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The tidal Love numbers of a black hole vanish, and this is often taken to imply that the hole’s tidally
induced multipole moments vanish also. An obstacle to establishing a link between these statements is that
the multipole moments of individual bodies are not defined in general relativity, when the bodies are
subjected to a mutual gravitational interaction. In a previous publication [Phys. Rev. D 103, 064023 (2021)]
I promoted the view that individual multipole moments can be defined when the mutual interaction is
sufficiently weak to be described by a post-Newtonian expansion. In this view, a compact body is perceived
far away as a skeletonized post-Newtonian object with a multipole structure, and the multipole moments
can then be related to the body’s Love numbers. I expand on this view, and demonstrate that all static,
tidally induced, mass multipole moments of a nonrotating black hole vanish to all post-Newtonian orders.
The proof rests on a perturbative solution to the Einstein-Maxwell equations that describes an electrically
charged particle placed in the presence of a charged black hole. The gravitational attraction between
particle and black hole is balanced by electrostatic repulsion, and the system is in an equilibrium state.
The particle provides a tidal environment to the black hole, and the multipole moments vanish for this
environment. I argue that the vanishing is robust, and applies to all slowly varying tidal environments.
The black hole’s charge can be as small as desired (though not identically zero); by continuity, the
multipole moments of an electrically neutral black hole will continue to vanish.
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I. INTRODUCTION

The tidal deformation of compact bodies (neutron stars
and/or black holes) was revealed [1] to play an important
role in the emission of gravitational waves during a binary
inspiral, and to disclose important information regarding
the body’s internal constitution (see Ref. [2] for a recent
review of these exciting developments). A measurement of
the tidal deformability of a neutron star was attempted for
GW170817 [3], and it delivered an upper bound of
astrophysical significance [4]; this bound was used to
constrain the equation of state of nuclear matter at high
densities [5].
The tidal deformability of a compact object is measured

primarily by its (gravitoelectric) Love numbers kl, which
depend on the equation of state for a neutron star, and
vanish for a black hole [6,7]. This result, that all Love
numbers are zero for a black hole, has never ceased to
fascinate and mystify [8–11]. Porto described it as a fine-
tuning that requires an explanation [12]; a hidden ladder
symmetry was recently uncovered [13,14] and proposed as
such an explanation.
My purpose in this paper is to clarify the link between

Love numbers and observable tidal effects in a binary
inspiral. It often seems to be taken for granted that the
vanishing of Love numbers for a black hole implies the

absence of tidal effects in the hole’s equations of motion,
and in the emission of gravitational waves. I believe that
this conclusion should not be taken for granted; it should
not be accepted without proof. Within the limitations to be
specified below, I provide a proof in this paper. The
conclusion turns out to be correct.
The tendency to take the link for granted comes from

Newtonian gravity, which offers no essential distinction
between Love numbers and tidally induced multipole
moments. To keep the discussion simple I restrict my
attention to a star of mass M and radius R subjected to a
quadrupolar (l ¼ 2) tidal field. A calculation of the exterior
Newtonian potential for this situation (see, for example,
Sec. 2.5 of Ref. [15]) returns

U ¼ GM
r

−
1

2

�
r2 þ 2k2

R5

r3

�
EabΩaΩb; ð1:1Þ

where r is the distance to the star’s center of mass, Ωa ¼
xa=r is the unit radial vector, k2 is the star’s quadrupolar
Love number, and EabðtÞ ≔ −∂abUext is the tidal quadru-
pole moment, given by two derivatives of the external
potential created by the remote bodies responsible for the
tidal environment (this is evaluated at the center of mass
after differentiation). The potential U is seen to be a
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superposition of two elementary solutions to Laplace’s
equation. The first is the growing term proportional to r2,
which describes the tidal field. The second is the decaying
term proportional to r−3, which describes the star’s tidal
response. In Newtonian gravity, decaying solutions to
Laplace’s equation are in a one-to-one correspondance
with multipole moments of the mass distribution. A general
solution to Laplace’s equation that includes monopole and
quadrupole terms can always be written as

U ¼ GM
r

−
1

2
r2EabΩaΩb þ 3

2r3
QabΩaΩb; ð1:2Þ

where Qab is the mass quadrupole moment. A comparison
of Eqs. (1.1) and (1.2) reveals that

Qab ¼ −
2

3
k2R5Eab ð1:3Þ

for a tidally deformed star. In Newtonian theory, therefore,
Qab is proportional to k2, and the Love number is
essentially synonymous with the mass quadrupole moment.
The link between k2 and Qab is far more tenuous in

general relativity. There is no obstacle to promoting
Eq. (1.1) and providing k2 with a proper relativistic
definition. The Newtonian potential is replaced with the
metric gαβ of a tidally deformed body, and we obtain
relations of the form [6,7]

c−2gtt¼−1þ2GM
c2r

−
1

c2

�
r2ð1þ���Þþ2k2

R5

r3
ð1þ���Þ

�
EabΩaΩb; ð1:4Þ

where the ellipses represent relativistic corrections of order
GM=ðc2rÞ. The important point here is that in the relativ-
istic theory, the Love numbers are defined as (gauge-
invariant) parameters of the deformed metric, and nothing
more. Gralla pointed out [16] that the definition of Love
numbers is based on a convention regarding the charac-
terization of growing and decaying solutions in general
relativity, and that different authors might choose different
conventions and obtain different values.
There is no direct analog to Eq. (1.2) in general relativity,

and as a consequence, there is no direct analog to Eq. (1.3).
The obstacle is the presence of growing terms in the metric.
While multipole moments of a stationary and asymptoti-
cally flat spacetime can be defined rigorously [17,18], these
definitions do not apply when consideration is given only to
a small neighborhood of the deformed body, with a metric
of the form of Eq. (1.4); this portion of spacetime is not
asymptotically flat. In other words, while the Geroch-
Hansen algorithm can be exploited to calculate the multi-
pole moments of an entire spacetime (given stationarity and
asymptotic flatness), it cannot be used to compute the

moments of individual objects within this spacetime. Some
authors have proposed a way out [19–21]: subtract out the
growing solution from Eq. (1.4) and then calculate the
Geroch-Hansen multipole moments. As I argue at length in
Ref. [22], this approach is both artificial and ambiguous; it
brings obscurity to an effort to elucidate the tidal dynamics
of a binary system in general relativity.
In Ref. [22] I introduced what I consider to be a more

promising approach to the definition of tidally induced
multipole moments. It relies on a post-Newtonian descrip-
tion of the mutual gravity between the compact body and its
binary companion, which is assumed to be weak. In this
view, the gravitational field of the compact body becomes
indistinguishable, sufficiently far away, from the field of a
point particle endowed with a multipole structure. In this
approximate way, the body becomes a skeletonized post-
Newtonian object (I prefer to use this phrase instead of
“point particle”), and the multipole moments are properties
of this object. Given this definition, a relation such as
Eq. (1.3) can then be derived, implicating the post-
Newtonian Qab and Eab and a k2 computed in full general
relativity.
This approach, I believe, provides a satisfactory defi-

nition of multipole moments for strongly self-gravitating
bodies, provided only that they are in a weak gravitational
interaction with other masses. The grounding of the
approach in post-Newtonian theory is also natural, for it
is within this framework that tidal terms in the equations of
motion, and in the emission of gravitational waves, are
usually identified [23–26]. To be clear, the description of
tidal effects does not require post-Newtonian theory; they
can very well, for example, be witnessed directly in
numerical relativity simulations. However, the characteri-
zation of tidal effects in terms of quantities such as Love
numbers and tidally induced multipole moments must be
grounded in post-Newtonian theory.
It is within this framework that I demonstrate that the

tidally induced multipole moments of a black hole are all
zero. With a few qualifiers inserted, what I shall show is
that all static, tidally induced, mass multipole moments of a
nonrotating black hole, as defined properly in terms of a
skeletonized post-Newtonian object, vanish to all post-
Newtonian orders. It is important to appreciate the dis-
tinction between this statement and the long-known fact
that Love numbers vanish for black holes. As I have
emphasized, Love numbers are properties of the deformed
metric, while tidally induced multipole moments are
properties of the skeletonized post-Newtonian object. To
show that the vanishing of Love numbers implies the
vanishing of multipole moments requires a satisfactory
link between these quantities. The post-Newtonian
approach provides such a link, and it provides a method
of proof.
The argument is unfolded in the next two sections. I

begin in Sec. II with a detailed explanation of the notion
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that a compact body in a weak gravitational interaction with
other masses can be viewed as a skeletonized post-
Newtonian object. This notion gives rise to a proper
definition for the tidally induced multipole moments of
the compact body, and it permits a calculation of these
moments.
I continue in Sec. III with a computation of tidally

induced multipole moments for a black hole placed in a
static tidal environment; these are calculated to all post-
Newtonian orders. The environment that permits this is a
contrived one: the black hole is given a small electric
charge (as small as desired, though not identically zero) and
placed in the presence of a particle with a large charge-to-
mass ratio. The gravitational and electrostatic forces acting
on the black hole and particle are balanced, and the system
is in an equilibrium state. The particle produces a tidal field
around the black hole, and mass multipole moments are
computed for this field; I obtain a vanishing result for all
of them.
Should one be bothered by the contrivance? After all, an

astrophysical black hole will never be found in such an
arrangement. I argue that one should not be bothered. To be
sure, the charged particle produces a tidal tensor Eab that is
highly specialized. The relation between Qab and Eab,
however, can be expected to be generic. If Qab vanishes for
a contrived Eab, it will vanish also for a naturally occurring
Eab. To the extent that this statement is correct, the
conclusion that all multipole moments vanish for a black
hole will be valid for all static tidal environments.
Should one be bothered by the requirement that the black

hole be charged? Again my answer is no. As I pointed out,
the charge can be as small as one desires, and such a small
charge will not change the properties of the black hole by
much. By continuity, we can expect that if the multipole
moments vanish for a very small charge, they will continue
to vanish for a zero charge.
Should one be bothered by the static tidal environment?

