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We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature
using the functional renormalization group and the background field method. We pay particular attention to
the splitting Ward identities associated to the invariance under reparametrization of the background field.
Implementing these Ward identities imposes to use the curvature as a formal expansion parameter, which
allows us to close the flow equation of the (scale-dependent) effective action consistently to first order in
the curvature. We shed new light on previous work using the background field method.
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I. INTRODUCTION

The nonlinear sigma models (NLSM) are a very rich
class of dynamical systems which spans many fields of
physics such as for example high energy physics, string
theory, statistical physics. For instance, the Oð4Þ NLSM
first appeared in the work of M. Gell-Mann and M. Lévy as
an effective model of pion-nucleon interaction [1]. More
recently L.D. Faddeev has shown that theOð3ÞNLSMwith
a topological termmight appear in the confined phase of the
SUð2Þ Yang–Mills theory if one performs the spin-charge
decomposition [2]. However there is no any proof of
existence of the quantum model at the present time.
NLSM on a two dimensional manifold, i.e., the string
world sheet, appear in string theory [3]. In general relativity
one can consider the metric tensor as a Goldstone boson
identified with the coset GLð4;RÞ=SOð1; 3Þ [4]. It is
therefore a NLSM which is similar to the Skyrme model.
Furthermore one is often interested in the asymptotic safety
of this sigma-model in more than two dimensions. In the
language of Wilson’s renormalization group a theory is
asymptotically safe if the critical surface has a finite co-
dimension, i.e., Weinberg’s ultraviolet critical surface is
finite dimensional [5].
In statistical physics, NLSM are used to describe spin

systems, especially close to two dimensions [6,7]. In this
context, it is widely believed that the OðNÞ NLSM belongs
to the same universality class than the OðNÞ linear sigma
model (a ϕ4 theory), which has a non-trivial infrared fixed

point only in spatial dimensions 2 < d < 4 (we only refer
to the case N > 2 for simplicity). This fixed point describes
the critical state between an ordered phase (described to a
weak coupling fixed point in the NLSM) and a disordered
phase (with massive modes, corresponding to a strongly
coupled theory). Importantly, this nontrivial Wilson-Fisher
fixed point merges with the Gaussian fixed point (in the
context of the linear model) at the upper critical dimension
dc ¼ 4, meaning that critical behavior is captured by a free
field theory.
The NLSM on noncompact target-manifolds are also

relevant to the physics of Anderson localization [8,9], see
[10] for a review. In this context, a toy model corresponds
to the target space SOð1; N − 1Þ=OðN − 1Þ, in the “replica
limit” N → 1 [11] (see also [12–15] for applications of this
model in high-energy physics). The physics is expected to
be rather different from that of its compact counterpart. In
particular, it is believed that the upper critical dimension is
infinite, with nontrivial critical exponents in all dimensions
d > 2, see [16] for a recent analysis of this issue.
Wilson’s Renormalization Group (RG) is the method of

choice to address phase transitions, developed originally in
statistical mechanics [17,18] and later extended to the field
theory [19]. An application of these ideas to the nonlinear
σ-model follows one of two directions. In the first approach
one considers the linear σ-model with an axillary nonlinear
constraint [20]. The second method is based on the
covariant Taylor expansion around a background field
[21] and is more natural for the σ-models which are not
multiplicatively renormalizable in general.
The functional RG (FRG) is a modern implementation of

the RG which allows for nonperturbative approximations,
see [22] for a recent review. The background field method
has been adapted to the FRG for applications in quantum
gravity and non-Abelian gauge theories. Note that the
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invariance under reparametrization of the background field
give rise to the so-called splitting Ward identities [23,24].
Somewhat surprisingly, the FRG with the background field
method has only been used quite recently to study theOðNÞ
NLSM [25–27]. In [25], the flow equation at lowest order
in the derivative expansion were obtained, and a nontrivial
fixed point is found for all d > 2. In [26], the expansion is
pushed to the next order, and the fixed point seems to
disappear if all the allowed coupling constants are kept in
d ¼ 3, where the existence of a nontrivial fixed point is
beyond doubt. In all these previous studies the authors have
not taken into account the splitting Ward identities to
organize their approximations.
Here, we revisit this problem, generalizing the analysis

to arbitrary constant curvature target-manifold. We use the
lowest order in the derivative expansion, as in [25], but
implement the splitting Ward identities explicitly, which
leads to different flow equations and emphasizes the
importance of the Ward identities in the background field
method for the nonlinear σ-model. Unfortunately, the
splitting Ward identity can only be written in terms of a
formal expansion in the curvature of the target-manifold,
and our flow equations are therefore only valid to lowest
order in derivatives and curvature.
The manuscript is organized as follows. In Sec. II we

define the model and review the background field method,
and describe the FRG in Sec. III. In Sec. IV we give the
splitting symmetry transformation for the symmetric mani-
folds up to second order in the Riemann tensor. An explicit
form of the transformation is needed to impose the splitting
Ward identities [23,24] for the FRG. As a consequence the
curvature becomes the main expansion parameter in our
work. The flow equations at lowest order in the curvature
are derived in Sec. V. In particular we find that the coupling
constants have different evolution equations, in contrast to
what happens in linear models. Using the Ward identities,
we are able to close the flow equations, the corresponding
beta functions are given in Sec. VI. We discuss our results,
and compare them to previous studies using the back-
ground field method, in Sec. VII.

