
Fractons in effective field theories for spontaneously broken translations

Riccardo Argurio,1,* Carlos Hoyos ,2,† Daniele Musso ,3,‡ and Daniel Naegels 1,§
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C.P. 231, B-1050 Brussels, Belgium

2Department of Physics and Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA)
Universidad de Oviedo, c/ Federico García Lorca 18, E-33007 Oviedo, Spain

3Centro de Supercomputación de Galicia (CESGA), s/n, Avenida de Vigo,
15705 Santiago de Compostela, Spain

(Received 17 July 2021; accepted 1 October 2021; published 1 November 2021)

We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like
models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican
hat potential for spatial gradients. We show that there are fractonic modes with either subdimensional
propagation or no propagation altogether, namely, immobility. Such a class of effective field theories
encompasses instances of helical superfluids and metafluids, where fractons can be connected to an
emergent symmetry under higher-moment charges, leading in turns to the trivialization of some elastic
coefficients. The introduction of a finite-charge density alters the mobility properties of fractons and leads
to a competition between the chemical potential and the superfluid velocity in determining the gap of the
dilaton. The mobility of fractons can also be altered at zero density upon considering additional higher-
derivative terms.
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I. INTRODUCTION

An interesting aspect of low-energy effective theories is
that of emergent symmetries. In the simplest setup of a
complex scalar field with a Mexican hat potential, the Uð1Þ
symmetry associated to phase rotations of the scalar is
spontaneously broken and the low-energy effective theory
is described by a massless Nambu-Goldstone boson. At
sufficiently low energies, the effective action of the theory
is that of a massless scalar field, which not only enjoys the
original Uð1Þ symmetry in the form of a constant shift of
the Nambu-Goldstone field, but it is also conformally
invariant and has an infinite set of conserved higher-spin
currents associated to coordinate-dependent shifts of the
Nambu-Goldstone field. Neither the conformal nor the
coordinate-dependent shifts are symmetries of the full
theory, and they are broken when higher-derivative cor-
rections to the low-energy action are considered.

Nevertheless, they can leave an imprint in the properties
of the low-energy effective theory.
Similar emergent symmetries at low energies appear in

other contexts like low-energy excitations of a Fermi
surface, independent spin, and spatial rotation symmetries
in nonrelativistic theories, etc. Here we want to explore
low-energy effective theories with emergent symmetries
that lead to (gapless) fractonic modes. Fractons are exci-
tations that are able to move only along a restricted set of
spatial directions, or are even completely immobile [1,2].
Gapless fractons appear in a variety of systems such as spin
liquids [3–7], dipole-conserving lattice models [8–12], and
quantum elasticity [13–24]. Hydrodynamics of fractons has
been studied in [25–27]. Models with spontaneous break-
ing of symmetries have also been studied [28,29]. At low
energies, the models we are going to discuss have simi-
larities to these last, but with the important difference that it
is not necessary to impose any exact coordinate-dependent
phase rotation or shift symmetry in order to obtain fractonic
dispersion relations.1

A second aspect that we want to explore is the effect of
spontaneous breaking of spacetime symmetries in the
counting of Nambu-Goldstone bosons. It is well known
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1Let us emphasize that, as the cited references in this paragraph
suggest, the term “fracton” is interpreted in extended ways
compared to its original introduction in condensed matter. In
this work, we use the term “fracton” in the already customary
wider sense, encompassing both discrete and continuum theories.
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that the naive counting of a number of gapless modes equal
to the number of broken generators does not apply in this
case [30–33]. An interesting case is when time translations
are broken by a finite chemical potential. Under these
conditions some of the Nambu-Goldstone bosons become
gapped when the effective unbroken Hamiltonian does not
commute with some of the broken generators [34–40]. In
particular, if scale invariance is spontaneously broken
together with a global symmetry, the dilaton will get a
gap proportional to the chemical potential [40] since the
generator of dilatations does not commute with the
Hamiltonian. Integrating out the gapped modes and keep-
ing only the gapless modes would be equivalent to applying
the inverse Higgs constraints [30,33].
If, instead of time translations, space translations are

broken, we expect to find some qualitative similarities.
There will be unbroken generators of space translations of
the form P̃i ¼ Pi − kiaQa, where Pi are the ordinary
generators of space translations and Qa are the generators
of spontaneously broken global symmetries. The generator
of dilatations D does not commute with the unbroken
generators ½D; P̃i� ¼ iPi, so this might produce a gap for
the dilaton dependent on kia. However, due to the breaking
of spatial symmetries, the dispersion relations of the modes
can depend in a nontrivial way on the spatial momenta, so
the intuition from the chemical potential does not entirely
apply to this more complicated situation.
What we will do in this work is to examine these

questions using a simple (2þ 1)-dimensional model which
can be viewed as a generalization of the ordinary Mexican
hat model for spatial-derivative terms of a complex scalar
field. Scale invariance is ensured by introducing an addi-
tional real scalar acting as a compensating field. It turns out
that there is a large space of possible ground states breaking
translation invariance, and the effective theory depends
crucially on the symmetry realization of the ground state.
We restrict to states leading to homogeneous effective
theories. We find emergent symmetries leading to fractonic
dispersion relations and a strong dependence on spatial
momentum that affects both the dispersion relations and the
composition of the modes. We also study generalizations to
finite chemical potential and to (3þ 1) dimensions for
some cases.
The paper is organized as follows. In Sec. II we introduce

the model and discuss its ground states and symmetries. In
Sec. III we compute the dispersion relations for linearized
fluctuations around the ground states and identify the
associated Nambu-Goldstone modes. In Sec. IV we extend
our results to finite density and in Sec. V we introduce a
deformation that removes some of the degeneracy of the
simpler model and study its effect on the dispersion
relations. In Sec. VI we try to compare our results with
theorems determining the number of gapless Nambu-
Goldstone bosons and finally we conclude in Sec. VII
with a discussion of possible physical systems where

similar symmetry realizations and exotic Nambu-
Goldstone modes might be found. We have collected
several technical results and generalizations to (3þ 1)
dimensions in the Appendixes.

II. TRANSLATION-BREAKING MEXICAN
HAT MODEL

We consider a (2þ 1)-dimensional model with two
scalar fields, one complex and one real, governed by the
following Lagrangian density

L ¼ ∂tΦ�∂tΦþ A∂iΦ�∂iΦþ 1

2
∂tΞ∂tΞ −

1

2
∂iΞ∂iΞ

− B
ð∂iΦ�∂iΦÞ2

Ξ6
−HΞ6: ð2:1Þ

The “couplings" A, B and H are all real and positive. The
real scalar field Ξ presents a standard kinetic term and plays
the role of a “compensator field,” introduced in order to
ensure scale invariance. The detailed scaling dimensions of
the couplings and of the fields (and of the expectation
values that we will introduce below) are

½A� ¼ ½B� ¼ ½H� ¼ 0; ½Φ� ¼ ½ρ� ¼ 1

2
;

½Ξ� ¼ ½v� ¼ 1

2
; ½k� ¼ ½∂� ¼ 1; ð2:2Þ

where we considered natural units of energy.
The complex scalar field Φ presents instead a nonstand-

ard kinetic term. Specifically, given the positivity of A, the
quadratic term with spatial gradients has the opposite sign
with respect to the standard relativistic action. This is a key
ingredient for triggering the breaking of translation sym-
metry through configurations with nonvanishing gradients.
Intuitively, the “wrong” sign in the gradient term for Φ can
be thought in analogy to the negative squared mass term of
the standard Mexican hat potential. Thus we say that (2.1)
features a “gradient Mexican hat” for Φ [41,42].
The condition A > 0 corresponds to a gradient insta-

bility. An example where such a feature can play an
important role is in cosmological scalar models for dark
energy, where it relates to experimentally testable proper-
ties of the cosmological equation of state [43,44]. In the
context of spatially-modulated phases, a similar Lorentz-
invariant model has been studied in [45]. The term
associated to the B coupling in (2.1) has been devised
for the symmetry-breaking purposes of the present study.
Its real-world realizability as an effective description of
the broken phase is not obvious and needs further
investigation.
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The equations of motion are given by

∂2
tΦþ A∂2

iΦ − 2B∂i

�∂iΦ
Ξ6

∂jΦ�∂jΦ
�

¼ 0; ð2:3Þ

∂2
tΞ − ∂2

iΞ −
6

Ξ

�
B
ð∂iΦ�∂iΦÞ2

Ξ6
−HΞ6

�
¼ 0: ð2:4Þ

A. Ground states

There is a large class of possible ground states that break
spontaneously translation invariance with different pat-
terns, but it is strongly restricted if we demand that the
effective action for perturbations around the ground state
is homogeneous, leaving just two possible types (see
Appendix A). Following the symmetry breaking pattern
they exhibit we dub the first “helical superfluid” and the
second “metafluid”. We will discuss both, pointing out the
similarities and differences between the two types of
ground states.

1. Helical superfluid

We consider the following static ansatz for the solutions

Φðt; x; yÞ ¼ ρeikx; ð2:5Þ

Ξðt; x; yÞ ¼ v; ð2:6Þ

where the compensator field is spatially constant, while the
complex field configuration corresponds to a plane wave of
amplitude ρ and wave vector k. All the parameters in the
ansatz, ρ, k, and v, are assumed to be nonzero, and without
loss of generality also real and positive. The equations of
motion descending from (2.1), when considered upon the
ansatz (2.5) and (2.6) reduce to

ρ2k2ð2Bk2ρ2 − Av6Þ ¼ 0; ð2:7Þ

Bk4ρ4 −Hv12 ¼ 0: ð2:8Þ

We can rewrite (2.7) and (2.8) as follows:

A ¼ 2Bξ; ð2:9Þ

H ¼ Bξ2; ð2:10Þ

where we have introduced the dimensionless combination

ξ ¼ k2ρ2

v6
¼ A

2B
¼

ffiffiffiffi
H
B

r
; ð2:11Þ

which parametrizes the space of nontrivial static solutions.
Positivity (and reality) of ξ implies AB > 0 and HB > 0.
This is indeed satisfied by our choice of taking A, B, and H
all positive. Consistency of all the relations in (2.11)

requires the following relation on the Lagrangian
coefficients

H ¼ A2

4B
; ð2:12Þ

necessary to have nontrivial solutions, i.e., v ≠ 0, k ≠ 0,
and ρ ≠ 0; notice that this amounts to a fine tuning. The
significance of the fine tuning becomes apparent when
looking at the energy density for a static configuration. For
(2.12) it takes the form of a complete square

ε ¼ BΞ−6
�
∂iΦ�∂iΦ −

A
2B

Ξ6

�
2

¼ Bv−6ðk2ρ2 − ξv6Þ2: ð2:13Þ

Whenevaluated on (2.11), the energy density is zero, so these
are minimal energy solutions. It is easy to see that there are
two directions ofmarginal stability; in fact we are fixing only
the combination ξ given in (2.11), but the ansatz (2.5) and
(2.6) has three independent parameters. In other words, we
have a two-dimensional space of ground states for this
particular ansatz. We will expand for small fluctuations
around this ground state using the parametrization

Φðt; x; yÞ ¼ ρeikx½1þ ϕðt; x; yÞ�
¼ ρeikx½1þ σðt; x; yÞ þ iχðt; x; yÞ�; ð2:14Þ

Ξðt; x; yÞ ¼ v½1þ τðt; x; yÞ�: ð2:15Þ

2. Metafluid

We still consider model (2.1), but with a different
background ansatz, namely

Φ ¼ bðxþ iyÞ; ð2:16Þ

Ξ ¼ v; ð2:17Þ

where b and v are respectively a complex and a real
constant. In principle there can be more complicated
solutions of this type where one introduces two complex
constants bx and by such that Φ ¼ bxxþ byy. The main
difference with the case we study is that (2.16) keeps a
combination of spatial and phase rotations of the complex
field unbroken, while the more general solution does not.
Since we are mainly interested in the breaking of translation
symmetry we keep to the isotropic case in order to avoid
further complications. The equation of motion (2.3) forΦ is
automatically solved by the ansatz, while that for Ξ, (2.4),
eventually leads to

v6 ¼ 4B
A

jbj2; ð2:18Þ
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where we have used the condition on the coefficients
(2.12). This guarantees that the energy density of the
configuration vanishes, so these are also minimal energy
solutions of the same model. We will perform an expansion
of small fluctuations around the background

Φ ¼ bðxþ iyÞ þ b ½uxðt; x; yÞ þ iuyðt; x; yÞ�; ð2:19Þ

Ξ ¼ vþ τðx; y; zÞ: ð2:20Þ

The fluctuations ui can be interpreted as displacement
fields in a solid, in the spirit of the effective actions
proposed in [46–48]. The reason for adopting the name
metafluid will become apparent from the study of the
elastic response in Sec. (2.3), specifically, from the vanish-
ing of the shear elastic coefficient.
Finally, it is worth mentioning that there is not really an

unbroken phase, even for A < 0. Indeed the compensator
field Ξ appears in the denominator in the interaction term
with coefficient B in (2.1), and hence the limit v → 0 is not
well behaved. We henceforth always keep v > 0.