No. The idealization of a static tidal field has been exploited
in most of the literature on this subject. It captures the idea
that when viewed on a timescale commensurate with the
black hole, the tidal environment changes slowly, thanks to
the weak gravitational interaction with its companion. (An
extended discussion of this point will be found in Sec. II.)
The calculation presented in Sec. III requires Eq. (3.2)

below as a key technical input; this gives the metric of the
tidally deformed black hole. The following three sections of
the paper are devoted to a derivation of this equation. These
computations are long and detailed, and in order to preserve
the flow of the demonstration (which is more interesting
than the technical matter), I present them after the argument
has been brought to a close. I begin in Sec. IV with a review
of relevant aspects of the Reissner-Nordström spacetime,
which describes an electrically charged black hole. I
introduce a particle with an arbitrary charge-to-mass
ratio in Sec. V, and calculate the gravitational and

electromagnetic perturbations that it produces; in this
general context the particle and black hole are kept in
place by means of massless strings. The perturbation is a
solution to the linearized Einstein-Maxwell equations, and
the perturbed spacetime is an approximation to an exact
solution that describes the superposition of two Reissner-
Nordström objects [27,28]; in view of its simplicity
compared with the exact spacetime, I prefer to use the
perturbative solution. In Sec. VI, I specialize the solution to
the specific charge-to-mass ratio that produces balanced
gravitational and electrostatic forces. This situation was
previously examined in Ref. [29]; my solution is expressed
in a different (and more convenient) gauge. An exact
version of this spacetime was obtained by Alekseev and
Belinski [30]; again the linearized solution is simpler to
deal with. After all these developments, I arrive at Eq. (3.2).
Some calculations are relegated to Appendixes. I con-

struct monopole solutions to the perturbed Einstein-
Maxwell equations in Appendix A; these are required in
Sec. V. I examine the dipole piece of the perturbation in
Appendix B, and introduce a coordinate transformation that
eliminates the solution’s dipole moment at infinity.

II. COMPACT BODY AS SKELETONIZED
POST-NEWTONIAN OBJECT

We imagine a compact body (a neutron star, a black hole,
or even something more exotic) placed in the presence of
other masses, such that the entire system forms a bound
gravitating system. We imagine that the mutual gravita-
tional interaction between these bodies is sufficiently weak
that it can be adequately described by a post-Newtonian
expansion. On the other hand, gravity is strong in the
immediate neighborhood of the compact body, and it must
be given a fully relativistic description. For conceptual
simplicity we assume that the internal gravity of each
remote object is weak, so that it is also well described by a
post-Newtonian expansion; there is no obstacle to relaxing
this assumption, and allowing the internal gravity of all
bodies to be strong.
Wewish to describe the weak mutual interaction between

compact body and remote objects, while taking into
account the fact the body’s own gravity is strong. For this
purpose we partition spacetime near the compact body into
zones—see Fig. 1. The first is a post-Newtonian zone, in
which gravity is weak, and in which the metric can be given
a post-Newtonian expansion. The second is an exclusion
zone, which includes and surrounds the compact body, in
which gravity is strong, and in which the metric must be
calculated in full general relativity. (A third zone, the body
zone, will be introduced below.) The post-Newtonian zone
can be further partitioned into near and wave zones; in the
near zone gravity is slowly varying, with a characteristic
velocity that is small compared with the speed of light,
while it is rapidly varying in the wave zone, with a
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characteristic velocity equal to the speed of light. Our
considerations below will be restricted to the near zone.
In the post-Newtonian zone, the Einstein field equations

are cast in the form first introduced by Landau and Lifshitz
[31] (see Chap. 6 of Ref. [15] for an elaboration of their
formalism). The primary variable is the “gothic inverse
metric” gαβ ≔ ffiffiffiffiffiffi−gp

gαβ, where gαβ is the inverse of the
actual metric gαβ, and g ≔ det½gαβ�. We impose the har-
monic coordinate conditions

∂βgαβ ¼ 0; ð2:1Þ

which are formally equivalent to the statement that the four
spacetime coordinates Xμ ¼ ðt; XaÞ satisfy the wave equa-
tion gαβ∇α∇βXμ ¼ 0 in a spacetime with metric gαβ. We
assume that the coordinates are Lorentzian, in the sense that
gαβ approaches the Minkowski metric at infinity. The field
equations become

∇2gαβ ¼ 1

c2
∂ttgαβ þ

16πG
c4

ταβ; ð2:2Þ

where ∇2 is the usual flat-space Laplacian, ∂t denotes
partial differentiation with respect to time, and ταβ is an
effective energy-momentum pseudotensor which contains
contributions from the matter and the gravitational field.
Equation (2.2), accompanied by Eq. (2.1), is an exact

formulation of the Einstein field equations. Building on
this, the post-Newtonian approximation introduces a simul-
taneous expansion of gαβ in powers of G and c−2, which
must keep step when the system is gravitationally bound.
Equation (2.2) is then iterated as many times as required to

achieve a desired degree of accuracy. When the scheme is
implemented in the near zone, the zeroth iteration sets the
metric to its Minkowski value on the right-hand side of the
equation, and the resulting Poisson equation is integrated.
In the first iteration the solution is inserted on the right-
hand side, the new Poisson equation is integrated, and so
on. The key point is that during each iteration of the field
equations, the source term on the right-hand side is
determined from the previous iteration.
At each iteration the integration of Poisson’s equation is

carried out in the near zone only. The domain of integration
therefore excludes the wave zone and the exclusion zone.
These, however, must inform the solution, and the relevant
information is fed through solutions to the homogeneous
version of Eq. (2.2), Laplace’s equation ∇2gαβ ¼ 0. From
the wave zone we get growing solutions of the form
r̄lYm

l ðθ;ϕÞ, where ðr̄; θ;ϕÞ are spherical polar coordinates
obtained in the usual way from the Cartesian system Xa,
and where Ym

l are spherical harmonics. These solutions
reflect a choice of outgoing-wave boundary condition at
infinity, and they give rise to radiation-reaction forces
acting on the system. From the exclusion zone we get
decaying solutions of the form s̄−l−1Ym

l ðθ;ϕÞ, where s̄ ≔
jX − Xbodyj is the distance to the compact body. Such a term
is formally identical to a contribution to gαβ that would
come from a multipole of order l situated at Xa ¼ Xa

bodyðtÞ.
In this way, the compact body manifests itself, in the post-
Newtonian zone, as a skeletonized object with a collection
of multipole moments. Two types of moments occur in the
metric: mass multipole moments, which appear primarily in
gtt, and current multipole moments, which appear primarily
in gta.
The subsumption of the compact body into a skeleton-

ized post-Newtonian object with a multipole structure1 is an
artifact of the post-Newtonian approximation and the need
to truncate the post-Newtonian zone when the body’s
gravity becomes too strong. The actual body, of course,
is not pointlike. To determine the multipole moments it is
necessary to obtain an alternative description of the metric,
in a region of spacetime—the body zone—that includes the
body and extends beyond the exclusion zone, in a treatment
that is now grounded in full general relativity. In this

post-Newtonian zone

body zone

exclusion zone

FIG. 1. Spacetime partitioned into zones. The black hole is
shown at the center, in black. The post-Newtonian zone, where
gravity is weak, is shown in white. The exclusion zone, where
gravity is strong, is shown in blue. The body zone, where gravity
is described by a tidal deformation of the original black-hole
spacetime, is shown in red.

