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We study four-dimensional gauge theories coupled to fermions in the fundamental and mesonlike
scalars. All requisite beta functions are provided for general gauge group and fermion representation. In the
regime where asymptotic freedom is absent, we determine all interacting fixed points using perturbation
theory up to three loop in the gauge and two loop in the Yukawa and quartic couplings. We find that the
conformal window of ultraviolet fixed points is narrowed down by finite-N corrections beyond the
Veneziano limit. We also find a new infrared fixed point whose main features, such as scaling exponents,
UV-IR connecting trajectories, and phase diagram, are provided. Both fixed points collide upon varying the
number of fermion flavorsNf , and conformality is lost through a saddle-node bifurcation. We further revisit
the prospect for ultraviolet fixed points in the large-Nf limit where matter field fluctuations dominate.
Unlike at weak coupling, we do not find clear evidence for new scaling solutions even in the presence of
scalar and Yukawa couplings.
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I. INTRODUCTION

The seminal discovery of asymptotic freedom has
established, for the first time, that local quantum field
theories can remain well defined and predictive up to
highest energies [1,2]. In the language of Wilson’s renorm-
alization group [3], asymptotic freedom corresponds to a
free ultraviolet fixed point for running couplings ðg� ¼ 0Þ.
A fingerprint of asymptotic freedom is that the high-energy
limit for gauge couplings g2ðμÞ is approached logarithmi-
cally slowly with increasing energy scale μ,

g2ðμÞ ∼ 1

lnðμ=ΛÞ ; ð1Þ

such as in QCD. More recently, it has been noted that the
high-energy limit may remain interacting, a scenario
referred to as asymptotic safety. Initially conjectured in
Ref. [4], the availability of interacting ultraviolet (UV)
fixed points in QED- and QCD-like theories has raised
renewed interest recently [5–23]. Key ingredients for
asymptotic safety to occur are scalar, fermionic, and vector
degrees of freedom, alongside Yukawa interactions which

can stabilize non-free gauge couplings [7]. Unlike in
asymptotic freedom (1), asymptotic safety in the high-
energy limit is often characterized by a power-law-like
running of the gauge coupling ðg� ≠ 0Þ,

g2ðμÞ − g2� ∼
�
Λ
μ

�
A
; ð2Þ

where the scaling exponent A is a universal theory-
dependent number [5,9,17].1 Now, necessary and sufficient
conditions for weakly interacting fixed points in 4d
quantum field theories are available [7,17]. Fixed points
and scaling exponents have been determined in simple
[5,11,12,21], semisimple [13], and supersymmetric [14]
gauge theories with matter. These ideas have also been put
forward to UV complete the Standard Model [9,15,18], to
study aspects of flavor [19,20,23], and to stabilize Standard
Model extensions up to the Planck scale and beyond
[22,24]. Vacuum stability [6], higher order interactions
[11], extensions away from four dimensions [8], conformal
windows [13], and high-temperature symmetry restoration
[25] have also been addressed. For further studies of
ultraviolet fixed points, see Refs. [26–35].
In this paper, we study interacting fixed points and their

conformal windows in QED- and QCD-like theories.
Understanding the existence of fixed points or otherwise,
particularly at low matter multiplicities, is a crucial ingre-
dient for phenomenological applications in particle physics
and model building [9,15,17–24]. We also look into how
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conformality is lost upon increasing the number of fermion
fields, and whether a new conformal regime might be found
at strong coupling.
To these ends, we provide the general expressions for RG

equations up to three loop for simple gauge theories with
fermions in general irreducible representations, coupled to
mesonlike scalars. Specializing to SUðNcÞ gauge theories
in the regime where asymptotic freedom is absent, we then
determine interacting fixed points in the Veneziano limit
and beyond. We are particularly interested in the finite N
corrections to ultraviolet conformal windows, extending
the work of Ref. [12] beyond the Veneziano limit. We also
address the perturbativity of fixed points and provide a
comparison with QCD at electroweak energies.
We further investigate the appearance of a new infrared

fixed point, which in perturbation theory becomes visible
for the first time at three loop. We show that it is responsible
for the loss of conformality at high energies through a
fixed-point merger, triggered by increasing the number of
fermion species Nf . Finally, following earlier conjectures
[36–38] and a recent point of critique [39], we revisit the
availability of fixed points in the regime of large Nf and
finite Nc using perturbation theory.
The paper is organized as follows. In Sec. II, we provide

some background and the relevant RG equations. We
also recall the basic mechanism for fixed points in the
Veneziano limit. In Sec. III, we apply our methodology to
investigate ultraviolet fixed points. Results are provided for
fixed points and scaling dimensions including finite N
corrections. In Sec. IV, we analyze the UV conformal
window and derive bounds based in beta functions and on
perturbation theory. We also compare findings for fixed
points with perturbative QCD. In Sec. V, we point out that
the lower bound of the UV conformal window arises
through a fixed-point merger. We provide some details
about the new IR fixed point including its phase diagram,
and UV-IR connecting trajectories. In Sec. VI, we revisit
the many fermion limit and ask whether a strongly coupled
gauge Yukawa fixed point is supported by perturbation
theory. We present our conclusions in Sec. VII. The
Appendix summarizes general expressions for beta func-
tions up to three loop.

II. BACKGROUND

In this section, we introduce our basic models and the
relevant RG beta functions.

A. Family of QED- and QCD-like theories

We consider families of four-dimensional Yang-Mills
theory with simple gauge group G coupled to Nf massless
Dirac fermions ψ and elementary mesons H. By definition,
the mesons are uncharged under the gauge group and
carry two flavor indices, such that they can be written as
a Nf × Nf complex matrix. The mesons interact with

fermions through a Yukawa interaction. The theory has a
global SUðNfÞL × SUðNfÞR flavor symmetry, and the
renormalizable Lagrangian is given by

L ¼ −
1

2
TrðFμνFμνÞ − Trðψ̄i=DψÞ

þ Trð∂μH†∂μHÞ þ yTrðψ̄LHψR þ ψLH†ψ̄RÞ
− uTrððH†HÞ2Þ − vðTrðH†HÞÞ2 ð3Þ

where Fμν is the field strength of the gauge bosons and
ψ ¼ ψL þ ψR are chiral fermions which can be separated
into left-handed and right-handed components. The trace
runs over the color and flavor indices. The beta functions
for the quantum field theory with Lagrangian (3) with
general compact simple gauge group G, and Nf Dirac
fermions in an irreducible representation R are provided in
the Appendix. For the sake of this work, we mostly restrict
ourselves to the gauge group G ¼ SUðNcÞ with fermions in
the fundamental representation, which leaves us with Nc
and Nf as remaining free parameters.
Next, we introduce ’t Hooft couplings by scaling

perturbative loop factors and matter field multiplicities
into the definition of couplings

αx ¼
x2Nc

ð4πÞ2 ; αu ¼
uNf

ð4πÞ2 ; αv ¼
vN2

f

ð4πÞ2 ; ð4Þ

where x ¼ g, y. Notice that the single and double trace
scalar couplings scale linearly and quadratically with
matter field multiplicity. Below, we choose to trade the
free parameters ðNf ; NcÞ for the set of parameters

ðϵ; NcÞ; ð5Þ

where ϵ is given as

ϵ ¼ Nf

Nc
−
11

2
: ð6Þ

In the Veneziano limit, Nc; Nf → ∞, the parameter (6)
becomes continuous and may take any value between
ð− 11

2
;∞Þ, which would reduce the number of free param-

eters to one, ϵ. The virtue of the parameter (6) is that it is
proportional to the one-loop coefficient of the gauge beta
function. Consequently, for

0 < jϵj ≪ 1 ð7Þ

strict perturbative control is achieved. In practice, at finite
N, Eq. (6) can no longer be taken as continuous. Still, we
continue to assume that ϵ can be taken sufficiently small to
achieve perturbative control.
For ϵ < 0, the theories (3) are asymptotically free, and

we refer to them as “QCD-like.” In the infrared, they either
display confinement and chiral symmetry breaking or,
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provided that ϵ is small enough, a regime with IR
conformality due to a Banks-Zaks fixed point.
Conversely, for ϵ > 0, asymptotic freedom is absent, and

the theories (3) can be viewed as non-Abelian versions of
QED. It has been shown previously that these theories
can then develop weakly coupled, asymptotically safe,
UV fixed points. The models remain well defined and
predictive up to highest energies, and they offer several
scenarios in the low-energy regime. In the limit of small
couplings the theories can become “QED-like” in that
gluons and fermions can become infrared free, very much
like in massless QED. In turn, couplings may also grow
towards the IR, in which case the models are once more
QCD-like, with either confinement and chiral symmetry
breaking, or conformality in the deep IR.
In this work, we are mostly interested in regimes where

asymptotic freedom is absent, ϵ > 0.

