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We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature
using the functional renormalization group and the background field method. We pay particular attention to
the splitting Ward identities associated to the invariance under reparametrization of the background field.
Implementing these Ward identities imposes to use the curvature as a formal expansion parameter, which
allows us to close the flow equation of the (scale-dependent) effective action consistently to first order in
the curvature. We shed new light on previous work using the background field method.
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I. INTRODUCTION

The nonlinear sigma models (NLSM) are a very rich
class of dynamical systems which spans many fields of
physics such as for example high energy physics, string
theory, statistical physics. For instance, the O(4) NLSM
first appeared in the work of M. Gell-Mann and M. Lévy as
an effective model of pion-nucleon interaction [1]. More
recently L.D. Faddeev has shown that the O(3) NLSM with
a topological term might appear in the confined phase of the
SU(2) Yang-Mills theory if one performs the spin-charge
decomposition [2]. However there is no any proof of
existence of the quantum model at the present time.
NLSM on a two dimensional manifold, i.e., the string
world sheet, appear in string theory [3]. In general relativity
one can consider the metric tensor as a Goldstone boson
identified with the coset GL(4,R)/SO(1.3) [4]. It is
therefore a NLSM which is similar to the Skyrme model.
Furthermore one is often interested in the asymptotic safety
of this sigma-model in more than two dimensions. In the
language of Wilson’s renormalization group a theory is
asymptotically safe if the critical surface has a finite co-
dimension, i.e., Weinberg’s ultraviolet critical surface is
finite dimensional [5].

In statistical physics, NLSM are used to describe spin
systems, especially close to two dimensions [6,7]. In this
context, it is widely believed that the O(N) NLSM belongs
to the same universality class than the O(N) linear sigma
model (a ¢* theory), which has a non-trivial infrared fixed
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point only in spatial dimensions 2 < d < 4 (we only refer
to the case N > 2 for simplicity). This fixed point describes
the critical state between an ordered phase (described to a
weak coupling fixed point in the NLSM) and a disordered
phase (with massive modes, corresponding to a strongly
coupled theory). Importantly, this nontrivial Wilson-Fisher
fixed point merges with the Gaussian fixed point (in the
context of the linear model) at the upper critical dimension
d. = 4, meaning that critical behavior is captured by a free
field theory.

The NLSM on noncompact target-manifolds are also
relevant to the physics of Anderson localization [8,9], see
[10] for a review. In this context, a toy model corresponds
to the target space SO(1,N — 1)/O(N — 1), in the “replica
limit” N — 1 [11] (see also [12-15] for applications of this
model in high-energy physics). The physics is expected to
be rather different from that of its compact counterpart. In
particular, it is believed that the upper critical dimension is
infinite, with nontrivial critical exponents in all dimensions
d > 2, see [16] for a recent analysis of this issue.

Wilson’s Renormalization Group (RG) is the method of
choice to address phase transitions, developed originally in
statistical mechanics [17,18] and later extended to the field
theory [19]. An application of these ideas to the nonlinear
o-model follows one of two directions. In the first approach
one considers the linear o-model with an axillary nonlinear
constraint [20]. The second method is based on the
covariant Taylor expansion around a background field
[21] and is more natural for the s-models which are not
multiplicatively renormalizable in general.

The functional RG (FRG) is a modern implementation of
the RG which allows for nonperturbative approximations,
see [22] for a recent review. The background field method
has been adapted to the FRG for applications in quantum
gravity and non-Abelian gauge theories. Note that the
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invariance under reparametrization of the background field
give rise to the so-called splitting Ward identities [23,24].
Somewhat surprisingly, the FRG with the background field
method has only been used quite recently to study the O(N')
NLSM [25-27]. In [25], the flow equation at lowest order
in the derivative expansion were obtained, and a nontrivial
fixed point is found for all d > 2. In [26], the expansion is
pushed to the next order, and the fixed point seems to
disappear if all the allowed coupling constants are kept in
d = 3, where the existence of a nontrivial fixed point is
beyond doubt. In all these previous studies the authors have
not taken into account the splitting Ward identities to
organize their approximations.

Here, we revisit this problem, generalizing the analysis
to arbitrary constant curvature target-manifold. We use the
lowest order in the derivative expansion, as in [25], but
implement the splitting Ward identities explicitly, which
leads to different flow equations and emphasizes the
importance of the Ward identities in the background field
method for the nonlinear o-model. Unfortunately, the
splitting Ward identity can only be written in terms of a
formal expansion in the curvature of the target-manifold,
and our flow equations are therefore only valid to lowest
order in derivatives and curvature.