1A question might be raised about the gauge invariance of the
multipole moments. I claim that they are indeed gauge invariant,
in the following sense. Note first that the harmonic coordinates of
the post-Newtonian metric are uniquely specified (assuming
regularity at the origin, an outgoing-wave boundary condition
at infinity, and up to a global rotation and translation). Given that
the harmonic gauge is completely fixed, quantities that appear in
the post-Newtonian metric are then necessarily gauge invariant,
and this is true of the multipole moments of the skeletonized
body. The multipole moments, however, are not directly observ-
able. But they can be mapped to an observable [23–26]: they
appear in the expression of the gravitational waves measured at
infinity, which are directly observable.
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description the compact body is taken to be weakly
deformed by the tidal field created by the remote objects;
the body would be spherical in isolation. The tidal
deformation is measured in terms of Love numbers, which
appear as parameters in the body-zone metric, and which
are computed by ensuring that the body’s exterior and
interior metrics join smoothly at the surface. The body’s
local metric is then matched to the post-Newtonian metric
in the overlap between body and post-Newtonian zones,
and the mass and current multipole moments are deter-
mined in terms of the Love numbers. It is important to
understand that the Love numbers are a property of the
body’s local metric, which is obtained in full general
relativity, and that the multipole moments are a property
of the skeletonized post-Newtonian object. It is the match-
ing of these two disparate descriptions of the same
gravitational field that produces a relationship between
Love numbers and tidally induced multipole moments.
The matching exercise described in the preceding para-

graph is difficult to perform in practice. First, a post-
Newtonian metric describing a skeletonized body with an
arbitrary multipole structure in a bound interaction with
remote objects must be constructed to a sufficient degree of
accuracy. Second, this metric must be transformed from the
original barycentric frame of the entire system (taken to be
at rest) to the body’s own rest frame. Third, the metric of a
tidally deformed body must be computed in full general
relativity, with all the required ingredients that ensure a
proper match with the post-Newtonian metric. And fourth,
the matching must be carried out. Thus far, this procedure
has been completed to the first post-Newtonian order only
[22]. It produced the relation

Qab ¼ −
2

3
k2R5Eab −

2

3
p2

R8

GM
EchaEc

bi −
2

3
k̈2

R8

GM
Ëab

þ post-Newtonian corrections; ð2:3Þ

where Qab is the mass quadrupole moment of the
skeletonized compact body, M is the body’s mass, R is
its radius, and k2, p2, k̈2 are Love numbers, and where

EabðtÞ ¼ −∂abUext þ post-Newtonian corrections; ð2:4Þ

with Uext denoting the Newtonian potential created by the
remote masses, which is differentiated twice with respect to
the spatial coordinates and then evaluated at the origin of
the body’s rest frame. Overdots on Eab indicate differ-
entiation with respect to time, and angular brackets around
spatial indices are an instruction to symmetrize the indices
and remove the trace; all tensors in Eq. (2.3) are symmetric
and trace-free.
Equation (2.3) generalizes Eq. (1.3), which neglected

nonlinear and time-dependent terms, and which did not
incorporate post-Newtonian corrections. The interpretation
of Eq. (2.3), however, is vastly different. As was observed

in Sec. I, the link between Qab and the Love numbers is
immediate in Newtonian gravity. This is not so here. As
was emphasized in the preceding paragraphs, the quadru-
pole moment is a property of the compact body in its post-
Newtonian manifestation as a skeletonized object; its
definition is rooted in the post-Newtonian framework
and its reliance on harmonic coordinates. The Love
numbers, on the other hand, are a property of the body’s
local metric, and are computed in full general relativity. The
relation between multipole moments and Love numbers is
provided by the matching procedure.
Equation (2.3) applies to a material body such as a

neutron star. It might be tempting to apply the relation to a
black hole, for which k2 ¼ p2 ¼ k̈2 ¼ 0, and conclude that
Qab ¼ 0. This is not justified. The reason is that R no
longer provides an independent characterization of the
compact body; it is now firmly equal to 2GM=c2. In the
calculations described previously, factors of R did not
matter in the determination of post-Newtonian order. This
changes when R ¼ 2GM=c2. For example, the first term on
the right-hand side of Eq. (2.3) is promoted from
Newtonian order to the fifth post-Newtonian order. The
equation, however, was derived on the basis of a post-
Newtonian expansion carried out to the first order only, and
it simply cannot be applied to a black hole. A proper
accounting of the mass quadrupole moment of a tidally
deformed black hole requires an expansion pushed at least
to the fifth post-Newtonian order.

III. BLACK HOLE IN A STATIC
BINARY SYSTEM

The current state of development of post-Newtonian
theory does not allow us to perform these calculations—
metric construction for a skeletonized body with an
arbitrary multipole structure, transformation to the body’s
rest frame, and matching with the body’s local metric—to
the fifth post-Newtonian order. In an effort to make
progress we shall formulate a special case that allows us
to perform the calculations to all post-Newtonian orders.
The situation, to be sure, is a contrived one that will never
be realized in nature. This is of no concern. We hold firm
onto the principle that a black hole’s response to a tidal
field, as described by a relation betweenQab and Eab of the
kind shown in Eq. (2.3), will be the same irrespective of the
precise specification of Eab. An astrophysical tidal envi-
ronment will produce a Eab that is very different from the
Eab of a contrived environment. The relation between Qab
and Eab, however, will be the same. In particular, if Qab is
found to vanish for the contrived Eab, then it will vanish
also for the realistic Eab.
From this point onward we adopt relativistic units, and

set G ¼ c ¼ 1. We consider a static binary system con-
sisting of a Reissner-Nordström (RN) black hole of massM
and charge Q and a point particle of mass m and charge q.
We place the particle at a distance r ¼ r0 from the black
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hole (in the usual RN coordinates), and we tune its charge-
to-mass ratio so that

mðM −Q2=r0Þ ¼ qQð1 − 2M=r0 þQ2=r20Þ1=2: ð3:1Þ

This condition ensures—see Sec. IV for details—that the
particle’s acceleration in the RN spacetime vanishes: the
gravitational attraction between black hole and particle is
precisely balanced by electrostatic repulsion. The binary
system is in an equilibrium state2; the spacetime is static,
and also axisymmetric with respect to the axis that links
black hole and particle. The equilibrium is unstable, but this
need not concern us; we can imagine that a control system
maintains the equilibrium over a sufficiently long time.
We let the particle create a perturbation of the RN

spacetime. The perturbation is in part gravitational and in
part electromagnetic, and when observed near the black
hole, it describes a tidal deformation. When viewed far
away from the black hole, where post-Newtonian theory
provides a valid description of the metric, the perturbation
describes the multipole structure of the skeletonized black
hole. We wish to determine this multipole structure.
The static and axially symmetric nature of the spacetime

facilitates the integration of the Einstein-Maxwell equa-
tions for the perturbation. We construct the solution in
Secs. IV–VI, and express it in closed form, to all post-
Newtonian orders. The solution can easily be transformed
to harmonic coordinates, a requirement for the proper
identification of a post-Newtonian multipole structure.
(The black hole is situated at the spatial origin of the
harmonic coordinates. There is no need here to introduce
two frames of reference, one for the global post-Newtonian
metric and one for the black hole, to transform between
these frames, and to perform a matching.) By carrying out a
post-Newtonian expansion of the metric, we identify all
terms that behave as r̄−l−1Plðcos θÞ in gαβ, and read off the
multipole moments of the skeletonized black hole.
It is sufficient to examine the multipole expansion of

W ≔ −gtt when r < r0, which is given by

Wðr̄; θÞ ¼ WRN þ
X∞
l¼1

Wlðr̄ÞPlðcos θÞ; ð3:2Þ

where

WRN ≔
ðξþ μÞ4
ξ2ðξ2 − 1Þ ð3:3Þ

is the Reissner-Nordström piece, and

Wl¼−
4ð2lþ1Þ
lðlþ1Þ

m
L
ðξ20−1Þ1=2Q0

lðξ0Þ
ðξþμÞ3

ξ2
P0
lðξÞ ð3:4Þ

makes up the perturbation. Here ξ ≔ r̄=L, ξ0 ≔ r̄0=L,
μ ≔ M=L, and L ≔ ðM2 −Q2Þ1=2; PlðξÞ and QlðξÞ are
Legendre functions defined in the interval 1 ≤ ξ < ∞, and
a prime indicates differentiation with respect to the argu-
ment. The relation between the harmonic radial coordinate
r̄ and the original RN radius r is provided by r̄ ¼ r −M.
The solution of Eq. (3.4) is regular at the event horizon,
which is situated at ξ ¼ 1 (or r̄ ¼ L, or r ¼ M þ L). For a
material body the solution would also feature a term
proportional to Q0

lðξÞ, which diverges at ξ ¼ 1; it would
come with a numerical coefficient proportional to the
object’s Love number kl. The solution of Eq. (3.4), there-
fore, reflects the property that all tidal Love numbers vanish
for a black hole.
For l ≥ 2, Wl possesses all the elements that describe a

tidally deformed black hole. (The dipole contribution is
examined separately in Appendix B.) When ξ0 is large,
which occurs when the particle is far away from the black
hole, we have that

ðξ20 − 1Þ1=2Q0
lðξ0Þ ∼ −

ðlþ 1Þ!
ð2lþ 1Þ!! ξ

−ðlþ1Þ
0 ; ð3:5Þ

this displays the scaling expected of a tidal field of
multipole order l. The remaining terms in an expansion
of the left-hand side in powers of ξ−10 represent post-
Newtonian corrections to the leading behavior. When ξ is
large (but still smaller than ξ0), which occurs when the
perturbation is examined far away from the black hole, we
have that