B. Symmetries and Ward-Takahashi identities

The action defined by the Lagrangian (2.1) presents the
following symmetries:
(a) Uð1Þ symmetry,

Φ → eiαΦ; Ξ → Ξ: ð2:21Þ

(b) Complex shift symmetry,

Φ → Φþ aR þ iaI; Ξ → Ξ: ð2:22Þ

(c) Dilatation symmetry,

xμ → e−ηxμ; Φ→ eη=2Φ; Ξ→ eη=2Ξ: ð2:23Þ

Note that the Uð1Þ and complex shift symmetries are not
independent, we can always use a Uð1Þ transformation to
rotate a complex shift into a real one. The set of indepen-
dent symmetries we discuss will then be dilatations and
either the Uð1Þ and real shift or the complex shifts.
In the helical state the Uð1Þ symmetry is broken together

with translations along the x-direction to a diagonal
combination. Real shifts and dilatations are also broken.
The symmetry breaking pattern is quite different in the
metafluid. In this case, it is the complex shift symmetry
which is the one broken with translations, in both the x- and
y-directions, to a diagonal combination. A Uð1Þ symmetry
that combines the phase change of the complex field and
spatial rotations survives, so this phase is rotationally
invariant. As in the previous case, dilatation symmetry is
also broken.

The naive counting of Nambu-Goldstone bosons would
give us three gapless modes in each case; the Nambu-
Goldstone modes associated to Uð1Þ real shift and dilata-
tions in the helical state, the Nambu-Goldstone modes
associated to real and imaginary shifts, and dilatations in
the metafluid state. As we will see the naive counting fails
and a mode becomes gapped. We will return to the issue of
this counting in Sec. VI.
In the metafluid state the identification of the fluctuations

is more or less evident, ui should be associated to spatial
translations/complex shifts while τ should correspond to
scale transformations. In the helical state χ is clearly related
toUð1Þ rotations/translations in the x-direction, but the role
of σ and τ is not so obvious. In order to help with the
identification of the modes in the following we will
consider the Ward-Takahashi identities associated to sym-
metries. A more detailed derivation of the identities can be
found in Appendix B.
The Ward-Takahashi identities at linear order in the

fluctuations return different combinations of the linear
equations of motion that we will obtain from the
Lagrangian in (3.3), (3.4) and (3.5). The extra information
we get from the Ward-Takahashi identities is that, when
considering the decoupling or the high-momentum limit
(which we will implement by formally taking k → 0,
though of course we keep the premise that k ≠ 0 for
symmetry breaking to happen), one can establish a con-
nection between the fluctuation fields χ, σ, and τ and the
Uð1Þ, the real shift and the dilatation symmetries. Similarly,
for the metafluid one can identify the dispersion relations
that correspond to each mode at high momentum. Note that
in the perspective where (2.1) is already an effective theory,
the dispersion relations at high momentum would in
principle be modified by putative higher-derivative terms
not included in the Mexican hat model we are studying
(scale invariance would be explicitly broken by such
corrections). However those would come suppressed by
a mass scale that we assume to be much larger than any of
the scales in the model so it is still sensible to discuss a
high-momentum limit.

1. U(1) symmetry

The Uð1Þ current corresponding to the Lagrangian
∂μΦ�∂μΦ has the form

jμ ¼
i
2
ðΦ∂μΦ� −Φ�∂μΦÞ: ð2:24Þ

Thus, for the model (2.1) we have

J0 ¼ j0; ð2:25Þ

Ji ¼ −
�
A − 2B

∂jΦ�∂jΦ
Ξ6

�
ji; ð2:26Þ
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whose conservation is encoded in the continuity equation2

∂μJμ ¼ 0: ð2:27Þ

Expanding to linear order in the fluctuations of the helical
superfluid we have

∂2
t χ − 2A∂x½kðσ − 3τÞ þ ∂xχ� ¼ 0: ð2:28Þ

In the k → 0 limit one finds

∂2
t χ − 2A∂2

xχ ≃ 0; ð2:29Þ

indicating that at large frequency and momentum compared
to k, the perturbation χ maps to the Nambu-Goldstone
boson of the Uð1Þ symmetry, with a dispersion relation

ω2 ≃ 2Aq2x; qx ≫ k: ð2:30Þ

This mode has an unusual dispersion relation, and we will
refer to it as a ‘lineon’ since it moves on a line. We will
discuss this in more detail when we introduce the con-
nection to fractons.

2. Shift symmetry

The (complex) shift current corresponding to the
Lagrangian ∂μΦ�∂μΦ is given by

jðsÞμ ¼ ∂μΦ; ð2:31Þ

where the s label stands for “shift”. The current is linear in
the field because the field variation is a constant. Using
(2.31), the current for the model (2.1) can be expressed as
follows:

JðsÞ0 ¼ jðsÞ0 ; ð2:32Þ

JðsÞi ¼ −
�
A − 2B

∂jΦ�∂jΦ
Ξ6

�
jðsÞi : ð2:33Þ

The associated continuity equation is

∂μJðsÞμ ¼ 0; ð2:34Þ

which, at linear level in the fluctuations of the helical super-
fluid, gives two linearly-independent equations, (2.28) and

∂2
t σ þ 2Ak½kðσ − 3τÞ þ ∂xχ� ¼ 0: ð2:35Þ

In the k → 0 limit, we get

∂2
t σ ≃ 0: ð2:36Þ

Therefore, at large frequencies and momenta compared
to k, the perturbation σ can be identified with the
Nambu-Goldstone mode of (real) shifts. Again, the unusual
dispersion relation ω2 ≃ 0 will be discussed later on.
For the metafluid it is convenient to study only the Ward-

Takahashi identity of complex shifts. To linear order in the
fluctuations, the conservation of the complex shift current
produces the equations

vð∂2
t ui − A∂i∂kukÞ þ 6A∂iτ ¼ 0: ð2:37Þ

At high momentum, τ is decoupled and the displacements
ui combine in two modes with dispersion relations

ω2 ≃ 0; ω2 ≃ Aðq2x þ q2yÞ; ð2:38Þ

where the trivial mode corresponds to the transverse
component ∂kuk ¼ 0 and the propagating mode to the
longitudinal component.

3. Dilatation symmetry

The Lagrangian (2.1) being scale invariant ensures us
that we can improve the energy-momentum tensor such that
the dilatation conserved current takes the form

Dμ ¼ T μ
νxν − Vμ; ð2:39Þ

where Vμ is called the virial current. Therefore, the
conservation equation

∂μDμ ¼ 0 ð2:40Þ

is equivalent to say that, on shell, the trace of the improved
energy-momentum tensor is zero up to a total divergence of
the virial current

T μ
μ ¼ ∂μVμ: ð2:41Þ

The improved energy-momentum tensor contains the
following terms

T μ
ν ≡ Tμ

ν þ ð□δμν − ∂μ∂νÞ
�
1

4
jΦj2 þ 1

8
Ξ2

�

þ Aþ 1

2
θμν; ð2:42Þ

where

Tμ
ν ¼

δL
δ∂μXI ∂νXI − θμνL; ð2:43Þ

θij ≡ ð∂2
kδij − ∂i∂jÞjΦj2: ð2:44Þ

By injecting the equations of motion in the trace of (2.42),
we have that the virial current is given by2In our conventions ∂μ ¼ ð∂t;−∂iÞ.
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V0 ¼ 0; ð2:45Þ

Vi ¼
B
Ξ6

ð∂kΦ�∂kΦÞ∂ijΦj2: ð2:46Þ

We now have an explicit expression for (2.41), which at
linear order in the fluctuations of the helical superfluid
gives

v2ð∂2
i τ − ∂2

t τÞ ¼ 2ρ2∂2
t σ þ 8kρ2Aðkð3τ − σÞ − ∂xχÞ:

ð2:47Þ

In the k → 0 limit (assuming v, ρ, can be kept fixed), one
obtains

∂i∂iτ − ∂2
t τ ¼ 0; ð2:48Þ

where we have used (2.36). Then, for large values of
frequency and momenta, τ can be identified with the
Nambu-Goldstone boson for dilatations. In this case the
dispersion relation is the usual one for a relativistic
massless mode

ω2 ≃ q2x þ q2y: ð2:49Þ

For the metafluid, the dilatation Ward-Takahashi identity
produces the following equation

ð∂2
i − ∂2

t Þτ ¼
12Ajbj2

v2
ð6τ − v∂kukÞ: ð2:50Þ

At high momentum the displacement fields decouple and
the dilaton has a relativistic dispersion relation (2.49) as in
the helical superfluid.

C. Connection to fractons

The unusual dispersion relations we have found in (2.30)
and (2.36) are not just a peculiarity of the decoupling limit
but they are also observed at small frequency and momen-
tum, as we will show in the next sections. A possible way to
understand their origin is through emergent symmetries
of linearized perturbations around the translation-breaking
ground states. These symmetries involve coordinate-
dependent shifts of the fields similar to those introduced
in fracton models [1,2] and are linked to excitations that are
immobile or restricted to move in a subdimensional space.
In order to identify the emergent symmetry more easily,

we will proceed by studying the quadratic Lagrangian of
the perturbations and integrating out the gapped mode. The
resulting effective Lagrangian admits a derivative expan-
sion where the symmetry becomes manifest.

1. Helical superfluid

The action to quadratic order in the fluctuations is

L ¼ v2

2
∂μτ∂μτ þ ρ2ð∂tχÞ2 þ ρ2ð∂tσÞ2

− 2Aρ2½∂xχ þ kðσ − 3τÞ�2: ð2:51Þ
In this form, we already observe emergent coordinate-
dependent shift symmetries, namely

δχ ¼ αðyÞ þ βðx; yÞ;

δσ ¼ −
1

k
∂xβðx; yÞ þ 3δþ 3γixi;

δτðx; yÞ ¼ δþ γixi: ð2:52Þ
The emergence of these symmetries may explain in part the
fractonic behavior observed from the analysis of the Ward-
Takahashi identities. The dilaton τ has the symmetry of a
massless field, the symmetry under the transformation β
can be used to introduce an arbitrary dependence on both x
and y in σ while the remaining transformation α allows an
arbitrary dependence on y in χ. In this way, the identi-
fication of σ as a fracton and χ as a lineon appears naturally.
Note that these are not symmetries of the full action, so it is
expected that terms of higher order in the fluctuations will
not be invariant under them; however this only affects
(indirectly) the dispersion relations by radiative corrections.
We can diagonalize the mass terms by performing a

rotation of the fields

�
vτffiffiffi
2

p
ρσ

�
¼

�
cos θ sin θ

− sin θ cos θ

��
η

φ

�
; ð2:53Þ

by an angle

tan θ ¼ v

3
ffiffiffi
2

p
ρ
: ð2:54Þ

The action becomes

L ¼ ρ2ð∂tχÞ2 þ
1

2
ð∂tφÞ2 þ

1

2
ð∂tηÞ2

−
1

2
½∂iðcos θηþ sin θφÞ�2

− 2Aρ2
�
∂xχ −

mη

2
ffiffiffiffi
A

p
ρ
η

�
2

: ð2:55Þ

The mass of η equals to

m2
η ¼

36Ak2ρ2

v2

�
1þ v2

18ρ2

�
¼ 2Ak2

�
1þ 18

ρ2

v2

�
: ð2:56Þ

We can now group terms linear in η inside a squared term
(after integrating by parts) and subtract the appropriate
η-independent terms
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L ¼ 1

2
ð∂tηÞ2 −

1

2
cos θ2ð∂iηÞ2 − 2Aρ2

�
∂xχ þ

sin θ cos θ

2mη

ffiffiffiffi
A

p
ρ
∂2
iφ −

mη

2
ffiffiffiffi
A

p
ρ
η

�
2

þ ρ2ð∂tχÞ2 þ
1

2
ð∂tφÞ2 −

1

2
sin2θð∂iφÞ2

þ 2
ffiffiffiffi
A

p
ρ

mη
sin θ cos θ∂xχ∂2

iφþ sin2θcos2θ
2m2

η
ð∂2

iφÞ2: ð2:57Þ

Next, we integrate out η expanding its solution in derivatives, starting at lowest order with

