which requires gluing
(gauging) DpðGÞ theories.
On the other hand, some of the theories we discussed in

the paper have their realizations in terms of 6D (1,0)
SCFTs. For instance, the aforementioned ÂN−1ðGÞ theory
that has 6D (2,0) origin can also be obtained from 6D
(1,0) theory formed out of gluing N copies of conformal
matter and reducing on a torus. The 6D rank-N conformal
matter theory of type ðG;GÞ, where G is an ADE Lie
group, is the theory that lives on the world volume of a
stack on N M5-branes probing a C2=ΓG orbifold [13],
where ΓG is the finite simple group corresponding to the
same ADE-type as G.
Since all the necessary building blocks have 6D realiza-

tions, we expect there to be such descriptions for the entire set
of theories we consider in this paper. (See Refs. [80–82]
for examples.) A six-dimensional description would also
provide the Seiberg-Witten geometry. Furthermore, it would
be interesting to see which Γ̂ðGÞ theories can have both 6D
(1,0) and (2,0) origins, especially because a 6D (1,0) SCFT
origin may provide a geometric construction from the
F-theory perspective [83–85].15
Another interesting aspect of Γ̂ðGÞ theory is the associated

vertex operator algebra or chiral algebra [29]. Among them,
the associated chiral algebra for the Ê6ðSUð2ÞÞ theory has
already been explored in detail in Ref. [54], where it is

14We note that the same Argyres-Douglas theory may have
several different class S realizations.

15The geometric engineering of F-theory via elliptic fibrations
provides different geometric perspectives for 6D (1,0) theories
(see Refs. [86–96] for some explicit geometric constructions),
and we get a superconformal field theory when it is compactified
on a noncompact Calabi-Yau threefold satisfying certain con-
ditions. The geometric construction for 6D (1,0) SCFTs has
shown to be a powerful approach; see Refs. [41,97–105] for
recent samples of indicative applications.
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conjectured to be the Að6Þ algebra of Feigin-Feigin-Tipunin
[68,69]. It is straightforward to construct the VOA corre-
sponding to Γ̂ðGÞ theories without flavor symmetry, since the
VOA for DpðGÞ is given in terms of an affine Lie algebra
[32,33]. One can then simply gauge the flavor symmetryG to
construct the VOA for the Γ̂ðGÞ. However, it is desirable to
have a more intrinsic definition without referring to gauging.
As we have seen already, it is possible to compute the

Schur index of Γ̂ðGÞ theory if it does not have any flavor
symmetry. A useful way of computing the Schur index is
to use 4D/2D correspondence that maps the index of class
S theory to the correlation function of 2D topological field
theory [27,28,106], which has been further extended to the
Argyres-Douglas theories [58–61,107]. For some cases,
the Macdonald index, which is slightly more refined then
the Schur index, can be computed in this way. It would
be interesting to improve our result by further computing
the Macdonald index as was done in Refs. [58,59,107]
beyond G ¼ SUðNÞ case. One can also obtain the
Macdonald index from the associated VOA [107–113],
which may clarify the connection between N ¼ 4 SYM
theory and the Γ̂ðGÞ theories.
The Γ̂ðGÞ theories we have constructed and explored

may be further expanded to more broad set of theories and
give various applications to one-form symmetries and
Nekrasov partition functions. Let us make some comments
about these additional points for future research directions:

(i) Extension to BCFG.—We have considered gauging
together DpðGÞ theories with G an ADE Lie group.
The DpðGÞ theories also exist when G is not simply
laced [19,114], and a similar gauging procedure
leads to an interesting additional set of theories, both
with a ¼ c, and beyond.

(ii) Extension to Db
pðGÞ with b ≠ h∨G.—In the current

paper, we have only considered the case with
b ¼ h∨G, which is not the most general Argyres-
Douglas theory with G flavor symmetry. It would be
interesting to consider the b ≠ h∨G theories as addi-
tional building blocks as well, where some cases had
been analyzed in Ref. [12]. The Schur indices for
such theories are not available yet.

(iii) Higher-form symmetries.—The Γ̂ðGÞ theory has a
one-form symmetry given by the center of G
[115,116]. This allows us to consider gauging by
G quotiented by a subgroup of the center. This
affects the line operator spectrum and dualities. It
would be interesting to understand the consequences

of such symmetries in our setup. One-form sym-
metry for the Argyres-Douglas theory has been
studied recently in Refs. [117–119].