B. Renormalization group

The renormalization group beta functions for this class of
theories are formally known in the MS scheme [40–44] and
can be extracted either manually or with the help of suitable
codes [45]. In perturbation theory, we write them as

βi ≡ dαi
d ln μ

¼ βð1Þi þ βð2Þi þ βð3Þi þ…; ð8Þ

where βðnÞi denotes the nth-loop contribution and i any of
fg; y; u; vg. Below, we investigate approximations which
retain different loop orders of couplings in different beta
functions. Following Refs. [5,12], we introduce the nota-
tion “klm” to denote a perturbative approximation of beta
functions which retains k-loop orders in the gauge beta
function, l loops in the Yukawa, and m loops in the scalar
beta functions.
Results for beta functions of the theory (3) for general

gauge group and fermion representation are summarized
in the Appendix. Here, we state them for SUðNcÞ gauge
theories with Nf fermions in the fundamental repre-
sentation up to the 322 approximation. The next comp-
lete order of approximation, which would be 433, is
presently unavailable though some partial results already
exist.2

In the 322 approximation considered here, the first three
terms of the gauge beta function and in terms of (4) take the
following form

βð1Þg ¼ 4ϵ

3
α2g

βð2Þg ¼
�
25þ 26ϵ

3
−
11þ 2ϵ

N2
c

�
α3g − 2

�
11

2
þ ϵ

�
2

α2gαy

βð3Þg ¼
�
6309þ 954ϵ − 224ϵ2

54
þ 11ð11þ 2ϵÞðϵ − 3Þ

18N2
c

�
α4g

−
11þ 2ϵ

4N4
c

α4g −
3

8

�
9 −

1

N2
c

�
ð11þ 2ϵÞ2α3gαy þ

1

4
ð11þ 2ϵÞ2ð3ϵþ 20Þα2gα2y: ð9Þ

For the Yukawa coupling, we find

βð1Þy ¼ ð13þ 2ϵÞα2y − 6

�
1 −

1

N2
c

�
αgαy

βð2Þy ¼ −
1

8

�
ð11þ 2ϵÞð2ϵþ 35Þ − 32

N2
c

�
α3y þ

�
1 −

1

N2
c

�
ð8ϵþ 49Þαgα2y þ

1

6

�
1 −

1

N2
c

��
ð20ϵ − 93Þ þ 9

N2
c

�
α2gαy

− 4

�
ð11þ 2ϵÞ þ 4

ð11þ 2ϵÞN2
c

�
αuα

2
y þ 4

�
1þ 4

ð11þ 2ϵÞ2N2
c

�
α2uαy þ

64

ð11þ 2ϵÞ2N2
c
αuαvαy

−
16

ð11þ 2ϵÞN2
c
αvα

2
y þ

16

ð11þ 2ϵÞ2N2
c

�
1þ 4

ð11þ 2ϵÞ2N2
c

�
α2vαy: ð10Þ

For the scalar single-trace interaction we obtain

2In the scalar-Yukawa sector ðαg ¼ 0Þ, general results for beta functions up to three loops have been made available in Ref. [46].
Further, novel computational techniques have recently extended general expressions in the scalar sector ðαg ¼ 0 ¼ αyÞ up to four [47]
and six loop [48], and in the gauge sector up to four loop [49] (432 approximation).
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βð1Þu ¼ 8α2u þ 4αuαy − ð11þ 2ϵÞα2y þ
96αuαv

ð11þ 2ϵÞ2N2
c

βð2Þu ¼ −24
�
1þ 20

ð11þ 2ϵÞ2N2
c

�
α3u − 16αyα

2
u −

1408α2uαv
ð11þ 2ϵÞ2N2

c
− 3ð11þ 2ϵÞα2yαu

−
32αuα

2
v

ð11þ 2ϵÞ2N2
c

�
5þ 164

ð11þ 2ϵÞ2N2
c

�
þ 10

�
1 −

1

N2
c

�
αgαyαu −

192αyαuαv
ð11þ 2ϵÞ2N2

c

− 2ð11þ 2ϵÞ
�
1 −

1

N2
c

�
αgα

2
y þ

16

ð11þ 2ϵÞN2
c
α2yαv þ ð11þ 2ϵÞα3y: ð11Þ

Finally, for the double-trace self-interaction, we have

βð1Þv ¼ 12α2u þ 16αuαv þ 4αvαy þ 4

�
1þ 16

ð11þ 2ϵÞ2N2
c

�
α2v

βð2Þv ¼ −
96α3v

ð11þ 2ϵÞ2N2
c

�
3þ 28

ð11þ 2ϵÞ2N2
c

�
− 8

�
1þ 16

ð11þ 2ϵÞ2N2
c

�
αyα

2
v −

1408αuα
2
v

ð11þ 2ϵÞ2N2
c

− ð11þ 2ϵÞð3αv − 4αuÞα2y − 8

�
5þ 164

ð11þ 2ϵÞ2N2
c

�
α2uαv þ 10

�
1 −

1

N2
c

�
αgαyαv − 32αyαuαv

− 24αyα
2
u þ ð11þ 2ϵÞ2α3y − 96α3u: ð12Þ

A few technical comments are in order. The 210 approxi-
mation determines the coordinates of the Banks-Zaks and
the gauge-Yukawa fixed point reliably for small enough ϵ.
This continues to be true in the presence of finite N
corrections, the main reason being that the scalar couplings
do not contribute to the gauge-Yukawa subsector at this
loop order. The scalar couplings only start contributing to
the running of the gauge coupling at the fourth-loop order.
At the 322 approximation, the main addition beyond the
Veneziano limit is an enhanced entanglement between the
Yukawa and the quartic sectors. Specifically, we find new
finite N contributions to βy proportional to αyαuαv, α2yαv,
and αyα

2
v. Similarly, the new contributions to βu are

proportional to αuαv, αuα2v, α2uαv, α2yαv, and αyαuαv, while
βv receives additional contributions proportional to α3v and
αuα

2
v. Below, we quantify the effect of the additional terms

on fixed points and the size of conformal windows.

III. WEAKLY COUPLED FIXED POINTS

In this section, we discuss the systematics of the weak
coupling expansion and the results for fixed points and
scaling exponents.

A. Fixed points

The theory described above admits a nontrivial weakly
coupled fixed point in the Veneziano limit. The size of the
couplings is controlled by the perturbative parameter ϵ in
(6), and the fixed point can be expressed as a series
expansion:

α�x ¼ cx;1ϵþ cx;2ϵ2 þOðϵ3Þ ð13Þ

where x ¼ fg; y; u; vg. The coefficients of these series can
be found by systematically solving for the stationary point
of the beta functions order by order. To consistently
determine these coefficients, the loop-order expansion is
superseded by an expansion in powers of ϵ, giving rise to
the power counting scheme put forward in Ref. [5]. We now
show that this fixed point can persist qualitatively
unchanged once finite Nc corrections are accounted for.
Away from the Veneziano limit, Nc is finite and must be

specified; therefore, the theory is described by two free
parameters, ϵ and Nc. Although new terms that depend on
Nc appear in the beta functions, they just amount to a shift
in the coefficients of those equations. To establish that a
weakly coupled fixed point is still viable, consider the
replacement αx → fxðNcÞϵ, where it is required that the
couplings are proportional to ϵ, which is finite but small
enough such that perturbation theory is still applicable, and
the unknown function fx captures the dependence on Nc.
Inserting this into the beta functions reveals that the
corrections appearing in the finite Nc regime are of the
same or subleading order in ϵ as those already present in the
Veneziano limit. In particular, no term of constant order ϵ0

appears in the beta functions. Thus, the expansion in
small ϵ still holds, with finite Nc corrections modifying
the coefficients of the expression, which may now be
written as

α�x ¼ cx;1fx;1ðNcÞϵþ cx;2fx;2ðNcÞϵ2 þOðϵ3Þ ð14Þ
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where the numbers cx;i from the Veneziano limit have been
factored out from the coefficients of the series. The general
functions fx;iðNcÞ can be computed in the same manner as
the cx;i were previously obtained. Although one could
worry that higher loop-order terms could modify the
leading order functions fx;i, note that such terms are
accompanied by increasing powers of the couplings,
resulting in terms that are subleading in ϵ. Therefore, the
coefficients of the series expansion, both cx;i and fx;1,
are not modified by higher order terms by virtue of the
perturbative expansion. Moreover, as with any perturbative
expansion, the higher order coefficients should not increase
too rapidly as to spoil the convergence of the series. This
remains to be checked explicitly once the functions fx;i are
computed. Finally, note that if the limit limNc→∞ fx;iðNcÞ ¼
1 can be taken continuously, then the fixed points found in
both cases are continuously connected.
The functions fg;1 and fy;1 encapsulating the finite Nc

corrections can be computed within the 211 approximation
in a straightforward manner, yielding

fg;1ðNcÞ ¼
N2

c

N2
c − 110

19

; fy;1ðNcÞ ¼
N2

c − 1

N2
c − 110

19

: ð15Þ

These simple functions provide three important insights on
how finite Nc corrections are modifying the fixed point.
First, note that the limit limNc→∞ fx;1ðNcÞ ¼ 1 is well
defined, such that the fixed point of the Veneziano limit
can be continuously extended into the finite Nc regime.
Second, these functions are monotonically increasing as Nc
decreases, indicating that a smaller number of gauge fields

leads to a less perturbative fixed point, with the functions
reaching values close to 2.8 and 2.5 atNc ¼ 3, respectively.
Third, the denominator effectively sets a lower boundary on
the conformal window of the theory, implying that a fixed
point is available for theories with Nc ≥ 3. Below this
number, the expressions diverge and the perturbative ϵ
expansion breaks down. Finally, we highlight that no
assumption has been made about the value of Nc, with
the functions (15) being exact expressions valid for gen-
eral Nc.
Closed analytic expressions can similarly be found for all

the other functions up to order 322, such that the
coefficients of the fixed-point expressions (14) are com-
pletely determined to order ϵ2. They all show a qualitatively
similar behavior, being positive, finite, and monotonically
increasing for decreasing Nc up to Nc ≥ 3. Thus, the finite
Nc corrections only amount to a shift in the coefficients of
the series expansion of the fixed point, making the fixed
point slightly more strongly coupled for small Nc.
Although this could, in principle, push the solution out
of the perturbative domain, it will be shown in further
sections that perturbative solutions are still available even at
small values of Nc and finite ϵ.
Although these functions fx;i show a simple behavior,

their full form is rather complicated, arising as roots of
fourth-order polynomials. Their full expressions partly
obscure the relevant physics. Thus, for the sake of read-
ability, rational expressions are provided here, similar to
those in Eq. (15), which approximate the exact solution.
Consequently, the fixed-point coordinates can be written as