η ≃
2

ffiffiffiffi
A

p
ρ

mη

�
∂xχ þ

sin θ cos θ

2mη

ffiffiffiffi
A

p
ρ
∂2
iφ

�
: ð2:58Þ

Then, up to the fourth order in derivatives, we get

L ¼ ρ2ð∂tχÞ2 þ
1

2
ð∂tφÞ2 −

1

2
sin2 θð∂iφÞ2 þ

2
ffiffiffiffi
A

p
ρ

mη
sin θ cos θ∂xχ∂2

iφ

þ 2Aρ2

m2
η
½ð∂t∂xχÞ2 − cos2 θð∂i∂xχÞ2� þ

sin2 θ cos2 θ
2m2

η
ð∂2

iφÞ2: ð2:59Þ

Both χ and φ are gapless and have constant shift sym-
metries so there are corresponding conserved charges.
Furthermore, up to total derivatives in the Lagrangian
(2.59), χ can be shifted by a term depending on the
coordinates

χ → χ þ aixi þ cijxixj þ fðyÞ: ð2:60Þ

Symmetry under shifts by linear terms imply that the dipole
moment of the charge is conserved, while shifts under
quadratic terms imply the conservation of quadrupole and
second-radial moment. This is characteristic of models of
fractons that are immobile. Although higher-derivative
terms might spoil the shift symmetries, this would only
affect the dispersion relations at higher order.
To quadratic order in momentum, the dispersion rela-

tions of the gapless fluctuations are

ω2
χ ≃ 0;

ω2
φ ≃ sin2 θ q2i ¼

v2

18ρ2 þ v2
q2i : ð2:61Þ

2. Metafluid

To linear order, the spatial derivatives of Φ are

∂iΦ ¼ bðδxi þ iδyi Þ þ bð∂iux þ i∂iuyÞ
⇒ ∂iΦ�∂iΦ ¼ jbj2ð2þ 2∂iui þ ð∂iujÞ2Þ: ð2:62Þ

Then, expanding the action to quadratic order in the fields,
we find

L¼ 1

2
∂μτ∂μτþjbj2∂tui∂tui−Ajbj2

�
∂iui−

6

v
τ

�
2

: ð2:63Þ

We can also write this action in the following way

L¼1

2
∂μτ∂μτ−

1

2
m2

τ τ
2

þjbj2
�
∂tui∂tui−Cijkl∂iuj∂kulþ

12K
v

τ∂iui

�
: ð2:64Þ

The coefficients Cijkl are the components of the elasticity
tensor, that in this case only has a bulk component

Cijkl ¼ Kδijδkl; K ¼ A; ð2:65Þ

with K the bulk modulus, which also enters in the coupling
between the dilaton and the bulk strain. The mass of the
dilaton is

m2
τ ¼ 72K

jbj2
v2

: ð2:66Þ

A large v limit would make the dilaton massless and
decoupled from the elastic theory at low energies, this latter
remaining otherwise unaffected. Roughly, if there is a big
hierarchy between the spontaneous breaking of dilatations
and that of translations, one does not expect the low-energy
elastic theory to be sensitive to the dilaton physics.
Since the shear modulus vanishes, any deformation with

τ ¼ 0, ∂iui ¼ 0 has zero energy. Then, the elastic part
describes a fluid or a metafluid. Note that constant changes
in volume can be compensated with a shift of the dilaton, so
scale invariance is preserved in this sense. This implies that
there is a zero mode associated to the dilatation symmetry
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and a massive mode which corresponds to the combination
squared in (2.63).
We can separate the gapped and gapless modes by doing

the shift

τ → σ þ v
6
∂iui: ð2:67Þ

Then

L ¼ 1

2
∂μσ∂μσ −

1

2
m2

τσ
2 þ v

6
∂μσ∂μ∂iui

þ jbj2∂tui∂tui þ
v2

72
∂μ∂iui∂μ∂juj: ð2:68Þ

We can further complete the square

L ¼ 1

2
∂μσ∂μσ −

1

2
m2

τ

�
σþ v

6m2
τ
∂μ∂μ∂iui

�
2

þ jbj2∂tui∂tui

þ v2

72
∂μ∂iui∂μ∂juj þ

v2

72m2
τ
ð∂μ∂μ∂iuiÞ2: ð2:69Þ

Integrating out σ implies solving order by order in
derivatives with the leading term

σ ≃ −
v

6m2
τ
∂μ∂μ∂iui: ð2:70Þ

To sixth order in derivatives in the action, we are left with

L ≃ jbj2∂tui∂tui þ
v2

72
∂μ∂iui∂μ∂juj

þ v2

72m2
τ
ð∂μ∂μ∂iuiÞ2: ð2:71Þ

In this form, we also observe that the shear strain has zero
energy and that the action is symmetric under constant
changes of the bulk strain. This implies that there are linear
and quadratic shift symmetries

δui ¼ ai þ bijxj þ cijkxjxk: ð2:72Þ

Then, we have that, not only the charges associated to the
constant shifts, but also their dipole and second moments
are conserved, this is characteristic of fractonic models. The
larger symmetry associated to arbitrary shear and rotational
strains corresponds to transverse transformations

δui ¼ ϵik∂kωðxÞ þ ð∂i∂j − δij∂2
kÞVjðxÞ: ð2:73Þ

III. DISPERSION RELATIONS

By a standard perturbation analysis of the model (2.1)
around the respective backgrounds of the helical superfluid
and the metafluid, we will compute the dispersion relations

of the fluctuations. This will support and refine some of the
results and interpretations which we already derived in the
preceding sections.

A. Helical superfluid

As stated in Sec. II A, we perform a fluctuation of the
model (2.1) around a plane-wave background where we
consider the parametrization

Φðt; x; yÞ ¼ ρeikx½1þ ϕðt; x; yÞ�
¼ ρeikx½1þ σðt; x; yÞ þ iχðt; x; yÞ�; ð3:1Þ

Ξðt; x; yÞ ¼ v½1þ τðt; x; yÞ�: ð3:2Þ

The equations of motion at linear order for the fluctua-
tions are3

2Aðkþ i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ − iχÞ ¼ 0; ð3:3Þ

2Aðk − i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ þ iχÞ ¼ 0; ð3:4Þ

12Akρ2½kðσ−3τÞþ∂xχ�−v2ð−∂2
x−∂2

yþ∂2
t Þτ¼ 0: ð3:5Þ

Going to Fourier space, we obtain a homogeneous alge-
braic system determined by the kinetic matrix

M¼ρ2

0
B@
ω2−2Ak2 −2iAkqx 6Ak2

2iAkqx ω2−2Aq2x −6iAkqx
6Ak2 6iAkqx

1
2
ðω2−q2x−q2yÞv2ρ2−18Ak2

1
CA;

ð3:6Þ

where the first row corresponds to σ, the second one to χ
and the third one to τ.
In order to have nontrivial solutions for the fluctuations,

the determinant for the kinetic matrix should vanish,

detðMÞ ¼ ω2ρ4

2
fv2ðω2 − q2x − q2yÞ½ω2 − 2Aðk2 þ q2xÞ�

− 36Ak2ω2ρ2g ¼ 0: ð3:7Þ

This leads to a set of conditions for the frequency and
momenta that determine the dispersion relations. The
fluctuation determinant (3.7) has a ω2 factor, producing
a gapless mode whose dispersion relation is trivial, i.e.,
identically zero, ω ¼ 0. Apart from such a trivial mode, the
spectrum features a gapless and a gapped mode

3We remind the reader that the parameters k, ρ, and v are not
independent, but related by (2.11). We will refrain from express-
ing one of the parameters in terms of the others, but instead aim at
writing the various expressions in their simplest form, here and in
the rest of the paper.
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m2
2 ¼ 0; ð3:8Þ

m2
3 ¼ 2Ak2

�
1þ 18

ρ2

v2

�
: ð3:9Þ

Let us remark that the mass (3.9) agrees with the mass
coming from the effective field theory analysis (2.56),
m3 ≡mη.
Proceeding to compute the dispersion relations, we

obtain

ω2
1 ¼ 0; ð3:10Þ

ω2
2;3 ¼

1

2
½2Aq2x þ q2x þ q2y þm2

η ∓
ffiffiffiffi
Δ

p
�; ð3:11Þ

with

Δ ¼ f2Aq2x þ q2x þ q2y þm2
ηg2

− 8Aðk2 þ q2xÞðq2x þ q2yÞ: ð3:12Þ
First note that Δ2 ≤ ð2Aq2x þ q2x þ q2y þm2

ηÞ2 so that, if
Δ ≥ 0, ω2

2;3 ≥ 0 leads to a real dispersion relation. Indeed
one can see this is the case for all momenta, by using the
expression for mη, which is given by (3.9), we see that
ð2Aq2xþq2xþq2yþm2

ηÞ2 ≥ ð2Aðk2þq2xÞþq2xþq2yÞ2. From
this, it follows that Δ ≥ ð2Aðk2 þ q2xÞ − ðq2x þ q2yÞÞ2 ≥ 0.
The expansion at low momenta provides

ω2
1 ¼ 0; ð3:13Þ

ω2
2 ¼

v2

18ρ2 þ v2
ðq2x þ q2yÞ þOðq4Þ; ð3:14Þ

ω2
3¼m2

ηþ2Aq2xþ
18ρ2

18ρ2þv2
ðq2xþq2yÞþOðq4Þ: ð3:15Þ

To recover the results obtained from the Ward-Takahashi
identities of Sec. II B, and in particular the fractonic
behavior, we consider the large-momentum behavior of
(3.11). Of course, the exact trivial mode will remain trivial
in any q limit. In order to take the large-momentum limit,
we simply take qx; qy ≫ mη. Then, we find

ω2
2 ≃

�
q2x þ q2y if ð2A − 1Þq2x − q2y > 0

2Aq2x if ð2A − 1Þq2x − q2y < 0
; ð3:16Þ

and

ω2
3 ≃

�
2Aq2x if ð2A − 1Þq2x − q2y > 0

q2x þ q2y if ð2A − 1Þq2x − q2y < 0
: ð3:17Þ

Thus, ω2 and ω3 swap their roles depending on the sign of
ð2A − 1Þq2x − q2y, which in general depends on the direction
in the momentum plane. Note that if A ≤ 1=2 this quantity

is always negative, so in that case ω2 and ω3 do not change
with direction.

B. Identification of the modes

In order to study the Nambu-Goldstone nature of (3.13),
(3.14), and (3.15), we need to determine how they relate
to a local spacetime modulation of the various symmetry-
originated zero modes. The study of the Ward-Takahashi
identities gave us already a glance into such associations at
large momentum. At low momentum, instead, one can get
useful information from the effective action, which we have
already derived to establish the connection to fractons.
Accordingly, we will identify χ with the Uð1Þ Nambu-
Goldstone mode and τ and σ with the dilaton and shifton
respectively.
(1) Low momentum:

Comparing (3.13), (3.14), and (3.15) with (2.61) and
(2.56), we can make the following identifications
(i) Trivial mode: ω1, mostly χ.
(i) Gapless mode: ω2, mixture of τ and σ. Accord-

ing to (2.53) and (2.54) if v ≫ ρ (k=ρ2 ≫ 1) it
would be mostly τ and if v ≪ ρ (k=ρ2 ≪ 1) it
would be mostly σ.

(iii) Gapped mode: ω3, mixture of τ and σ orthogo-
nal to the gapless mode.

(2) High momentum:
Comparing (2.36), (2.30), and (2.48) with (3.16) and
(3.17), we can identify
(i) Trivial mode: ω1 mostly σ.
(ii) Lineon: ω3 (for ð2A − 1Þq2x − q2y > 0) or ω2

(for ð2A − 1Þq2x − q2y < 0), mostly χ.
(iii) Relativistic mode: ω2 (for ð2A−1Þq2x−q2y >0)

or ω3 (for ð2A − 1Þq2x − q2y < 0), mostly τ.
These identifications unveil a strong change in the nature

of the modes as a function of momentum, this being a
reflection of the mixing induced by the breaking of trans-
lation symmetry. For A > 1=2, the transmutation does not
only occur in the transition from low to large momentum but
also depending on the direction in the momentum plane.
We would like now to pause a moment to comment on

the relation with the nonscale invariant model of [41],
where precisely the helical ground state was considered.
The model is basically the same as the present one, where
however the fluctuation τ is frozen. The spectrum is easily
obtained from the determinant of the upper-left 2 × 2
submatrix of (3.6). It consists of a trivial fractonic mode,
and a gapped lineon. Hence, we see that the compensator
field enforcing scale invariance is a highly nontrivial
addition to the model, yielding nontrivial mixing among
the modes, and their identification.