ðξþ μÞ3
ξ2

P0
lðξÞ ∼

ð2l − 1Þ!!
ðl − 1Þ! ξl; ð3:6Þ

this grows as ξl, again as expected of a tidal field of
multipole order l. The remaining terms in an expansion of
the left-hand side in powers of ξ−1 represent post-
Newtonian corrections.
And now we come to the crux of the matter. The

perturbation of Eq. (3.4) could in principle include a term
that represents a tidally induced l-pole moment for the
black hole; this term would scale as ξ−l−1. Such a term does
not exist. If we examine the left-hand side of Eq. (3.6), we
see that it expands into a terminating polynomial, with the
schematic structure

2In a preliminary version of the work I attempted to keep the
black hole and particle apart with the help of a strut or strings,
instead of using charges. This, unfortunately, produced an
unwieldy spacetime. In the case of a strut, the black hole was
deformed in part by the particle’s tidal field, but also by the strut,
and this made the interpretation of results difficult. In the case of
strings, the spacetime was not asymptotically flat, the harmonic
coordinates were complicated, and again the interpretation of
results was difficult.
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ξl þ ξl−1 þ � � � þ ξn; ð3:7Þ

in which we omit all numerical coefficients. The smallest
power is n ¼ −1 when l is even, and n ¼ −2 when l is
odd. This cannot be equal to −ðlþ 1Þ when l ≥ 2, as
would be required for a nonvanishing tidal response. (There
is such a term when l ¼ 1, but it does not describe a
genuine response to an applied tidal field; this is clarified in
Appendix B.) We conclude that all static, tidally induced,
mass multipole moments of a nonrotating black hole, as
defined in terms of a skeletonized post-Newtonian object,
vanish to all post-Newtonian orders.
We insist that this conclusion is distinct from the state-

ment that Love numbers vanish for a black hole. As was
pointed out previously, Love numbers are a property of the
perturbed metric, and they cannot be related directly to
tidally induced multipole moments. Such a relation requires
a definition of multipole moments for an individual body,
which is provided here by the post-Newtonian description
of the gravitational field, in which the compact body
manifests itself as a skeletonized object. In principle, the
determination of the multipole moments should come from
a careful match between the local metric of the compact
object, computed in full general relativity, and the post-
Newtonian metric, properly transformed to the rest frame of
the compact object. The calculation presented here
bypasses most of those steps: a single frame of reference
is required, and the global metric is computed in full
general relativity as a perturbation of the Reissner-
Nordström spacetime. The post-Newtonian expansion is
introduced at the very end of the exercise, and it reveals the
complete absence of a multipole structure for the skeleton-
ized black hole.
The tidal environment considered here is precisely static.

As a result, the expected relationship between Qab and Eab
could hope to reproduce the first term in Eq. (2.3), but it
cannot capture the third term involving time derivatives of
the tidal field. The tidal environment is also treated as a
linearized perturbation of the original black-hole space-
time. As a result, the expected relationship cannot account
for the second term in Eq. (2.3), which is quadratic in the
tidal field. Within these limitations, we have a proof that in
the static and linearized regime, all multipole moments
vanish to all post-Newtonian orders.
The proof requires the black hole to have a charge Q, so

that the tidal environment can be manufactured by a
charged particle maintained in a state of equilibrium by
balanced gravitational and electrostatic forces. The charge,
however, can be as small as one desires, though not
identically zero. To see this, let us rewrite Eq. (3.1) in
the form

Q
M

¼ m
q

1 −Q2=ðMr0Þ
ð1 − 2M=r0 þQ2=r20Þ1=2

: ð3:8Þ

The second factor on the right is of order unity when the
particle is not too close to the black hole, and the
equilibrium condition states that the charge-to-mass ratio
of the black hole must be the inverse of the particle’s own
ratio. By choosing a particle with q=m ≫ 1 we can ensure
that Q=M ≪ 1. So while the black hole’s charge is an
essential device required in the setup of a static tidal
environment, it can be chosen so small as to be utterly
irrelevant in every other aspect of the problem.

IV. REISSNER-NORDSTRÖM SPACETIME

In this and the remaining sections of the paper we
provide a derivation of Eq. (3.2). We begin with a review of
the RN spacetime, with a focus on those aspects that are
germane to the discussion.

A. Metric and vector potential

The RN spacetime is an exact solution to the Einstein-
Maxwell equations that describes a spherical black hole of
mass M and electric charge Q. The metric is written as

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð4:1Þ

where

f ≔ 1 −
2M
r

þQ2

r2
: ð4:2Þ

The electromagnetic vector potential is given by

Aα ¼ −
Q
r
∂αt: ð4:3Þ

The electromagnetic field tensor is then Fαβ ¼
∇αAβ −∇βAα. For a static observer, it describes a radial
electric field that behaves as Q=r2.

B. Charged particle

We introduce, at position r ¼ r0 and θ ¼ 0 in the RN
spacetime, a point particle of mass m and electric charge q;
we take m ≪ M and q ≪ Q. The particle’s world line is
described by the parametric equations xα ¼ ZαðτÞ, where τ
is proper time, and its velocity vector is uα ≔ dZα=dτ; the
only nonvanishing component is ut ¼ f−1=20 , where f0 ≔
1 − 2M=r0 þQ2=r20.
The particle comes with an energy-momentum tensor

Tαβ ¼ m
Z

uαuβδðx; ZÞdτ; ð4:4Þ

in which δðx; zÞ ¼ δðx − ZÞ= ffiffiffiffiffiffi−gp
is a scalarized Dirac

distribution; δðx − ZÞ is the usual four-dimensional delta
function and g is the metric determinant. The only non-
vanishing component is
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Tt
t ¼ −m

ffiffiffiffiffi
f0

p
r20

δðr − r0Þδðcos θ − 1Þδðϕ − ϕ0Þ; ð4:5Þ

where ϕ0 is the particle’s (arbitrarily assigned) azimuthal
position in the RN spacetime.
The particle also comes with a current density

jα ¼ q
Z

uαδðx; ZÞdτ; ð4:6Þ

with

jt ¼ q
r20
δðr − r0Þδðcos θ − 1Þδðϕ − ϕ0Þ ð4:7Þ

as its only nonvanishing component.
The particle’s Killing energy, defined by E ≔

−ðmuα þ qAαÞtα, where tα ¼ ½1; 0; 0; 0� is the spacetime’s
timelike Killing vector, evaluates to

E ¼ m
ffiffiffiffiffi
f0

p
þ qQ

r0
: ð4:8Þ

The force required of an external agent to keep the
particle in place is

Fα ¼ muβ∇βuα − qFα
βuβ; ð4:9Þ

and its only nonvanishing component is Fr. Its covariant
magnitude is F ≔ �ðgαβFαFβÞ1=2, with the sign chosen so
that signðFÞ ¼ signðFrÞ. We find that

F ¼ 1

r20

�
mðM −Q2=r0Þffiffiffiffiffi

f0
p − qQ

�
: ð4:10Þ

In Sec. VI we shall choose q=m so that F vanishes: the
gravitational attraction between particle and black hole
shall be balanced by electrostatic repulsion. Throughout
Sec. V, however, we shall keep q=m general and have
F ≠ 0.

C. Harmonic coordinates

Each one of the scalar fields

X0 ≔ t; ð4:11aÞ

X1 ≔ ðr −MÞ sin θ cosϕ; ð4:11bÞ

X2 ≔ ðr −MÞ sin θ sinϕ; ð4:11cÞ

X3 ≔ ðr −MÞ cos θ ð4:11dÞ

satisfies the wave equation

gαβ∇α∇βXμ ¼ 0 ð4:12Þ

in the RN spacetime. The collection therefore makes up a
set of harmonic coordinates.
In the coordinates Xμ ¼ ðt; XaÞ we have that the metric

and its inverse are given by

gtt ¼ −f; ð4:13aÞ

gab ¼ f−1ΩaΩb þ ð1þM=r̄Þ2ðδab −ΩaΩbÞ; ð4:13bÞ

gtt ¼ −f−1; ð4:13cÞ

gab ¼ fΩaΩb þ ð1þM=r̄Þ−2ðδab −ΩaΩbÞ; ð4:13dÞ

where r̄ ≔ r −M,

f ¼ 1 − L2=r̄2

ð1þM=r̄Þ2 ð4:14Þ

with L2 ≔ M2 −Q2, and Ωa ≔ Xa=r̄, Ωa ≔ δabΩa. From
this it follows that

ffiffiffiffiffiffi
−g

p ¼ ð1þM=r̄Þ2; ð4:15Þ

and the components of gαβ ≔ ffiffiffiffiffiffi−gp
gαβ are

gtt ¼ −
ð1þM=r̄Þ4
1 − L2=r̄2

; ð4:16aÞ

gab ¼ δab −
L2

r̄2
ΩaΩb: ð4:16bÞ

The gothic inverse metric admits a post-Newtonian
expansion in powers of M=r̄ and L=r̄. In this expansion,
gtt þ 1 begins at the Newtonian order with a term propor-
tional to M=r̄, while gab − δab begins and ends at the
second post-Newtonian order with a term proportional to
L2=r̄2. (Recall that by convention, the counting of post-
Newtonian orders is different for spatial and temporal
components of the metric.)