The manuscript is organized as follows. In Sec. II we
define the model and review the background field method,
and describe the FRG in Sec. III. In Sec. IV we give the
splitting symmetry transformation for the symmetric mani-
folds up to second order in the Riemann tensor. An explicit
form of the transformation is needed to impose the splitting
Ward identities [23,24] for the FRG. As a consequence the
curvature becomes the main expansion parameter in our
work. The flow equations at lowest order in the curvature
are derived in Sec. V. In particular we find that the coupling
constants have different evolution equations, in contrast to
what happens in linear models. Using the Ward identities,
we are able to close the flow equations, the corresponding
beta functions are given in Sec. VI. We discuss our results,
and compare them to previous studies using the back-
ground field method, in Sec. VII.

II. MODEL AND BACKGROUND-FIELD
EXPANSION

For M a simply connected D-dimensional (D = N — 1)
manifold of a constant curvature K endowed with a metric
h, the Levy-Civita connection D compatible with the
metric Dh = 0; ¢~': M — R? a chart on M, the action
of the NLsM on the target space M is defined as

1
O R (1
where 9;¢" = 2 ¢*(x), a=1..D, i=1.d, and

J..= [ d’x. Here ¢ > 0 is a nonperturbative bare coupling

constant which is proportional to the temperature in the
Heisenberg model [7]. The theory is regularized by an
ultraviolet cutoff A. For a positive curvature manifold 4 is
an elliptic metric. For a negative curvature manifold 4 is a
hyperbolic metric. In the both cases # is positive definite. In
the following, we will consider the case of a D-dimensional
sphere M = SP for K > 0 and the hyperbolic space HP
for K < 0.

We consider the functional RG in the context of the
covariant background-field method, i.e., by writing
the field ¢(x) in terms of a (fixed) background ¢(x) and
the corresponding (fluctuating) normal field &(x) €
T,xM [21]. Assume that there is a smooth map ¢,(x)
such that ¢o(x) = @(x) and ¢, (x) = ¢(x) with ¢y = &.
We choose the curve ¢, in M to coincide with the geodesic
between the initial and final points ¢, ¢, i.e.,

¢(f + ng(#xygb}: =0, FZ;C;,Z ng(¢x)5xZ§xZ/’ (2)
where I'}, (¢) is the Christoffel symbol and & stands for the
multi-index (@, xy, ..., x;). Then for a smooth functional f
we have the Taylor expansion

1) = fign) + 550
(W) iy I
(% +¢"’ﬂ5¢“5¢f’> Fe O

which can be written as

p
19 =e1 ). D)=L st (4

The functional f[p, &] = f[¢(e, £)] depends only on ¢ and
not on the way the splitting between ¢ and & is done. In
other words for ¢ a new expansion point and & the
corresponding new normal field such that ¢(g,¢&) =
(P, &) we still have flp, & = f[@,E). Such a functional
is called a “single field” functional [26]. This invariance
will impose strong constraints on the FRG functionals, as
discussed in Sec. I'V. To calculate the expansion coefficients
one uses the standard relations

ED 0" = 0;E" + T, E%0;" = D", (5)
DoDyd4* = Rh 0,07 (6)
where R};M is the Riemann tensor,
6y T
B
szao-((p) = 5(,0: - 5€0 FV _F%GF;a' (7)
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Note that R?;M
product of three delta functions of the space coordinates.

Furthermore for a constant curvature manifold we have

Haﬁ/}y = ha/)’hﬂy - hayhﬂﬂ . (8)

Here and below /1,5 = h,s(¢@) denotes the metric tensor at
the expansion point. Clearly the curvature tensor is cova-
riantly constant D, Rj,, = 0.

(@) is ultra-local, i.e., it is proportional to the

Rupy = K1y,

III. FUNCTIONAL RG

The strategy of the FRG is to build a family of models,
indexed by a momentum scale k, which interpolates
between the semiclassical limit for k = A and the model
of interest for k — 0. For this purpose, one introduces a
regulator term ASj in the action, which leaves the modes
with momentum larger than k untouched while freezing
the low-momentum modes, implementing effectively
Wilson’s RG.