C. Metafluid

In order to get the dispersion relations for the metafluid,
we proceed in a similar fashion as for the helical superfluid.
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By referring to Sec. II A, we study the fluctuations of the
model (2.1) around the background given in (2.16) and
(2.17) with the following parametrization

Φðt; x; yÞ ¼ b½xþ iyþ uxðt; x; yÞ þ iuyðt; x; yÞ�; ð3:18Þ

Ξðt; x; yÞ ¼ vþ τðt; x; yÞ: ð3:19Þ

At first order in the fluctuations, the equations of motion are
given by

∂2
t ux − A∂x

�
∂xux −

6

v
τ

�
¼ 0; ð3:20Þ

∂2
t uy − A∂y

�
∂yuy −

6

v
τ

�
¼ 0; ð3:21Þ

∂2
t τ − ∂2

i τ þ 12A
jbj2
v

�
6

v
τ − ∂iui

�
¼ 0: ð3:22Þ

The quadratic-fluctuation matrix in Fourier space is

M¼jbj2

0
BB@
ω2−Aq2x −Aqxqy −6iAvqx
−Aqxqy ω2−Aq2y −6iAvqy
6iAvqx 6iAvqy

1
2jbj2 ðω2−q2x−q2yÞ−36 A

v2

1
CCA;

ð3:23Þ

where the two first lines correspond to ux and uy while the
last line is associated to τ. The determinant of this matrix is
given by

detðMÞ ¼ jbj4ω2

2

�
ðω2 − q2Þðω2 − Aq2Þ − 72

Ajbj2
v2

ω2

�
;

ð3:24Þ

where we have used q2 ¼ q2x þ q2y. Take notice that the
above expression is completely isotropic. The dispersion
relations, given by the roots of the determinant, are the
following

ω2
1 ¼ 0; ð3:25Þ

ω2
2;3¼

1

2

n
ð1þAÞq2þm2

τ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þAÞq2þm2

τ �2−4Aq4
q o

;

ð3:26Þ

where we have used (2.66). Again, one can see that the
argument of the square root is always strictly positive,
and ω2

2 ≥ 0.
At low momenta, we find the following dispersion

relations

ω2
1 ¼ 0; ð3:27Þ

ω2
2 ¼

A
m2

τ
q4 þOðq6Þ; ð3:28Þ

ω2
3 ¼ m2

τ þ ð1þ AÞq2 þOðq4Þ: ð3:29Þ

We obtain a similar mass spectrum as for the helical
superfluid; two massless modes, one being exactly trivial,
and a gapped mode. However, we have some qualitative
differences in the dispersion relations. Indeed, the non-
trivial massless mode has a quadratic dispersion relation
while in the helical background it has a linear behavior.
This can be traced back to the effective theory for gapless
modes (2.71), where there are terms with two time
derivatives and four spatial derivatives but there are no
terms with just two spatial derivatives.
An additional qualitative difference with the helical case

is that all the dispersion relations are isotropic in the
metafluid case. As it was mentioned in Sec. II B, the
metafluid background preserves an effective rotation sym-
metry from the diagonal breaking of Uð1Þ and spatial
rotations. This is actually due to the particular ansatz (2.16)
for the solution. It is possible to choose a more general
solution which will lead to anisotropies in the determinant
of the kinetic matrix and hence in the spectrum. The other
features of the latter would however be unchanged. Hence,
we prefer to deal with the isotropic metafluid, for a better
clarity of the resulting expressions. On the other hand, in
the plane-wave background spatial rotations are necessarily
broken by the choice of a preferred direction in the solution.
At small momentum, the massive mode (3.29) is

associated to the fluctuation τ, as it can be observed in
the diagonalization of (3.23) in the qi → 0 limit. We notice
that the association to τ matches the effective study of
Sec. II C and that we recover the mass (2.66).
For large momenta, the nontrivial modes have the

following dispersion relations

ω2
2;3 ≃

q2

2
½1þ A ∓ j1 − Aj�; ð3:30Þ

so that when A ≤ 1 we have that ω2 ≃
ffiffiffiffi
A

p jqj and ω3 ≃ jqj
(with jqj ¼

ffiffiffiffiffi
q2

p
), while when A > 1 we have the opposite,

ω2 ≃ jqj and ω3 ≃
ffiffiffiffi
A

p jqj. By looking at the kinetic matrix
in the large q limit, i.e., neglecting all nonleading terms in
ω or q, we find that the mode with ω ≃ jqj is always aligned
with τ, while the mode with ω ≃

ffiffiffiffi
A

p jqj is aligned with the
longitudinal combination of the ui (the other being always
the trivial immobile mode). Hence, when A > 1, the modes
ω2 and ω3 switch nature when going from low to high
momenta. On the other hand, note that for the metafluid,
the trivial mode is always the transverse part of ui, for all
momenta.
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Again, let us comment briefly on the possibility to have a
metafluid ground state in the model of [41], where τ is
frozen. In this case, we can easily see that there is no scale
in the spectrum. Eventually, the spectrum consists of a
trivial fractonic mode, and a gapless isotropic mode with
linear dispersion relations. Hence we notice that also in this
case, the addition of the compensator field changes quite
radically the spectrum, due to nontrivial mixing.

IV. FINITE DENSITY

As it has already been established for internal compact
symmetries, working at finite density modifies the spec-
trum of Nambu-Goldstone modes associated to sponta-
neous symmetry breaking [36–38,40]. We would like to
probe how these results extend in our specific spacetime
symmetry breaking pattern. To do so, we switch on a
chemical potential μ for the Uð1Þ symmetry of the theory
(2.1) in the framework of the helical superfluid back-
ground. We do not extend the analysis to the metafluid
because in the presence of a chemical potential the effective
action is no longer homogeneous.
The chemical potential introduces a new term in the

effective potential ∼ − μ2ρ2, that makes it unbounded from
below and would produce a runaway behavior. Something
similar occurs in the model of [40] for the simultaneous
breaking of scale invariance and an internal symmetry. In
that simpler case the issuewas solved by introducing a small
deformation of the model that lifts the space of minimal
energy states at zero chemical potential and stabilizes it at
finite chemical potential. The results at zero density can be
recovered by simultaneously sending the chemical potential
and the deformation to zero. Following the same reasoning
we introduce a new term with coupling λ2 that preserves the
Uð1Þ and dilatation symmetries

L ¼ ∂tΦ�∂tΦþ A∂iΦ�∂iΦþ 1

2
∂tΞ∂tΞ −

1

2
∂iΞ∂iΞ

− B
ð∂iΦ�∂iΦÞ2

Ξ6
−HΞ6 − λ2ðΦ�ΦÞ3: ð4:1Þ

The additional term breaks explicitly the shift symmetry,
and would introduce an explicit dependence on the coor-
dinates in the effective action of the metafluid.
The equations of motion are given by

∂2
tΦþ A∂2

iΦ − 2B∂i

�∂iΦ
Ξ6

∂jΦ�∂jΦ
�
þ 3λ2Φ�2Φ3 ¼ 0;

ð4:2Þ

∂2
tΞ − ∂2

iΞ −
6

Ξ

�
B
ð∂iΦ�∂iΦÞ2

Ξ6
−HΞ6

�
¼ 0: ð4:3Þ

To achieve a similar spontaneous symmetry breaking
pattern as in Secs. II A and II B, we mimic the helical

ansatz (2.5), (2.6) where the chemical potential is imple-
mented by a time-dependent phase in the Uð1Þ-direction.
Written explicitly, it provides

Φðt; x; yÞ ¼ ρeiðμtþkxÞ; ð4:4Þ

Ξðt; x; yÞ ¼ v; ð4:5Þ

where the parameters v, ρ, k and μ are all real and
nonvanishing, and assumed to be positive for simplicity.
The equations of motion are

ρ2
�
Ak2 −

2Bk4ρ2

v6
− 3ρ4λ2 þ μ2

�
¼ 0; ð4:6Þ

Bk4ρ4 −Hv12 ¼ 0: ð4:7Þ

We keep the same relation between the coefficients of the
action

H ¼ A2

4B
; ð4:8Þ

so that the relation (2.11) remains unchanged, but there is
an additional condition

μ2 ¼ 3ρ4λ2: ð4:9Þ

Therefore ρ is fixed in terms of μ=λ. The zero density limit
can be taken keeping ρ fixed if both μ and λ are taken to
zero at the same rate.
The chemical potential μ is seen as an external parameter

that fixes the ensemble. Therefore, ρ, k, and v are
parameters of the solution that should be solved in terms
of A, B, and μ. This can alternatively be achieved by
minimizing the effective potential4

Veff ¼
B
v6

�
k2ρ2 −

A
2B

v6
�

2

þ λ2ρ6 − μ2ρ2: ð4:10Þ

In the present case the ratio v=ρ is fixed by k=μ, more
precisely v6=ρ6 ∼ k2=μ2. Then, if k ≫ μ we expect the
results to be quite similar to the μ ¼ 0 case with v=ρ ≫ 1,
in which case the gapless mode would be mostly τ. On the
other hand, for μ ≫ k they are expected to be closer to the
case v=ρ ≪ 1, where the mode with a gap proportional to k
is mostly τ.

4The terminology “effective” comes from the fact that at finite
density, it is customary to look for ground states which minimise
the effective Hamiltonian H̃ ¼ H − μQ where Q is the Uð1Þ
conserved charge. This formulation is equivalent to searching for
ground states of the Hamiltonian H, evolving in time along the
Uð1Þ-direction.Our ansatz (4.4), (4.5) is precisely doing so, and by
considering μ as being an external parameter, ρ, k and v para-
metrize a static solution minimizing the effective Hamiltonian.
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A. Dispersion relations

We are now ready to perform the fluctuations around our
background. The fluctuations are parametrized as follows:

Φðt; x; yÞ ¼ ρeiðμtþkxÞ½1þ ϕðt; x; yÞ�
¼ ρeiðμtþkxÞ½1þ σðt; x; yÞ þ iχðt; x; yÞ�; ð4:11Þ

Ξðt; x; yÞ ¼ v½1þ τðt; x; yÞ�: ð4:12Þ

The linearized equations of motion are5

2Aðkþ i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ − iχÞ

þ 2iμ∂tðσ − iχÞ þ 4μ2σ ¼ 0; ð4:13Þ

2Aðk − i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ þ iχÞ

− 2iμ∂tðσ þ iχÞ þ 4μ2σ ¼ 0; ð4:14Þ

v2ð−∂2
x−∂2

yþ∂2
t Þτ−12Akρ2½kðσ−3τÞþ∂xχ�¼0: ð4:15Þ

Notice that the term 4μ2σ in (4.13) and (4.14) spoils the
space-modulated shift symmetry we had in the case
μ ¼ 0 ¼ λ. We therefore do not expect a trivial mode in
the spectrum.
In Fourier space, the kinetic matrix for the fluctuations is

M ¼ ρ2

0
BBB@

ω2 − 2Ak2 − 4μ2 −2iðAkqx þ ωμÞ 6Ak2

2iðAkqx þ ωμÞ ω2 − 2Aq2x −6iAkqx
6Ak2 6iAkqx

1
2
ðω2 − q2x − q2yÞ v2ρ2 − 18Ak2

1
CCCA; ð4:16Þ

where, as before, the first line corresponds to σ, the second one to χ, and the third one to τ. Its determinant is given by

detM ¼ ρ4

2
fω2v2ðω2 − 8μ2Þðω2 − q2x − q2yÞ

− 2A½v2ðω2 − q2x − q2yÞðω2ðk2 þ q2xÞ þ 4kωqxμ − 4q2xμ2Þ þ 18k2ρ2ω2ðω2 − 8μ2Þ�g: ð4:17Þ

Setting the momenta to zero, one gets

detM ¼ ρ4ω2

2
½ω2v2ðω2 − 2Ak2 − 8μ2Þ − 36Ak2ρ2ðω2 − 8μ2Þ�; ð4:18Þ

whose zeros give the mass spectrum. One thus finds a gapless mode m2
1 ¼ 0 and two gapped modes, whose squared

gaps are

m2
2;3 ¼ Ak2

�
18

ρ2

v2
þ 1

�
þ 4μ2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ak2

�
18

ρ2

v2
þ 1

�
þ 4μ2

�
2

− 288Ak2μ2
ρ2

v2

s
; ð4:19Þ

both real and positive. The reduction of the number of
massless modes compared to the zero-density case is
expected due to the explicit breaking of the shift symmetry
by the pair μ and λ. Intuitively, such breaking leads to one
less flat direction and hence, to one fewer gapless mode.
If we take μ ≪ k while keeping ρ and v fixed, one gets

m2
2 ¼

144ρ2

18ρ2 þ v2
μ2 þO

�
μ4

k2

�
; ð4:20Þ

m2
3 ¼ m2

η þOðμ2Þ; ð4:21Þ

where we recall that m2
η as given in (3.9) is of Oðk2Þ.