V. PERTURBED SPACETIME: GENERAL CASE

In this section we incorporate the particle into the
description of the gravitational and electromagnetic fields.
Taking into account our assumption that m ≪ M and
q ≪ Q, we compute the small perturbations to the metric
and vector potential created by the particle; all equations
shall be linearized with respect to these perturbations. Our
calculations generalize those of Ref. [29], in which the
condition of balanced gravitational and electrostatic forces
was enforced. Here our charge-to-mass ratio is arbitrary
and F ≠ 0; we refer to this as the general case. The special
case F ¼ 0 will be recovered in Sec. VI.
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A. Perturbation equations

We wish to calculate the perturbations δgαβ, δAα created
by a particle of mass m and charge q at position r ¼ r0,
θ ¼ 0; we work in the original ðt; r; θ;ϕÞ coordinates. The
perturbing energy-momentum tensor δTαβ includes con-
tributions from the particle—see Eq. (4.4)—and from the
perturbation δFαβ of the electromagnetic field. Because it
satisfies δTr

r þ δTθ
θ ¼ 0, the perturbed metric can be cast

in the form

ds2 ¼ −e−2Ufdt2 þ e2ðUþγÞðf−1dr2 þ r2dθ2Þ
þ e2Ur2 sin2 θdϕ2; ð5:1Þ

in which Uðr; θÞ and γðr; θÞ are the perturbations; these are
taken to be small, so that e−2U ¼ 1–2U and so on. In the
terminology of LaHaye and Poisson [32], the metric
perturbation belongs to the Weyl class, a special case of
the Weyl gauge introduced in their paper.

The vector potential is written as

Aα ¼ −
�
Q
r
þΦ

�
∂αt; ð5:2Þ

where Φðr; θÞ is the perturbation.
The Einstein-Maxwell equations, linearized about the

RN solution, decouple into a system of equations for U
and Φ,

r2f∂rrΦþ 2rf∂rΦþ ∂θθΦþ cos θ
sin θ

∂θΦ − 2Qf∂rU

¼ −2qf0δðr − r0Þδðcos θ − 1Þ; ð5:3aÞ

r2f∂rrU þ 2ðr −MÞ∂rU þ ∂θθU þ cos θ
sin θ

∂θU þ 2Q2

r2
U

− 2Q∂rΦ ¼ −2m
ffiffiffiffiffi
f0

p
δðr − r0Þδðcos θ − 1Þ; ð5:3bÞ

and equations for γ,

ðr −MÞ2 − L2 cos2 θ
2 sin2 θ

∂rγ ¼ −ðr −MÞðM −Q2=rÞ∂rU −
ðM −Q2=rÞ cos θ

sin θ
∂θU

−
Q2ðr −MÞ

r2
U þQðr −MÞ∂rΦþQ cos θ

sin θ
∂θΦ; ð5:4aÞ

ðr −MÞ2 − L2 cos2 θ
2 sin2 θ

∂θγ ¼
r2fðM −Q2=rÞ cos θ

sin θ
∂rU − ðr −MÞðM −Q2=rÞ∂θU þQ2f cos θ

sin θ
U

−
Qr2f cos θ

sin θ
∂rΦþQðr −MÞ∂θΦ: ð5:4bÞ

Equations (5.3) were averaged over ϕ to eliminate the
irrelevant factor δðϕ − ϕ0Þ in the source terms.
Equations (5.3) are decoupled by writing

Φ ¼ ðM −Q2=rÞð
ffiffiffi
f

p
AÞ þQfB;

U ¼ ðM −Q2=rÞBþQð
ffiffiffi
f

p
AÞ; ð5:5Þ

where Aðr; θÞ and Bðr; θÞ are new perturbation variables.
They satisfy

∂rðr2f∂rAÞ þ
1

sin θ
∂θðsin θ∂θAÞ −

L2

r2f
A

¼ −2ΓAδðr − r0Þδðcos θ − 1Þ; ð5:6aÞ

∂rðr2f∂rBÞ þ
1

sin θ
∂θðsin θ∂θBÞ

¼ −2ΓBδðr − r0Þδðcos θ − 1Þ; ð5:6bÞ

where

ΓA ≔
1

L2
½qðM −Q2=r0Þ

ffiffiffiffiffi
f0

p
−mQf0�; ð5:7aÞ

ΓB ≔
1

L2
½mðM −Q2=r0Þ

ffiffiffiffiffi
f0

p
− qQf0�: ð5:7bÞ

The factor of f1=2 placed in front of A in Eq. (5.5) is not
required for the decoupling; it is introduced so that the
differential operators acting on A and B come out similar.

B. Mode solution to the perturbation equations

To integrate Eqs. (5.6) we decompose A and B in
Legendre polynomials,

Aðr; θÞ ¼
X∞
l¼0

AlðrÞPlðcos θÞ;

Bðr; θÞ ¼
X∞
l¼0

BlðrÞPlðcos θÞ; ð5:8Þ

and we write
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δðcos θ − 1Þ ¼ 1

2

X∞
l¼0

ð2lþ 1ÞPlðcos θÞ; ð5:9Þ

this identity follows from the completeness relation for
spherical harmonics, after an average over ϕ. The equations
become

r2f
d2Al

dr2
þ 2ðr −MÞ dAl

dr
−
�
lðlþ 1Þ þ L2

r2f

�
Al

¼ −ð2lþ 1ÞΓAδðr − r0Þ; ð5:10aÞ

r2f
d2Bl

dr2
þ 2ðr −MÞ dBl

dr
− lðlþ 1ÞBl

¼ −ð2lþ 1ÞΓBδðr − r0Þ: ð5:10bÞ

A change of variable from r to ξ ≔ ðr −MÞ=L brings the
equations to the form

ðξ2 − 1ÞA00
l þ 2ξA0

l −
�
lðlþ 1Þ þ 1

ξ2 − 1

�
Al

¼ −ð2lþ 1ÞΓA

L
δðξ − ξ0Þ; ð5:11aÞ

ðξ2 − 1ÞB00
l þ 2ξB0

l − lðlþ 1ÞBl

¼ −ð2lþ 1ÞΓB

L
δðξ − ξ0Þ; ð5:11bÞ

in which a prime indicates differentiation with respect to ξ,
and ξ0 ≔ ðr0 −MÞ=L. When ξ ≠ ξ0 the solution to
Eq. (5.11a) is a combination of P1

l ¼ ðξ2 − 1Þ1=2P0
l and

Q1
l ¼ ðξ2 − 1Þ1=2Q0

l; the solution to Eq. (5.11b) is a
combination of Pl and Ql. To account for the delta
function on the right-hand side of the equations, we must
ensure that Al and Bl are continuous at ξ ¼ ξ0, but that A0

l
and B0

l possess the correct discontinuity.
It is useful to note that the event horizon is situated at

ξ ¼ 1, and that the solutions to Eqs. (5.11) are defined in
the interval 1 ≤ ξ < ∞. The functions f1=2Al and Bl must
be regular at ξ ¼ 1 and go to zero at ξ ¼ ∞; we have that
r2f ¼ L2ðξ2 − 1Þ, and so we demand that ðξ2 − 1Þ1=2Al be
regular at ξ ¼ 1. For Al, the physically relevant solution to
Eq. (5.11a) is proportional to P1

l when ξ < ξ0, and to Q1
l

when ξ > ξ0. For Bl, the relevant solution to Eq. (5.11b) is
proportional to Pl when ξ < ξ0, and to Ql when ξ > ξ0.
Taking into account the junction conditions at ξ ¼ ξ0, we

find that the global solutions to Eqs. (5.11) are

Al ¼ −
2lþ 1

lðlþ 1Þ
ΓA

L
ðξ20 − 1Þ1=2ðξ2 − 1Þ1=2

×

�
Q0

lðξ0ÞP0
lðξÞ; ξ < ξ0;

P0
lðξ0ÞQ0

lðξÞ; ξ > ξ0;
ð5:12Þ

and

Bl ¼ ð2lþ 1ÞΓB

L

�
Qlðξ0ÞPlðξÞ; ξ < ξ0;

Plðξ0ÞQlðξÞ; ξ > ξ0:
ð5:13Þ

Equation (5.12) does not apply to l ¼ 0, and this case
requires a separate treatment. When l ¼ 0 the two inde-
pendent solutions to Eq. (5.11a) are ðξ2 − 1Þ−1=2 and
ξðξ2 − 1Þ−1=2. The first solution vanishes at infinity, and
both solutions are regular at the horizon. The global
solution is chosen to be

A0 ¼
ΓA

L
ðξ20 − 1Þ−1=2ðξ2 − 1Þ−1=2

�
ξ; ξ < ξ0;

ξ0; ξ > ξ0:
ð5:14Þ

This will be seen below to require an adjustment.