We first introduce the generating functional of n-point
connected Schwinger functions W[, j|, which depends
on the background ¢ and source j € T, M linearly coupled
to the normal field & [28-30],

Wil _ / D, (§)e-Sind-ssiipdrie, )

For details see Appendix C. The measure

d&*
D (&) = (Det — 92 )2+/Deth ,e—Uale:é] 10
0 (&) = ( %) A Ial Ner (10)
corresponds to the invariant measure after the

change of variables from ¢ to & at fixed background.
It has been convenient to introduce U,gp,¢&] =

—log (v/Dethy ' hy ()] ‘;—‘g |), corresponding to an ultralocal

term in the action which can be expanded in &. It is
necessary to include this term to preserve the symmetries of
the background expansion explicitly, see Sec. IV. This term
contains the Dirac delta at zero §, and thus it is meaningful
only in the presence of the ultraviolet regularization.
Introducing new constants p; » = &y, the expansion of
U, in the normal fields & reads [31]

Unl. &l = poaUP (0. ] + py aUV [, €] + 0(&),  (11)

where

1 K(D-1
U<2> [(0’ 5] = ER(I/}/ f{lfﬁ = %/ 5115(19
1
U“ [41, f] — @RgﬁyRZm/éﬂgué—aé:ﬂ

_K*(D-1) o
— e @ (12)

In perturbation theory, one usually uses dimensional
regularization, for which the p; , vanish. In contrast, in
the FRG, one works (sometimes implicitly) with a momen-
tum cutoff A, implying a nonzero p;,, as was done in
particular in the FRG study of the NLsMs for example in
[25,26] (see however [32] for an attempt to reproduce the
p-function in the MS scheme with FRG).

For later convenience, we give the expansion of the
action to quadratic order in & [23,33,34]

1 |
Sié) :2t/ hap ()01 0ip —t/faDiai?’“
+2lr / E(=hD? + Ep)& +0(&), (13

with E,3 = —KIl,;5,0,0"0,". More terms are given in
Appendix A.

Contrary to the action, the regulator term AS;[¢p, | =
1ERapilp)é is a “two-field” functional as it depends
independently on the fields ¢ and &, and cannot be written
as a functional of ¢ only.

Introducing the classical fields &, = (&,) = 2%, the
scale-dependent Wetterich’s effective action is defljraled as
a modified Legendre transform of W,

Tilp. &l = =Wilg. j] + j.& = AS[e. 8. (14)

The assumption that R, = o0, see e.g., Appendix C, gives
the initial condition in the form

_ 1
tim (9.8 = Trlog(=0R) (-3 + )

We use in practice a regulator R; which is finite at the
boundary, i.e., R AZ2. Since we are only interested in
the behavior of the RG flow near fixed points, we will keep
the original boundary conditions unchanged and instead
consider the effective action at k = A as a perturbation of
the semiclassical model. It is believed that the trajectory of
the perturbed system on the phase diagram will remain
within a small distance from the trajectory of the model.
Since R, = 0, the functional I';_y[¢, & coincides with the
Vilkovisky—Dewitt effective action [28].

The scale-dependent effective action obeys the exact RG
equation [35]

-1 -
Ol & = 3 Tr@OR(TY +RYT). (16)

where the trace is over space and the internal degrees of
freedom. Here and below we use the following notation
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L 8T

F((xr,l)...an,k[(l% 5] = W (17)

The exact flow equation is difficult to solve. Since we are
interested in I';[¢, 0] and in the long-distance physics, it is
natural to restrict the effective action to a subspace of
functionals with a fixed number of derivatives. However the
normal fields & are dimensionless and this truncation is not
enough to obtain a finite dimensional dynamical system. In
the background field method one usually retains only the
evolution equation for the background action I'[g,0]
omitting the equations corresponding to n-point vertex
functions. To close the obtained dynamical system, we will
rely on the splitting Ward identities associated with the
splitting into the background and fluctuation fields. Since
these Ward identities are a formal series in the curvature K,
we will use K as the main expansion parameter.

To leading order in K and in derivatives, we use the
following ansatz

1 1 _
Tlg. & = / hap(9)0:9° 0, —— | E,D;0,¢"
20k Nk Jx
L[ 1 2 v Z
+3 5(1 - h(l}D + UkEa[)’ + WkE}’ha[)’ gﬂ
2 ) tok
+ Vilo. & + Uilo. &. (18)

where to lowest order in K, we can use

Vil = iv@ 0.3 +iv(4> 0.8+ o(&Y),
Ulp, & = szU [fP §]+P4kU [f/’ &+ o(&). (19)

For V(")[g, & see Appendix A, the functional U"[p, & is
given in Eq. (12). All other terms generated by the
renormalization flow contribute to the second order in
K. This is why we do not include them in the truncation.