II. MODEL AND BACKGROUND-FIELD
EXPANSION

For M a simply connected D-dimensional (D ¼ N − 1)
manifold of a constant curvature K endowed with a metric
h, the Levy–Civita connection D compatible with the
metric Dh ¼ 0; ϕ−1∶M → Rd a chart on M, the action
of the NLsM on the target space M is defined as

SðϕÞ ¼ 1

2t

Z
x
hαβðϕÞ∂iϕ

α∂iϕ
β; ð1Þ

where ∂iϕ
α ¼ ∂

∂xi ϕ
αðxÞ, α ¼ 1…D, i ¼ 1…d, andR

x ≡
R
ddx. Here t > 0 is a nonperturbative bare coupling

constant which is proportional to the temperature in the
Heisenberg model [7]. The theory is regularized by an
ultraviolet cutoff Λ. For a positive curvature manifold h is
an elliptic metric. For a negative curvature manifold h is a
hyperbolic metric. In the both cases h is positive definite. In
the following, we will consider the case of a D-dimensional
sphere M ¼ SD for K > 0 and the hyperbolic space HD

for K < 0.
We consider the functional RG in the context of the

covariant background-field method, i.e., by writing
the field ϕðxÞ in terms of a (fixed) background φðxÞ and
the corresponding (fluctuating) normal field ξðxÞ ∈
TφðxÞM [21]. Assume that there is a smooth map ϕsðxÞ
such that ϕ0ðxÞ ¼ φðxÞ and ϕ1ðxÞ ¼ ϕðxÞ with _ϕ0 ¼ ξ.
We choose the curve ϕs inM to coincide with the geodesic
between the initial and final points ϕ0, ϕ1, i.e.,

ϕ̈α
s þ Γα

σγ
_ϕσ
s
_ϕγ
s ¼ 0; Γαx

σz γz0 ¼ Γα
σγðϕxÞδxzδxz0 ; ð2Þ

where Γα
σγðϕÞ is the Christoffel symbol and α stands for the

multi-index ðα; x1;…; xdÞ. Then for a smooth functional f
we have the Taylor expansion

fðϕÞ ¼ fðϕ0Þ þ _ϕα
s
δfðϕÞ
δϕα

����
s¼0

þ 1

2

�
ϕ̈α
s
δfðϕÞ
δϕα þ _ϕα

s
_ϕβ
s
δ2fðϕÞ
δϕαδϕβ

�����
s¼0

þ…; ð3Þ

which can be written as

fðϕÞ¼eξ
αDαfðφÞ; DαfβðφÞ¼

δfβðφÞ
δφα þΓβ

σαfσðφÞ: ð4Þ

The functional f½φ; ξ� ¼ f½ϕðφ; ξÞ� depends only on ϕ and
not on the way the splitting between φ and ξ is done. In
other words for φ̃ a new expansion point and ξ̃ the
corresponding new normal field such that ϕðφ; ξÞ ¼
ϕðφ̃; ξ̃Þ we still have f½φ; ξ� ¼ f½φ̃; ξ̃�. Such a functional
is called a “single field” functional [26]. This invariance
will impose strong constraints on the FRG functionals, as
discussed in Sec. IV. To calculate the expansion coefficients
one uses the standard relations

ξαDα∂iφ
λ ¼ ∂iξ

λ þ Γλ
αγξ

α∂iφ
γ ¼ Diξ

λ; ð5Þ

DαDβ∂iφ
λ ¼ Rλ

βαγ∂iφ
γ; ð6Þ

where Rλ
βασ is the Riemann tensor,

Rλ
βασðφÞ ¼

δΓλ
βσ

δφα −
δΓλ

βα

δφσ þ Γλ
γαΓ

γ
βσ − Γλ

γσΓ
γ
βα: ð7Þ
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Note that Rλ
βασðφÞ is ultra-local, i.e., it is proportional to the

product of three delta functions of the space coordinates.
Furthermore for a constant curvature manifold we have

Rαλβγ ¼ KΠαλβγ; Παλβγ ¼ hαβhλγ − hαγhλβ: ð8Þ
Here and below hαβ ¼ hαβðφÞ denotes the metric tensor at
the expansion point. Clearly the curvature tensor is cova-
riantly constant DγRλ

βασ ¼ 0.

III. FUNCTIONAL RG

The strategy of the FRG is to build a family of models,
indexed by a momentum scale k, which interpolates
between the semiclassical limit for k ¼ Λ and the model
of interest for k → 0. For this purpose, one introduces a
regulator term ΔSk in the action, which leaves the modes
with momentum larger than k untouched while freezing
the low-momentum modes, implementing effectively
Wilson’s RG.
We first introduce the generating functional of n-point

connected Schwinger functions Wk½φ; j�, which depends
on the background φ and source j ∈ TφM linearly coupled
to the normal field ξ [28–30],

eWk½φ;j� ¼
Z

DφðξÞe−S½φ;ξ�−ΔSk½φ;ξ�þj:ξ: ð9Þ

For details see Appendix C. The measure

DφðξÞ ¼ ðDet − ∂2
ΛÞ

D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DethΛ

p
e−UΛ½φ;ξ�

Y
α

dξαffiffiffiffiffiffi
2π

p ð10Þ

corresponds to the invariant measure after the
change of variables from ϕ to ξ at fixed background.
It has been convenient to introduce UΛ½φ; ξ� ¼
− log ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deth−1Λ hΛðϕÞ

p
j δϕδξ jÞ, corresponding to an ultralocal

term in the action which can be expanded in ξ. It is
necessary to include this term to preserve the symmetries of
the background expansion explicitly, see Sec. IV. This term
contains the Dirac delta at zero δ0 and thus it is meaningful
only in the presence of the ultraviolet regularization.
Introducing new constants ρi;Λ ¼ δ0, the expansion of
UΛ in the normal fields ξ reads [31]

UΛ½φ; ξ� ¼ ρ2;ΛUð2Þ½φ; ξ� þ ρ4;ΛUð4Þ½φ; ξ� þ oðξ4Þ; ð11Þ
where

Uð2Þ½φ; ξ� ¼ 1

6
Rαβ

Z
x
ξαξβ ¼ KðD − 1Þ

6

Z
x
ξαξ

α;

Uð4Þ½φ; ξ� ¼ 1

180
Rσ
αβγR

γ
μνσ

Z
x
ξμξνξαξβ

¼ K2ðD − 1Þ
180

Z
x
ðξαξαÞ2: ð12Þ

In perturbation theory, one usually uses dimensional
regularization, for which the ρi;Λ vanish. In contrast, in
the FRG, one works (sometimes implicitly) with a momen-
tum cutoff Λ, implying a nonzero ρi;Λ, as was done in
particular in the FRG study of the NLsMs for example in
[25,26] (see however [32] for an attempt to reproduce the
β-function in the MS scheme with FRG).
For later convenience, we give the expansion of the

action to quadratic order in ξ [23,33,34]