α�g ¼
26

57

N2
c

N2
c − 110

19

ϵþ 23ð75245 − 13068
ffiffiffiffiffi
23

p Þ
370386

N2
c þ 6.632

N2
c − 7.659

ϵ2

α�y ¼
4

19

N2
c − 1

N2
c − 110

19

ϵþ 43549 − 6900
ffiffiffiffiffi
23

p

20577

N2
c þ 5.509

N2
c − 7.508

ϵ2

α�u ¼
ffiffiffiffiffi
23

p
− 1

19

N2
c − 0.9737
N2

c − 110
19

ϵþ 365825
ffiffiffiffiffi
23

p
− 1476577

631028

N2
c þ 5.534

N2
c − 7.535

ϵ2

α�v ¼ −
2

ffiffiffiffiffi
23

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
19

N2
c − 0.9474
N2

c − 110
19

ϵ −
�

321665

13718
ffiffiffiffiffi
23

p −
27248

6859
þ

33533
6859

− 452563

13718
ffiffiffiffi
23

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
�
N2

c þ 4.214
N2

c − 7.347
ϵ2 ð16Þ

up to terms of order Oðϵ3Þ and with associated error terms
at each order. Neglecting 1=Nc corrections, expressions
reduce to those given earlier in Ref. [12]. In these
expressions, numbers written in natural form are exact,
while those in decimal form were determined from fitting
the model to the full functions. As previously stated, the
finite Nc corrections do not induce any sign changes and
merely increase the magnitude of the coefficients as Nc

decreases. Thus, the fixed point from the Veneziano limit

can be extended into the finite Nc regime at up to next-to-
next-to-leading order while remaining qualitatively un-
changed.
Before continuing, a short word about the approximation

is due. The model was fitted using the values of the
exact functions in the range Nc ∈ ½3; 100�. The largest of
the mean squared errors of these fitted models is
MSE ¼ 4.53 × 10−5, amounting to a cumulative sum of
squared errors of SSE ¼ 4.44 × 10−3. This indicates that
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the model successfully captures most of the variation
of the original functions fx;i with small associated
errors.
Notice that the coefficients in the numerator of α�u and α�v

in Eq. (16) at order ϵ are both close to unity, while it is
exactly unity for α�y. It has been verified that artificially
fixing them to unity results in a poorer approximation, with
larger errors in the small Nc region, where most of the
variation occurs. Since the task is to approximate an exact
function in the absence of random noise, there is no bias-
variance trade-off, and the model with the least errors is
preferred. The same goes for the denominators of the
subleading fx;2 functions. Moreover, we have made sure
that a fair compromise between the magnitude of errors at
low Nc and highNc is achieved, such that the approximated
functions are equally valid from Nc ¼ 3 up to the
Veneziano limit.

B. Vacuum stability

For couplings remaining finite in the UV, the scalar
potential of the renormalized theory should be bounded
from below to prevent the vacuum state from being
unstable. The conditions for vacuum stability in the present
theory take the form [6]

α�u > 0; α�u þ α�v ≥ 0;

α�u < 0; α�u þ
α�v
Nf

≥ 0: ð17Þ

Since the scalar coupling αu is positive at the identified fixed
point, it is the first condition that needs to be checked. A
previous study in the Veneziano limit showed that passing
from the 321 to the 322 approximation, the subleading term
of the potential appears with the opposite sign, triggering an
instability of the vacuum above a maximum value ϵmax.
Notice also that this happens close to where a fixed-point
merger limits the conformal window [12].
For this reason, it is instructive to compare both

approximations under the influence of finite Nc corrections

and verify whether limitations persist. We introduce
the notation for the scalar potential at approximation
klm as

U�jklm ¼ ðα�u þ α�vÞjklm: ð18Þ

Vacuum stability U� > 0 is then checked at approximation
order 321 and 322. We find

U�j321 ¼ 0.0625

�
N2

c − 1.032
N2

c − 5.790

�
ϵ

þ 0.1535
ðN2

c − 7.491ÞðN2
c þ 5.307Þ

ðN2
c − 7.497ÞðN2

c − 7.496Þ ϵ
2; ð19Þ

U�j322 ¼ 0.0625

�
N2

c − 1.032
N2

c − 5.790

�
ϵ

− 0.1915
ðN2

c − 8.169ÞðN2
c þ 1.380Þ

ðN2
c − 7.535ÞðN2

c − 7.347Þ ϵ
2: ð20Þ

Factoring out the numeric values of the coefficients in the
Veneziano limit makes it evident that the finite Nc correc-
tions do not induce a sign change in the subleading term for
any value Nc ≥ 3. Therefore, vacuum instability continues
posing a constraint in the maximum value of ϵ at approxi-
mation order 322. Moreover, the coefficient of the sub-
leading term grows faster than the one of the leading term
for decreasing values ofNc. This defines a restriction on the
conformal window as a function of Nc, ϵmax ¼ ϵmaxðNcÞ,
and indicates that reducing the number of gauge bosons can
narrow the conformal window of the theory.

C. Scaling exponents

The universal scaling exponents as in Eq. (2) character-
ize the RG flow close to the fixed point. They can be
identified from the eigenvalues of the stability matrix
Mij ¼ ∂βi=∂αjj� evaluated at the fixed point. Taking into
account the finite Nc terms, approximate expressions for
the scaling exponents are

ϑ1j322 ¼ −
104

171

N2
c

N2
c − 110

19

ϵ2 þ 2296

3249

N2
cðN2

c − 1.136Þ
ðN2

c − 5.789Þ2 ϵ3

ϑ2j322 ¼ 52

19

N2
c − 1

N2
c − 110

19

ϵþ 136601719 − 22783308
ffiffiffiffiffi
23

p

4094823

�
N2

c − 0.458
N2

c − 6.219

�
2

ϵ2

ϑ3j322 ¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
19

N2
c − 1.148
N2

c − 110
19

ϵþ 2
ffiffiffi
2

p ð50059110978þ 10720198219
ffiffiffiffiffi
23

p Þ
157757ð10þ 3

ffiffiffiffiffi
23

p Þ9=2
ðN2

c þ 0.5327ÞðN2
c þ 18.84Þ

ðN2
c − 6.294Þ2 ϵ2

ϑ4j322 ¼ 16
ffiffiffiffiffi
23

p

19

N2
c − 0.9250
N2

c − 110
19

ϵþ 4ð68248487 ffiffiffiffiffi
23

p
− 255832864Þ

31393643

�
N2

c − 0.6640
N2

c − 6.301

�
2

ϵ2: ð21Þ
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Neglecting 1=Nc corrections, expressions reduce to the
results in [12]. The effect of finite Nc corrections is
qualitatively similar to what we observed for the fixed-
point couplings. Here, the subleading expressions are fitted
using a model with higher powers of Nc to best fit the
exact result. The approximation with the largest error has
MSE ¼ 7.44 × 10−5 and SSE ¼ 7.00 × 10−3, indicating,
once again, a good fit. The finite Nc corrections do not
induce a sign change and are positive and finite for Nc ≥ 3.
Notice that the subleading corrections to the relevant

scaling exponent ϑ1 appear with the opposite sign [12].
This hints at the possibility for a strict cancellation, which
does arise at a fixed-point merger. If so, it would occur at
lower ϵ for lower Nc. We will expand more on this
in Sec. V.

IV. INTERACTING UV FIXED POINTS

In this section, we evaluate the finite N corrections to the
UV conformal window. We also investigate the perturba-
tivity of the fixed point, in particular, at the upper boundary.

A. UV conformal window

From the fixed-point analysis we can start to identify
constraints in the parameter space of the theory. The first
one comes from Eq. (15), which grows large as Nc
decreases and effectively sets a lower boundary for the
number of fields Nc;min ¼ 3. The second arises through
vacuum instability (20) with the constraint in ϵ given as a
function of Nc; in the Veneziano limit we reproduce the
result found in Ref. [12]. We can identify a third one where
the relevant eigenvalue becomes irrelevant due to a sign
change at next-to-leading order (21); however, this con-
straint is not as strong as the one arising from vacuum
stability. The key result of this section is that as Nc
decreases, ϵmaxðNcÞ decreases as well; in other words,
the conformal window becomes more narrow as the
number of fields Nc decreases. This is illustrated in
Fig. 1 where we have plotted the conformal window of
the theory, bounded by vacuum stability, reflecting the full
Nc dependence. For comparison, the boundary obtained in
the Veneziano limit is also plotted (dashed line). We also
list the values of ϵmax for a few interesting cases of finite Nc
in Table I. We notice that as Nc decreases, the minimum
and maximum number of fermions required is also con-
strained, and vice versa. Note also that ϵmax remains
relatively small at finite Nc, meaning that the perturbative
expansion is still justified even if we saturate the bound on
the number of fermions allowed at each Nc.

B. Bounds from perturbation theory

We can probe the impact of higher loop orders by
considering subleading effects in the beta functions, fol-
lowing Ref. [12], while keeping the Nc dependence
explicit. First we would like to get some idea about how

higher loops orders of the beta functions would behave at
the fixed point we are studying. To that end, we substitute
Eq. (16) to order OðϵÞ into the beta functions, taking a
series expansion in ϵ and evaluating at the fixed point. The
leading nonvanishing terms are

βð3Þg j211 ¼ 2.477

�
N2

c þ 24.51
N2

c − 8.390

�
ϵ4

βð2Þy j211 ¼ −0.4934
�
N2

c þ 11.11
N2

c − 7.871

�
ϵ3

βð2Þu j211 ¼ 0.2581

�
N2

c þ 9.359
N2

c − 7.813

�
ϵ3

βð2Þv j211 ¼ 0.9925

�
N2

c þ 9.341
N2

c − 7.814

�
ϵ3: ð22Þ

Negative shifts to the beta functions will, in general, lead to
a wider conformal window at a higher loop order [12]. This
can be explained by recalling that the interacting fixed point
is generated by a positive one-loop term and a negative two-
loop term. Any higher order terms with a negative sign will
drive the zero to smaller coupling values. On the contrary,
terms with a positive sign can shift the zero towards larger

FIG. 1. Conformal window from fixed points at NNLO. The
upper boundary is given by vacuum stability. Markers represent
values of ϵ for integer values of Nc. The boundary in the
Veneziano limit is indicated by the dashed line.

