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Quantum backflow, discovered quite a few years back, is a generic purely quantum phenomenon, in
which the probability of finding a particle in a direction is nonzero (and increasing for a certain period of
time) even when the particle has with certainty a velocity in the opposite direction. In this paper, we study
quantum backflow of a quantum particle across the event horizon of a Schwarzschild black hole. In a toy
model approach, we consider a superposition of two ingoing solutions and observe the probability density
and probability current. We explicitly demonstrate a nonvanishing quantum back flow in a small region
around the event horizon. This is in contrast to the classical black hole picture, that once an excitation
crosses the horizon, it is lost forever from the outside world. Deeper implications of this phenomenon are
speculated. We also study quantum backflow for another spacetime with horizon, the Rindler spacetime,
where the phenomenon can be studied only within the Rindler wedge.
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I. INTRODUCTION

Consider a particle moving along, say, the x axis having
with certainty a positive velocity along the right-hand
direction with respect to some arbitrary origin x ¼ 0.
For a classical particle obviously the chance that it will
be detected at x > 0 will increase with time. However, for a
quantum particle, on the contrary, for certain wave func-
tions, the probability of the particle’s position at x < 0
actually increases with time, for a finite period of time. This
generic counterintuitive phenomenon is the well known
quantum backflow (QBF). It can occur for a free particle or
one in presence of a potential. Even if the particle’s wave
function is centered around x ¼ 0 and is constructed out of
only positive momenta, it can still possess nonvanishing
probability of being observed at x < 0 and the probability
can even increase for finite periods of time. Thus, the
quantum-mechanical current at the origin can be negative
with the probability flowing in opposite direction to the
momenta. In this paper, for the first time, we study QBF of
ingoing modes crossing the black hole (BH) event horizon.
Obviously this is contrary to conventional BH physics

wisdom that nothing can come out of the BH horizon. It can
have deep impact in fundamental BH physics. It needs to be
mentioned that QBF is a generic quantum phenomenon and
in the QBF effects studied so far (see Refs. [1–21]) the
presence of a spacetime horizon (as in BH) does not arise.
QBF was revealed by Allcock’s work [1] on the arrival

time problem in quantum theory (see also [2,3]). It
also appeared in the time operator construction in the
Heisenberg time-energy uncertainty relation [4] and decay
of quasistable quantum systems where the small inward
current was interpreted as QBF [5]. Bracken andMelloy [6]
showed that, (i) the total amount of QBF is bounded (by a
dimensionless number computed numerically ≈0.04) and
(ii) the bound has a universal character, independent of the
time duration, particle mass and ℏ. A subtle limiting
procedure proves vanishing of the effect in classical
framework [7]. A numerical study [8] revealed a structure
of the wave function and the corresponding approximate
analytic form of the wave function appeared in [7,9,10]
which yields a modest backflow. Its relativistic extension
was studied in [11–13]. In our case, the BH horizon
generates an effective potential and the impact of a linear
potential was investigated in [13]. Connections between
QBF and superoscillations was noted in [14]. A nonzero
probability flux in classically forbidden regions, in the
expansion of a wave packet in free space was discussed in
[15]. (For a recent brief review see [10].) In a recent paper
[16] direct evidence of QBF in an analog optical system has
been reported. Other experimental proposals have been
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utilizing Bose-Einstein condensates [17,18], using solu-
tions with both positive and negative momenta [19,20] and
a recent suggestion of moving the particle in a ring [21]. We
now come to our main concern: possible relevance of QBF
across a BH horizon.
In classical general relativity, nothing can come out of

the region behind the event horizon of a BH (that surrounds
the spacetime singularity) and reach an observer at a large
distance. This idea was overthrown in a quantum frame-
work whereby BHs can emit Hawking radiation which
carries information about the mass, charge, and angular
momentum of the BH. So far this is the only possible
mechanism of information (in the form of only mass,
angular momentum, and charge of the BH) exchange
between the BH and outside world. In this perspective
QBF might have significance in providing another channel
of information exchange between BH and outside observer.
However, further discussion on this is outside the scope of
the present work where we have established only the
presence of QBF across BH horizon.
Hawking’s seminal work [22,23] showed that a BH can