Comparing to the covariant Taylor expansion of the
action, Eq. (13), we find the initial conditions

ti.A - t7
Pin = 00s

Dp = t_l,

wp = 0. (20)

Note that while all #; , are equal at the beginning of the flow,
this is not so for all k£ < A. However, they are not
independent, but related by the splitting Ward identities.
Finally, although w, = 0, the corresponding operator is
allowed by the symmetries, and will be generated during
the flow, and is of order K in our ansatz.

IV. WARD IDENTITIES
A. Splitting symmetry on M

In flat models the split of the field ¢ into a classical
background ¢ and the corresponding quantum fluctuation &
is linear, i.e., ¢p = @ + &. This yields a very simple splitting
symmetry transformation: ¢ — @ = @ + ¢, £ — E=¢—¢
where ¢ is a shift. In our case the split is nonlinear. To
proceed with the background field method we need the
transformation rule of the tangent vector £ under an
infinitesimal small shift ¢ of the expansion point,

9> =Pt =gt +F+o(c). (21)
Here and below the covariant derivative acting on the
dotted index is equivalent to the usual partial derivative.
Consider the covariant Taylor expansion of the coordinate
function

=g+ - Z M, (22)

n>2

a] a, = __ZDTH

' nEes,

D, ¢, (23)

where S, is the symmetry group on the indices «;...a,,. Itis
convenient to define the covariant variation of the tangent
vector

8E% = D& = ¢! D, & (24)

Performing the shift of the expansion point in the Taylor
expansion (22) we obtain

: 1
0=¢ — Zae%al 9 M

j’a] -y
n>1
_Z coEn g (D Mél a, Mﬁ,al an) (25)
n>2

where ¢4 = ¢4 + 552. We are looking for the variation 6 in
the form

N 2
68 = A4 Z /:’11'/’ cvEP . EPn (26)
m=2 .

Substitution in Eq. (25) 6¢ with the series yields a recurrent
relation

n—2 |
) _ n: )
Lwﬁl“'ﬁn - Z] <n j— m)!m!Mﬁl"'ﬁm(’LZ)ﬁnHl“'ﬁn
+Ma)ﬁ1 -D M/j1 B (27)
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We have performed calculation for an arbitrary symmetric

. S” .
manifold, D,R;s, = 0. Denote by "= the equality under
the permutations of the symmetry group S,,. First we turn
our attention to the terms on the right-hand side which are

independent of the unknown coefficients Li;/j].., .

nES: 2
Mfulnlrz D szllrz _23szzlr]w’ (28)
nEeS
Mi)l[]ﬂ'ﬂl'g D Mﬁ’[[ﬂzﬂ'; _1_2R;|ﬂ2w omy (29)
n€eS.
Mﬁm,lrzﬂgm D(I)Mfllﬂzﬂglu 44Rg]ﬂ2(l)Mﬁ7f';7[4
8
S Ro R (30)

15 SR SYORAY 2% Pk

Then using the recurrent relation we sequentially find the
first three coefficients

1
_550 =c” +3 3 Rzu(ugﬂgycm

1
— R%, RU,EHEVEPETC? + 0(K?).

45 HLY (31)

This geometrical transformation rule implies that given an
expansion point ¢ and the action functional S(¢) of the
nonlinear s-model on a symmetric manifold the following
identity holds for the covariant Taylor expansion of

Slp. &l = S(p(9.8))

C(H <

1 é
45RZWR,J;M§”§”§P§"+ 0(K2)> 550{) [0,]=0

1
<h2ﬂ+ RS, Eh&
(32)

The directional derivative ¢ D . S[g, £] corresponds to the
parallel transport of £ along ¢ and has to be calculated with
the condition D.£ = 0. Since the transformation (31) is
independent of the action there is a less laborious way to
obtain it by considering the splitting symmetry of the
expansion in question (see Appendix B).

B. Splitting Ward identities

p=¢+candbyj e T ;M the parallel transport of j from
@ top,

eWil@.J) —/D e~ AP E+iE

Adl9.&] = 8.8 — AS,[9.E]. (33)

Since D (det h(¢)) = 0 the measure is invariant under the
parallel transport,

Dy(&) = D, (). (34)
For an infinitesimally small ¢ this implies
Ay / D, (£)e--Alod-sApdl e,
Alg. &l = D Ao, & (35)

Then we change the variables £ = & + 8&. From Eq. (31)
we obtain the Jacobian and the variation of U, under this
change

[Jeer = [

Urlp.& = Unlp Bl - pon XO 1 / to

K2(D
P4

leéCK+ 5)

/ £ec+o(K?).  (36)

Recall that p) = p} = &,. Consequently the measure is
invariant also under the variation 6&

Dy($) = Dy (&) (37)