(iv) Nekrasov partition function.—The DpðGÞ theory is
generically non-Lagrangian, and there is no direct
way of computing the Nekrasov partition function
for non-Lagrangian theories. However, for some
special cases that involve gauging of Argyres-
Douglas theories, there exists a way of computing
the Nekrasov partition function through the AGT
correspondence [120,121], which has been done
for some cases in Refs. [42,122,123]. It would be
interesting to look for a further generalization
of this analysis to Γ̂ðGÞ theories, which involve
gauged Argyres-Douglas theories.

As we have discussed thus far, we have just scratched the
surface of the rich structure of the Γ̂ðGÞ theories. We hope
to return to answer some of the points we have raised here
in the near future.
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APPENDIX: CENTRAL CHARGE COEFFICIENTS

In this Appendix, we include a table of the coefficients
bðΓ̂ðGÞÞ that appears in the formula for the central charges
aðΓ̂ðGÞÞ in Eq. (2.18). These are written in Table VIII. This
information is the same as that incorporated in Table V;
however, we find that the format in Table VIII is occa-
sionally easier to work with, and we include it here for
future convenience.
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SUð12l − 10Þ 1

8
0 1

16
1
24

SUð12l − 9Þ 0 1
6

0 1
12

SUð12l − 8Þ 1
8

0 3
16

1
24

SUð12l − 7Þ 0 0 0 0
SUð12l − 6Þ 1

8
1
6

1
16

5
24

SUð12l − 5Þ 0 0 0 0
SUð12l − 4Þ 1

8
0 3

16
1
24

SUð12l − 3Þ 0 1
6

0 1
12

SUð12l − 2Þ 1
8

0 1
16

1
24

SUð12l − 1Þ 0 0 0 0
SUð12lÞ 1

8
1
6

3
16

5
24

SUð12lþ 1Þ 0 0 0 0

SOð24l − 16Þ 3l
2
− 1 − 1

6
3l
4
− 1

2
l
2
− 1

3

Oð24l − 14Þ 3l
2
− 9

8
0 3l

4
− 11

16
l
2
− 3

8

SOð24l − 12Þ 3l
2
− 3

4
0 3l

4
− 3

8
l
2
− 1

4

SOð24l − 10Þ 3l
2
− 7

8
− 1

6
3l
4
− 5

16
l
2
− 11

24

SOð24l − 8Þ 3l
2
− 1

2
0 3l

4
− 1

4
l
2
− 1

6

SOð24l − 6Þ 3l
2
− 5

8
0 3l

4
− 7

16
l
2
− 5

24

SOð24l − 4Þ 3l
2
− 1

4
− 1

6
3l
4
− 1

8
l
2
− 1

12

SOð24l − 2Þ 3l
2
− 3

8
0 3l

4
− 1

16
l
2
− 1

8

SOð24lÞ 3l
2

0 3l
4

l
2

SOð24lþ 2Þ 3l
2
− 1

8
− 1

6
3l
4
− 3

16
l
2
− 5

24

SOð24lþ 4Þ 3l
2
þ 1

4
0 3l

4
þ 1

8
l
2
þ 1

12

SOð24lþ 6Þ 3l
2
þ 1

8
0 3l

4
þ 3

16
l
2
þ 1

24

E6
1
4

1
2

− 1
8

1
4

E7
7
8

1
3

7
16

7
24

E8 1 2
3

1
2

1
3

KANG, LAWRIE, and SONG PHYS. REV. D 104, 105005 (2021)

105005-20

https://doi.org/10.1016/0550-3213(95)00281-V
https://doi.org/10.1016/0550-3213(95)00671-0
https://doi.org/10.1088/1126-6708/2007/12/088
https://doi.org/10.1088/1126-6708/2007/12/088
https://doi.org/10.1007/JHEP08(2012)034
https://doi.org/10.1007/JHEP08(2012)034
https://doi.org/10.1016/S0550-3213(96)00552-4
https://doi.org/10.1016/S0550-3213(96)00552-4
https://doi.org/10.1016/S0550-3213(97)00039-4
https://doi.org/10.1016/S0550-3213(97)00039-4
https://arXiv.org/abs/hep-th/9603167
https://doi.org/10.1007/JHEP01(2013)191
https://doi.org/10.1007/JHEP04(2013)153
https://doi.org/10.1007/JHEP04(2013)153
https://doi.org/10.1103/PhysRevD.94.065012
https://doi.org/10.1103/PhysRevD.94.065012
https://doi.org/10.1007/JHEP01(2013)100
https://doi.org/10.1007/JHEP01(2013)100
https://doi.org/10.1007/JHEP05(2021)274
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.1007/JHEP07(2015)014