C. Potentials in closed form

The summation identities—Eqs. (110) and (34) of
Ref. [29], respectively—

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 2xy cos θ þ y2 − sin2 θ

p

¼
X∞
l¼0

ð2lþ 1Þ
�
QlðyÞPlðxÞ
PlðyÞQlðxÞ

�
Plðcos θÞ ð5:15Þ

and

xy− cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2xycosθþy2− sin2 θ

p

¼
�
x

y

�
− ðx2−1Þðy2−1Þ

X∞
l¼1

2lþ1

lðlþ1Þ
�
Q0

lðyÞP0
lðxÞ

P0
lðyÞQ0

lðxÞ
�

×PlðcosθÞ ð5:16Þ

are derived in Appendix E of Ref. [32]; the upper row refers
to the case x < y, while the lower row refers to x > y. They
allow us to sum the series of Eqs. (5.8) and express A and B
in closed forms. Setting x ¼ ξ and y ¼ ξ0, we find that
Eqs. (5.12), (5.14), and (5.16) give

Ap¼
ΓA

Lðξ20−1Þ1=2
ξ0ξ−cosθ

ðξ2−1Þ1=2ðξ2−2ξ0ξcosθþξ20−sin2θÞ1=2 :

ð5:17Þ

On the other hand, Eqs. (5.13) and (5.15) return

Bp ¼
ΓB

L
1

ðξ2 − 2ξ0ξ cos θ þ ξ20 − sin2 θÞ1=2 : ð5:18Þ

We place a label “p” on the functions to indicate that these
are particular solutions to the field equations for a point
charge at r ¼ r0. As we shall see, these solutions must be
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amended to ensure that all boundary conditions are
satisfied. Inserting ξ ¼ ðr −MÞ=L and ξ0 ¼ ðr0 −MÞ=L
into these expressions, we arrive at

ffiffiffi
f

p
Ap ¼

kA
r0

ðr0 −MÞðr −MÞ − L2 cos θ
rD

; ð5:19aÞ

Bp ¼
kB
D

; ð5:19bÞ

where

kA ≔
1

L2
½qðM −Q2=r0Þ −mQ

ffiffiffiffiffi
f0

p
�; ð5:20aÞ

kB ≔
ffiffiffiffiffi
f0

p
L2

½mðM −Q2=r0Þ − qQ
ffiffiffiffiffi
f0

p
� ð5:20bÞ

and

D ≔ ½ðr −MÞ2 − 2ðr0 −MÞðr −MÞ cos θ
þ ðr0 −MÞ2 − L2 sin2 θ�1=2 ð5:21Þ

is the spatial distance in the RN spacetime between a point
at ðr; θÞ and the particle at ðr0; 0Þ. We note that kA ¼
ΓA=

ffiffiffiffiffi
f0

p
and kB ¼ ΓB, and recall that L2 ≔ M2 −Q2. The

original potentials are then recovered from Eq. (5.5),

Φp ¼ ðM −Q2=rÞð
ffiffiffi
f

p
ApÞ þQfBp;

Up ¼ ðM −Q2=rÞBp þQð
ffiffiffi
f

p
ApÞ; ð5:22Þ

where we again indicate that these are particular solutions.

D. Gauss’s law

The potentials Φp and Up describe a situation in which a
particle of mass m and charge q has been added to the
spacetime, but in which the black hole has also acquired an
additional charge. To see this, we appeal to Gauss’s law,
which states that the total charge enclosed by a two-surface
S is given by

QðSÞ ¼ −
1

4π

I
S
FαβnαrβdS; ð5:23Þ

where nα is the surface’s timelike unit normal (pointing to
the future), rα is its spacelike unit normal (pointing out
of S), and dS is the induced surface element. We choose S
to be a surface of constant t and r, set

nα ¼ eUf−1=2½1; 0; 0; 0�; rα ¼ e−ðUþγÞf1=2½0; 1; 0; 0�;
dS ¼ eð2UþγÞr2 sin θdθdϕ; ð5:24Þ

and obtain

QðSÞ ¼ Q −
1

2

Z
π

0

ðr2∂rΦ − 2QUÞ sin θdθ: ð5:25Þ

To evaluate this we follow Ref. [29] and write f1=2Ap ¼
ðkA=r0rÞð∂θD= sin θÞ. Making the substitution in Φp and
Up, we find that

−
1

2
ðr2∂rΦp − 2QUpÞ sin θ

¼ kA
2r0

½−ðMr −Q2Þ∂rθDþM∂θD�

−
1

2
kBQr2fð∂rD−1Þ sin θ: ð5:26Þ

Integration is accomplished with

DðπÞ−Dð0Þ¼ rþr0−2M−ðr−r0Þsignðr−r0Þ; ð5:27aÞ

∂r½DðπÞ −Dð0Þ� ¼ 1 − signðr − r0Þ; ð5:27bÞ

r2f
Z

π

0

ð∂rD−1Þ sin θdθ ¼ −1 − signðr − r0Þ; ð5:27cÞ

where signðr − r0Þ is equal to þ1 when r > r0 and −1
when r < r0. We obtain

Qðr < r0Þ ¼ Q −
kAL2

r0
;

Qðr > r0Þ ¼ Qþ kAM

�
1 −

M
r0

�
þ kBQ: ð5:28Þ

We see that indeed, the black hole has acquired a charge
−kAL2=r0, and that the charge at infinity is not equal to
Qþ q, as it should be.

E. Monopole potentials

To restore the correct physical situation, we must add to
Φp and Up potentials that shift the charge of the black hole
back to Q. These monopole solutions to the homogeneous
field equations are constructed in Appendix A, and they are
given by

Φmono ¼
kA
r0

�
M2 þQ2

r
−
MQ2

r2

�
;

Umono ¼ −
kAQ
r0

�
1 −

M
r

�
: ð5:29Þ

With these amendments, the correct solutions to the field
equations are

Φ ¼ Φp þΦmono; U ¼ Up þ Umono: ð5:30Þ
Recalculating QðSÞ with the amended potentials, we now
find that

TIDALLY INDUCED MULTIPOLE MOMENTS OF A … PHYS. REV. D 104, 104062 (2021)

104062-11



Qðr < r0Þ ¼ Q; Qðr > r0Þ ¼ Qþ q; ð5:31Þ

we made use of Eqs. (5.20) to simplify the expression for
Qðr > r0Þ. The black hole now has a charge Q, and the
charge at infinity is Qþ q. All is good.
A remarkable aspect of our solution is thatU does not go

to zero when r → ∞. Instead we have that

U∞ ≔ Uðr → ∞Þ ¼ Umonoðr → ∞Þ ¼ −
kAQ
r0

: ð5:32Þ

This implies that in the perturbed spacetime, the time
coordinate t no longer measures proper time for a static
observer at infinity. This role is taken over by the rescaled
time t̂ ¼ e−U∞t. This observation will have consequences
in subsequent calculations; care will be required to account
for the nontrivial asymptotic behavior of the metric.

F. Komar mass

To further check the validity of our solution, we calculate
the mass at infinity, as defined by the Komar integral

MðSÞ ¼ 1

4π

I
S
ð∇αt̂βÞnαrβdS; ð5:33Þ

in which t̂α ¼ eU∞ ½1; 0; 0; 0� is the spacetime’s timelike
Killing vector, properly normalized at infinity. We are
interested in the limit in which S is pushed out to r ¼ ∞.
Performing the computation, we obtain

Mð∞Þ ¼ M þ kAQ

�
1 −

M
r0

�
þ kBM ð5:34Þ

or

Mð∞Þ ¼ M þm
ffiffiffiffiffi
f0

p
þ qQ

r0
ð5:35Þ

after inserting Eqs. (5.20). The difference Mð∞Þ −M is
recognized as the particle’s Killing energy in the back-
ground RN spacetime, as given by Eq. (4.8). Because the
total mass is correctly recovered, we conclude that our
amended potentials give a faithful description of the
spacetime.

G. Calculation of γ

The calculation of γ proceeds on the basis of Eqs. (5.4),
in which we insert U and Φ from Eq. (5.30). The general
solution for γ features a constant of integration, and we
choose it so that γðr; θ ¼ 0Þ ¼ 0 when M þ L < r < r0,
that is, between the black hole and particle. With this choice
we find that

γ ¼ 2kBL2

r20f0

�
r −M − ðr0 −MÞ cos θ

D
þ 1

�
; ð5:36Þ

where kB is defined by Eq. (5.20) andD by Eq. (5.21). With
this solution we have that γðr; θ ¼ 0Þ ¼ 4F when r > r0
(above the particle), withF denoting the force of Eq. (4.10).
We also have that γðr; θ ¼ πÞ ¼ 4F for any value of r.
The nonzero value of γ on the axis, above the particle on

the upper axis (at θ ¼ 0), and everywhere on the lower axis
(at θ ¼ π), implies that the spacetime comes with an
angular deficit: the ratio of proper circumference to proper
radius for a small circle around the axis is not equal to 2π,
as required by elementary flatness. The conical singularity
betrays the presence of a thin distribution of matter on the
axis—a massless string—with a tension T equal to its linear
mass density μ. The string on the upper axis is the external
agent that keeps the particle in place at r ¼ r0 and prevents
it from falling toward the black hole; the string tension T is
equal to the force F acting on the particle. Similarly, the
string on the lower axis is attached to the black hole and
prevents it from falling toward the particle; the tension is
the same in both strings. (For an extended discussion of
these properties, please refer to Ref. [32].)
With a different choice of constant of integration we could

arrange for γðr; θ ¼ 0Þ to be nonzero between the black hole
and particle, and zero below the black hole and above the
particle. In this case the conical singularitywould lie between
the black hole and particle, and it would signal the presence
of a strut between the objects; the strut would then be
responsible for keeping them apart. With yet another choice
of constant there would be a conical singularity everywhere
on the axis. In this case the spacetime would contain a strut
and two strings, and all these would share the responsibility
of keeping the objects apart. The choice of constant becomes
immaterial when the situation is specialized to the one of
Sec. VI. When the condition of Eq. (6.1) is imposed we shall
find that the conical singularity disappears altogether,
whether it was below the black hole, above the particle, or
between the objects. The choice of constant, therefore, has no
incidence on the vanishing of tidally induced multipole
moments for black holes.