Note that since as we already noticed, we have that
μ=k ∼ ðρ=vÞ3, the leading term in (4.20) goes to zero
really as m2

2 ∼ μ8=3k−2=3. In any case, the zero density
limit returns the spectrum computed in Sec. III A as
expected.
In the opposite limit, k ≪ μ, we have

m2
2 ¼ 36Ak2

ρ2

v2
þO

�
k4

μ2

�
; ð4:22Þ

5We note that here, and in the following, we keep using the
parameters that make the expressions simplest. However, we
must always recall that the relations (2.11) and (4.9) hold.
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m2
3 ¼ 8μ2 þOðk2Þ: ð4:23Þ

Again, note that taking into account the behavior of ρ=v in
the limit, we have that m2

2 ∼ k4=3μ2=3, still very much
suppressed with respect to m2

3 ∼ μ2. The upshot is thus that
in both limits there is a large separation between the larger
and smaller gap m3 ≫ m2.
It is also possible to compute analytically the dispersion

relation for ω1, by taking the limit ω; q ≪ μ, k in (4.18).
Actually, one can solve the resulting equation by further
postulating ω ≪ q, so that we get

ω2
1 ¼

v2

36ρ2k2
q2xðq2x þ q2yÞ þOðq5Þ: ð4:24Þ

Note that this expression is valid for momenta smaller than
the chemical potential. Taking the zero-density limit for any
fixed momentum one recovers that ω1 is the trivial mode.
At large momentum, in any nonzero qx direction, we can
again solve for ω; k; μ ≪ qx and get

ω2
1 ¼ 4μ2 þO

�
μ4

q2x

�
; ð4:25Þ

while in the pure transverse direction we have the exact
dispersion relation

ω1ð0; qyÞ ¼ 0; ð4:26Þ

as can be seen from the fact that in this case anω2 factorizes
again in (4.18). So, up to a correction that shifts the
dispersion relation by a constant proportional to the
chemical potential, ω1 should be identified with the trivial
mode.
For generic momenta, we compute the dispersion rela-

tions of the modes numerically and plot them in Fig. 1. The
asymptotic dispersion relations shown in (4.24), (4.25), and
(4.26) match the blue curve in the numerical results of
Fig. 1. We further provide two three-dimensional plots of
the low-momentum dispersion relations of ω1 in Fig. 2.

B. Identification of the modes

The presence of a chemical potential does not funda-
mentally alter the equations of motion at very large

FIG. 1. This figure displays the dispersion relations of the three modes ω1 (blue), ω2 (red), and ω3 (green). They have been obtained by
a numerical analysis of the roots of the determinants (3.7) and (4.18). The array of plots is such that each line corresponds respectively to
the longitudinal direction (qy ¼ 0) and the transverse direction (qx ¼ 0). The columns refer to the case of zero and nonzero chemical
potential—to make it more visual, the zero chemical plots are the solid curves while the nonzero chemical ones are dashed. All plots are
done with A ¼ 0.125, k ¼ 1.5; the left column is obtained with μ ¼ 0 ¼ λ while the right column is obtained with μ ¼ 1 and λ ¼ 0.5.
The vacuum expectation value (VEV) ρ is fixed in the μ ≠ 0 case by the preceding cited parameters but it is not so in the zero chemical-
potential case. For practicality, we took the same value for ρ in both cases. Since k > μ, it means that v > ρ. Hence, at low momentum,
the green curve is mostly shiftonic while the red curve is mostly dilatonic.
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momentum discussed in Sec. III A. Therefore, we expect
that the high-momentum identification of the modes
remains unchanged at finite density, with the trivial mode
ω1 being mostly σ, the lineon ω2 or ω3 being mostly χ
(depending on the value of A and the direction in the
momentum plane) and the relativistic mode ω3 or ω2 being
mostly τ. This is confirmed by Fig. 1 where we have the
same trends at large momentum for μ ¼ 0 and μ ≠ 0, the
only difference being the nonzero plateau of the blue curve,
which formally is produced by a subleading contribution at
high momentum.
Similarly, in the regime k ≫ μ we do not expect

the identification at low momenta of the modes to be
significantly altered. Therefore, ω1 would be mostly χ and,
given that v=ρ ≫ 1 in this regime, the lower-gapped mode
ω2 with gap m2 ∼ ðμ4=kÞ1=3 would be mostly τ and
the higher-gapped mode ω3 with gap m3 ∼ k would be
mostly σ.
Finally, when μ ≫ k the most relevant terms producing

the mixing of different modes is changed. Taking the matrix
(4.16) at zero momentum and μ ≫ k leads to

Mq¼0;μ≫k ¼ ρ2

0
BBB@

ω2 − 4μ2 −2iωμ Oðk2Þ
2iωμ ω2 0

Oðk2Þ 0 1
2
ω2 v2

ρ2
þOðk2Þ

1
CCCA:

ð4:27Þ

In principle both χ and τ become gapless in this limit
(they are eigenvectors of M with zero eigenvalue for
ω ¼ 0). However, taking into account the Oðk2Þ correc-
tions we see that τ acquires a gap proportional to k while χ
remains as the true gapless mode to leading order.
Finally, the gapped mode with ω ≃ 2

ffiffiffi
2

p
μ is a linear

combination ∼σ − iffiffi
2

p χ. Summarizing, the identification

of the modes is

k ≫ μ ≫ q μ ≫ k ≫ q q ≫ k; μ;A < 1=2

ω1 χ χ σ
ω2 τ τ χ
ω3 σ σ − iffiffi

2
p χ τ

V. REMOVING THE DEGENERACY

The Mexican hat model we have studied in the previous
sections has a large emergent symmetry that results in the
presence of trivial modes in the spectrum. We can partially
remove the emergent symmetry and generate nontrivial
dispersion relations for all the modes by introducing
additional terms to the action, while at the same time
keeping the same symmetry-breaking pattern. At fourth
order in spatial derivatives and fields, there are two possible
extensions6

ΔL ¼ GΞ−6∂iΦ�∂iΦ�∂jΦ∂jΦ

þ FΞ−6Φ�Φ∂i∂jΦ�∂i∂jΦ: ð5:1Þ

However they do not produce qualitatively different results.
For simplicity we will set F ¼ 0 in the following. We will
then study the extended model

L ¼ ∂tΦ�∂tΦþ A∂iΦ�∂iΦþ 1

2
∂tΞ∂tΞ −

1

2
∂iΞ∂iΞ

þ 1

Ξ6
½−Bð∂iΦ�∂iΦÞ2 þ G∂iΦ�∂iΦ�∂jΦ∂jΦ�

−HΞ6; ð5:2Þ

where the G term is the additional part.

FIG. 2. This figure displays the numerical ω1 mode at low momentum, i.e., theUð1ÞNambu-Goldstone mode. Both plots represent the
same graph and have been obtained with A ¼ 0.125, k ¼ 1.5, μ ¼ 1, and λ ¼ 0.5. On the left, a 3D plot is provided while on the right it
is a contour plot.

6We can also have additional higher-derivative terms for the
real scalar Ξ, but since the background value of Ξ is constant we
are not interested in those.
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In general the new term will change the energy of the
solutions. If we want to ensure that the helical superfluid
background (2.5), (2.6) is a minimal energy solution we
have to modify the relation between the coefficients to

H ¼ A2

4ðB −GÞ : ð5:3Þ

With this choice the dimensionless combination

ξ ¼ k2ρ2

v6
; ð5:4Þ

remains fixed as a function of the coefficients of the action
through the relation

A ¼ 2ðB − GÞξ: ð5:5Þ
Equation (5.4) leaves therefore a moduli space with two flat
directions since the static energy on shell is identically zero.
Using the same basis of fluctuations for the helical

superfluid (3.1)–(3.2), the new term introduces a contri-
bution to the quadratic action of the form

LG ¼ −4Gξð∂yσÞ2: ð5:6Þ
This breaks partially the symmetry characterized by the
transformation β in (2.52). With the new term, β is
restricted to be a function at most linear in y, but yet
arbitrary in x. So the emergent symmetry with nonzeroG is

δχ ¼ αðyÞ þ βðxÞ þ ϵðxÞy;

δσ ¼ −
1

k
½β0ðxÞ þ ϵ0ðxÞy� þ 3δþ 3γixi;

δτðx; yÞ ¼ δþ γixi: ð5:7Þ

Following the same reasoning we did previously, we expect
χ and σ to be both lineons, with χ moving along the
x-direction and σ along the y-direction.
For the metafluid the ansatz (2.19) introduces a term in

the action for fluctuations

LG ≃
2Gðjbj2Þ2

v6
uijuij ¼

4Gðjbj2Þ2
v6

∂iuj∂iuj; ð5:8Þ

where uij ¼ ∂iuj þ ∂jui − δij∂kuk is the shear strain, and
the second equality is obtained up to total derivatives. Note
that, in contrast to the helical superfluid, we do not have to
change the relation of H with the other coefficients since
this term does not give a contribution to the energy density
of the background. Furthermore, the metafluid is stable for
G < 0, while the helical fluid is stable for G > 0, since this
gives the right sign to the kinetic terms in (5.6) and (5.8).
So, with the new term, only one of the two states would be
realized depending on the values of the coefficients we
choose to extend the model.

In the metafluid the new term introduces a shear modulus
G ¼ −4Gjbj2=v6, that removes most of the symmetries in
(2.72) and (2.73), leaving just the symmetries for massless
fields.
Integrating out the massive dilaton as before will

remove the zero-momentum bulk modulus, but the
higher-derivative terms only affect the dispersion relation
at higher order in momentum. Then, the effective low-
energy theory is almost the same as ordinary elasticity, the
dispersion relation for the fluctuations ui is at lowest order
in momentum

ω2 ≃ Gq2: ð5:9Þ

A. Ward-Takahashi identities

1. Helical superfluid

For the helical superfluid the Uð1Þ Ward-Takahashi
identity (2.28) does not change when G is introduced,
so the Uð1Þ Nambu-Goldstone mode has the same
dispersion relation at high momentum. The real shift-
symmetry Ward-Takahashi identity becomes

∂2
t σ − 4ξG∂2

yσ þ 2Ak½kðσ − 3τÞ þ ∂xχ� ¼ 0: ð5:10Þ
The dilatation Ward-Takahashi identity also acquires a new
contribution

v2ð∂2
i τ − ∂2

t τÞ ¼ 2ρ2ð∂2
t σ − 4ξG∂2

yσÞ
þ 8kρ2Aðkð3τ − σÞ − ∂xχÞ: ð5:11Þ

Since ξ is a fixed quantity, in the high momentum limit
k → 0, the dispersion relation of the shifton is modified to

ω2
σ ≃ 4ξGq2y ¼

2AG
B − G

q2y: ð5:12Þ

On the other hand the dilaton keeps a relativistic dispersion
relation in this limit. This confirms our analysis of the
emergent symmetries where we predicted that σ would
behave as a lineon moving along the y-direction.

2. Metafluid

When G is introduced, the dilatation Ward-Takahashi
identity for the metafluid does not change, but there is a
new term in the complex shift Ward-Takahashi identity

vð∂2
t ui − A∂i∂kuk − G∂2

kuiÞ þ 6A∂iτ ¼ 0: ð5:13Þ

At high momentum this gives two modes with dispersion
relations

ω2 ≃ Gq2; ω2 ≃ ðAþ GÞq2; ð5:14Þ

with the first mode corresponding to the transverse and the
second to the longitudinal components of ui.
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B. Dispersion relations for the helical superfluid

We obtain the following equations of motion at linear
order for the fluctuations

2Aðkþ i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ − iχÞ− 4Gξ∂2

yσ ¼ 0;

ð5:15Þ

2Aðk− i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ þ iχÞ− 4Gξ∂2

yσ ¼ 0;