If we did not include the functional U, into the definition
of the measure D, we would obtain an anomaly in the Ward
identities. Then the splitting identity (32) yields

K@) /D

To proceed further we introduce an auxiliary source 7,

e~ Al d i EshapE DRE +(J=ERY).52 - (38)

With these results, we can now derive the corres- Slp. &, 7] = Slp. &) + 7.6¢. (39)
ponding splitting Ward identities for our model, see also
[23,24,36]. For ¢ € M and ¢, j € T, M we denote by  Thus for the directional derivative we obtain
|
: SWilo. j W, ilo. J]
D.Wp.jl = Tr((%?%k )W o, j] + Ry —L—=
J oj
W SWile. j Wilg.
L (OWile A1, R, . ] _D.R, de- 71\ (40)
2 oj oj 8joj
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Wilo, ]

W;/,k ko? .]]

Under the parallel transport D.j =0 and D. = 0.
Consequently for the directional derivative of the (true)

Legendre transform of W [g,jl, Filp.& = Ti[e, &+
ASi[p, &, we have
Dch[(ovE] = _Dcwk[(ovﬂ' (42)

Eventually we get the Ward identity

< + F, il 5?,,)( ilo, & - —haﬁf Rk5ﬁ> N i
(43)

yk[(/’ 5]

Ny = 1o (LR 4 0. AP0 8,

(44)

For the Wetterich effective action the splitting Ward
identity has the form [24]

. )
D8+ Tl 8L
T, [, & 1 . _
N i :Tf<(y’§[£p§]73k +2Dch> T [0, +Ry) 1)-

C. Constraints from the splitting Ward identities to
linear order in K

To linear order in K, we choose the ansatz for the
insertion as follows

= _CO ke = @Rm/wéfﬂéycw + 0(K> (46)

F}/a.k [(pv E] 3

This form generalizes Eq. (31) by introducing two coupling
constants o, and ;. The ansatz is consistent with the
flow equation for I', ; to leading order in K.

The combination of Eq. (18), Eq. (46) and Eq. (45) gives

CO k

=1+ 0(K), Soxlox = 14+ O(K),

n+1 k

t2,k1)k = ] + O(K), tz,ka = O(K) (47)
Analysing the Ward identity Eq. (45), one finds that p, ;

is not an independent variable, but obeys

sU®?
—P2iCok g " = TT(

o)k ) —1>
55(1 55 (Fk +Rk) +0(K)

(48)

On the right-hand side one only keeps the local term &%c,, to
leading order in K.

V. FRG FLOW EQUATIONS
A. Method and notations

In this section we compute the flow equations of the
various coupling constants to linear order in K using our
ansatz Eq. (18). For conciseness we use the following
notations

_(n 8'Tle. &
FEGI)...an,k - éza] 5Ea” _ (49)
cee E=0
G = (TP + Ry~ (50)
where
_ 1
= ha(—Dz—kmﬁ) + 3, (51)

with Z,5 = 0, E,5 + wiEVhys and mi = K(Dg_l)plktlk' We

will see below that 7, is of order K~! at the fixed point.
Consequently 7, ;X is of order K, while m? will be of order
one. We choose the regulator function of the form

1
Rapilo] = ahaﬂRk(_D2)7 (52)

with Ry (@) = (k* — 0)0(k* — w).
Then, for a sufficiently small K, we assume the existence
of the Neumann series

Gy = 1,,Gh™! Z (=1 ZGh™1)" (53)
n=0

where
G!'=-D>+R, + m% (54)

Note that we do not expand G in powers of mj.

To compute the trace, we use the heat kernel method
[37,38], that we outline briefly. The spectral decomposition
of a integral kernel f reads

> J)

weos(—A)

- Am ds(L7' ) ()5 (s), (55)

P (x,y) = w (x) (WP (y))*

105003-6
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where —D*y” = wy®. The heat kernel K satisfies the heat
equation (9, — D*)K,,(s) =0. For k*> ||0p]|2
inverse Laplace transform (£7'7)(s) is small for all large
values of time, i.e., such that s||0g||2, > 1. Consequently
one can substitute the heat kernel with an asymptotic
expansion at small time

Ksy(s)

d x—yz - _1 mn
:(4ns)—a’e—%z<m,) by(x.y)s™.  (56)

m=1

At the coincidence limit y — x the leading heat kernel
coefficients are [39]

bo - 1, Dxibo = 0, (57)
D.Q,;
by=0, D b =K
i 6
Qaﬁki = —Knaﬁzyakfﬂlaifﬂy- (58)

For a spectral density f(w), we introduce

sm

(4rs)