radiate with a characteristic (Hawking) temperature and
ushered in BH thermodynamics, thus formalizing the BH
area-entropy connection [24]. However, this originated the
so-called information paradox—BH evaporation leaves
only thermal radiation with a temperature that depends
just on a few macroscopic BH parameters and no infor-
mation about the BH constituents, transforming via non-
unitary evolution, from a pure state to a mixed state. To
keep unitarity intact, BH entropy has to follow the Page
curve [25] and only recently it is becoming clear [26–28]
how quantum entanglement can remove the information
paradox. An alternative approach, for modelling a quantum
BH, advocated by t’Hooft [29,30], hinges on applying
unitary quantum mechanics at the BH horizon with the BH
satisfying the Schrödinger equation. In this framework,
scattering on the black hole horizon in a partial wave basis
is studied in [31,32]. We, on the other hand, apply the
Schrödinger equation to the particles on the BH horizon. In
[33,34], physical boundary conditions for the quantum
particle wave equation at BH horizon reveal exponentially
damped or enhanced solutions suggesting that particles
instead of crossing the BH horizon are absorbed or
reflected by it.
In this perspective, QBF across a BH horizon assumes

significance, leading to open questions: can the backflow
be directly interpreted as particles or at least can it transfer
information across the horizon from the inside in some
form of correlation between the ingoing wave and its QBF
component? Although we will revisit this issue at the
concluding section, we address a point that is bound to
come up, i.e., is there any connection between QBF and
the celebrated Hawking effect, leading to Hawking radi-
ation. Let us just emphasize that these two are entirely
different phenomena: the fundamental differences being

that Hawking radiation is a quantum field theoretic phe-
nomenon derived in a semiclassical framework where
presence of the event horizon is crucial, whereas QBF is
a quantum mechanical process and in the examples studied
so far, the presence of an event horizon did not arise. The
outcome of Hawking effect is that the radiation arises at the
expense of the black hole mass and in the process the black
hole might disappear completely. On the other hand, with
the QBF we are looking at, where external particles
crossing in to the black hole are considered and where
part of this incoming flux can remain outside the horizon,
and the question of black hole evaporation as a result of
QBF does not arise. An underlying motivation of our work
is the possibility that QBF might have some correlation
with the major portion of ingoing flux.
We consider a simplified scenario, following earlier

works [6], and study QBF pertaining to a superposition
of two solutions of the Schrödinger equation, near the BH
horizon. (We leave the more realistic problem of using
wave packets for a future publication.) Since our model is
time dependent but stationary, with no temporal falloff, we
cannot use the conventional quantitative measures for QBF
and can only establish its presence conclusively. We believe
that these technical problems (such as wave packet con-
struction), can be addressed straightforwardly in a more
detailed analysis.
We have also briefly studied QBF for Rindler spacetimes,

for which the metric allows a horizon. However the situation
is qualitatively different in this case sincewework inRindler
coordinates where the constant acceleration in flat
Minkowski spacetime induces an effective curvature (see
for example [35]). We use the same procedure as in the
Schwarzschild case. However, the question of QBF across
the horizon is not relevant here since Rindler coordinates are
not defined beyond the Rindler wedge. We have computed
the nonvanishing QBF within the Rindler wedge in Sec. IV.
The paper is organized as follows: in Sec. II, the basic

formalism of constructing the Schrödinger equation for
the curved spacetime Hamiltonian is elaborated. Further it
is applied in the case of the Schwarzschild metric and the
formal, analytic structure of the wave function is derived.
In Sec. III, the observables relevant to QBF are introduced
and the numerical analysis along with graphical repre-
sentation of the main results are provided. This section
constitutes our principal findings. In Sec. IV, we present
the QBF results for Rindler spacetime along with relevant
plots. Section V consists of a summary of our findings
along with open future challenges. An Appendix is
provided at the end showing some intermediate computa-
tional steps.

II. SETTING UP THE SCHRÖDINGER EQUATION

From [36] we write down the Hamiltonian in a curved
background, where the BH metric in Cartesian coordinates
reads,
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g00 ¼ 1

U
; gij ¼ −

�
ηij þ ðU − 1Þ x

ixj

r2

�
;

r2 ¼ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2; ð1Þ

g00 ¼ U; gij ¼ −
�
ηij þ

�
1

U
− 1

�
xixj
r2

�
; ð2Þ

with
ffiffiffiffiffiffi−gp ¼ 1 and U ¼ ð1 − λ=rÞ for the Schwarzschild

metric. Following [36], H is given by

H ¼
�

1ffiffiffiffiffiffi−gp
g00

Aþ ffiffiffiffiffiffi
−g

p
gij∂i∂j

1

A
þm2 ffiffiffiffiffiffi

−g
p 1

A

�
;