TABLE I. Bounds and selected integer value solutions ðNc; NfÞ
within the UV conformal window of Fig. 1.

Nc ϵmax NFmin NFmax

∞ 0.326 11
2
Nc ð11

2
þ ϵmaxÞNc

7 0.3044 39 40
5 0.2830 28 28
3 0.2278 17 17
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values. Large enough positive values could even destabilize
the fixed point by preventing the cancellation from occur-
ring in the first place. Overall, this gives us a qualitative
picture of what the tendency is at higher loop orders.
Likewise, we can do the same for the result at order ϵ2 and
obtain

βgj322 ¼ 10.24

�
N2

c þ 47.13
N2

c − 8.732

�
ϵ5

βyj322 ¼ −1.713
�
N2

c þ 28.60
N2

c − 8.527

�
ϵ4

βuj322 ¼ 1.696

�
N2

c þ 22.47
N2

c − 8.435

�
ϵ4

βvj322 ¼ 7.237
�
N2

c þ 21.23
N2

c − 8.420

�
ϵ4: ð23Þ

The result is qualitatively the same, with a majority of
positive signs suggesting an overall destabilizing effect
for the UV fixed point. This, in turn, means that the
conformal window is likely to be further constrained. We
note that the Nc functions do not change this behavior and
merely just scale the magnitude of the coefficients. We
now go a step further and try to compute quantitative
bounds.
The influence of higher loop order terms on the

conformal window can be quantitatively estimated using
partial information of these terms [12]. First, note that when
couplings take fixed-point values, αi ∝ ϵ, then ϵ effectively
becomes the small parameter in the beta functions, meaning
that we can order the beta function by powers of ϵ (this is
indeed how the fixed point is computed in the first place).
At the nth-loop order, the beta functions are of order
β ∼Oðϵnþ1Þ. Terms proportional to ϵm with m > nþ 1 are
subleading in the weak coupling regime and were neglected
when computing the fixed-point expressions. Note that at
an interactive fixed point, the subleading terms would
cancel with higher order terms that would be included at the
next loop order. We now put forward an approach in which
we keep all these subleading terms, treating beta functions
as if they were exact at the given approximation order.
Constraints on the conformal window can then be

computed from the fixed points of this system. We refer
to constraints obtained in this approach as ϵsubl.
In order to obtain a better understanding of the system,

we have not restrained ourselves to consistent approx-
imations only, but have also computed all other possible
combinations with the beta functions that we have
available. The first key result of this section is in
Table II, showing the boundaries of the conformal window
in the ϵsubl approach. Next, we give several comments to
explore the significance of this table. First, we reproduce
and compare the results in the Veneziano limit with the
cases Nc ¼ f5; 7g, showing that the overall trend is to
narrow the conformal window as Nc becomes smaller
(with the exception of 221). This continues to reflect the
nature of the fðNcÞ functions introduced in the previous
section, where we saw that they drive ϵmax to smaller
values at lower Nc. Second, note that the comparative
relations across approximations are maintained for all
three cases shown (e.g., 311 is always more strict than
211), meaning that no particular approximation is favored
at low Nc. Third, at each approximation the conformal
window remains constrained by the same source in all
three cases [(a) strong coupling, (b) fixed-point merger,
and (c) vacuum instability]. Thus, finite Nc corrections do
not qualitatively change the behavior of the system of beta
functions.
The second key result is Fig. 2, where a plot of the

boundaries is presented for extended values of Nc. The first
striking feature in this plot is that it clearly shows how ϵsubl
quickly converges to the asymptotic value (e.g., for 322, at
Nc ¼ 7, the value differs from the asymptotic value by only
10.9%). Furthermore, we observe that all approximations
share roughly the same rate of convergence. Second, we
can clearly visualize and confirm the qualitative picture
obtained from Eqs. (22) and (23). To highlight this, we note
that approximation 221 is the least constrained, which is in
line with our prediction that the running of the Yukawa
interaction widens the conformal window. On the other
hand, we have 311 and 312, clearly showing that the
running of the gauge coupling leads to tighter constrains.
Overall, we conclude that finite N corrections shrink the
conformal window.

TABLE II. Maximal values ϵsubl for the Veneziano parameter ϵ up until which asymptotic safety is realized in the Veneziano limit and
in the finite Nc regime. Limits arise due to (a) strong coupling, (b) fixed-point mergers, or (c) vacuum instability. Data for ϵsubl in the
Veneziano limit are taken from Ref. [12].

Couplings Orders in perturbation theory

βgauge 2 2 2 2 2 3 3 3 3
βYukawas 1 1 1 2 2 1 1 2 2
βquartics 0 1 2 1 2 1 2 1 2
ϵsubljVeneziano 1.048a 1.048a 0.116c 3.112b 0.208c 0.027b 0.027b 0.117b 0.087c

ϵsubljNc¼7 0.898a 0.898a 0.104c 3.183b 0.198c 0.021b 0.021b 0.105b 0.077c

ϵsubljNc¼5 0.762a 0.762a 0.092c 3.256b 0.189c 0.017b 0.017b 0.094b 0.068c
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C. UV conformal window revisited

Finally, we revisit estimates for the conformal window
using the data for ϵsubl in Fig. 3. In the plot we include
approximations 321 and 322 as the light and dark yellow
areas, respectively. For comparison we have also super-
imposed the asymptotic value of ϵsubl as dashed lines of the
corresponding color, and dots representing the smallest
values of ϵ for integer number of fields. The tightest
constraint at 321 and 322 arises due to a fixed point
merger and the onset of vacuum instability, respectively.
Although the exact boundary of the conformal window

narrows at small Nc, we recall that the field multiplicities
can only be integer numbers, and paying close attention, we
notice that the Nc dependence does not exclude any integer
solution that was not excluded already in the Veneziano
limit in the 322 approximation (blue dots below the dashed

orange line are also below the solid orange line). The first
few integer solutions are shown in Table III. We expect that
the ranges indicated in Fig. 1 (and also Fig. 4) account well
for the uncertainties in the perturbative estimate of the
lower bound (see Fig. 2).

D. Perturbativity and comparison with QCD

Away from the strict Veneziano limit, perturbativity of
the fixed point is not automatically guaranteed, and a
relevant question is if any of the theories admitted in the
conformal window fall within the perturbative domain.
Although there is not an strict boundary on what is
perturbative and what is not, we address this question by
comparing with perturbative QCD. Specifically, at the mass
of the Z boson, where perturbation theory is applicable,
the running coupling constant of QCD has been measured
to be [50]

211

212

221

222

311
312

321

322

3 5 7 9 11

0.005
0.010

0.050
0.100

0.500
1

5

NC

FIG. 2. Upper boundary for the parameter ϵ for various
approximations as functions of Nc (see Table II).
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FIG. 3. Conformal window from beta functions up to NNLO as
given by ϵsubl comparing approximations 321 and 322. Dashed
lines represent the asymptotic value and dots the first integer
solutions of ϵ.
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FIG. 4. Contour plot of ultraviolet fixed points in the ðNc; ϵÞ
plane, color coded according to the magnitude of α�AS. The white
dashed line represents the value of the QCD coupling at the Z
boson pole mass αsðM2

ZÞ. Red dots indicate fixed points for
integer ðNc; NfÞ with Nf given in the square box. The upper
(lower) solid white curve indicates the bound of the conformal
window from fixed points (beta functions).

TABLE III. Bounds based on beta functions, and selected
integer value solutions ðNc; NfÞ within the UV conformal
window of Fig. 3. The hyphen indicates that no integer solution
for Nf can be found.

Nc ϵmax NFmin NFmax

Nc ¼ ∞ 0.087 11
2
Nc ð11

2
þ ϵmaxÞNc

Nc ¼ 9 0.0810 50 50
Nc ¼ 7 0.0771 39 39
Nc ¼ 5 0.0677 – –
Nc ¼ 3 0.0300 – –
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αsðM2
ZÞ ¼ 0.1185� 0.0006: ð24Þ

In order to make a sensible comparison, we normalize the
asymptotically safe gauge coupling in exactly the same
manner, writing

α�AS ¼
4πα�g
Nc

; ð25Þ

with α�g defined in Eq. (4) and given by Ref. (16) up to order
Oðϵ2Þ and general Nc.
Next, we compare our results for fixed point values in

various asymptotically safe models with the value of the
QCD coupling constant at the mass of the Z boson. Figure 4
shows a contour plot of ultraviolet fixed points α�AS in the
ðNc; ϵÞ plane. Red dots indicate fixed points with integer
ðNc; NfÞ with Nf indicated in the box. The upper (lower)
solid white curve indicates the conformal window from
fixed points (beta functions). The white dashed line
represents the QCD coupling at the pole mass of the Z
boson αsðM2

ZÞ.
Theories falling within the first shaded region (counting

from bottom to top) have a fixed point gauge coupling
smaller than αsðM2

ZÞ and can be considered “more pertur-
bative” than perturbative QCD. In the second shaded region
the value of the coupling is between 0.1 and 0.2; for the
next one, 0.2 and 0.3, and so on. We conclude that it should
be possible to identify asymptotically safe quantum field
theories even at finite Nc and beyond the Veneziano limit
using perturbation theory.

V. INTERACTING IR FIXED POINTS

It is well known that the theories (3) display infrared
Banks-Zaks fixed points in the regime with asymptotic
freedom [5,7,17] and for sufficiently small jϵj ≪ 1. In this
section, we point out that the theory (3) also displays
interacting infrared fixed points in the regime where
asymptotic freedom is absent. We then discuss whether
the new IR fixed point is responsible for the disappearance
of the interacting UV fixed point through a merger.