ð5:16Þ

12Akρ2½kðσ−3τÞþ∂xχ�−v2ð−∂2
x−∂2

yþ∂2
t Þτ¼0: ð5:17Þ

Sending the parameter G to zero (keeping the parameter k,
ρ, and v fixed) permits to recover the vacuum as well as the
equations of motion of the G ¼ 0 model (2.1). Hence, in
this specific limit, we expect to recover smoothly the
original spectrum.
Going to Fourier space, we obtain a homogeneous

algebraic system for the equations of motion driven by
the kinetic matrix

M ¼ ρ2

0
BB@

ω2 − 2Ak2 − 4Gξq2y −2iAkqx 6Ak2

2iAkqx ω2 − 2Aq2x −6iAkqx
6Ak2 6iAkqx

1
2
ðω2 − q2x − q2yÞ v2ρ2 − 18Ak2

1
CCA: ð5:18Þ

The determinant evaluates to

detðMÞ ¼ detðMÞG¼0 − 2Gξρ4q2y½v2ðω2 − q2x − q2yÞðω2 − 2Aq2xÞ − 36Ak2ρ2ω2�; ð5:19Þ

where detðMÞG¼0 is given by (3.7).
If we specifically look for a trivial root of the determi-

nant, we do not find one

detðMÞjω¼0 ¼ −4AGξρ4v2q2xq2yðq2x þ q2yÞ: ð5:20Þ

This immediately tells us that there is no longer a trivial
mode. This is consistent with the analysis we made based
on the emergent shift symmetries.
The spectrum features two gapless modes and one

gapped mode

m2
1 ¼ 0; ð5:21Þ

m2
2 ¼ 0; ð5:22Þ

m2
3 ¼ 2Ak2

�
1þ 18

ρ2

v2

�
: ð5:23Þ

Notice that the difference with the case G ¼ 0 is hidden in
the relation among the parameters, where the correction is
given by a factor (B − G) instead of simply B. So sendingG
to zero smoothly provides the masses of the G ¼ 0 case.
Proceeding to compute the dispersion relations at small

momenta, we obtain

ω2
1 ¼

4Gρ2v2ðq2x þ q2yÞq2xq2y
72k2ρ4Gq2y þ v8ðq2x þ q2yÞ

þOðq6Þ; ð5:24Þ

ω2
2¼

v2

18ρ2þv2

�
q2xþ

�
1þ72Gk2ρ4

v8

�
q2y

�
þOðq4Þ; ð5:25Þ

ω2
3 ¼ 2Ak2

�
1þ 18

ρ2

v2

�
þ 2Aq2x

þ 18ρ2

18ρ2 þ v2

�
q2x þ

�
1þ 4Gk2ρ2

v6

�
q2y

�
þOðq4Þ: ð5:26Þ

We recover smoothly the G ¼ 0 case in the limit of zero G.
Note that the expression for the mode ω1 has an unusual

nonanalytic dependence with momentum but overall it goes
like ω1 ∼ q2, while the other gapless mode is linear ω2 ∼ q.
The dispersion relation of ω1 is confirmed by the numerical
study of Fig. 3. In fact, the plots display the trivialization of
the dispersion relations for qx ¼ 0 and qy ¼ 0, and the
nontrivial bump in the quadrant in between. Also, the
analytic expression predicts the changes in slope we
observed in the 3D plot. Indeed, according to (5.24), the
starting slope of the dispersion relation at fixed qx > 0 is
larger than the starting slope at fixed qy > 0. Hence, in
order for the dispersion relations to join continuously, the
fixed qx > 0 dispersion relation should bend downwards.
A final comment is that at large momentum we observe

that (5.18) diagonalizes. In particular, the modes ω1 and ω2

are respectively transverse and longitudinal lineons with
the dispersion relations

ω1∼2
ffiffiffiffiffiffi
Gξ

p
qy; ω2∼

ffiffiffiffiffiffi
2A

p
qx when qx;qy ≫ k: ð5:27Þ

This is in agreement with the analysis of Ward-Takahashi
identities we did previously.
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1. Identification of the modes

Since the new term proportional to G adds a contribution
to the kinetic matrix proportional to q2y, the separation
between gapless and gapped modes at low momentum is
the same as for G ¼ 0. Indeed, the gap in (3.15) and the
velocity in the x-direction of the gapless mode (3.14) are
the same with nonzero G (5.24). The nature of the high
momentum modes is easily identified with the help of the

Ward-Takahashi identities. So the identification of the
modes is essentially the same as in Sec. III B, except ω1

has a nonanalytic behavior at low momentum and becomes
a lineon propagating in the y-direction at high momentum.

C. Dispersion relations for the metafluid

Let us consider directly the kinetic matrix

M ¼ jbj2

0
BBB@

ω2 − Aq2x − Gq2 −Aqxqy −6i Av qx
−Aqxqy ω2 − Aq2y − Gq2 −6i Av qy
6i Av qx 6i Av qy

1
2jbj2 ðω2 − q2Þ − 36 A

v2

1
CCCA; ð5:28Þ

where we recall that G ¼ −4Gjbj2=v6 > 0. We notice that only the first two diagonal terms are modified compared to the
G ¼ 0 case. Therefore, we expect that only two of the three dispersion relations will be more significantly affected by the
correction, namely the lightest modes.
The determinant of the kinetic matrix reads as follows:

detðMÞ ¼ jbj4
2

ðω2 − Gq2Þ½ðω2 − q2Þðω2 − Aq2 − Gq2Þ −m2
τðω2 − Gq2Þ�: ð5:29Þ

It rightly reduces to (3.24) when G ¼ 0. From this
expression one can immediately see that what was formerly
the immobile fracton, acquires isotropic and linear
dispersion relations which are valid for any momenta,
and are entirely controlled by G. One can further find the
exact analytical expression for the other two modes,
which will depend nontrivially both on G and mτ. At
low momentum ω; q ≪ mτ, one can see that the condition
detðMÞ ¼ 0 gets an additional factor of ðω2 − Gq2Þ, giving
the two gapless modes expected from the low-energy
effective theory.
In more detail, at low momentum we have the

expansions

ω2
1 ¼ Gq2; ð5:30Þ

ω2
2 ¼ Gq2 þ Að1 − GÞ q

4

m2
τ
þOðq6Þ; ð5:31Þ

ω2
3 ¼ m2

τ þ ð1þ AÞq2 þOðq4Þ: ð5:32Þ

We recover the expected results from the effective analysis
as well as the idea that two of the three modes are more
substantially affected by G. Looking at (5.30), (5.31), and
(5.32) we get back the dispersion relation of the original
model when we send G to zero.

FIG. 3. This figure displays the numerical ω1 mode at low momentum, i.e., theUð1ÞNambu-Goldstone mode. Both plots represent the
same graph and have been obtained with A ¼ 2, G ¼ 1, k ¼ 1, ρ ¼ 0.54, and μ ¼ 0 ¼ λ. On the left, a 3D plot is provided while on the
right it is a contour plot.
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At large momentum we can drop the last term in (5.29),
so that the determinant completely factorizes and the modes
will behave as

ω1 ¼
ffiffiffi
G

p
jqj; ω2 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþGÞ

p
jqj; ω3 ≃ jqj: ð5:33Þ

When G → 0, we recover the original large momentum
behavior.
According to our previous analysis, at low momentum

we can identify ω1 with the transverse component
of the displacement ui, while ω2 corresponds to the
longitudinal part. The gapped mode is mostly the
dilaton. At high momentum the Ward-Takahashi identities
keep the same identification for the modes as for low
momentum.

D. Extended model at finite density

We generalize the helical superfluid solutions to finite
density, as already done in Sec. IV for G ¼ 0. In order to

stabilize the ground states, we add a shift symmetry
breaking λ-term in the Lagrangian,

L ¼ ∂tΦ�∂tΦþ A∂iΦ�∂iΦþ 1

2
∂tΞ∂tΞ −

1

2
∂iΞ∂iΞ

þ 1

Ξ6
½−Bð∂iΦ�∂iΦÞ2 þ G∂iΦ�∂iΦ�∂jΦ∂jΦ�

−HΞ6 − λ2ðΦ�ΦÞ3: ð5:34Þ

Given the condition (5.3), the plane wave ansatz (4.4)—
(4.5) is a solution to the equations of motion minimizing the
effective potential provided

v6 ¼ 2ðB − GÞ
A

k2ρ2; ρ2 ¼
���� μffiffiffi

3
p

λ

����: ð5:35Þ

Setting G to zero, we recover the background solution of
the finite density G ¼ 0 model.
The linearized equations of motion are

2Aðkþ i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ − iχÞ − 4Gξ∂2

yσ þ 2iμ∂tðσ − iχÞ þ 4μ2σ ¼ 0; ð5:36Þ

2Aðk − i∂xÞ½kðσ − 3τÞ þ ∂xχ� þ ∂2
t ðσ þ iχÞ − 4Gξ∂2

yσ − 2iμ∂tðσ þ iχÞ þ 4μ2σ ¼ 0; ð5:37Þ

v2ð−∂2
x − ∂2

y þ ∂2
t Þτ − 12Akρ2½kðσ − 3τÞ þ ∂xχ� ¼ 0: ð5:38Þ

The kinetic matrix associated to the equations of motion is

M ¼ ρ2

0
BBB@

ω2 − 2Ak2 − 4μ2 − 4Gξq2y −2iðAkqx þ ωμÞ 6Ak2

2iðAkqx þ ωμÞ ω2 − 2Aq2x −6iAkqx
6Ak2 6iAkqx

1
2
ðω2 − q2x − q2yÞ v2ρ2 − 18Ak2

1
CCCA: ð5:39Þ

Since G only contributes by terms proportional to the
momentum, there are no qualitative differences in the gaps,
it is enough to replace B → B −G in the expressions found
in Sec. IV. The high-momentum behavior will once more
be the same as for zero density. For low and intermediate
momenta, we resort to numerics, our results are plotted in
Fig. 4 and in Fig. 5. Comparing with Fig. 3, we observe that
the ω1 mode is lifted at qy ¼ 0 when μ ≠ 0, as also
happened at G ≠ 0. On the other hand, comparing Figs. 2
and 5, the effect ofG is to introduce a change in the slope of
the dispersion relation in the qx direction. The identification
of the modes will be the same as that made at G ¼ 0 in
Sec. IV.

VI. COUNTING THE NAMBU-GOLDSTONE
MODES

The counting of Nambu-Goldstone modes for internal
symmetries has been systematically studied through the

years, also in relation to their dispersion characteristics
[35,49–58], and, in some cases, encompassing translational
symmetries too [59] (see [60] for a review). A comparison
of the specific results found above with the general
knowledge on Nambu-Goldstone counting is interesting
because it is nontrivial. To this purpose, we recapitulate in
Table I the Nambu-Goldstone modes found explicitly from
the study of the helical fluid and metafluid fluctuation
Lagrangians, as well as their dispersion and analyticity
properties. In particular, we stress that we found in general
two gapless and a gapped mode.
For internal symmetries, the number of Nambu-

Goldstone modes nNG is generically bounded by the
number of spontaneously broken symmetries nBS. If there
are no terms with single-time derivatives in the effective
action, however, all the Nambu-Goldstone modes are of
type A in the classification of [53,56] and we have
nNG ¼ nBS. A priori, that would be the case for the effective
actions we found (we set μ ¼ 0 for the moment). However,
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we are not dealing with internal symmetries only, hence the
notion of nBS has to be qualified, as we will do shortly.
An alternative classification, perhaps more pertinent to

our situation, is provided by counting theorems which split

the total number of Nambu-Goldstone modes nNG accord-
ing to specific dispersion properties. Defining as type I/
type II the modes with an odd/even dispersion relation,
respectively, [49] established that

FIG. 4. This figure displays the dispersion relations of the three modes (each mode has its own color, as in Fig. 1). The array of plots is
such that each lines corresponds respectively to the longitudinal direction (qy ¼ 0) and the transverse direction (qx ¼ 0). The columns
refer to the case of zero and nonzero chemical potential—to make it more visual, the zero chemical plots are the solid curves while the
nonzero chemical ones are dashed. All plots are done with A ¼ 0.125, G ¼ 0.25, k ¼ 1.5; the left column is obtained with μ ¼ 0 ¼ λ
while the right column is obtained with μ ¼ 1 and λ ¼ 1. The VEV value ρ is fixed in the μ ≠ 0 case by the preceding cited parameters
but it is not so in the zero chemical-potential case. We took the same value for ρ in both cases for practical reasons. We have that v > ρ,
hence, at low momentum, the green curve is mostly shiftonic while the red curve is mostly dilatonic. Notice that since μ < k, the
identification of the modes for the finite density case matches the one with zero chemical potential.

FIG. 5. This figure displays the numerical ω1 mode at low momentum, i.e., theUð1ÞNambu-Goldstone mode. Both plots represent the
same graph and have been obtained with A ¼ 2,G ¼ 1, k ¼ 1, μ ¼ 0.5, and λ ¼ 1. On the left, a 3D plot is provided while on the right it
is a contour plot.
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nI þ 2nII ≥ nBS: ð6:1Þ

Turning to broken spacetime symmetries, there are no
general counting rules, yet it is known that the number of
independent modes can be reduced [30–33,37,61,62]. In
essence, if Qa denotes the generators of broken sym-
metries, Pi denotes the unbroken translations and hΦðxÞi
denotes the expectation value of the order parameter, then
the following set of identities allows us to reduce the
number of independent fields

½Pi;Qa�hΦðxÞi ¼ ciabQbhΦðxÞi; ð6:2Þ

where ciab indicates the relevant structure constant of the
symmetry algebra. This introduces a constraint such that
would-be Nambu-Goldstone bosons appearing on each side
of the identity are not independent in general.
Let us discuss how the explicit results found in the

previous sections relate to the general counting rules. To the
counting purposes, we have to consider the following
symmetries:
(a) Spacetime: Translations P1, P2, rotations R and

dilatations D;
(b) Internal: Uð1Þ transformations (phase rotations) Q,

complex (i.e., realþ imaginary) shifts SR, SI .
Let us report the symmetry content of the two kinds of
ground states separately.