¼ UA −
�
ηij þ ðU − 1Þ x

ixj

r2

�
∂i∂j

1

A
þm2

1

A
; ð3Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2 þm2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηij∂i∂j þm2

q
. We reduce

H to the form,

H ¼ H0 þ V; H0 ¼ A;

V ¼ −
λ

r
A −∇2

1

A
þ λ

r3
xixj∂i∂j

1

A
þm2

1

A
; ð4Þ

leading to the Schrödinger equation, i∂tψ −H0ψ ¼ −Vψ ,

i∂tψ −Aψ ¼−
�
−
λ

r
A−∇2

1

A
þ λ

r3
xixj∂i∂j

1

A
þm2

1

A

�
ψ :

ð5Þ
Recall that QBF in an external potential was studied in [13].
Putting back the fundamental constants, the above equation
takes the form:

iℏ∂tψ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2ℏ2∇2 þ c4m2

p
ψ ¼ −

�
2Gm
c2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2ℏ2∇2 þ c4m2

p
− ℏ2∇2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2ℏ2∇2 þ c4m2

p

þ 2ℏ2GM
r3

xixj∂i∂j
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2ℏ2∇2 þ c4m2
p þm2c4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2ℏ2∇2 þ c4m2

p
�
ψ : ð6Þ

We consider ingoing solutions along the X axis as
shown in Fig. 1, with a static observer outside the horizon
(r ¼ λ) on the X axis. Let us isolate the free plane wave part

ψu from ψ , ψ ¼ ψu þ ψ s with ψu ¼ Aeið−Etþk⃗:x⃗Þ and
subsequently

½i∂tψu−H0ψuþVψu�þ½i∂tψ s−H0ψ sþVψ s�¼0: ð7Þ

In a perturbative framework we consider exact solutions of
the free equation i∂tψu −H0ψu ¼ 0 and subsequently
calculate the first order (in V) correction ψs from the
equation ½i∂tψ s −H0ψ s þ Vψ s� þ Vψu ¼ 0. Now Vψu
acts as a source in a Greens function scheme and we drop

Vψ s since it will provide a correction effectively
of OðV2Þ whereas we are interested in OðVÞ corrections
only. (We refer to the formalism used by Allali and
Hertzberg [36].)
Using the free particle dispersion relation

Ek −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2c2k2 þm2c4

p
¼ 0; ð8Þ

the equation for ψ s is given by

½i∂tψ s −H0ψ s þ Vψ s� þ Vψu ¼ 0: ð9Þ

Considering a first order potential correction for ψ s, we
drop the Vψ s term to obtain,

i∂tψ s −H0ψ s þ Vψu ¼ 0: ð10Þ

The computational details are provided in the Appendix.
We exploit Green’s function techniques to the first order,
assuming the BH field to be weak near the horizon (∼ a
supermassive black hole whose Schwarzschild radius
exceeds its physical radius). The scattering part of ψ is,
therefore,

ψ ðkÞ
s ðx; tÞ ¼ −AEk

2π
e−iEkt

�
Ek

eikjxj

jxj
Z

d3x0
�
1 −

λ

jx0j
�
eiq⃗:x⃗

0

−
λℏ2c2

Ek
kikj

eikjxj

jxj
Z

d3x0
x0ix0j

jx0j3 eiq⃗:x⃗
0
�
; ð11Þ

FIG. 1. P denotes the observer and λ radius of the event
horizon. ΨTðx⃗; tÞ is the superposed wave function going into
black hole.
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where A is an arbitrary constant and λ ¼ 2GM=c2. Here,
q⃗ ¼ k⃗ − kx̂. One can interpret q⃗ as a measure of the
“scattering” as observed along x̂. For, e.g., if k⃗ ¼ kx̂
(the wave is directed away from the BH horizon), we
expect no “scattering” to be observed. Indeed in this
case, q⃗ ¼ 0.
We will work with the form of ψ ðk⃗Þ ¼ ψ ðk⃗Þ

u þ ψ ðk⃗Þ
s ,

where, ψ ðk⃗Þ
u ¼ Aeið−Etþk⃗:x⃗Þ and ψ ðk⃗Þ

s is given by (11).