A. Colliding fixed points

We consider the regime ϵ > 0where asymptotic freedom
is absent. As discussed in the previous sections, the theory
(3) displays a primary interacting UV fixed point whose
couplings (16) and scaling exponents (21) arise as strict
power series in the small parameter ϵ. Interestingly though,
a secondary fixed point α�IR can arise starting from the
three-loop order in the gauge coupling and can be
expressed as a power series in ϵ with a leading constant
term. Such a constant term indicates that the solution is not
under rigorous perturbative control even for small ϵ and
must be treated with care.

With this disclaimer in mind, we start by displaying our
results in Fig. 5. This figure shows the fixed point
couplings, exemplarily in the 322 approximation and in
the Veneziano limit, with solid (dashed) lines referring to
the UV (IR) fixed point. We observe that the secondary
fixed point α�IR has no UVattractive directions and therefore
takes the role of an IR sink. Its fixed point couplings are
slightly larger in magnitude than those at the corresponding
UV fixed point (16), decreasing in magnitude with increas-
ing ϵ. Most notably, as ϵ grows, the UVand IR fixed points
get closer to each other until they meet and annihilate at
ϵ ¼ ϵmerge. The merging of fixed points is one of the
fundamental mechanisms by which physical fixed points
can disappear into the complex plane [51–55], indicated
by the gray-shaded area in Fig. 5.3

In Table IV we compute ϵmerge for different additional
approximations in the scalar andYukawa sectors, comparing
the311,321, and322 approximations.We observe that the
value of ϵ at the merger depends on the approximation.
Moreover, for decreasing Nc, we also find that ϵmerge

decreases. Comparing the 321 and 322 approximations,
we note that the two-loop quartic contributions only have a
mild impact. In turn, comparing the 311 with the 321 and
322 approximations, we note that the two-loop Yukawa
contributions are quantitatively important. This is consistent
with the analogous analysis for the UV fixed point,
summarized in Table II. We stress that ϵmerge is numerically
small in all cases, and we expect perturbation theory to
remain viable at least in some vicinity around ϵmerge.

FIG. 5. Coupling values (real part) of the UV (solid lines) and
IR (dashed lines) fixed points as a function of ϵ in the Veneziano
limit at approximation order 322. From top to bottom, the lines
correspond to the gauge, Yukawa, single trace scalar, and double
trace scalar couplings.

3See Ref. [56] for an example (211 approximation) where a
BZ fixed point disappears through a merger of quartic scalar
couplings.
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Figure 6 shows the absolute value of scaling exponents at
the UVand IR fixed points as functions of ϵ. Note that this
is a logarithmic plot where vanishing eigenvalues corre-
spond to a sharp downward peak. We observe that the
scaling exponents of both fixed points coincide at the
merger point. In the limit ϵ → ϵmerge, the sole relevant
eigenvalue ϑ1 of the UV fixed point and one of the IR
eigenvalues both become exactly marginal (blue curves),
which again is a characteristic fingerprint of a fixed point
merger. Fixed points become complex in the gray-shaded
area. Miransky scaling [51], which is a well-known feature
of fixed point mergers [52–56], is also observed at the
endpoint.

B. IR conformal window

Next, we discuss the conformal window associated to the
new IR fixed point α�IR. Since couplings are of the order of
ϵmerge and thus small close to the fixed point merger, we
may view ðϵmerge − ϵÞ as a small parameter to study the IR

conformal window. Using Eqs. (9)–(12) in the 311 and the
321 approximations, we then find that the IR conformal
window covers the range ϵ ∈ ð0; ϵmergeÞ. On the other hand,
in the 322 approximation, the lower limit of the conformal
window arises through another merger, at about
ϵIR ≈ 0.085, and hence ϵ ∈ ð0.085; 0.90Þ approximately.
This can be appreciated in Fig. 6, where the downward
peak in ϑ2 around ϵ ≈ 0.085 announces another fixed point
merger (the tertiary fixed point responsible for this merger
is not shown). In Fig. 5, the secondary merger is visible in
the coupling αv, which becomes complex. In the Veneziano
limit, βv decouples from the system of equations.
Therefore, αv may take complex values without disturbing
the other couplings. For finite Nc, however, all couplings
become complex at the merger. In either case, we conclude
that a reliable lower bound on the value of ϵ cannot be
found within perturbation theory. We further note that the
scaling exponents associated to the gauge and Yukawa
couplings become complex conjugate for small values of ϵ
and Nc ≥ 5 in the 321 approximation. This is, however,
not reproduced in any of the other approximations. We
interpret both of these effects as shortcomings of the
approximations and as a sign that the perturbative results
for the IR fixed point may only be trusted close to ϵmerge.
Future work using higher orders in perturbation theory, or
nonperturbative continuum and lattice methods, is required
to confirm the existence of the IR fixed point α�IR for small
ϵ, away from the merger.

C. Phase diagram

For ϵ close to but below ϵmerge, both the UVand IR fixed
points are under reasonable perturbative control, and we
may therefore ask what the corresponding phase diagram
looks like. This is shown in Fig. 7 by exemplarily using the

FIG. 6. Eigenvalues (absolute value) of the UV (solid lines) and
IR (dashed lines) fixed points as a function of ϵ in the Veneziano
limit at approximation order 322. From top to bottom, the lines
correspond to eigenvalues dominated by the single trace scalar,
double trace scalar, Yukawa, and gauge couplings.

TABLE IV. Value of ϵmerge for various approximation orders in
the loop expansion. The trend is that the merger occurs at higher
values of ϵ as Nc increases up to a maximum in the Veneziano
limit.

Critical endpoint ϵmerge

Nc 311 321 322

∞ 0.02653 0.1170 0.09717
10 0.02387 0.1113 0.09161
7 0.02121 0.1053 0.08574
5 0.01654 0.09350 0.07442
3 0.003906 0.04659 0.03096

FIG. 7. Phase diagram in the ðαg; αyÞ plane close to the merger
limit, showing the interacting UVand IR fixed points, the free IR
fixed point, and sample RG trajectories. Quartic couplings are
projected onto the plane with βu ¼ βv ¼ 0.
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321 approximation with ϵ ¼ 1
10
(similar phase diagrams are

found within the 311 and 322 approximations). We
observe the Gaussian IR fixed point and the interacting
UVand IR fixed points. The irrelevant directions at the UV
fixed point are shown in blue, and separatrices are shown in
red with arrows pointing from the UV to the IR. As an
aside, we note that a phase diagram such as Fig. 7 cannot
arise for a nonasymptotically free supersymmetric QFT.4

As such, the phase diagram in Fig. 7 should be viewed as a
feature of nonasymptotically free and nonsupersymmetric
quantum field theories.
Figure 8 shows the running couplings along the sepa-

ratrix connecting the interacting UV and IR fixed points
using the 322 approximation with ϵ ¼ 0.09. Couplings
show a smooth cross-over from conformal scaling
in the UV to conformal scaling in the IR. As such, our
model is an example of a nonsupersymmetric theory which
displays nontrivial conformal fixed points both in the UV
and in the IR. We may further conclude that the
theories converge towards interacting and unitary four-
dimensional conformal field theories in the asymptotic
high- and low-energy limits, as has been explained in
Ref. [57] using techniques related to the proof of the
a-theorem [58,59].

VI. MATTER-DOMINATED FIXED POINTS

The results of the previous sections arise in the regime
where approximations are under perturbative control
(ϵ ≪ 1). This is also the regime where fixed points are
the result of a balance between matter and gauge field
fluctuations, with Nf=Nc of the order of a few. In this
section, we discuss the prospect for fixed points in the
regime where matter field fluctuations dominate over those

by the gauge fields. Parametrically, this corresponds to
taking Nf much larger than Nc (ϵ ≫ 1).
This idea has initially been looked into in the infinite

Nf limit with Nc kept fixed, both for Abelian [36] and
non-Abelian gauge theories [37], by using all-order resum-
mations in the MS scheme and critical-point methods,
respectively. If applicable, results then suggest the exist-
ence of an ultraviolet Banks-Zaks fixed point owing
to a negative singularity of the resummed beta function.
Further work on the possible existence of such a fixed
point [5,38,60–67] and proposals for BSM models incor-
porating such a solution have already been put forward,
e.g. [68,69].
On the other hand, it has also been pointed out that the

negative singularity, and hence the fixed point, might be an
artifact of the large-Nf limit. Several indicators point in this
direction:

(i) In QED, the fermion mass anomalous dimension
diverges at the large-Nf fixed point [36].

(ii) In N ¼ 1 supersymmetric gauge theories coupled to
matter, infinite order resummed beta functions are
scheme dependent [26]: a negative singularity and a
fixed point arise in the Novikov-Shifman-Vainstein-
Zhakarov scheme, but not in the DRED scheme,
leading to the conclusion that the infinite Nf fixed
point cannot be trusted [26].

(iii) In QCD, the glueball anomalous dimension violates
the unitarity bound close to the infinite Nf fixed
point [70].

(iv) A more general analysis of higher-order corrections
came to the conclusion that the putative fixed point
no longer arises at finite Nf [39].

(v) Advanced lattice simulations, although not conclu-
sive, have not found any support for this type of
fixed point in SUð2Þ gauge theories with 24 and 48
Dirac fermions [71].

For these reasons, there is presently not sufficient
evidence for the validity of a large-Nf fixed point in the
gauge sector.
Thus, our focus is on the role of Yukawa and scalar self-

interactions. At weak coupling, it is well known that this
allows for new scaling limits, qualitatively different from

FIG. 8. Renormalization group trajectory connecting the interacting UV and IR fixed points in the Veneziano limit. From top to
bottom, the lines αi correspond to the gauge, Yukawa, single, and double trace scalar couplings.