S½ϕ� ¼ 1

2t

Z
x
hαβðφÞ∂iφ

α∂iφ
β −

1

t

Z
x
ξαDi∂iφ

α

þ 1

2t

Z
x
ξαð−hαβD2 þ EαβÞξβ þ oðξ2Þ; ð13Þ

with Eαβ ¼ −KΠαλβγ∂iφ
λ∂iφ

γ . More terms are given in
Appendix A.
Contrary to the action, the regulator term ΔSk½φ; ξ� ¼

1
2
ξαRαβ;k½φ�ξβ is a “two-field” functional as it depends

independently on the fields φ and ξ, and cannot be written
as a functional of ϕ only.
Introducing the classical fields ξ̄α ¼ hξαi ¼ δWk

δjα
, the

scale-dependent Wetterich’s effective action is defined as
a modified Legendre transform of Wk,

Γk½φ; ξ̄� ¼ −Wk½φ; j� þ j:ξ̄ − ΔSk½φ; ξ̄�: ð14Þ

The assumption that RΛ ¼ ∞, see e.g., Appendix C, gives
the initial condition in the form

lim
k→Λ

�
Γk;φ½φ; ξ̄� −

1

2
Tr logð−∂2

ΛÞ−1ð−D2
Λ þRkÞ

�

¼ SΛ½φ; ξ̄� þ UΛ½φ; ξ̄�: ð15Þ

We use in practice a regulator Rk which is finite at the
boundary, i.e., RΛ ∝ Λ2. Since we are only interested in
the behavior of the RG flow near fixed points, we will keep
the original boundary conditions unchanged and instead
consider the effective action at k ¼ Λ as a perturbation of
the semiclassical model. It is believed that the trajectory of
the perturbed system on the phase diagram will remain
within a small distance from the trajectory of the model.
Since R0 ¼ 0, the functional Γk¼0½φ; ξ̄� coincides with the
Vilkovisky–Dewitt effective action [28].
The scale-dependent effective action obeys the exact RG

equation [35]

∂kΓk½φ; ξ̄� ¼
1

2
Trð∂kRkðΓð2Þ

k þRkÞ−1Þ; ð16Þ

where the trace is over space and the internal degrees of
freedom. Here and below we use the following notation
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ΓðnÞ
α1…αn;k

½φ; ξ̄� ¼ δnΓk

δξ̄α1…δξ̄αn
: ð17Þ

The exact flow equation is difficult to solve. Since we are
interested in Γk½φ; 0� and in the long-distance physics, it is
natural to restrict the effective action to a subspace of
functionals with a fixed number of derivatives. However the
normal fields ξ̄ are dimensionless and this truncation is not
enough to obtain a finite dimensional dynamical system. In
the background field method one usually retains only the
evolution equation for the background action Γk½φ; 0�
omitting the equations corresponding to n-point vertex
functions. To close the obtained dynamical system, we will
rely on the splitting Ward identities associated with the
splitting into the background and fluctuation fields. Since
these Ward identities are a formal series in the curvature K,
we will use K as the main expansion parameter.
To leading order in K and in derivatives, we use the

following ansatz

Γk½φ; ξ̄� ¼
1

2t0;k

Z
x
hαβðφÞ∂iφ

α∂iφ
β −

1

t1;k

Z
x
ξ̄αDi∂iφ

α

þ 1

2

Z
x
ξ̄α
�
−

1

t2;k
hαβD2 þ υkEαβ þ wkE

γ
γhαβ

�
ξ̄β

þ Vk½φ; ξ̄� þUk½φ; ξ̄�; ð18Þ

where to lowest order in K, we can use

Vk½φ; ξ̄� ¼
1

t3;k
Vð3Þ½φ; ξ̄� þ 1

t4;k
Vð4Þ½φ; ξ̄� þ oðξ4Þ;

Uk½φ; ξ̄� ¼ ρ2;kUð2Þ½φ; ξ̄� þ ρ4;kUð4Þ½φ; ξ̄� þ oðξ4Þ: ð19Þ

For VðnÞ½φ; ξ̄� see Appendix A, the functional UðnÞ½φ; ξ̄� is
given in Eq. (12). All other terms generated by the
renormalization flow contribute to the second order in
K. This is why we do not include them in the truncation.
Comparing to the covariant Taylor expansion of the

action, Eq. (13), we find the initial conditions

ti;Λ ¼ t;

ρi;Λ ¼ δ0;

υΛ ¼ t−1;

wΛ ¼ 0: ð20Þ

Note that while all ti;k are equal at the beginning of the flow,
this is not so for all k < Λ. However, they are not
independent, but related by the splitting Ward identities.
Finally, although wΛ ¼ 0, the corresponding operator is
allowed by the symmetries, and will be generated during
the flow, and is of order K in our ansatz.

IV. WARD IDENTITIES

A. Splitting symmetry on M

In flat models the split of the field ϕ into a classical
background φ and the corresponding quantum fluctuation ξ
is linear, i.e., ϕ ¼ φþ ξ. This yields a very simple splitting
symmetry transformation: φ ↦ φ̃ ¼ φþ c, ξ ↦ ξ̃ ¼ ξ − c
where c is a shift. In our case the split is nonlinear. To
proceed with the background field method we need the
transformation rule of the tangent vector ξ under an
infinitesimal small shift c of the expansion point,

φ_λ ↦ φ̃_λ ¼ ec
αDαφ_λ ¼ φ_λ þ c_λ þ oðcÞ: ð21Þ

Here and below the covariant derivative acting on the
dotted index is equivalent to the usual partial derivative.
Consider the covariant Taylor expansion of the coordinate
function

ϕ_λ ¼ φ_λ þ ξ_λ −
X
n≥2

1

n!
ξα1…ξαnM _λ

α1…αn ; ð22Þ

M _λ
α1…αn ¼ −

1

n!