A. Working form of the wave function ψðk⃗Þðx⃗;tÞ
Expressing (11) in the following form

ψ ðk⃗Þ
s ðx⃗; tÞ ¼ −

AEk

2π
e−iEkt

eikjx⃗j

jx⃗j
�
EkðF1ðq⃗Þ − λF2ðq⃗ÞÞ

þ λℏ2c2

Ek
kikj∂qi∂qjF3ðq⃗Þ

�
; ð12Þ

reveals three Fourier transforms,

F1ðqÞ ¼
Z

d3x01eiq⃗:x⃗0 ¼ ð2πÞ3δðq⃗Þ;

F2ðqÞ ¼
Z

d3x0
1

jx0j e
iq⃗:x⃗0 ; F3ðqÞ ¼

Z
d3x0

1

jx0j3 e
iq⃗:x⃗0 :

ð13Þ

Explicit expressions of FiðqÞ are calculated in the
Appendix. Final form of the kth mode of the full wave
function (in first order perturbation) is

ψ ðk⃗Þðx; tÞ ¼ ψ ðkÞ
u ðx; tÞ þ ψ ðkÞ

s ðx; tÞ
¼ Ae−iEkteiðk⃗:x⃗Þ þ ψ ðk⃗Þ

s ðx; tÞ: ð14Þ

This is one of our important results. We will use it to
construct the superposition of two waves (with momenta in
the same direction) to study QBF. We consider the wave
just inside horizon, jxj ¼ λ − hðxÞ comprising of the
ingoing modes, as is natural for a BH, and try to ascertain
QBF outside horizon, jxj > λ, as depicted in Fig. 1. The
system is reduced to an effectively one (space) dimensional
problem, with QBF observed at P on the X axis outside the
horizon, x ¼ λ.

III. QUANTUM BACKFLOW OBSERVABLES

QBF was observed [6] in a superposition of two plane
waves with appropriate mixing coefficients and positive
momentum to study the probability current Jðx; tÞ. The
sign of Jðx; tÞ indicates presence of QBF; for a super-
position of negative momenta, the current will also be
negative, at least classically. A positive current will indicate
the presence of QBF. In our case, it is more convenient to
calculate the current directly, following [6],

Jðx; tÞ ¼ −i
ℏ
2m

�
ψ�ðx; tÞ ∂ψðx; tÞ∂x −

∂ψ�ðx; tÞ
∂x ψðx; tÞ

�

ð15Þ

using the form of ψðx; tÞ≡ ψ ðk⃗Þðx; tÞ we have obtained.
Toy models are a convenient tool in different branches of

physics, in particular when a hitherto unexplored effect is
being investigated, since for the time being, showing
existence of that effect is primary and quantitative estimates
for possible vindication can come later. (See for example
the work of Berry [14] where purely plane waves were
considered in the study of QBF.) Keeping this in mind, (and
following earlier works [6,7,9,10]), let us exploit the toy
model of two-mode superposition of plane waves for QBF.
The plane waves are normalized formally as Dirac delta-
function normalization or within a finite volume or with the
imposition of periodic boundary condition. In existing
literature in QBF simple quantum mechanical systems
are considered with explicit wave packets that are localized
in a finite volume. However construction of such a wave
packet with finite support in our model is more difficult
(which we plan to pursue in another publication). So in the
present work we clearly demonstrate that it is indeed
possible to have QBF from a black hole horizon but we
refrain from making quantitative predictions. The only
difference between our results and the QBF observables
commonly used is that (since the plane waves do not
diminish in magnitude) we will provide the QBF observ-
ables in local form whereas, in the latter, spatially inte-
grated expressions are computed. Our framework, in spirit,
is similar to the scattering cross section given per unit area
per unit time.

A. QBF from a black hole event horizon

Let us explicitly consider ψ ðk⃗Þðx⃗; tÞ ¼ ψ ðk⃗Þ
u ðx⃗; tÞ þ

ψ ðk⃗Þ
s ðx⃗; tÞ with ψ ðkÞ

u ðx; tÞ ¼ A expðik⃗ · x⃗ − iEktÞ, with k⃗ ¼
−kx̂ and x⃗ ¼ xx̂ (position vector of P in Fig. 1), leading
to q⃗ ¼ k⃗ − jk⃗jx̂ ¼ −2kx̂.
The scattering part is given as

ψ ðkÞ
s ¼−A

Ek

2π
e−iEkt

eikjx⃗j

jx⃗j
�
Ekð2πÞ3δðq⃗Þ−Ek

4πλ

q2

þ2πλℏ2c2

Ek
k2
�
lim
ϵ→0

∂2
q1

�
−CiðqϵÞþ2sinqϵ

qϵ

���
;