4The main reason for this is that both fixed points are fully
interacting. With N ¼ 1 supersymmetry, the additional global
and anomaly-free Uð1ÞR symmetry then implies identical
R-charges and identical values for the central charge a.
Consequently, in supersymmetry, a flow from one fully interact-
ing fixed point to another would be in conflict with the a theorem.
Still, asymptotically safe UV fixed points can arise in certain
semisimple supersymmetric QFTs [14].
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Banks-Zaks fixed points. Here, we clarify whether Yukawa
interactions may also provide a new scaling limit at finite or
infinite Nf ≫ Nc, different from the one seen in the gauge
sector.

A. Banks-Zaks at large ϵ

To set the stage, we first recall the setup of Refs. [36–38]
and consider a gauge theory with fermions transforming
under the representation R. In perturbation theory, the
p-loop order term is a polynomial in Nf of degree p-1. The
highest order term in Nf corresponds to diagrams with
internal fermion propagator bubbles. In the large-Nf limit,
these diagrams with internal chains of bubbles dominate the
renormalization group flow. By rescaling the coupling
α → SRNfα=π, where SR is the Dynkin index of the
fermions’ representation, one can reorganize the beta
function from a power expansion in small coupling to a
power expansion in 1=Nf . Through the use of a clever
resummation technique, an exact all-orders expression for
the beta function has been obtained for Abelian [36]
and non-Abelian gauge groups [37] (see also Ref. [38]).
Keeping the notation used in this study, it can be
written as

βg ¼
2A
3
αg

�
1þ

X∞
i¼1

HiðAÞ
Ni

f

�
; ð26Þ

with A ¼ 4NfSRαg=Nc and HIðAÞ a coefficient encoding
the contribution of diagrams with the highest powers of Nf
at all orders. This expression is arranged such that the
leading term of the sum is 2Aαg=3, corresponding to the
one-loop result. The next-to-leading term is

H1ðAÞ¼−
11

4

CG

SR
þ
Z

A=3

0

dxI1ðxÞI2ðxÞ

I1ðxÞ¼
ð1þxÞð2x−1Þ2ð2x−3Þ2sinðπxÞ3Γðx−1Þ2Γð−2xÞ

ðx−2Þπ3

I2ðxÞ¼
CR

SR
þ20−43xþ32x2−14x3þ4x4

4ð2x−1Þð2x−3Þð1−x2Þ
CG

SR
: ð27Þ

The case for a nontrivial fixed point comes from the poles
in the terms I1 and I2. The divergence drives H1 towards
large negative values such that the 1=Nf suppression is
bested and a cancellation with the one-loop term is
possible. The pole occurs at A� ¼ 15=2 for the Abelian
case and at A� ¼ 3 for the non-Abelian case, which would
imply a fixed point α�g ¼ A�Nc=ð4NfSRÞ with parametri-
cally large scaling exponent 1=ϑ → 0.

Next, we consider finite loop order approximations. The
integral in H1 can be evaluated by first performing a Taylor
expansion of the integrand around vanishing x. Keeping the
first two terms of the expansion, one gets

βg ¼ −
4

3

�
11

2
CG
2 − 2NfSR2

�
α2g
Nc

þ
�
40

3
CG
2 þ 8CR

2

�
NfSR2

α3g
N2

c

−
1

27
ð79CG

2 þ 66CR
2 Þð2NfSR2 Þ2

α4g
N3

c
ð28Þ

which precisely corresponds to the terms with the highest
power of Nf at the first three-loop orders in the perturbative
beta function; see Eqs. (A3)–(A6) in the Appendix. Then,
at finite loop order, the fixed point arises through a
cancellation between the first and the highest loop order
available. In our notation, largeNf corresponds to 1=ϵ → 0,
so that at three loop and omitting factors of Nc, we have

βð1Þg ∝ ϵα2g; βð2Þg ∝ ϵα3g; βð3Þg ∝ ϵ2α4g: ð29Þ
For a cancellation to occur between the first- and the third-
loop order, α�g must scale as α�g ∼ 1=

ffiffiffi
ϵ

p
. With this scaling,

the second-loop term becomes subleading in ϵ, so the
cancellation is purely between first and third-loop order. At
the nth-loop order, the scaling of the coupling is α�g ∼
ϵð2−nÞ=ðn−1Þ (provided that the n-loop order is overall
negative) [60,72]. In the absence of scalar fields, the gauge
coupling takes the fixed point value,

α�gj300 ¼ 3

2
ffiffiffi
7

p Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1ffiffiffi
ϵ

p

þ 117

112

N2
c − 3

13

N2
c − 33

112

1

ϵ
þO

�
1

ϵ3=2

�
; ð30Þ

and taking Nc → ∞ we recover the result of Ref. [5]. This
is the behavior expected from the infinite-Nf resummed
result. We also reproduce the scaling exponent

ϑ1j300 ¼ −
4ffiffiffi
7

p Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q ffiffiffi
ϵ

p þO

�
1

ϵ1=2

�
: ð31Þ

Taking the result at face value, we find a lower bound for ϵ
due to the onset of large coupling values,

ϵmin ¼
477ðN4

c þ 55
318

N2
c − 9

318
Þ

224N2
cðN2

c − 33
112

Þ þ 57
ffiffiffiffiffiffiffiffi
505

p

224N2
cðN2

c − 33
112

Þ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N8

c −
12925

36461
N6

c þ
14461

729220
N4

c þ
1683

364610
N2

c þ
81

729220

r
:
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In previous works [5,60,72], the expressions (30) and (31)
have been interpreted as the finite loop order remnant of
the infinite order fixed point. On the other hand, given the
aforementioned points of critique which indicate that the
zero at infinite order is an artifact of the large-Nf limit,
we conclude that the finite order image of the Banks-Zaks
fixed point candidate at large ϵ cannot be trusted either.
It is then interesting to check whether Yukawa and
quartic couplings can modify the outcome, which we
discuss next.

B. Gauge-Yukawa at large ϵ

Given the above state of affairs, we now include effects
from uncharged scalar fields and Yukawa interactions. For
the model at hand, no infinite order in Nf expressions for
beta functions are available. Therefore, we resort to finite
order perturbation theory and mimic the analysis of the
previous section.
We begin by retaining the Yukawa and scalar interactions

to first-loop order and in the 1=ϵ → 0 limit. The corre-
sponding beta functions read

βð1Þy ≈ 2ϵα2y − 6αgαy

βð1Þu ≈ 8α2u þ 4αyαu − 2ϵα2y þ 48N−2
c ϵ−2αuαv

βð1Þv ≈ 12α2u þ 4αyαv þ 4α2v þ 16αuαv: ð32Þ

For the Yukawa beta function to vanish, the cancellation
must occur within the same loop order. This implies that at
the fixed point, the Yukawa coupling must scale as
α�y ∼ α�g=ϵ ∼ 1=ϵ3=2. To find the scaling of the scalar
interaction αu, we note that the cancellation should not
depend on the αuαv term, as this vanishes for large Nc.
Next, we rule out that the cancellation could depend on
αyαu, noting that the implied scaling would make α2u more
relevant and the beta function would not vanish. The only
possible choice is for the negative term to cancel with α2u,
implying that at the fixed point αu ∼

ffiffiffi
ϵ

p
αy ∼ 1=ϵ. A similar

argument follows for the double trace scalar self-interac-
tion, finding the same scaling αv ∼

ffiffiffi
ϵ

p
αy ∼ 1=ϵ. These

interactions modify the fixed point of the gauge coupling
only at subleading order. Overall, we therefore find

αgj311 ¼ 3

2
ffiffiffi
7

p Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1ffiffiffi
ϵ

p þ 9

28

N2
c þ 3

2

N2
c − 33

112

1

ϵ
þO

�
1

ϵ3=2

�

αyj311 ¼ 9

2
ffiffiffi
7

p N2
c − 1

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1

ϵ3=2
þ 27

28

ðN2
c − 1ÞðN2

c þ 3
2
Þ

N2
cðN2

c − 33
112

Þ
1

ϵ2
þO

�
1

ϵ5=2

�

αuj311 ¼ 9

4
ffiffiffi
7

p N2
c − 1

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1

ϵ
þ 27

56

N2
c − 1

Nc

�
N2

c þ 3
2

N2
c − 33

112

−
ffiffiffi
7

p

3

Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q
�

1

ϵ3=2
þO

�
1

ϵ2

�

αvj311 ¼ −
9

4
ffiffiffi
7

p N2
c − 1

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1

ϵ
−
27

56

N2
c − 1

N2
c

�
N2

c − 3
2

N2
c − 33

112

−
ffiffiffi
7

p Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q
�

1

ϵ3=2
þO

�
1

ϵ2

�
: ð33Þ

Notice that the gauge coupling achieves the exact same
fixed point as in Eq. (30) to leading order in ϵ and Nc,

α�gjBZ ¼ α�gjGY; ð34Þ

modulo subleading terms. Moreover, to the leading order in
ϵ ≫ 1, the Yukawa and quartic couplings are suppressed as

α�y ∼ α�g=ðN2
cϵÞ ≪ α�g

α�u;v ∼ α�g=ðN2
c

ffiffiffi
ϵ

p Þ ≪ α�g ð35Þ

compared to the gauge coupling. In this light, the putative
gauge-Yukawa fixed point (33) where α�y;u;vjGY → 0 for
1=ϵ → 0 becomes degenerate with the putative Banks-Zaks
fixed point (30) where α�y;u;vjBZ ¼ 0. The degeneracy is
only lifted through subleading corrections in 1=ϵ, which

leave a mild effect on the lower bound for the conformal
window. The result for the putative large-ϵ fixed points is
displayed by the two red lines in Fig. 9 and in comparison
with the small-ϵ results at weak coupling (blue line).
Incidentally, the scalar couplings in Eq. (33) take

identical values with opposite sign at the leading order
in 1=ϵ, implying a flat potential. In order to assess
vacuum stability, we must go to the next-to-leading order,
which is found to generate an overall positive sign for the
potential,