0l = [Tase e (59)

[

that for d > 2m is easier to calculate in the spectral
representation

7 1 « 7 d—m—1
Qu_f] _W(%—m)/) dof(w)w™"=1. (60)

In particular, for

0
H— G<8kRk— ktz'kRk>G, (61)
1533
one finds
R 2kd+1—2m
Qs ,[H] =

(4x)ST (4 + 1 — m) (kK> + m})>

kOty x
x (1 fox(d—2m +2)>‘ (62)

B. Flow of the effective action
The flow equation of T is
_ 1 _
8ka = ETI‘(akRka). (63)

To leading order in K, we obtain

Ot
kgo’k = —ty (v, + Dwy)K(
0.k

D-1)Q4H].  (64)

(1)

The flow of the one-point function fk reads
_ 1 — —(3) =
g, = —ETr(akRkarS,le). (65)

Using the ansatz in Eqgs. (18) and (19) we have

—2K
[tﬂa = / 3[ ﬂa)»ﬂ.'ﬂ}’ ¢x)8z¢ Dzﬂ,n (66)
TES; 3.k

I/[tﬂll /3'1‘ ( Ta Mgy gox)Dzﬂ,,Du);,,
€S,

+ My (02) E e, (@)

K*(D - D)pa i
T hﬂaﬂ‘g ((ﬂx)hﬂ”ﬂy ((px) . (67)

Here h/tZl/Z ((/]x) = h;w(qox)(sxzéxz and DtlJ:)ZC = 8x,-5xzhl;; +
[7,0;9%6,., i.e., the covariant derivative with respect to
the upper index.

To leading order in K the equation has the form

- 2 —
Ol = =5 Tr(HIL) +o(K).  (68)
This gives
Oyt HirK(D-1 ~
Lk = 4K -1 Qu[H]. (69)
o ry 3 2

Finally, the flow of the two-point function reads

akraﬂk_ ZTr(akRkaF Gl Gy)

ﬂES 5

1 o -
_ ETr(a,jzk(;krg}}kGk), (70)

where S, is the symmetry group on two indices a, B. To
leading order in K, the equation is

2
0, r? %Tr(H

vk —

I + o(K). (71)

It is convenient to write this flow using an auxiliary
generating functional

F(&.8) = ZATe(HE ). (72)

which reads after expansion to leading order in K and to
second order in derivatives

F [ =

+ (rohapElL + (D + 4)rgE.p)E%E + o(K).  (73)

(D —1)reD? + 1) &
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The auxiliary constants are as follows

K*(D+2)(D

— D)partax ~
15 QqH]. (74)

Equation (71) yields the evolution equation for the constant
Lk

Oktax _ 1 K(D-1)
3y 4y 3

Qg['iﬂ' (75)

From Eq. (73), one can also obtain the flow of v;, w;, and
P> «» although these will not be needed as they are fixed by
the splitting Ward identity.

For flat models one makes the usual substitution
tix = I where t; is a unique renormalized coupling
constant. This makes possible to retain only the evolution
equations for 1PI vertex functions '™ with n < 2. For
nonlinear o-models the substitution ¢, = #, would give
incorrect flow equations [e.g., comparing Eqs. (69)
and (75)].

C. Flow of T, 4

The flow equation of T, ; reads

WLy = =5 Tr(O R Gyl fZGk), (76)

that at leading order in K takes the form

t _
Ol = = Tr(HIY)

_kD-1)

3 fzkévszd[ Je* +O(K). (77)

Consequently we have

K(D-1)

Wlox = sz,kfz,ngm]- (78)

Finally, for our choice of regulator function Eq. (52), the
Ward identity Eq. (48) written in terms of m? reads

KD=1) 4
L
with
d+2
0.RG] = —— K . (80)
2 (471')51"(‘51 +2)(k* + m3)

VI. B-FUNCTIONS AND FIXED POINT ANALYSIS

Using Ward identities Eq. (47) the flow of f,; Eq. (64)
can be written to leading order in K as

Okt

= —K(D - 1)Q,H]. (81)

5}
1ok

while that of #, ;, ,; and {, takes the simple form

Ntix _20ktox  Oktak _10ktox  Oibox _ _10ktox
he 3ty 3o Lok 3 fox
(82)
: 2 K(D-1) :
Furthermore, recalling that m; = =5— p, ;f, ; and using

Egs. (47) and (79), one finds m% as a function of #(,

2Sd kd+2t0’k

2:
T 3A )R+

(83)