H. Properties of the black hole

We use the metric of Eq. (5.1) to calculate how the black
hole is affected by the perturbation. The perturbed event
horizon continues to be situated at r ¼ M þ L, where
gtt ¼ 0, and the induced metric on the horizon is given
by the θ-θ and ϕ-ϕ components of the metric, with U and γ
evaluated at r ¼ M þ L. The horizon values are

Uðr ¼ M þ LÞ ¼ kBL
r0 −M − L cos θ

;

γðr ¼ M þ LÞ ¼ 2kBL2

r0 −M − L
1 − cos θ

r0 −M − L cos θ
; ð5:37Þ
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and we also have that Φðr ¼ M þ LÞ ¼ kAM=r0; to arrive
at our expression for γ we made use of the factorization
r20f0 ¼ ðr0 −M − LÞðr0 −M þ LÞ. With this information
we find that the black-hole area is

A ¼ 4πðM þ LÞ2
�
1þ 2kBL

r0 −M − L

�
: ð5:38Þ

The surface gravity follows from κ2 ¼ − 1
2
ð∇αt̂βÞð∇αt̂βÞ,

where t̂α is the rescaled timelike Killing vector, and where
the right-hand side is evaluated on the horizon. We find that

κ ¼ L
ðM þ LÞ2

�
1 −

kAQ
r0

−
2kBL

r0 −M − L

�
; ð5:39Þ

in accordance with the zeroth law of black-hole mechanics,
the surface gravity is constant on the horizon.
The horizon-valued electrostatic potential ΨH must also

be defined with respect to the rescaled Killing vector. We
have ΨH ≔ −Aαt̂α ¼ eU∞ðQ=rþΦÞ, where the right-hand
side is evaluated at r ¼ M þ L. A short calculation returns

ΨH ¼ Q
M þ L

þ kAL
r0

: ð5:40Þ

The Smarr mass of the black hole is defined by

MSmarr ≔
κA
4π

þQΨH; ð5:41Þ

and we find that all perturbative terms cancel out, leaving

MSmarr ¼ M: ð5:42Þ

The mass parameter M of the perturbed black hole can
therefore be related to geometric objects defined on the
event horizon.

VI. PERTURBED SPACETIME:
EQUILIBRIUM CASE

We specialize the results of the preceding section to a
particle with a mass m and charge q related by Eq. (3.1),
copied here for ease of reference:

mðM −Q2=r0Þ ¼ qQ
ffiffiffiffiffi
f0

p
: ð6:1Þ

The particle’s charge-to-mass ratio is therefore restricted to
be a specific function of r0. When this condition is satisfied
we find from Eq. (4.10) that F ¼ 0, where F is the force
required of an external agent to hold the particle in place.
The particle, therefore, is a state of equilibrium that results
from equal and opposite gravitational and electrostatic
forces.
Another consequence of Eq. (6.1) is that the parameters

defined by Eq. (5.20) are now given by

kA ¼ m
Q

ffiffiffiffiffi
f0

p ; kB ¼ 0: ð6:2Þ

The vanishing of kB implies the remarkable fact that γ ¼ 0,
where γ is the potential of Eq. (5.36). The perturbed
spacetime no longer features a conical singularity, and
strings are no longer required to hold the particle and
black hole.
The potentials reduce to

Φ ¼ m
Qr0

ffiffiffiffiffi
f0

p
��

M −
Q2

r

� ðr0 −MÞðr −MÞ − L2 cos θ
rD

þM2 þQ2

r
−
MQ2

r2

�
; ð6:3aÞ

U¼ m
r0

ffiffiffiffiffi
f0

p
�ðr0−MÞðr−MÞ−L2 cosθ

rD
−1þM

r

�
: ð6:3bÞ

These include the particular solutions of Eq. (5.22) and the
monopole contributions of Eq. (5.29). We recall that L2 ≔
M2 −Q2 and that D is given by Eq. (5.21). The potentials
become

ΦH ¼ mM
Qr0

ffiffiffiffiffi
f0

p ; UH ¼ 0 ð6:4Þ

when evaluated on the horizon.
Because γ ¼ 0 in this equilibrium situation, the per-

turbed metric simplifies to

ds2 ¼ −e−2Ufdt2

þ e2U½f−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�: ð6:5Þ

The vanishing of U at r ¼ M þ L implies that the intrinsic
geometry of the event horizon is spherically symmetric, in
spite of the tidal deformation of the surrounding spacetime.
There is no direct link between the spherical state of the
horizon and the vanishing of the tidally induced multipole
moments of the black hole; these, we recall, are a property
of the gravitational field at a large distance from the body.
The coordinates of Eq. (4.11) continue to be harmonic in

the perturbed spacetime. This remarkable observation is
verified by showing that each one of the scalar fields Xμ

satisfies the wave equation of Eq. (4.12), not just in the
background spacetime defined by the RN metric, but also
in the perturbed spacetime defined by the metric of
Eq. (6.5). The statement is true irrespective of the precise
form of the perturbationUðr; θÞ; the potential does not even
appear in the perturbed wave equation. The statement,
however, relies sensitively on the vanishing of γ; it would
not be true otherwise.
It is a simple matter to use Eq. (4.11) to transform the

perturbed metric to the harmonic coordinates ðX0 ¼ t; XaÞ,
and from this to compute the gothic inverse metric
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gαβ ≔ ffiffiffiffiffiffi−gp
gαβ. We find that its time-time component is

given by

W ≔ −gtt ¼ e4U
ð1þM=r̄Þ4
1 − L2=r̄2

; ð6:6Þ

where r̄ ¼ r −M is the harmonic radial coordinate. The
multipole decomposition of W is obtained by combining
Eqs. (5.5), (5.8), (5.12), (5.14), and (5.29). We reintroduce
ξ ≔ r̄=L, ξ0 ≔ r̄0=L, set μ ≔ M=L, and write

W ¼ WRN þ
X∞
l¼0

WlðξÞPlðcos θÞ; ð6:7Þ

where

WRN ¼ ðξþ μÞ4
ξ2ðξ2 − 1Þ ð6:8Þ

is the Reissner-Nordström piece,

W0 ¼ 0; ð6:9aÞ

Wl ¼ −
4ð2lþ 1Þ
lðlþ 1Þ

m
L
ðξ20 − 1Þ1=2Q0

lðξ0Þ
ðξþ μÞ3

ξ2
P0
lðξÞ

ð6:9bÞ

when ξ ≤ ξ0, while

W0 ¼ −4
m
L
ðξ20 − 1Þ−1=2 ðξþ μÞ3ðξ − ξ0Þ

ξ2ðξ2 − 1Þ ; ð6:10aÞ

Wl ¼ −
4ð2lþ 1Þ
lðlþ 1Þ

m
L
ðξ20 − 1Þ1=2P0

lðξ0Þ
ðξþ μÞ3

ξ2
Q0

lðξÞ

ð6:10bÞ

when ξ ≥ ξ0. Equation (6.9) was already previewed in
Eq. (3.4), and described in some detail back in Sec. III. The
dipole contribution to Eq. (6.7) is discussed in Appendix B.
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APPENDIX A: MONOPOLE POTENTIALS

In this appendix we construct monopole solutions to the
homogeneous version of Eqs. (5.3). We insert A ¼ AðrÞ
and B ¼ BðrÞ within Eqs. (5.6a) and (5.6b), set the right-
hand sides to zero, integrate the equations, and substitute
the solutions within Eq. (5.5). The most general solution
comes with four arbitrary constants. One of these gives rise

to an irrelevant constant term in Φ, and another constant
multiplies a function that diverges on the event horizon.
The physically relevant solution therefore contains two
arbitrary constants, denoted a1 and a2, and it is given by