X
π∈Sn

Dπ1…Dπ2φ
_λ; ð23Þ

where Sn is the symmetry group on the indices α1…αn. It is
convenient to define the covariant variation of the tangent
vector

δξα ¼ Dcξ
α ¼ cγDγξ

α: ð24Þ

Performing the shift of the expansion point in the Taylor
expansion (22) we obtain

0 ¼ ε_λ −
X
n≥1

1

n!
ελξα1…ξαnM _λ

λα1…αn

−
X
n≥2

1

n!
cωξα1…ξαnðDωM

_λ
α1…αn −M _λ

ωα1…αnÞ: ð25Þ

where ε_λ ¼ c_λ þ δξ_λ. We are looking for the variation δξ in
the form

−δξ_λ ¼ c_λ þ
X∞
m¼2

L_λ
ωβ1…βm

m!
cωξβ1…ξβm: ð26Þ

Substitution in Eq. (25) δξ with the series yields a recurrent
relation

L_λ
ωβ1…βn

¼
Xn−2
m¼1

n!
ðn −mÞ!m!

M _λ
β1…βmσ

Lσ
ωβmþ1…βn

þM _λ
ωβ1…βn

−DωM
_λ
β1…βn

: ð27Þ
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We have performed calculation for an arbitrary symmetric

manifold, DσRαλβγ ¼ 0. Denote by ¼π∈Sn the equality under
the permutations of the symmetry group Sn. First we turn
our attention to the terms on the right-hand side which are
independent of the unknown coefficients L_λ

ωβ1…βn
,

M _λ
ωπ1π2 −DωM

_λ
π1π2 ¼π∈S2 2

3
R_λ
π2π1ω; ð28Þ

M _λ
ωπ1π2π3 −DωM

_λ
π1π2π3 ¼π∈S3 − 2Rσ

π1π2ωM
_λ
σπ3 ; ð29Þ

M _λ
ωπ1π2π3π4 −DωM

_λ
π1π2π3π4 ¼π∈S44Rσ

π1π2ωM
_λ
σπ3π4

−
8

15
Rσ
π1π2ωR

_λ
π3π4σ: ð30Þ

Then using the recurrent relation we sequentially find the
first three coefficients

−δξα ¼ cα þ 1

3
Rα
μνωξ

μξνcω

−
1

45
Rα
μνγR

γ
ρσωξμξνξρξσcω þ oðK2Þ: ð31Þ

This geometrical transformation rule implies that given an
expansion point φ and the action functional SðϕÞ of the
nonlinear σ-model on a symmetric manifold the following
identity holds for the covariant Taylor expansion of
S½φ; ξ� ¼ Sðϕðφ; ξÞÞ

cω
�
Dφω −

�
hαωþ

1

3
Rα
μνωξ

μξν

−
1

45
Rα
μνγR

γ
ρσωξμξνξρξσþoðK2Þ

�
δ

δξα

�
S½φ;ξ�¼0: ð32Þ

The directional derivative cωDφωS½φ; ξ� corresponds to the
parallel transport of ξ along c and has to be calculated with
the condition Dcξ ¼ 0. Since the transformation (31) is
independent of the action there is a less laborious way to
obtain it by considering the splitting symmetry of the
expansion in question (see Appendix B).

B. Splitting Ward identities

With these results, we can now derive the corres-
ponding splitting Ward identities for our model, see also
[23,24,36]. For φ ∈ M and c; j ∈ TφM we denote by

φ̃ ¼ φþ c and by j̃ ∈ T φ̃M the parallel transport of j from
φ to φ̃,

eWk½φ̃;j̃� ¼
Z

Dφ̃ðξ̃Þe−Ak½φ̃;ξ̃�þj̃:ξ̃;

Ak½φ̃; ξ̃� ¼ S½φ̃; ξ̃� − ΔSk½φ̃; ξ̃�: ð33Þ

Since Dcðdet hðφÞÞ ¼ 0 the measure is invariant under the
parallel transport,

Dφ̃ðξ̃Þ ¼ DφðξÞ: ð34Þ
For an infinitesimally small c this implies

eWk½φ̃;j̃� ¼
Z

DφðξÞe−Ak½φ;ξ�−δAk½φ;ξ�þjξ;

δA½φ; ξ� ¼ DcAk½φ; ξ�: ð35Þ
Then we change the variables ξ ¼ ξ0 þ δξ. From Eq. (31)
we obtain the Jacobian and the variation of Uφ under this
change

Y
α

dξα ¼
Y
α

dξ̃αe−δ0ðD−1Þ
R
x
ξ:cðK

3
þK2

45
ξ2Þ;

UΛ½φ; ξ� ¼ UΛ½φ; ξ̃� − ρ2;Λ
KðD − 1Þ

3

Z
x
ξ:c

− ρ4;Λ
K2ðD − 1Þ

45

Z
x
ξ2ξ:cþ oðK2Þ: ð36Þ

Recall that ρΛ2 ¼ ρΛ4 ¼ δ0. Consequently the measure is
invariant also under the variation δξ

DφðξÞ ¼ Dφðξ0Þ: ð37Þ

If we did not include the functional UΛ into the definition
of the measureDφ wewould obtain an anomaly in the Ward
identities. Then the splitting identity (32) yields

eWk½φ̃;j̃� ¼
Z

DφðξÞe−Ak½φ;ξ�þj:ξ−1
2
hαβξαDcRkξ

βþðj−ξRkÞ:δξ: ð38Þ

To proceed further we introduce an auxiliary source γ,

S½φ; ξ; γ� ¼ S½φ; ξ� þ γ:δξ: ð39Þ

Thus for the directional derivative we obtain

DcWk½φ; j� ¼ Tr

��
δWk½φ; j�

δj
Rk − j

�
Wγ;k½φ; j� þRk

δWγ;k½φ; j�
δj

�

−
1

2
Tr

�
δWk½φ; j�

δj
DcRk

δWk½φ; j�
δj

−DcRk
δ2Wk½φ; j�

δjδj

�
; ð40Þ
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Wγ;k½φ; j� ¼
δWk½φ; j; γ�

δγ
jγ¼0: ð41Þ

Under the parallel transport Dcj ¼ 0 and Dcξ̄ ¼ 0.
Consequently for the directional derivative of the (true)
Legendre transform of Wk½φ; j�, F k½φ; ξ̄� ¼ Γk½φ; ξ̄�þ
ΔSk½φ; ξ̄�, we have