U�j311 ¼ 9

4
ffiffiffi
7

p N2
c − 1

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1

ϵ3=2
: ð36Þ

We conclude from the explicit expressions that vacuum
stability does not constrain the gauge Yukawa fixed point.
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Turning to the conformal window of the fixed point (33), we find that it is bounded from below by strong coupling.
Following the same reasoning as in the previous sections, the boundary ϵsubl is given by the largest positive root of the
fourth-order polynomial,

fðxÞ ¼ x4ð1792N4
c − 528N2

cÞ þ x3ð21496N4
c − 4296N2

c − 9504Þ þ x2ð26140N4
c þ 41172N2

c − 168048Þ
þ xð−406566N4

c þ 495858N2
c − 985824Þ − 1044531N4

c þ 1250172N2
c − 1919808: ð37Þ

The solution turns out to be a smooth function of Nc and
can be approximated by the interpolant

ϵsubl min ¼
4.2922ðN2

c − 0.6408Þ2
ðN2

c − 1.550ÞðN2
c þ 0.8046Þ ð38Þ

from which we can directly read off the asymptotic value in
the Veneziano limit. In Fig. 9 we additionally compare the
conformal windows at small and large ϵ using Nc ¼ 7. For
small ϵ, couplings and scaling exponents at the gauge-
Yukawa fixed point remain perturbative throughout, for all
approximations up to 322. For large ϵ, couplings become
very large close to the lower bound for the putative Banks-
Zaks (300 approximation) and the putative gauge-Yukawa

(311 approximation) fixed points. The small difference
between the latter two conformal windows is due to
subleading terms in ϵ from Yukawa interactions.
It is now straightforward to determine the eigenvalues

of the stability matrix following the same procedure as
before. An interesting feature is that we find one relevant
eigenvalue that scales as ϑ1 ∼

ffiffiffi
ϵ

p
. It is intriguing that

although the couplings scale with negative powers of ϵ,
this eigenvalue does not become parametrically smaller,
but larger, in the large ϵ regime. Large eigenvalues tend
to be associated to nonperturbative phenomena, and
these results from perturbation theory cannot be viewed
as reliable. To next-to-leading order, the scaling expo-
nents are

ϑ1j311 ¼ −
4ffiffiffi
7

p Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q ffiffiffi
ϵ

p þ 3
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�
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N2
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112

�
þ 117

6
ffiffiffi
7

p
�
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c þ 814
273

N2
c þ 369

273

NcðN2
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112
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�
1ffiffiffi
ϵ

p
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32589

1568

�
N6

c − 14701
4828

N4
c − 3552

4828
N2
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4828
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112

Þ2
�
1

ϵ
þO

�
1

ϵ3=2

�

ϑ2j311 ¼ 9ffiffiffi
7
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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112
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56

ðNc − 1ÞðNc þ 1ÞðN2
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Þ
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112
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1

ϵ3=2
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ϑ3j311 ¼ 36ffiffiffi
7
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c − 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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c − 33
112

q 1
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Þ
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112

Þ
1
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þO
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1
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ϑ4j311 ¼ 18ffiffiffi
7

p N2
c − 1

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 33
112

q 1

ϵ
þ 27ffiffiffi

7
p

ðN2
c − 1Þð2N2

cþ3

2
ffiffi
7

p þ Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
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112

q
Þ
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112

Þ
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1
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�
: ð39Þ

The result confirms that the relevant scaling exponent
grows in the same way as it would at the putative
Banks-Zaks fixed point to leading order in ϵ ≫ 1,

ϑ1jBZ ¼ ϑ1jGY; ð40Þ

modulo subleading corrections. All other exponents be-
come parametrically small in the 311 approximation and
vanish asymptotically in the limit of large ϵ,

ϑ2;3;4jGY → 0: ð41Þ

As such, the scaling dimensions are equivalent to those of
the Banks-Zaks fixed point at the leading order in 1=ϵ.
We can further probe the region close to the lower

boundary of the conformal window, where we find that
eigenvalues grow large as they approach the boundary. This
is illustrated in Fig. 10, where the left panel shows the
relevant eigenvalue diverging at both ϵ → ∞ and
ϵ → ϵsubl min, and the right panel shows the irrelevant
eigenvalues as a function of ϵ for Nc ¼ 5.
The next natural step is to continue pushing this further

to include the two-loop running of the Yukawa and scalar
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interactions. For now, we include the two-loop term of the
Yukawa coupling only, leaving the scalars at one loop. We
will see that the scaling does not work appropriately
anymore, but to demonstrate this, a little work is needed.
For simplicity, we take the limit Nc → ∞, but our results
hold for finite Nc as well.
Keeping the self-interaction running to one loop

means we can continue using the scaling αðu;vÞ ∼
ffiffiffi
ϵ

p
αy.

Substituting this into the two-loop running of the Yukawa
beta function, we notice that, actually, the scalar contribu-
tions are subleading for large ϵ and can be neglected at
leading order,

βð2Þy jαðu;vÞ∝ ffiffi
ϵ

p
αy
≈
10

3
ϵα2gαy þ 8ϵαgα

2
y −

ϵ2

2
α3y: ð42Þ

To proceed, we could assume the same scaling for αg and αy
as before; however, we would run into trouble as then the
term that is proportional to ϵα2gαy would become more
relevant than the one-loop terms; i.e., the Yukawa beta
function does not vanish,

βð1Þy jαy∝αg=ϵ ∼
α2g
ϵ
∼

1

ϵ2

βð2Þy jαy∝αg=ϵ ∼ α3g ∼
1

ϵ3=2
; ð43Þ

which suggests that we should use a different scaling. We
allow αy to change and keep the scaling of αg as it is. This is
indeed what we would expect, as the scaling of the gauge
coupling should only be determined by the fermion
contributions in the gauge beta function. The only way
to cancel the ϵα2gαy term is by choosing αy ∝ αg=

ffiffiffi
ϵ

p
∼ 1=ϵ,

so that

βð1Þy jαy∝αg= ffiffi
ϵ

p ∼ α2g ∼
1

ϵ

βð2Þy jαy∝αg= ffiffi
ϵ

p ∼
ffiffiffi
ϵ

p
α3g ∼

1

ϵ
: ð44Þ

This leads to a cancellation between one- and two-loop
terms, with the Yukawa interaction scaling as
α�y ¼ 2

ffiffiffiffiffiffiffiffi
5=3

p
α�g=

ffiffiffi
ϵ

p
. However, substituting this result in

the gauge beta function, we run into trouble again. The
Yukawa contributions at three loop are now dominating
over the fermion contributions, reversing the overall sign of
the three-loop term,

βð3Þg jαy∝αg= ffiffi
ϵ

p ∼
−112þ 540

27
ϵ2α4g: ð45Þ

The cancellation between one- and three-loop orders can
now only happen for unphysical (i.e., purely imaginary)
values of the gauge coupling g. It is easy to verify that
changing the scaling of the gauge coupling does not help
either, as this leads to terms that do not cancel in the large ϵ
limit. Similarly, including the two-loop running of the
scalar self-interactions does not resolve this issue.

C. Discussion

We have confirmed that a remnant of a putative ultra-
violet Banks-Zaks fixed point at large Nf is visible within
perturbation theory, in accordance with [60,72]. In
Ref. [39], however, it has been explained that this fixed
point is incompatible within any finite set of higher-order
corrections, which invalidates fixed point claims based on
singularities of large-Nf beta functions. We therefore
conclude that the cancellation pattern leading to Eq. (30)

FIG. 10. Shown are the eigenvalues of the gauge-Yukawa fixed
point in the large ϵ regime (311 approximation, Nc ¼ 5). The
sole relevant scaling exponent is large, jϑj > 5 (left panel).
Irrelevant exponents may be similarly large close to the endpoint
and vanish for asymptotically large ϵ.

FIG. 9. Comparison of the conformal window at weak coupling
(ϵ ≪ 1, blue) with conjectured ones at strong coupling (ϵ ≫ 1,
red), evaluated at Nc ¼ 7. For small ϵ, the couplings at the GY
fixed point remain perturbative throughout. For large ϵ, the BZ
(300 approximation) and the GY (311 approximation) fixed
point candidates coincide asymptotically and deviate mildly
when approaching their lower bounds where αg diverges (see
main text).
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is, in fact, spurious, and that it does not extend into a
reliable physical UV fixed point at higher orders.
We then investigated whether the inclusion of uncharged

scalar matter fields and Yukawa couplings may give rise to
a qualitatively different cancellation pattern at large Nf ,
different from the one observed in the gauge sector alone.
However, using the three-loop gauge beta function,
together with the one-loop scalar and Yukawa quartics,
and to the leading order in large ϵ, this leads to the same
fixed point and scaling exponents as found previously; see
(30) vs (33) and (31) vs (39). Hence, the presence of
Yukawa and quartic scalar couplings does not offer a new
scaling limit; the gauge-Yukawa fixed point (33) is struc-
turally identical to the Banks-Zaks one and is expected,
consequently, to suffer from the same shortcomings [39].
The scaling of fixed point couplings with ϵ could be

different from the Banks-Zaks one, provided the two-loop
scalar and Yukawa corrections dominate. In this case,
however, the overall sign of the gauge beta function along
the Yukawa nullcline remains positive, and an interacting
fixed point cannot be achieved in the gauge sector (45).
Therefore, perturbation theory offers no indication for a
qualitatively different large-Nf cancellation pattern due to
Yukawa interactions, different from the one observed with a
gauge coupling alone. This is rather different from what has
been observed at weak coupling, where Yukawa couplings
open up phase space for fixed points different from Banks-
Zaks ones.
In future work, more clarity could be provided through

proper nonperturbative studies, or by all-order resumma-
tions of models with gauge, Yukawa, and scalar inter-
actions.5 For now, we conclude that there is not sufficient
evidence for the existence of Banks-Zaks or gauge-Yukawa
fixed points in matter-dominated regimes of large ϵ.