Φmono¼a1

�
M
r
−
Q2

r2

�
þa2

Q
r
; Umono¼a1

Q
r
−a2: ðA1Þ

Equations (5.4) imply that γ vanishes for this solution.
It is intuitively clear that this two-parameter family of

solutions represents a shift in the mass and charge param-
eters of the RN black hole. However, the fact that Umono
tends toward −a2 (instead of zero) as r → ∞ implies that
the interpretation of a1 and a2 is subtle. It is wrong, in
particular, to interpret a1M þ a2Q as a shift in charge, and
a1Q as a shift in mass.
To arrive at a proper interpretation for a1 and a2, we

transform the metric of Eq. (5.1), and the vector potential of
Eq. (5.2), to the standard RN form. In these manipulations
we set U ¼ Umono, Φ ¼ Φmono, γ ¼ 0, and work to first
order in both a1 and a2.
The first step is to introduce a new radial coordinate

r̂ ¼ eUr ¼ ð1þ UÞr, which converts the angular part of
the line element to the standard r̂2ðdθ2 þ sin2 θdϕ2Þ.
Inserting U and inverting, we have that

r ¼ ð1þ a2Þr̂ − a1Q: ðA2Þ

The second step is to express gtt and gr̂ r̂ in terms of
the new radial coordinate. Simple algebra returns gtt ¼
−ð1þ 2a2Þf̂ and gr̂ r̂ ¼ 1=f̂, where

f̂ ¼ 1 −
2ðM þ δMÞ

r̂
þ ðQþ δQÞ2

r̂2
; ðA3Þ

with

δM ≔ a1Q − a2M; δQ ≔ a1M − a2Q: ðA4Þ

The third step is to eliminate the factor of 1þ 2a2 in gtt, by
introducing a rescaled time coordinate t̂ such that

t ¼ ð1 − a2Þt̂: ðA5Þ

With all this the metric becomes

ds2 ¼ −f̂dt̂2 þ f̂−1dr̂2 þ r̂2ðdθ2 þ sin2 θdϕ2Þ; ðA6Þ

which is the standard form of the RNmetric. The fourth and
final step is to reexpress the vector potential in terms of t̂
and r̂. We obtain

Aα ¼ −
Qþ δQ

r̂
∂αt̂: ðA7Þ
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The transformation reveals that we are indeed dealing with
another RN solution, with a new mass M þ δM and a new
charge Qþ δQ. The shifts in the mass and charge param-
eters are given by Eq. (A4).
This interpretation is confirmed with an application of

Gauss’s law—Eq. (5.23)—and a computation of the Komar
mass of Eq. (5.33). Working in the original ðt; r; θ;ϕÞ
coordinates, and choosing again S to be a two-surface of
constant t and r, we find that

QðSÞ ¼ Qþ a1M − a2Q ðA8Þ

and

MðSÞ ¼ ð1 − a2Þ
�
M −

Q2

r

�
þ a1Qf: ðA9Þ

The first equation reveals once more that δQ¼a1M−a2Q,
and the second equation shows that the mass at infinity is
M þ δM with δM ¼ a1Q − a2M.
Equation (A4) reveals that the choice

a1 ¼ −
Q

M2 −Q2
δM; a2 ¼ −

M
M2 −Q2

δM ðA10Þ

produces potentials that correspond to a pure mass shift,
accompanied by δQ ¼ 0. These are

Φmass ¼ −
QδM

M2 −Q2

�
2M
r

−
Q2

r2

�
;

Umass ¼
δM

M2 −Q2

�
M −

Q2

r

�
: ðA11Þ

On the other hand, the assignment

a1 ¼
M

M2 −Q2
δQ; a2 ¼

Q
M2 −Q2

δQ ðA12Þ

gives rise to a pure charge shift, accompanied by δM ¼ 0.
The corresponding potentials are

Φcharge ¼
δQ

M2 −Q2

�
M2 þQ2

r
−
MQ2

r2

�
;

Ucharge ¼ −
QδQ

M2 −Q2

�
1 −

M
r

�
: ðA13Þ

The monopole potentials introduced in Eq. (5.29) come
with the shifts δM ¼ 0 and δQ ¼ kAðM2 −Q2Þ=r0.

APPENDIX B: DIPOLE CONTRIBUTION TO W

In this appendix we examine the dipole contribution to
W ≔ −gtt and explain its significance. From Eqs. (6.9) and
(6.10) we have that

W1 ¼
3m
L

ðξ20 − 1Þ1=2
�
ln
ξ0 − 1

ξ0 þ 1
þ 2ξ0
ξ20 − 1

� ðξþ μÞ3
ξ2

ðB1Þ

when ξ < ξ0, and

W1 ¼
3m
L

ðξ20 − 1Þ1=2
�
ln
ξ − 1

ξþ 1
þ 2ξ

ξ2 − 1

� ðξþ μÞ3
ξ2

ðB2Þ

when ξ > ξ0.
The factor involving ξ in Eq. (B1) can be expanded, and

the term with the smallest power of ξ is μ3=ξ2. In light of the
considerations of Secs. II and III, this indicates that when
viewed as a skeletonized post-Newtonian object, the black
hole possesses a mass dipole moment. This, in turn, implies
that the spatial origin of the harmonic coordinates is not
anchored at the black hole’s center of mass.
Similarly, the spatial origin of the harmonic coordinates

is not attached to the center of mass of the entire system,
black hole plus particle. This can be seen from Eq. (B2) and
the fact that the factor involving ξ becomes approximately
ð4=3Þξ−2 when ξ ≫ 1. This shows that the system pos-
sesses a nonvanishing dipole moment at infinity.
It is by no means necessary for the spatial origin of the

coordinate system to coincide with the system’s center of
mass, and the properties reviewed above do not constitute a
problem. It is instructive, nevertheless, to introduce a gauge
transformation that produces such a coincidence. Before we
proceed we recall from Eqs. (5.5), (5.8), and (5.12) that the
dipole piece of the potentialUðr; θÞ is given byU1ðrÞ cos θ,
where

U1 ¼
3m
4L3

�
r0

ffiffiffiffiffi
f0

p
ln
r0−M−L
r0−MþL

þ2Lðr0−MÞ
r0

ffiffiffiffiffi
f0

p
�
rf ðB3Þ

when r < r0, and

U1 ¼
3m
4L3

r0
ffiffiffiffiffi
f0

p �
rf ln

r−M−L
r−MþL

þ2L

�
1−

M
r

��
ðB4Þ

when r > r0. For the purpose of this discussion we reinstate
the original Reissner-Nordström coordinates.
Wewish to find a gauge transformation that makesU1ðrÞ

vanish when r > r0; this will remove the dipole moment at
infinity and anchor the new coordinates at the center of
mass of the entire system. The procedure can easily be
adapted to make U1ðrÞ vanish when r < r0 instead; this
would attach the new coordinates to the black hole’s center
of mass.
The transformation is generated by the gauge vector

Ξα ¼ ½0; hðrÞ cos θ;−jðrÞ sin θ; 0�; ðB5Þ

where hðrÞ and jðrÞ are functions to be determined. The
transformation produces a change Δpαβ ¼ −∇αΞβ −∇βΞα
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in the metric perturbation pαβ ≔ δgαβ, and the change is
given explicitly by

Δptt ¼
2

r2
fðM −Q2=rÞh cos θ; ðB6aÞ

Δprr ¼ −2
�
dh
dr

þM −Q2=r
r2f

h

�
cos θ; ðB6bÞ

Δprθ ¼
�
dj
dr

−
2

r
jþ h

�
sin θ; ðB6cÞ

Δpθθ ¼ −2ðrfh − jÞ cos θ; ðB6dÞ

and Δpϕϕ ¼ Δpθθ sin2 θ. We set

h ¼ −
r2

M −Q2=r
U1; ðB7Þ

with U1 given by Eq. (B4), so that the new ptt
vanishes when r > r0. And we choose j to satisfy
dj=dr − 2r−1jþ h ¼ 0, so that prθ continues to vanish;
its explicit expression in terms of dilogarithms, logarithms,
and rational functions is not terribly illuminating and is not
displayed here.
The asymptotic behavior of the gauge functions when

r → ∞ is

h ∼ −
m
M

r0
ffiffiffiffiffi
f0

p
; j ∼ −

m
M

r0
ffiffiffiffiffi
f0

p
r: ðB8Þ

Making the substitution in the gauge vector, and trans-
forming to Cartesian coordinates X1 ∼ r sin θ cosϕ,
X2 ∼ r sin θ sinϕ, and X3 ∼ r cos θ, we find that

Ξa ∼ −
m
M

r0
ffiffiffiffiffi
f0

p
½0; 0; 1�: ðB9Þ

As could be expected, the gauge transformation describes a
translation along the symmetry axis.
The gauge transformation generated by Ξα does not

preserve the harmonic property of the spatial coordinates
Xa. The transformation, however, was devised to achieve
an ambitious goal, to remove the dipole piece of ptt in the
entire domain r > r0. There is no need to be so ambitious.
To eliminate the dipole moment at infinity it suffices to
remove from ptt the leading term in an expansion in powers
of r−1. And this can be accomplished with the constant
gauge vector

ϒa ¼ −
m
M

r0
ffiffiffiffiffi
f0

p
½0; 0; 1�: ðB10Þ

Such a constant translation, Xa → Xa þϒa, does preserve
the harmonic property of the spatial coordinates.
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