DcF k½φ; ξ̄� ¼ −DcWk½φ; j�: ð42Þ

Eventually we get the Ward identity

�
Dc þ F γα;k½φ; ξ̄�

δ

δξ̄α

��
F k½φ; ξ̄� −

1

2
hαβξ̄αRkξ̄

β

�
¼ N φk;

ð43Þ

N φk ¼ Tr

��
δF γ;k½φ; ξ̄�

δξ̄
Rk þ

1

2
DcRk

�
ðF ð2Þ

k ½φ; ξ̄�Þ−1Þ:

ð44Þ

For the Wetterich effective action the splitting Ward
identity has the form [24]

DcΓk½φ; ξ̄�þΓγ;k½φ; ξ̄�
δΓk½φ; ξ̄�

δξ̄α
¼N φk;

N φk¼Tr

��
δΓγ;k½φ; ξ̄�

δξ̄
Rkþ

1

2
DcRk

�
ðΓð2Þ

k ½φ; ξ̄�þRkÞ−1
�
:

ð45Þ

C. Constraints from the splitting Ward identities to
linear order in K

To linear order in K, we choose the ansatz for the
insertion as follows

Γγα;k½φ; ξ̄� ¼ −ζ0;kcα −
ζ2;k
3

Rα
μνωξ̄

μξ̄νcω þ oðKÞ: ð46Þ

This form generalizes Eq. (31) by introducing two coupling
constants ζ0;k and ζ2;k. The ansatz is consistent with the
flow equation for Γγα;k to leading order in K.
The combination of Eq. (18), Eq. (46) and Eq. (45) gives

ζ0;k
tn;k
tnþ1;k

¼ 1þOðKÞ; ζ0;kζ2;k ¼ 1þOðKÞ;

t2;kυk ¼ 1þOðKÞ; t2;kwk ¼ OðKÞ: ð47Þ

Analysing the Ward identity Eq. (45), one finds that ρ2;k
is not an independent variable, but obeys

−ρ2;kζ0;k
δUð2Þ

δξ̄α
cα ¼ Tr

�
Rk

δΓγ;k

δξ̄
ðΓð2Þ

k þRkÞ−1
�
þ oðKÞ:

ð48Þ

On the right-hand side one only keeps the local term ξ̄αcα to
leading order in K.

V. FRG FLOW EQUATIONS

A. Method and notations

In this section we compute the flow equations of the
various coupling constants to linear order in K using our
ansatz Eq. (18). For conciseness we use the following
notations

Γ̄ðnÞ
α1…αn;k

¼ δnΓk½φ; ξ̄�
δξ̄α1…δξ̄αn

����
ξ̄¼0

ð49Þ

Ḡk ¼ ðΓ̄ð2Þ
k þRkÞ−1; ð50Þ

where

Γ̄ð2Þ
k ¼ h

1

t2;k
ð−D2 þm2

kÞ þ Σ; ð51Þ

with Σαβ ¼ υkEαβ þ wkE
γ
γhαβ and m2

k ¼ KðD−1Þ
3

ρ2;kt2;k. We
will see below that t2;k is of order K−1 at the fixed point.
Consequently t2;kΣ is of order K, while m2

k will be of order
one. We choose the regulator function of the form

Rαβ;k½φ� ¼
1

t2;k
hαβRkð−D2Þ; ð52Þ

with RkðωÞ ¼ ðk2 − ωÞθðk2 − ωÞ.
Then, for a sufficiently small K, we assume the existence

of the Neumann series

Ḡk ¼ t2;kGh−1
X∞
n¼0

ð−t2;kΣGh−1Þn ð53Þ

where

G−1 ¼ −D2 þ Rk þm2
k: ð54Þ

Note that we do not expand Ḡ in powers of m2
k.

To compute the trace, we use the heat kernel method
[37,38], that we outline briefly. The spectral decomposition
of a integral kernel f reads

fαβðx; yÞ ¼
X

ω∈σð−ΔÞ
f̂ðωÞψαωðxÞðψβωðyÞÞ�

¼
Z

∞

0

dsðL−1f̂ÞðsÞKαβ
xyðsÞ; ð55Þ
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where −D2ψω ¼ ωψω. The heat kernel K satisfies the heat
equation ð∂s −D2ÞKxyðsÞ ¼ 0. For k2 > k∂φk2∞ the
inverse Laplace transform ðL−1f̂ÞðsÞ is small for all large
values of time, i.e., such that sk∂φk2∞ > 1. Consequently
one can substitute the heat kernel with an asymptotic
expansion at small time

KxyðsÞ ¼ ð4πsÞ−d
2e−

ðx−yÞ2
4s

X∞
m¼1

ð−1Þm
m!

bmðx; yÞsm: ð56Þ

At the coincidence limit y → x the leading heat kernel
coefficients are [39]

b0 ¼ 1; Dxib0 ¼ 0; ð57Þ

b1 ¼ 0; Dxib1 ¼
DkΩki

6
;