( 1)
(m)frr1)
this allows to write the flow equation of #; in terms of 7 ;
only,

OA htax

with s, = Since Qy[H H] depends on %2 and m?,

d+2 .2
2Sdk tO,k

KOoi =~z oy

kOto i
(1 - 3(d + 2)t0,k>‘ (84)

To analyze the flow equations, it is convenient to

introduce dimensionless variables 7,; = kd‘ztoyk and

= k™>m3. For the latter, by keeping only the positive
root when solving Eq. (83), we obtain

1+ 8salox 1
L 3;d+2) (85)

Defining the p-function, fy = k0,7o ., our final result is

- 4Sd;2
Po=(d =)o - S (8)

I+ 1+< 2)

A fixed point is a scale independent solution, i.e., fy = 0
There are two fixed points associated to this f-function, the
trivial fixed point 7 , = 0, which is attractive in the infrared
and corresponds to the low-temperature phase, and a
nontrivial fixed point

. 2d+1)(d-2)

o7 a2 e

for d > 2 and if s, is positive. For K > 0, the model is the
usual O(D) NLsM, while for K < 0, the fixed point is
physical in the formal limit D < 1, and in particular for
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D = 0. Expanding the p-function at 7; we obtain the
linearized equation

kOt = —v " (Tox — T) + o(Tox — 1)

= (d=2) (1 - 5‘%22), (88)

with 7! the critical exponent governing the divergence of
the correlation length close to criticality. In particular for
d =3 we have v~! = 16/17, for all D and K such that
s3 > 0. Clearly the fixed point is repulsive. For d = 2 + ¢,
€ — 0, we recover the standard one-loop result ! = ¢
[7,9]. At the fixed point the Ward identities (85), (82) give

a2 d=2
KT 3(d+2)

3N (kA™1)2HF
2(d + 1)(4n)T(¢ + 1)

P2 = . (89)

Gl =8 = (kAT hyp = BAZA(RATYHE. (90)

VII. DISCUSSION AND CONCLUSION

We have computed the FRG flow equation of NLSM
with constant curvature using the background field method,
to lowest order in the derivative expansion. In order to
implement consistently the splitting Ward identities
induced by the background field reparametrization invari-
ance, we have also performed a formal expansion in the
curvature, keeping terms to lowest order in K. The beta
functions we have obtained are different from those of the
previous studies using the same method [25,26], corre-
sponding to different critical exponents (if one stays at the
same order of the derivative expansion). Let us comment on
the main difference between these works and ours.

In [25], we note that the “mass” term induced by the
measure is neglected, and that all the #; , are assumed to be
identical, i.e., t;; = o, in our notations. This is obviously
not consistent with the splitting Ward identities derived
above. In [26], a “wave function renormalization” is
introduced for the fluctuating field, corresponding here
to fox/ 1.1 as well as a mass term. No connection with the
splitting Ward identities is made, and the mass has an
independent flow, whereas we have shown that it is fixed by
the Ward identities. Therefore, their flow equations at the
lowest order in the derivative expansion are different from
ours. It has been noted in [26] that if one includes all
coupling constants at the next order of the derivative
expansion, the nontrivial fixed point disappears. One could
hope that using an ansatz that obeys the Ward identities to
second order in K will cure this problem.

One aspect which is identical in our work and [25] is that a
nontrivial fixed point is found in all dimensions d > 2,
which, if confirmed, implies that there is no upper critical
dimension. While this is expected for noncompact NLSM, as
discussed in the Introduction, the fact that we find the same

result for the O(N) NLSM questions the validity of the
approach. Indeed, on the lattice, the O(N) NLSM corre-
sponds to a O(N) spin model, for which there is no doubt
that the upper critical dimension is d, = 4. If, and how, the
present method is able to recover this result is still an open
question. (We note in passing that a lattice FRG approach of
the O(N) NLSM, not using the background field method but
taking the nonlinear constraint into account exactly, does not
suffer from this problem. Indeed, the flow equations are
formally the same than that of the corresponding linear
sigma model, and only the initial condition is different,
which does not affect the fixed point properties [40].) It has
been argued that the 2 4 € expansion of the O(N) NLSM
does not describe the Wilson-Fisher fixed point at € = 1, as
it cannot capture the topological excitations that drive the
transition, e.g., the hedgehogs excitations for N = 3 [41]. It
could well be that the background field method, even
supplemented with a functional RG approach, is incapable
to capture the correct physics far from d = 2. We hope that
the expansion to the next order in derivatives and curvature
will help to answer these questions.
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APPENDIX A: COVARIANT EXPANSION OF
THE ACTION