A. Helical superfluid

the unbroken symmetries are two translations

P1 − kQ; P2; ð6:3Þ

which leaves in principle five broken symmetries, nBS ¼ 5.
However, the commutation relation of unbroken trans-
lations with the broken generators result in additional
conditions

½P1 − kQ;D� ∝ P1; ½P2; R� ∝ P1;

½P1 − kQ; SR� ∝ SI; ½P1 − kQ; SI� ∝ SR: ð6:4Þ

This would imply that rotations, dilatations and broken
translations are described by a single mode, and there
would be a single mode associated to both real and

imaginary shifts (indeed, we had already commented
earlier on about this). Effectively we would be left with

a number of independent broken symmetries nðinÞBS ¼ 2,
where the up index stands for independent.

B. Metafluid

the unbroken symmetries are two translations and a
rotation

P1 − SR; P2 − SI; R −Q; ð6:5Þ

so there would be four broken symmetries; in this case
nBS ¼ 4. The commutation relations of the unbroken
translations with the broken symmetries would produce
additional conditions

½P1 − SR;D� ∝ P1; ½P2 − SI; D� ∝ P2: ð6:6Þ

Note that commutators with RþQ result in unbroken
translations. This would imply that broken translations and
dilatations are described by a single mode. Effectively this
reduces the number of independent broken symmetries

to nðinÞBS ¼ 2.
We report the values of the countings in Table II, which

requires some discussion. For G ¼ 0 in the helical super-
fluid, there is a trivial gapless mode and a type I mode. The
trivial mode could be counted as type I or II. Still in the
helical case, when G ≠ 0, we have almost the same type of
modes except that the trivial mode has a nonanalytic
dispersion relation, but we will still consider it as type
II, since at low momenta ω ∼Oðq2Þ. In so doing, the

counting rule (6.1) is satisfied if we use nðinÞBS as the number
of broken symmetries.
Turning to the metafluid case, for G ¼ 0 there is an

analytic/type II mode and the trivial mode, which could be
counted either as type I or II. On the other hand, if G ≠ 0,
the two gapless modes are type I/nonanalytic. Also in this
case we observe that the counting rule (6.1) is satisfied with

nðinÞBS as the number of broken symmetries.
Finally, switching on a chemical potential in the helical

superfluid gaps one of the two massless modes. This could
be seen as a consequence of introducing a mixing through a
single time-derivative term in the effective Lagrangian,
so effectively we would be left with a single type B

TABLE I. Dispersion and analyticity properties of the Nambu-
Goldstone modes as found from the low-energy study of the
fluctuation Lagrangian. The ⋆ sub-index indicates nonanalyticity.

Vacuum ω1 ω2 ω3

Helical (G ¼ 0) 0 q⋆ Gapped
Helical (G ≠ 0) q2⋆ q⋆ Gapped
Metafluid (G ¼ 0) 0 q2 Gapped
Metafluid (G ≠ 0) q⋆ q⋆ Gapped

TABLE II. Summary of the countings for the two kinds of
vacuum. With n0 we denote the number of trivial modes.

Vacuum nI nII n0 nBS nðinÞBS nA ¼ nNG nI þ 2nII

Helical (G ¼ 0) 1 0 1 5 2 2 2 or 3
Helical (G ≠ 0) 1 1 0 5 2 2 3
Metafluid (G ¼ 0) 0 1 1 4 2 2 3 or 4
Metafluid (G ≠ 0) 2 0 0 4 2 2 2
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Nambu-Goldstone mode in the classification of [53,56],
which turns out to be also type II if we just count the power
of the momentum and ignore the breaking of rotational
invariance. Note that in going to finite density we intro-
duced an additional coupling that breaks the shift sym-
metry, so that in this case the remaining gapped mode is a
pseudo-Goldstone mode and not a true gapped Namubu-
Goldstone. A final comment is the following. A finite
chemical potential can be implemented as a linear time
dependence in the phase of the charged field. In so doing,
however, time translations would be broken by our choice
of ensemble and not, strictly speaking, by a dynamical
feature described at the level of the Lagrangian. In contrast,
the space modulations that we consider in the helical case,
although being formally similar in some aspects, are
determined by the gradient Mexican hat potential. Some
further comments on this are given in relation to ghost
condensation in the next section.

VII. DISCUSSION

The concomitant breaking of dilatations and spatial
translations constitutes the main focus of the present study,
which adopts the framework of effective field theory.
Together with dilatations and translations, an internal
Abelian symmetry is broken, too. This symmetry serves
two purposes, one physical and another technical. The
former consists in modeling a conserved current, thus
providing the possibility of considering finite density
circumstances; the latter consists in the fact that the
breaking of translations and a Uð1Þ symmetry to their
diagonal subgroup allows for homogeneous symmetry
breaking, in the spirit of Q-lattice models [63].
We have utilized a simple nonrelativistic field theoretical

setup which allows one to characterize the low-energy
modes and derive their effective description in different
regimes. The breaking of translations is dynamically
induced by a gradient Mexican hat mechanism, namely
the competition among a quadratic gradient term driving
towards instability then stabilized by higher terms [41]. The
gradient Mexican hat, when discretized, connects to lattice
models with frustrated interactions [64].
By means of a neat particular example, we clarified the

generic fact that the analysis of the modes revolves about
three relevant bases; the basis given by the fluctuations of
the fields appearing in the Lagrangian, the basis of the
fluctuations which diagonalize the lowest-order dynamics
at low energy, and the basis associated to the symmetries of
the model (this latter is possibly incomplete). Whenever the
connection among such bases is nontrivial, we have mixing
phenomena. For instance, the Nambu-Goldstone mode
associated to a specific symmetry can results from different
combinations of the UV or the IR modes, as a function of
momenta.
We showed the presence of two degenerate classes of

vacua, one associated to a plane wave configuration and

possessing a helical structure (i.e., a global phase rotation
can be compensated for by a suitable translation along the
wave vector of the plane wave), the other associated to
complex field configurations which are linear in the
coordinates. The latter class admits a specific subclass of
isotropic solutions, where a global phase rotation of the
background can be compensated for by a suitable spatial
rotation. We referred to the latter subclass as metafluids,
because they show a trivial shear elastic response alongside
isotropy.
An important feature of the model studied here is the

presence of low-energy modes with reduced propagation
properties. This fractonic behavior can be associated to
enhanced polynomial shift symmetries of the low-energy,
linear-effective theory and translates into the trivialization
of some elastic coefficients. More specifically, we have
encountered both completely immobile modes and sub-
dimensional modes, like lineons propagating only along
one spatial direction. The immobile fractons can be thought
intuitively as plastic deformations which cost zero energy,
corresponding to an enlarged vacuum degeneracy, a
property which can be compared to the diverging zero-
temperature entropy of some fractonic lattice models in
their continuum limit [65].
Despite describing an elastic effective field theory with

fractonic excitations, the models studied in the present
paper differ from the setup where fracton-elasticity duality
has been demonstrated [16,17]. There, the two gapless
modes of a symmetric gauge field represent the dual
encoding of the transverse and longitudinal phonons.
Our models lack a gauge field and encode the phonons
as Nambu-Goldstone modes, dynamically generated by the
interactions. Furthermore, the fractons described in the
present paper do not correspond to defects or nonpertur-
bative configurations. They are the low-energy encoding of
a trivial (or partially trivial) elastic response.
Immobile fractons cannot move when in isolation but

can move due to interactions [16]. Analogously, we expect
that the flat fractonic-dispersion relations that we encoun-
tered are in general “bent” when considering higher-
nonlinear terms in the effective theory, leading to nontrivial
propagation.
To conclude, we briefly comment the relation of the

present study with some applications in condensed matter
and cosmology.
(1) LOFF (or FFLO) superconductors: The Larkin-

Ovchinnikov-Fulde-Ferrell (LOFF) state [66,67] is
characterized by a spatially modulated order param-
eter and a gapless phonon associated to the breaking
of translation invariance, and it might be realized in
some unconventional superconductors [68,69]. A
similar color superconducting state can also arise at
high density in QCD [70,71]. The Mexican hat
model is similar to the Ginzburg-Landau functional
used to describe superconducting states in the
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particle-hole symmetric case [72,73]. It could be
interesting to revisit the description of the LOFF
state and other translation-breaking superconducting
states to explore possible emergent symmetries and
the fractonic nature of the associated modes.7

(2) Wigner crystals: In the low-electron density regime,
Wigner crystals can be treated according to classical
elastic theory [77,78]. There, the chemical potential
μ can possibly be sufficiently low as to allow for a
μ-gapped dilaton to become relevant for the low-
energy collective-mode description of the crystal
response. Despite the nonvanishing μ, in a clean
Wigner crystal, all the phonons (either longitudinal
or transverse) are gapless. This matches with what
we observed in the metafluid model, which however
suggests that the standard elastic description for
Wigner crystals could lack an extra (gapped) dila-
tonic degree of freedom.

(3) Charge density waves: Optical conductivity mea-
surements show a rich structure of peaks [79,80]. In
the presence of disorder, the general pattern is
characterized by a low-frequency gapped mode
corresponding to a pinned collective sliding mode
of the density wave condensate. At the opposite end
of the spectrum, there is a high-frequency mode
associated to the single excitation through the
density wave gap. The intermediate region features
nonuniversal peaks corresponding to substrate
modes, e.g., due to the impurities. It would be
interesting to investigate whether the intermediate
structure could conceal a gapped dilatonic peak.8

(4) Ghost condensates: In the search of possible infrared
modifications of General Relativity, a mechanism
similar to the gradientMexican hat has been proposed
in the time derivative sector, this is usually referred to
as ghost condensation [43].9 A relativistic generali-
zation of (2.1) is possible, yet it leads to trivial results.
Specifically, one can consider the model

L ¼ A∂μΦ�∂μΦ − B
ð∂μΦ�∂μΦÞ2

Ξ6

−
1

2
∂μΞ∂μΞ −HΞ6 − λ2ðΦ�ΦÞ3: ð7:1Þ

For λ ≠ 0 the equations of motion imply Φ ¼ 0.
Whereas, for λ ¼ 0, the resulting low-energy

effective theory features just a relativistic gapless
mode, the other two degrees of freedom in (7.1) being
associated to an emergent gauge redundancy at the
quadratic level in the fluctuations.
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APPENDIX A: HOMOGENEOUS VACUA

In this Appendix we motivate the choice of the two
different symmetry breaking vacua that we have discussed
in the main text, namely the helical superfluid and the
metafluid.
Solutions to the equations of motion (2.3) and (2.4)

which minimize the energy necessarily imply a constant Ξ
and a static Φ. The space dependence of Φ is further
constrained to satisfy10

∂iΦ�∂iΦ ¼ A
2B

v6 ≡ c2: ðA1Þ

In principle, to explore the space of time-independent
solutions, one must consider the most general Φ satisfying
(A1). Since we are considering field theories with two
spatial dimensions, the field Φ represents a map from the
real plane to the complex plane. The condition (A1)
restricts to maps whose complex gradient has constant
modulus. The (functional) space of solutions is clearly
very large.
However, we will add one physically motivated con-

straint, which is to require that the effective theory of the
fluctuations around the vacuum solution be completely
homogeneous. In other words, we require the effective
Lagrangian of the fluctuating fields not to have any explicit
space dependent function.
Suppose Φ0ðxiÞ is a solution of (A1). We expand the

field around such solution as

Φðt; xiÞ ¼ Φ0ðxiÞ þ fðxiÞφðt; xiÞ; ðA2Þ

where φ is the fluctuating field, and fðxiÞ is a complex
function, depending only on space coordinates, that takes
into account the freedom in the definition of the fluctuating

7A holographic discussion of FFLO phases has been com-
mented in [74–76].

8An analogous question would be interesting also in relation to
holographic realizations of charge density waves, see for instance
[81–85].

9We refer to [86] for a discussion involving a dilatonic ghost.
Ghost condensation is related to the spontaneous development of
a harmonic time dependence, as such, is related to Floquet
systems (see for a holographic discussion [87]).

10An analogous equation is described in [88] in relation to
superfluids with constant superfluid velocity.
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field. It will be fixed in order to have an homogeneous
effective Lagrangian.
Let us first consider the term with the time derivatives

∂tΦ�∂tΦ ¼ jfj2∂tφ
�∂tφ: ðA3Þ

Homogeneity is achieved requiring jfj2 to be spacetime
independent. Hence, f can be considered to have only a
space-dependent phase.
Consider now the expansion of the expression squaring

to the ‘gradient Mexican hat,’ to linear order in the
fluctuations

∂iΦ�∂iΦ − c2 ¼ ∂iΦ�
0∂iΦ0 þ ∂iΦ�

0ð∂ifφþ f∂iφÞ
þ ∂iΦ0ð∂if�φ� þ f�∂iφ

�Þ − c2

¼ ∂iΦ�
0∂ifφþ ∂iΦ0∂if�φ�

þ ∂iΦ�
0f∂iφþ ∂iΦ0f�∂iφ

�: ðA4Þ

The quadratic Lagrangian involves the square of the above
expression, and will be homogeneous if and only if each
coefficient of the four terms above is itself space indepen-
dent (or zero). Taking into account that they come in
complex pairs, we have the two conditions relating f
and Φ0

f∂iΦ�
0 ¼ iai; ∂if∂iΦ�

0 ¼ b; ðA5Þ

where ai and b are generic complex space-independent
constants.
Let us now implement the fact that f must have all its

space dependence in a real phase

fðxiÞ ¼ f0eiθðxiÞ: ðA6Þ

From the first of (A5) we get

∂iΦ�
0 ¼ i

ai
f0

e−iθ: ðA7Þ

From the fact that ∂i∂jΦ�
0 ¼ ∂j∂iΦ�

0 we get that

ai∂jθ ¼ aj∂iθ: ðA8Þ

The second of (A5) gives now

ai∂iθ ¼ −b: ðA9Þ

These last two sets of equations imply that ∂iθ are both
constant (and must be real for consistency).
If at least one of the constants is not zero (i.e., b ≠ 0),

then we can write θ ¼ kixi, and we have f ∝ Φ0 ¼ ρeikixi ,
i.e., the helical solution (rotated towards a generic
direction).