[15] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
6D N ¼ ð1; 0Þ theories on S1=T2 and class S theories:
Part II, J. High Energy Phys. 12 (2015) 131.

[16] O. Aharony and M. Evtikhiev, On four dimensional N ¼ 3
superconformal theories, J.HighEnergyPhys. 04 (2016) 040.

[17] S. Cecotti, A. Neitzke, and C. Vafa, R-twisting and 4D/2D
correspondences, arXiv:1006.3435.

[18] P. Agarwal, A. Sciarappa, and J. Song,N ¼ 1 Lagrangians
for generalized Argyres–Douglas theories, J. High Energy
Phys. 10 (2017) 211.

[19] F. Carta, S. Giacomelli, N. Mekareeya, and A. Mininno,
Conformal manifolds and 3D mirrors of Argyres–Douglas
theories, arXiv:2105.08064.

[20] S. Kachru and E. Silverstein, 4-D Conformal Theories and
Strings on Orbifolds, Phys. Rev. Lett. 80, 4855 (1998).

[21] P. Agarwal, K.-H. Lee, and J. Song, Classification of large
N superconformal gauge theories with a dense spectrum,
arXiv:2007.16165.

[22] P. Agarwal and J. Song, Large N gauge theories with a
dense spectrum and the weak gravity conjecture, J. High
Energy Phys. 05 (2021) 124.

[23] A. Buchel, R. C. Myers, and A. Sinha, Beyond eta=
s ¼ 1=4 pi, J. High Energy Phys. 03 (2009) 084.

[24] P. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in
Strongly Interacting Quantum Field Theories from Black
Hole Physics, Phys. Rev. Lett. 94, 111601 (2005).

[25] L. Di Pietro and Z. Komargodski, Cardy formulae for
SUSY theories in d ¼ 4 and d ¼ 6, J. High Energy Phys.
12 (2014) 031.

[26] E. Perlmutter, M. Rangamani, and M. Rota, Central
Charges and the Sign of Entanglement in 4D Conformal
Field Theories, Phys. Rev. Lett. 115, 171601 (2015).

[27] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, The 4D
Superconformal Index from q-deformed 2D Yang-Mills,
Phys. Rev. Lett. 106, 241602 (2011).

[28] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, Gauge
theories and macdonald polynomials, Commun. Math.
Phys. 319, 147 (2013).

[29] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli,
and B. C. van Rees, Infinite chiral symmetry in four
dimensions, Commun. Math. Phys. 336, 1359 (2015),

[30] M. Buican and T. Nishinaka, N ¼ 4 SYM, Argyres–
Douglas theories, and an exact graded vector space
isomorphism, arXiv:2012.13209.

[31] M. Buican and Z. Laczko, Nonunitary Lagrangians and
Unitary Non-Lagrangian Conformal Field Theories, Phys.
Rev. Lett. 120, 081601 (2018).

[32] J. Song, D. Xie, and W. Yan, Vertex operator algebras of
Argyres–Douglas theories from M5-branes, J. High Energy
Phys. 12 (2017) 123.

[33] D. Xie, W. Yan, and S.-T. Yau, Chiral algebra of the
Argyres–Douglas theory from M5 branes, Phys. Rev. D
103, 065003 (2021).

[34] P. MacMahon, Divisors of numbers and their continuations
in the theory of partitions, Proc. Math. Soc. S2–19, 75
(1921).

[35] G. E. Andrews and S. C. F. Rose, MacMahon’s sum-
of-divisors functions, Chebyshev polynomials, and quasi-
modular forms, J. Reine Angew. Math. 676, 97 (2013).

[36] P. Cvitanović, Group theory, Princeton University Press,
Princeton, NJ, 2008.
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