Ωαβki ¼ −KΠαβλγ∂kφ
λ∂iφ

γ: ð58Þ

For a spectral density f̂ðωÞ, we introduce

Qd
2
−m½f̂� ¼

Z
∞

0

dsðL−1f̂ÞðsÞ sm

ð4πsÞd2 ; ð59Þ

that for d > 2m is easier to calculate in the spectral
representation

Qd
2
−m½f̂� ¼

1

ð4πÞd2Γðd
2
−mÞ

Z
∞

0

dωf̂ðωÞωd
2
−m−1: ð60Þ

In particular, for

H ¼ G
�
∂kRk −

∂kt2;k
t2;k

Rk

�
G; ð61Þ

one finds

Qd
2
−m½Ĥ� ¼

2kdþ1−2m

ð4πÞd2Γðd
2
þ 1 −mÞðk2 þm2

kÞ2

×

�
1 −

k∂kt2;k
t2;kðd − 2mþ 2Þ

�
: ð62Þ

B. Flow of the effective action

The flow equation of Γ̄k is

∂kΓ̄k ¼
1

2
Trð∂kRkḠkÞ: ð63Þ

To leading order in K, we obtain

∂kt0;k
t20;k

¼ −t2;kðυk þ DwkÞKðD − 1ÞQd
2
½Ĥ�: ð64Þ

The flow of the one-point function Γ̄ð1Þ
k reads

∂kΓ̄
ð1Þ
α;k ¼ −

1

2
Trð∂kRkḠkΓ̄

ð3Þ
α;kḠkÞ: ð65Þ

Using the ansatz in Eqs. (18) and (19) we have

Γ̄ð3Þ
μβα ¼

X
π∈S3

Z
x

−2K
3t3;k

ΠπαλπβγðφxÞ∂iφ
λDi

γ
πμ ; ð66Þ

Γ̄ð4Þ
νμβα ¼

X
π∈S4

Z
x

−K
3!t4;k

ðΠπαλπβγðφxÞDi
γ
πμDi

λ
πν

þ hπαπβðφxÞEπμπνðφxÞÞ

þ K2ðD − 1Þρ4;k
180

hπαπβðφxÞhπμπνðφxÞ: ð67Þ

Here hμzνz̄ðφxÞ ¼ hμνðφxÞδxzδxz̄ and Di
γx
μz ¼ ∂xiδxzh

γ
μþ

Γγ
μσ∂iφ

σ
xδxz, i.e., the covariant derivative with respect to

the upper index.
To leading order in K the equation has the form

∂kΓ̄
ð1Þ
α;k ¼ −

t2;k
2

TrðHΓ̄ð3Þ
α;kÞ þ oðKÞ: ð68Þ

This gives

∂kt1;k
t21;k

¼ −2
t2;k
t3;k

KðD − 1Þ
3

Qd
2
½Ĥ�: ð69Þ

Finally, the flow of the two-point function reads

∂kΓ̄
ð2Þ
αβ;k ¼

1

2

X
π∈S2

Trð∂kRkḠkΓ̄
ð3Þ
πβ;k

ḠkΓ̄
ð3Þ
πα;k

ḠkÞ

−
1

2
Trð∂kRkḠkΓ̄

ð4Þ
αβ;kḠkÞ; ð70Þ

where S2 is the symmetry group on two indices α, β. To
leading order in K, the equation is

∂kΓ̄
ð2Þ
νν̄;k ¼ −

t2;k
2

TrðHΓ̄ð4Þ
νν̄;kÞ þ oðKÞ: ð71Þ

It is convenient to write this flow using an auxiliary
generating functional

Fðξ; ξ̄Þ ¼ t2;k
2

TrðHΓ̄ð4Þ
νμ;kÞξμξ̄ν; ð72Þ

which reads after expansion to leading order in K and to
second order in derivatives

F ¼
Z
x
ξαð−ðD − 1Þr0D2 þ l1Þξ̄α

þ ðr0hαβEγ
γ þ ðDþ 4Þr0EαβÞξαξ̄β þ oðKÞ: ð73Þ
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The auxiliary constants are as follows

ri ¼ −
Kt2;k
3t4;k

Qd
2
þi½Ĥ�;

l1 ¼
d
2
ðD − 1Þr1 þ

K2ðDþ 2ÞðD − 1Þρ4;kt2;k
45

Qd
2
½Ĥ�: ð74Þ

Equation (71) yields the evolution equation for the constant
t2;k

∂kt2;k
t22;k

¼ −
t2;k
t4;k

KðD − 1Þ
3

Qd
2
½Ĥ�: ð75Þ

From Eq. (73), one can also obtain the flow of υk, wk and
ρ2;k, although these will not be needed as they are fixed by
the splitting Ward identity.
For flat models one makes the usual substitution

ti;k ¼ tk where tk is a unique renormalized coupling
constant. This makes possible to retain only the evolution
equations for 1PI vertex functions Γ̄ðnÞ with n < 2. For
nonlinear σ-models the substitution ti;k ¼ tk would give
incorrect flow equations [e.g., comparing Eqs. (69)
and (75)].

C. Flow of Γγ;k

The flow equation of Γγ;k reads

∂kΓγ;k ¼ −
1

2
Trð∂kRkḠkΓ̄

ð2Þ
γ;kḠkÞ; ð76Þ

that at leading order in K takes the form

∂kΓγα;k ¼ −
t2;k
2

TrðHΓ̄ð2Þ
γα Þ

¼ −
KðD − 1Þ

3
t2;kζ2;kQd

2
½Ĥ�cα þOðKÞ: ð77Þ

Consequently we have

∂kζ0;k ¼
KðD − 1Þ

3
ζ2;kt2;kQd

2
½Ĥ�: ð78Þ

Finally, for our choice of regulator function Eq. (52), the
Ward identity Eq. (48) written in terms of m2

k reads

m2
k ¼

ζ2;kt2;k
ζ0;k

KðD − 1Þ
3

Qd
2
½R̂ Ĝ�; ð79Þ

with

Qd
2
½R̂ Ĝ� ¼ kdþ2

ð4πÞd2Γðd
2
þ 2Þðk2 þm2

kÞ
: ð80Þ

VI. β-FUNCTIONS AND FIXED POINT ANALYSIS

Using Ward identities Eq. (47) the flow of t0;k Eq. (64)
can be written to leading order in K as

∂kt0;k
t20;k

¼ −KðD − 1ÞQd
2
½Ĥ�; ð81Þ

while that of t1;k, t2;k and ζ0;k takes the simple form

∂kt1;k
t1;k

¼2

3

∂kt0;k
t0;k

;
∂kt2;k
t2;k

¼1

3

∂kt0;k
t0;k

;
∂kζ0;k
ζ0;k

¼−
1

3

∂kt0;k
t0;k

:

ð82Þ

Furthermore, recalling that m2
k ¼ KðD−1Þ

3
ρ2;kt2;k and using

Eqs. (47) and (79), one finds m2
k as a function of t0;k,

m2
k ¼

2sd
3ðdþ 2Þ

kdþ2t0;k
k2 þm2

k

; ð83Þ

with sd ¼ KðD−1Þ
ð4πÞd2Γðd

2
þ1Þ

. Since Qd
2
½Ĥ� depends on ∂kt2;k

t2;k
and m2

k,

this allows to write the flow equation of t0;k in terms of t0;k
only,

k∂kt0;k ¼ −
2sdkdþ2t20;k
ðk2 þm2

kÞ2
�
1 −

k∂kt0;k
3ðdþ 2Þt0;k

�
: ð84Þ

To analyze the flow equations, it is convenient to
introduce dimensionless variables t̃0;k ¼ kd−2t0;k and
m̃2

k ¼ k−2m2
k. For the latter, by keeping only the positive

root when solving Eq. (83), we obtain

m̃2
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8sdt̃0;k

3ðdþ2Þ
q

− 1

2
: ð85Þ

Defining the β-function, β0 ¼ k∂kt̃0;k, our final result is

β0 ¼ ðd − 2Þt̃0;k −
4sdt̃20;k

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8sdt̃0;k

3ðdþ2Þ
q : ð86Þ

A fixed point is a scale independent solution, i.e., β0 ¼ 0.
There are two fixed points associated to this β-function, the
trivial fixed point t̃�0;k ¼ 0, which is attractive in the infrared
and corresponds to the low-temperature phase, and a
nontrivial fixed point

t̃�0 ¼
2ðdþ 1Þðd − 2Þ

3ðdþ 2Þsd
; ð87Þ

for d > 2 and if sd is positive. For K > 0, the model is the
usual OðDÞ NLsM, while for K < 0, the fixed point is
physical in the formal limit D < 1, and in particular for
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D ¼ 0. Expanding the β-function at t̃�0 we obtain the
linearized equation

k∂kt̃0;k ¼ −ν−1ðt̃0;k − t̃�0Þ þ oðt̃0;k − t̃�0Þ;

ν−1 ¼ ðd − 2Þ
�
1 −

d − 2

5dþ 2

�
; ð88Þ

with ν−1 the critical exponent governing the divergence of
the correlation length close to criticality. In particular for
d ¼ 3 we have ν−1 ¼ 16=17, for all D and K such that
s3 > 0. Clearly the fixed point is repulsive. For d ¼ 2þ ϵ,
ϵ → 0, we recover the standard one-loop result ν−1 ¼ ϵ
[7,9]. At the fixed point the Ward identities (85), (82) give

m̃2
k ¼

d − 2

3ðdþ 2Þ ; ρ2 ¼
3ΛdðkΛ−1Þ2þd−2

3

2ðdþ 1Þð4πÞd2Γðd
2
þ 1Þ ; ð89Þ

ζ−12 ¼ ζ0 ¼ ðkΛ−1Þd−23 ; t2;k ¼ t̃�0Λ2−dðkΛ−1Þ2−d3 : ð90Þ

VII. DISCUSSION AND CONCLUSION

We have computed the FRG flow equation of NLSM
with constant curvature using the background field method,
to lowest order in the derivative expansion. In order to
implement consistently the splitting Ward identities
induced by the background field reparametrization invari-
ance, we have also performed a formal expansion in the
curvature, keeping terms to lowest order in K. The beta
functions we have obtained are different from those of the
previous studies using the same method [25,26], corre-
sponding to different critical exponents (if one stays at the
same order of the derivative expansion). Let us comment on
the main difference between these works and ours.
In [25], we note that the “mass” term induced by the

measure is neglected, and that all the ti;k are assumed to be
identical, i.e., ti;k ¼ t0;k, in our notations. This is obviously
not consistent with the splitting Ward identities derived
above. In [26], a “wave function renormalization” is
introduced for the fluctuating field, corresponding here
to t0;k=t2;k, as well as a mass term. No connection with the
splitting Ward identities is made, and the mass has an
independent flow, whereas we have shown that it is fixed by
the Ward identities. Therefore, their flow equations at the
lowest order in the derivative expansion are different from
ours. It has been noted in [26] that if one includes all
coupling constants at the next order of the derivative
expansion, the nontrivial fixed point disappears. One could
hope that using an ansatz that obeys the Ward identities to
second order in K will cure this problem.
One aspect which is identical in our work and [25] is that a

nontrivial fixed point is found in all dimensions d > 2,
which, if confirmed, implies that there is no upper critical
dimension. While this is expected for noncompact NLSM, as
discussed in the Introduction, the fact that we find the same

result for the OðNÞ NLSM questions the validity of the
approach. Indeed, on the lattice, the OðNÞ NLSM corre-
sponds to a OðNÞ spin model, for which there is no doubt
that the upper critical dimension is dc ¼ 4. If, and how, the
present method is able to recover this result is still an open
question. (We note in passing that a lattice FRG approach of
theOðNÞNLSM, not using the background field method but
taking the nonlinear constraint into account exactly, does not
suffer from this problem. Indeed, the flow equations are
formally the same than that of the corresponding linear
sigma model, and only the initial condition is different,
which does not affect the fixed point properties [40].) It has
been argued that the 2þ ϵ expansion of the OðNÞ NLSM
does not describe the Wilson-Fisher fixed point at ϵ ¼ 1, as
it cannot capture the topological excitations that drive the
transition, e.g., the hedgehogs excitations for N ¼ 3 [41]. It
could well be that the background field method, even
supplemented with a functional RG approach, is incapable
to capture the correct physics far from d ¼ 2. We hope that
the expansion to the next order in derivatives and curvature
will help to answer these questions.
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APPENDIX A: COVARIANT EXPANSION OF
THE ACTION

There is a variety of sources where the reader can find the
covariant expansion of the NLSM, see e.g., [23,33,34],

Z
Rd

ð∂ϕÞ2
2

¼
Z
Rd

�ð∂φÞ2
2

− ξγDi∂iφ
γ þ ξαðC−1

αβ þ EαβÞξβ
2

�

þ
X5
n¼3

VðnÞ½φ; ξ� þ oðξ5Þ; ðA1Þ
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C−1
αβ ¼ hαβð−D2Þ;

Eαβ ¼ −Rλαγβ∂iφ
λ∂iφ

γ ¼ −KΠαλβγ∂iφ
λ∂iφ

γ; ðA2Þ

Vð3Þ½φ; ξ� ¼ −
2

3
Rσαγβξ

αξβ∂iφ
σDiξ

γ

¼ −2K
3

Z
Rd

ξαξβΠαλβγ∂iφ
λDiξ

γ; ðA3Þ

Vð4Þ½φ; ξ� ¼ −
1

3!
Rγασβξ

αξβðDiξ
γDiξ

σ

− Rγ
α0σ0β0ξ

α0ξβ
0∂iφ

σ∂iφ
σ0 Þ

¼ −K
3!