VII. DISCUSSION AND CONCLUSIONS

We have performed a comprehensive search for interact-
ing fixed points and their conformal windows in QED- and
QCD-like theories characterized by the absence of asymp-
totic freedom. We have determined their asymptotically
safe fixed points and the corresponding conformal windows
at the highest available order in perturbation theory and
extended earlier results [12] beyond the Veneziano limit.
Most notably, we find that finite N corrections consistently
decrease the size of the conformal window, albeit moder-
ately (see Figs. 1–3). Another noteworthy feature is the
smallness of the control parameter ϵ within the entire
conformal window (Table II) which ensures that fixed point
interactions, even for moderate matter field multiplicities,
remain as perturbative as QCD at Z pole mass ener-
gies (Fig. 4).

Increasing the number of fermion species, we established
that the loss of conformality arises due to a fixed point
merger and the loss of vacuum stability. This implies the
existence of a new conformal fixed point α�IR which, here,
takes the form of a fully attractive IR sink for all
canonically marginal couplings (Fig. 7). Close to the
merger, the fixed point is accessible in perturbation theory.
Exactly at the merger, one of the eigenperturbations
becomes exactly marginal, and Miransky scaling is
observed. Beyond the merger, both fixed points disappear
into the complex plane and leave a regime of slowed-down
RG evolution (“walking”) in their wake. As such, our
models offer examples of 4d QFTs which asymptote
towards interacting and unitary conformal field theories
both in the deep UV and in the deep IR limits.
Our findings are also of interest in the context of QCD

with Nf flavors of fermions, where it has previously been
speculated that a merger of the Banks-Zaks fixed point with
a putative new conformal fixed point α�QCD [52] is respon-
sible for the lower bound of the conformal window. Since
the boundary arises at strong coupling, however, a clear
confirmation of the conformal fixed point α�QCD has thus far
remained elusive. It would then seem promising to inves-
tigate the new IR fixed point α�IR of this work more
extensively, for it arises at weak coupling and may serve
as a well-controlled template for a genuine gauge coupling
merger in 4d quantum gauge theories.
Finally, we have also revisited putative fixed points in the

regime of large ϵ [36–39], where fluctuations are matter
dominated. Our main result is that gauge-Yukawa fixed
points, if they arise, do so through the same mechanism as
the putative large-Nf Banks-Zaks fixed point. Alternative
scaling relations failed to provide viable fixed points, and
we conclude that the addition of Yukawa and scalar
couplings do not offer a fixed point candidate different
from the Banks-Zaks one. In this light, the objections
brought forward against the large-Nf Banks-Zaks fixed
point also apply for the large-Nf gauge-Yukawa fixed point.
Hence, unlike earlier expectations, perturbation theory and
resummed versions thereof do not offer signatures for
viable fixed points in the matter-dominated large-Nf
regime. It will of course be important to further test these
conclusions beyond perturbation theory in the future.
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APPENDIX: BETA FUNCTIONS

We list here the beta function coefficients for the
quantum field theory with Lagrangian (3) with general

5See Refs. [62,73] for examples of resummed Yukawa beta
functions where only one pair of fermions couple to a complex
scalar field.
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compact simple gauge group G, Nf Dirac fermions in an
irreducible representation R of it, using known formal
expressions provided in Refs. [40–42,44,74]. For a power-
ful tool to extract perturbative RG beta functions from
general expressions in the MS scheme, see Ref. [45].
Unlike in the main text (4), we do not rescale the

couplings by powers of matter multiplicities, and we write

αx ¼
x2

ð4πÞ2 ; αu ¼
u

ð4πÞ2 ; αv ¼
v

ð4πÞ2 ; ðA1Þ

where x ¼ g, y. The reason for this is that the large-N
scaling in the fundamental or other irreducible representa-
tions works quite differently. We introduce the short-hand
notation ΞxðαKαL…Þ to mean the coefficient of αKαL… in
βx, i.e.,

ΞxðαKαL…Þ ¼ ∂βx
∂αK∂αL…

����
α¼0

: ðA2Þ

We group the coefficients by coupling and then by loop
order. First, we have the gauge coupling, at one loop,

Ξgðα2gÞ ¼ −
4

3

�
11

2
CG
2 − 2NfSR2

�
; ðA3Þ

two loop,

Ξgðα3gÞ ¼
�
8CR

2 þ 40

3
CG
2

�
NfSR2 −

68

3
ðCG

2 Þ2; ðA4Þ

Ξgðα2gαyÞ ¼ −4SR2N2
f ; ðA5Þ

and three loop,

Ξgðα4gÞ ¼ −6
�
2857

162
ðCG

2 Þ3 −
1415

162
ðCG

2 Þ2ð2NfSR2 Þ

þ 79

162
ðCG

2 Þð2NfSR2 Þ2 −
205

54
CG
2 C

R
2 ð2NfSR2 Þ

þ 11

27
CR
2 ð2NfSR2 Þ2 þ

1

3
ðCR

2 Þ2ð2NfSR2 Þ
�
; ðA6Þ

Ξgðα3gαyÞ¼−6
�
2CG

2 ð2NfSR2 ÞNfþ
1

2
CR
2 ð2NfSR2 ÞNf

�
;

ðA7Þ

Ξgðα2gα2yÞ ¼ 6

�
1

2
N2

f ð2NfSR2 Þ þ
7

12
NfdRð2NfSR2 Þ

�
: ðA8Þ

The Yukawa coupling coefficients at one loop are

Ξyðα2yÞ ¼ 2ðNf þ dRÞ; ðA9Þ

ΞyðαyαgÞ ¼ 12CR
2 ; ðA10Þ

two-loop contributions from gauge and Yukawa are

Ξyðα3yÞ ¼ 2

�
2 −

1

4
N2

f − 3NfdR

�
; ðA11Þ

Ξyðα2yαgÞ ¼ 2½8NfCR
2 þ 5CR

2dR�; ðA12Þ

Ξyðαyα2gÞ ¼ 4

�
−
3

2
ðCR

2 Þ2 −
97

6
CR
2C

G
2 þ 5

3
CR
2 ð2NfSR2 Þ

�
;

ðA13Þ

and two-loop contributions involving the scalar quartics are

Ξyðα2yαuÞ ¼ −8ðN2
f þ 1Þ; ðA14Þ

Ξyðα2yαvÞ ¼ −8Nf ; ðA15Þ

Ξyðαyα2uÞ ¼ 4ðN2
f þ 1Þ; ðA16Þ

Ξyðαyα2vÞ ¼ 4ðN2
f þ 1Þ; ðA17Þ

ΞyðαyαuαvÞ ¼ 16Nf : ðA18Þ

Lastly, we have the scalar quartic beta functions at one
loop,

Ξuðα2uÞ ¼ 8Nf ; ðA19Þ

ΞuðαuαvÞ ¼ 24; ðA20Þ

ΞuðαuαyÞ ¼ 4dR; ðA21Þ

Ξuðα2yÞ ¼ −2dR; ðA22Þ

Ξvðα2vÞ ¼ 4ðN2
f þ 4Þ; ðA23Þ

ΞvðαuαvÞ ¼ 16Nf ; ðA24Þ

ΞvðαvαyÞ ¼ 4dR; ðA25Þ

Ξvðα2uÞ ¼ 12; ðA26Þ

and two loop for the single trace,

Ξuðα3uÞ ¼ −24ð5þ N2
f Þ; ðA27Þ

Ξuðα2uαyÞ ¼ −16NfdR; ðA28Þ

Ξuðα2uαvÞ ¼ −352Nf ; ðA29Þ

Ξuðαuα2yÞ ¼ −6NfdR; ðA30Þ
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Ξuðαuα2vÞ ¼ −8ð41þ 5N2
f Þ; ðA31Þ

ΞuðαuαyαgÞ ¼ 20CR
2dR; ðA32Þ

ΞuðαuαyαvÞ ¼ −48dR; ðA33Þ

Ξuðα3yÞ ¼ 4NfdR; ðA34Þ

Ξuðαgα2yÞ ¼ −8CR
2dR; ðA35Þ

Ξuðαvα2yÞ ¼ 8dR; ðA36Þ

and for the double trace,

Ξvðα3vÞ ¼ −24ð7þ 3N2
f Þ; ðA37Þ

Ξvðα2vαyÞ ¼ −8dRð4þ N2
f Þ; ðA38Þ

Ξvðα2vαuÞ ¼ −352Nf ; ðA39Þ

Ξvðαvα2yÞ ¼ −6NfdR; ðA40Þ

Ξvðαvα2uÞ ¼ −8ð41þ 5N2
f Þ; ðA41Þ

ΞvðαvαyαgÞ ¼ 20CR
2dR; ðA42Þ

ΞvðαuαyαvÞ ¼ −32NfdR; ðA43Þ

Ξvðα3uÞ ¼ −96Nf ; ðA44Þ

Ξvðα2uαyÞ ¼ −24dR; ðA45Þ

Ξvðαuα2yÞ ¼ 8dR; ðA46Þ

Ξvðα3yÞ ¼ 4dR: ðA47Þ

If we specialize to the case G ¼ SUðNcÞ with the fermions
in the fundamental representation R ¼ Nc, we have

CG
2 ¼ Nc ¼ dR; ðA48Þ

SR2 ¼ 1

2
; ðA49Þ

CR
2 ¼ 1

2

�
Nc −

1

Nc

�
; ðA50Þ

and we recover the equations given in the main text, once
we have rescaled the couplings as in Eq. (A1) and rewritten
them in terms of ϵ in Eq. (6).
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