There is a variety of sources where the reader can find the
covariant expansion of the NLSM, see e.g., [23,33,34],

0P _ [ (09 £ (Cop + Ep)??
L5 = /< 2 ‘feraf‘ﬂ”z)

5

+3 VO p.E +0(&),

n=3

(A1)
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C_} - ha/}( 2)7

Eup = —Rj0p0:0"0:" = —KT5,0,0"0;97 . (A2)

2
Ve [40’ ‘ﬂ - gRaayﬁgagﬂai(paDié’y

K
= | Eenuoene. (13)

1
@ [(p’ ‘}ﬂ = _aRyaaﬂfaéﬂ(Di‘fyDifo-
!y &P 0000

- A ([ DEDE + PE). (AY)

2
VOl = 3% [ RupiRiaE @@ eD s 00

21(2
_ / 1, EE D E D (AS)

where we have factored out the factor 7~! in the action.

APPENDIX B: SPLITTING SYMMETRY
OF THE ACTION

We would like to give a simple method to obtain the
symmetry transformation in Eq. (31). Indeed the covariant
Taylor expansion of the action Eq. (A1) is independent of
the point ¢. To proceed we have to retain in the expansion
all terms quadratic in the Riemann tensor. The directional
derivative vanishes at the first and third orders in & iff
Liy = L%, 5, = 0. The definition of L%, , is given in
(26). Then for m an even integer we put

Ld(ﬂﬁ]ﬂ%"ﬁm—]ﬂm = Z (aml hdwhﬂﬁl gyttt h”ﬂm_l T pm
TES,,
+ amzhdﬂﬁl ham./}z "'hﬂm—lﬂ'ﬂm)‘ (Bl)

The derivative vanishes at the second and fourth orders
in & iff

1 1
Lalp. &) = <lo—/\_ 1>haﬂ9(/’a8€0ﬂ + <1 i

1.A

v 1 1
+ R Epl# +— VO, 8] +—VW[p, & + po \UD [0, 8] + ps AUV [, &
2 I3 LN

The usual way to give a meaningful interpretation of I'j ;5
is to consider a stationary point of the free energy,

Wonlg. j]

=0 (C7)

K K - K2 _K2
ap = 3 6122—3, ag = 45° 042—45-
(B2)

Once again this yields the symmetry transformation given
in (31).

APPENDIX C: WILSON-POLCHINSKI
EQUATION

Most equations of this appendix are complementary to
those of the main text. However we believe they are likely
useful for the reader. Let C;, be a regularized propagator
such that

C AA — 0,

P L oY)
limCp} = -D?. (C1)

A—oo

For V j € D(RY,T,M) one can write the partition func-
tional in the form

ZkA[(P,J.} — e_%f((‘)(/))z_rlAkA[¢]+WkA[(p~j+Diai§0]' (Cz)
Here I'} ;5 is a normalization coefficient,
1
Linle) = ETY log((=93)~'h7'Cpy ). (C3)

The generating functional of connected Schwinger func-
tions W [g, j] is
eWinlwd] — /dlukA<§)e—LA[(Ps5]+§"ja’ (C4)

where du,, is a Gaussian measure on a finite dimensional
Borel cylinder set [43],

£) = \/det C;AIH dé

At 1-loop the bare reduced action is (see Appendix A)

dpayn ( HCw? . (Cs)

2.A

1/ 1
>5aDiaifPa T3 <t_ - 1> E Copap?

& +o(&). (Co)

Using convexity of the effective action one shows that at
this point the normalization coefficient (C3) is the effective
action at 1-loop [44].

It is convenient to define the reduced effective action

ka [(09 E]
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LWinlp B = 5 ECiley® + Tialo. 8. (CB)

where L(-) is the Legendre transform. Then the Wilson—
Polchinski equation [19,45,46] is

- _ 1 - _ - _
Okl kale. &) = ETr(akaAF&) [, E](1 + CkAr/(j\) [p.&])7").
(C9)
fAA[(p’ E] = LA[(pv E] (CIO)

Substituting C;i = Cyl + R into the Wetterich effective
action (14) we obtain

- 1 - 1- -
Tinle. &) = Ehaﬁai(ﬂaai(pﬂ —&"D;0;pq + Efaca/l\aﬁﬁfﬂ
+ T aale, & 4 Tiale, & (C11)

It follows that this action satisfies the following boundary
condition

k—>A

= Salp. &l + Unlp. €.

. -1
lim (FkA . ] - ETT 108(_83\)_1}1_16‘1:/{)

(C12)

On the right-hand side we used t; , = ¢, see Eq. (20).
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