If on the other hand both constants are zero (i.e., b ¼ 0),
then θ is a constant that can be reabsorbed in f0, the
constant value of f. Then Φ0 is linear, Φ0 ¼ bixi, i.e., we
have the metafluid solution (generalized to the noniso-
tropic case).

APPENDIX B: WARD-TAKAHASHI IDENTITIES

The model in (2þ 1) dimensions has a Lagrangian
density

L ¼ Lð∂0XI; ∂iXIÞ; XI ¼ fΦ;Φ�;Ξg; ðB1Þ

where

L ¼ j∂0Φj2 þ 1

2
ð∂0ΞÞ2 þ Aj∂kΦj2 − 1

2
ð∂kΞÞ2 −HΞ6

− BΞ−6j∂kΦj4 þ GΞ−6j∂kΦ�∂kΦ�j2: ðB2Þ

The Noether energy-momentum tensor is

Tμ
ν ¼

δL
δ∂μXI ∂νXI − δμνL: ðB3Þ

One can check that it is conserved on shell ∂μTμ
ν ¼ 0.

The spatial components are symmetric

Tð0Þ
ij ¼ 2A∂ðiΦ�∂jÞΦ − ∂iΞ∂jΞ − δijL;

TB
ij ¼ −4BΞ−6ð∂kΦ�∂kΦÞ∂ðiΦ�∂jÞΦ;

TG
ij ¼ 2GΞ−6 ½ð∂kΦ�∂kΦ�Þ∂iΦ∂jΦþ c:c:�; ðB4Þ

so the complete stress tensor is

Tij ¼ Tð0Þ
ij þ TB

ij þ TG
ij: ðB5Þ

The T00 component is

T00 ¼ 2∂0Φ�∂0Φþ ð∂0ΞÞ2 − L: ðB6Þ

Then, the trace is

Tμ
μ ¼ T00 þ δijTij: ðB7Þ

The traces are

δijTð0Þ
ij ¼ 2A∂kΦ�∂kΦ − ∂kΞ∂kΞ − 2L;

δijTB
ij ¼ −4BΞ−6ð∂kΦ�∂kΦÞ2;

δijTG
ij ¼ 4GΞ−6j∂kΦ�∂kΦ�j2; ðB8Þ

All together
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Tμ
μ ¼ −j∂0Φj2 − 1

2
ð∂0ΞÞ2 − Aj∂kΦj2 þ 1

2
ð∂kΞÞ2 þ 3HΞ6

− BΞ−6j∂kΦj4 þ GΞ−6j∂kΦ�∂kΦ�j2: ðB9Þ

Using the equation of motion for Ξ, we can write this as

Tμ
μ ¼ −j∂0Φj2 − Aj∂kΦj2 − 1

4
ð∂2

0 − ∂2
kÞΞ2

þ 2BΞ−6j∂kΦj4 − 2GΞ−6j∂kΦ�∂kΦ�j2: ðB10Þ

Using now the equations of motion for Φ, Φ�

Tμ
μ ¼ −

1

2
ð∂2

0 þ A∂2
kÞjΦj2 − 1

4
ð∂2

0 − ∂2
kÞΞ2

þ ∂kðBΞ−6j∂mΦj2∂kjΦj2Þ

−
1

2
∂k½GΞ−6ð∂mΦ�∂mΦ�Þ∂kΦ2 þ c:c:�: ðB11Þ

We can partially improve the energy-momentum tensor

T μ
ν ¼ Tμ

ν þ
1

4
ð□δμν − ∂μ∂νÞ

�
jΦj2 þ Ξ2

2

�
þ θμν: ðB12Þ

Where ∂μ ¼ ημα∂α, □ ¼ ηαβ∂α∂β and the nonzero compo-
nents of θμν are

θij ¼
1

2
ðAþ 1Þð∂2

kδ
i
j − ∂i∂jÞjΦj2: ðB13Þ

Then, the trace is

T μ
μ ¼ ∂μVμ; ðB14Þ

where V0 ¼ 0 and

Vi ¼ BΞ−6j∂kΦj2∂ijΦj2

−
1

2
½GΞ−6ð∂kΦ�∂kΦ�Þ∂iΦ2 þ c:c:�: ðB15Þ

There is a conserved current associated to scale
transformations

Dμ ¼ T μ
αxα − Vμ; ∂μDμ ¼ T μ

μ − ∂μVμ ¼ 0: ðB16Þ

Then, (B14) is the Ward-Takahashi identity associated to
dilatations.

1. Conserved current

The current is

Jμ ¼ i
2

�
Φ

δL
δ∂μΦ

− c:c:

�
: ðB17Þ

The ordinary current is

jμ ¼
i
2
ðΦ∂μΦ� −Φ�∂μΦÞ: ðB18Þ

In this model, the components of the conserved current are

J0 ¼ j0;

Ji ¼ −ðA − 2BΞ−6j∂kΦj2Þji
− iGΞ−6½ð∂kΦ�Þ2Φ∂iΦ − ð∂kΦÞ2Φ�∂iΦ��: ðB19Þ

And the current conservation equation is

∂μJμ ¼ 0: ðB20Þ

2. Shift symmetries

The Lagrangian has additional shift symmetry (we
consider here only real shifts, to avoid overcounting)

Φ → Φþ α; Φ� → Φ� þ α: ðB21Þ

The Noether currents associated to this symmetry is

Jμs ¼ δL
δ∂μΦ

þ δL
δ∂μΦ� : ðB22Þ

If the action only depends on derivatives of Φ, then the
current is conserved, since it is a combination of the
equations of motion for Φ, Φ�

∂μJsμ ¼ 0: ðB23Þ

Note that adding this equation makes the system of
equations from the Ward-Takahashi identities equal to
the system of equations from the Lagrangian, we have
to solve for all the modes.
The components are

Js0 ¼ ∂0Φþ ∂0Φ�;

Jsi ¼ −Að∂iΦþ ∂iΦ�Þ þ 2BΞ−6j∂kΦj2ð∂iΦþ ∂iΦ�Þ
− 2GΞ−6ð∂kΦ�∂kΦ�∂iΦþ ∂kΦ∂kΦ∂iΦ�Þ: ðB24Þ

3. Adding a chemical potential

We introduce a chemical potential

Φ ¼ eiμtϕ; Φ� ¼ e−iμtϕ�: ðB25Þ

Then, the charge density becomes

J0ðΦÞ ¼ j0ðΦÞ ¼ 4μjϕj2 þ j0ðϕÞ≡ J0ðϕÞ: ðB26Þ

The time-time component of the energy-momentum tensor
changes to
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T00ðΦÞ ¼ 2μ2jϕj2 þ 2iμðϕ∂0ϕ
� − ϕ�∂0ϕÞ þ T00ðϕÞ

¼ μJ0ðϕÞ þ t00ðϕÞ; ðB27Þ

where

t00ðϕÞ ¼ T00ðϕÞ − 2μ2jϕj2: ðB28Þ

The effective Lagrangian is

Lϕ ¼ Lþ 2μ2jϕj2: ðB29Þ

The change in the trace is

Tμ
μðΦÞ ¼ Tμ

μðϕÞ − μ2jϕj2 − iμðϕ∂0ϕ
� − ϕ�∂0ϕÞ: ðB30Þ

APPENDIX C: GENERALIZATIONS
TO (3 + 1) DIMENSIONS

In this Appendix, we briefly outline generalizations to
(3þ 1)-dimensional systems, to show that the essential
features of both the helical superfluid and the metafluid are
unchanged. The only difference is that we have to use
different models to generalize the helical superfluid and the
metafluid, respectively. We will keep the analysis of both
models to a minimum, since it turns out that they are very
similar to their (2þ 1)-dimensional cousins.

1. (3 + 1)-dimensional helical superfluid

In order to generalize the helical superfluid, we keep the
field content to be a complex scalar Φ and a real scalar Ξ.
Only the scaling dimensions of the scalars changes, and
hence the compensating powers of Ξ.
We thus start with the following Lagrangian, where we

have already implemented a condition like (2.12)

L ¼ ∂tΦ�∂tΦþ 1

2
∂tΞ∂tΞ −

1

2
∂iΞ∂iΞ

−
B
Ξ4

�
∂iΦ�∂iΦ −

A
2B

Ξ4

�
2

: ðC1Þ

The equations of motion are solved for

Φ ¼ ρeikx; Ξ ¼ v; with
k2ρ2

v4
¼ A

2B
: ðC2Þ

The expansion is exactly as before

Φ ¼ ρeikxð1þ σ þ iχÞ; Ξ ¼ vð1þ τÞ; ðC3Þ

so that the effective quadratic Lagrangian for the fluctua-
tions about the helical vacuum is

L ¼ v2

2
∂μτ∂μτ þ ρ2ð∂tχÞ2 þ ρ2ð∂tσÞ2

− 2Aρ2½∂xχ þ kðσ − 2τÞ�2; ðC4Þ

which is exactly similar to (2.51) except for a numerical
coefficient. The spectrum will then be exactly the same;
there is an immobile fracton, a gapless mode which has
linear and isotropic dispersion relations at low momentum,
but becomes a lineon at high momentum (propagating
along x, now one out of three directions), and a gapped
mode which has relativistic dispersion relations at high
momentum (this is the spectrum for A ≤ 1=2; if A > 1=2
then as before the lineon and the relativistic mode switch
roles according to the direction of propagation). The gap is
given by

m2 ¼ 2Ak2
�
1þ 8

ρ2

v2

�
: ðC5Þ

2. (3 + 1)-dimensional metafluid

In order to generalize the metafluid, the model has to
contain as many (real) scalar fields as space directions, plus
the compensator scalar field. Hence we start with three real
scalar fields Φi, to which we add Ξ. The Lagrangian is now

L ¼ 1

2
∂tΦi∂tΦi þ

1

2
∂tΞ∂tΞ −

1

2
∂iΞ∂iΞ

−
B
Ξ4

�
∂iΦj∂iΦj −

A
2B

Ξ4

�
2

: ðC6Þ

The solution to the equations of motion is

Φi ¼ bxi; Ξ ¼ v; with
3b2

v4
¼ A

2B
: ðC7Þ

We take the fluctuations to be

Φi ¼ bðxi þ uiÞ; Ξ ¼ vþ τ; ðC8Þ

and the quadratic Lagrangian becomes

L¼1

2
∂μτ∂μτþ1

2
b2∂tui∂tui−

2

3
Ab2

�
∂iui−

6

v
τ

�
2

: ðC9Þ

Again, this is very similar to (2.63), up to some numerical
coefficients. However, now it involves four modes instead
of three. But we can immediately see that the only modes
that will have nontrivial dispersion relations are the
mixtures of τ and the longitudinal component of ui.
Then, both transverse modes of ui will be immobile
fractons.
As for the nontrivial modes, one is gapped with gap

given by
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m2 ¼ 48A
b2

v2
; ðC10Þ

and relativistic dispersion relation at high momentum,
while the other is gapless with quadratic dispersion relation
at low momentum

ω2 ¼ 4

3

A
m2

q4 þOðq6Þ; ðC11Þ

and linear dispersion relation given by

ω2 ≃
4

3
Aq2; ðC12Þ

at high momentum. If A > 3=4, the high momentum
behavior is switched between the two modes.
To summarize, we see that the generalization to (3þ 1)

dimensions yields physics very similar to the (2þ 1)-
dimensional case that we have analyzed in detail, so that
we expect that the latter transposes to (3þ 1) dimensions
straightforwardly.
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Effective holographic theory of charge density waves, Phys.
Rev. D 97, 086017 (2018).

[82] A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, DC
Resistivity of Quantum Critical, Charge Density Wave
States from Gauge-Gravity Duality, Phys. Rev. Lett. 120,
171603 (2018).

[83] A. Amoretti, D. Areán, B. Goutéraux, and D. Musso,
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