Z
Rd

ξαξβðΠαλβγDiξ
γDiξ

λ þ ξ2EαβÞ; ðA4Þ

Vð5Þ½φ; ξ� ¼ 2

15

Z
Rd

RμαβλRλ
ρσνξ

αξβξρξσDiξ
ν∂iφ

μ

¼ 2K2

15

Z
Rd

ξ2Παλβγξ
αξβDiξ

λ∂iφ
γ; ðA5Þ

where we have factored out the factor t−1 in the action.

APPENDIX B: SPLITTING SYMMETRY
OF THE ACTION

We would like to give a simple method to obtain the
symmetry transformation in Eq. (31). Indeed the covariant
Taylor expansion of the action Eq. (A1) is independent of
the point φ. To proceed we have to retain in the expansion
all terms quadratic in the Riemann tensor. The directional
derivative vanishes at the first and third orders in ξ iff
L _α
ωβ ¼ L _α

ωβ1β2β3
¼ 0. The definition of L _α

ωβ1…βm
is given in

(26). Then for m an even integer we put

L _αωβ1β2…βm−1βm ¼
X
π∈Sm

ðam1h _αωhπβ1πβ2…hπβm−1πβm

þ am2h _απβ1
hωπβ2…hβm−1πβm

Þ: ðB1Þ

The derivative vanishes at the second and fourth orders
in ξ iff

a21 ¼ −
K
3
; a22 ¼

K
3
; a41 ¼ −

K2

45
; a42 ¼

K2

45
:

ðB2Þ

Once again this yields the symmetry transformation given
in (31).

APPENDIX C: WILSON–POLCHINSKI
EQUATION

Most equations of this appendix are complementary to
those of the main text. However we believe they are likely
useful for the reader. Let CkΛ be a regularized propagator
such that

CΛΛ ¼ 0; lim
k→0
Λ→∞

C−1
kΛ ¼ −D2: ðC1Þ

For ∀ j ∈ DðRd; TφMÞ one can write the partition func-
tional in the form

ZkΛ½φ; j� ¼ e−
1
2

R
ð∂φÞ2−Γ1;kΛ½φ�þW̃kΛ½φ;jþDi∂iφ�: ðC2Þ

Here Γ1;kΛ is a normalization coefficient,

Γ1;kΛ½φ� ¼
1

2
Tr logðð−∂2

ΛÞ−1h−1C−1
kΛÞ: ðC3Þ

The generating functional of connected Schwinger func-
tions W̃kΛ½φ; j� is

eW̃kΛ½φ;j� ¼
Z

dμkΛðξÞe−LΛ½φ;ξ�þξαjα ; ðC4Þ

where dμkΛ is a Gaussian measure on a finite dimensional
Borel cylinder set [43],

dμkΛðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detC−1

kΛ

q Y
α

dξαffiffiffiffiffiffi
2π

p e−
1
2
ξαC−1

kΛαβξ
β

: ðC5Þ

At 1-loop the bare reduced action is (see Appendix A)

LΛ½φ; ξ� ¼
�

1

t0;Λ
− 1

�
hαβ∂φα∂φβ þ

�
1 −

1

t1;Λ

�
ξαDi∂iφ

α þ 1

2

�
1

t2;Λ
− 1

�
ξαC−1

0Λαβξ
β

þ υΛ
2
Eαβξ

αξβ þ 1

t3;Λ
Vð3Þ½φ; ξ� þ 1

t4;Λ
Vð4Þ½φ; ξ� þ ρ2;ΛUð2Þ½φ; ξ� þ ρ4;ΛUð4Þ½φ; ξ� þ oðξ4Þ: ðC6Þ

The usual way to give a meaningful interpretation of Γ1;kΛ
is to consider a stationary point of the free energy,

δW0Λ½φ; j�
δj

¼ 0: ðC7Þ

Using convexity of the effective action one shows that at
this point the normalization coefficient (C3) is the effective
action at 1-loop [44].
It is convenient to define the reduced effective action

Γ̃kΛ½φ; ξ̄�
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LðW̃kΛ½φ; ·�Þðξ̄Þ ¼
1

2
ξ̄αC−1

kΛαβξ̄
β þ Γ̃kΛ½φ; ξ̄�; ðC8Þ

where Lð·Þ is the Legendre transform. Then the Wilson–
Polchinski equation [19,45,46] is

∂kΓ̃kΛ½φ; ξ̄� ¼
1

2
Trð∂kCkΛΓ̃

ð2Þ
kΛ ½φ; ξ̄�ð1þ CkΛΓ̃

ð2Þ
kΛ ½φ; ξ̄�Þ−1Þ;

ðC9Þ

Γ̃ΛΛ½φ; ξ̄� ¼ LΛ½φ; ξ̄�: ðC10Þ

Substituting C−1
kΛ ¼ C−1

0Λ þR into the Wetterich effective
action (14) we obtain

ΓkΛ½φ; ξ̄� ¼
1

2
hαβ∂iφ

α∂iφ
β − ξ̄αDi∂iφα þ

1

2
ξ̄αC−1

0Λαβξ̄
β

þ Γ1;kΛ½φ; ξ̄� þ Γ̃kΛ½φ; ξ̄�: ðC11Þ

It follows that this action satisfies the following boundary
condition

lim
k→Λ

�
ΓkΛ½φ; ξ̄� −

1

2
Tr logð−∂2

ΛÞ−1h−1C−1
kΛ

�

¼ SΛ½φ; ξ̄� þUΛ½φ; ξ̄�: ðC12Þ

On the right-hand side we used ti;Λ ¼ t, see Eq. (20).
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