¼−A
Ek

2π
e−iEkt

eikx

x

�
−Ek

4πλ

4k2
þ2πλℏ2c2

Ek
k2
q21
q4

�
; ð16Þ

with momentum q⃗ ¼ q1x̂, q2 ¼ q21 þ q22 þ q23 and

limϵ→0½∂2
q1ð−CiðqϵÞ þ 2 sin qϵ

qϵ Þ� ¼ − q2
2
þq2

3
−q2

1

q4 simplifies to

DRIPTO BISWAS and SUBIR GHOSH PHYS. REV. D 104, 104061 (2021)

104061-4



ψ ðkÞ
s ðx;tÞ¼−

A
2π

e−iEkt
eikx

x

�
−ðℏ2c2k2þm2c4Þπλ

k2
þπλℏ2c2

2

�

¼ A
2πx

e−iðEkt−kxÞ
�
2GMπ

c2

�
ℏ2c2

2
þm2c4

k2

��
: ð17Þ

As we have mentioned in the Introduction, there is a
universal (numerical value of the) upper bound on the total

amount of QBF, but the amount of QBF is different for
different wave functions and one has to come up with an
explicit form of wave function that generates a significant
amount of QBF. In a simplified toy model approach, we
have managed to find a choice of the all-important two-
wave superposition, k⃗ ¼ −x̂ and k⃗ ¼ −4x̂, with an appre-
ciable QBF,

ΨTðx; tÞ ¼ ψ ð−x̂Þðx; tÞ − 3ψ ð−4x̂Þðx; tÞ;
¼ ½e−iðx−

ffiffiffiffiffiffiffiffiffi
1þm2

p
tÞ − 3e−4iðx−

ffiffiffiffiffiffiffiffiffiffi
16þm2

p
tÞ�

−
πλ

2πx

�
e−iðx−

ffiffiffiffiffiffiffiffiffi
1þm2

p
tÞ
�
1

2
þm2

�
−3e−4iðx−

ffiffiffiffiffiffiffiffiffiffi
16þm2

p
tÞ
�
1

2
þm2

16

��
; ð18Þ

where ψ ðk⃗Þðx; tÞ is defined in (14) and we have used the

calculated forms of ψ ðk⃗Þ
u ðx; tÞ and ψ ðk⃗Þ

s ðx; tÞ. Indeed this not
a unique choice and there can very well be better choices of
wave functions that might generate larger QBF (within the
upper bound). To show that QBF generating superpositions
are quite easily available, we have provided two specific
examples of different superposition along with their re-
spective QBF, at the end of this section. However, one
needs to search for the particular wave function that induces
the maximum amount of QBF.
For a general wave superposition of the form

ψðxÞ ¼ ρðxÞei
R

x

0
dx0kðx0Þ ð19Þ

the amplitude function ρðxÞ and local wave number
function kðxÞ

kðxÞ ¼ d
dx

argψðxÞ ¼ Im
ðdψðxÞ=dxÞ

ψðxÞ ð20Þ

are real. Positive and negative kðxÞ will indicate that the
wave is traveling in positive or negative direction at x.
Applying this definition (see for example [1,6,14] for more

details) to a superposition of plane waves with positive
momenta (for example)

ψðxÞ ¼
XN
n¼0

Cneiknx; kn ≥ 0 ð21Þ

one can show that kðxÞ can have negative values. As a
specific example [1,6,14] for

ψðxÞ ¼ 1 − aeix ð22Þ
the local wave number kðxÞ, given by

kðxÞ ¼ a
a − cos x

1þ a2 − 2a cos x
; ð23Þ

will generate QBF for a < 1 within jxj < arccosðaÞ
periodically.

B. Numerical analysis

The analytic expressions of the probability and current
densities, ζðx; tÞ ¼ Ψ�

Tðx; tÞΨTðx; tÞ and Jðx; tÞ are, respec-
tively, given by

ζðx; tÞ ¼ 1

1024x2

h
5ð2048x2 − 64ð16þ 5m2Þxλþ ð128þ 80m2 þ 53m4Þλ2Þ − 48ð128x2 − 4ð16þ 17m2Þxλ

þ ð8þ 17m2 þ 2m4Þλ2tÞ cos
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þm2

p �
t − 3xÞ

i
; ð24Þ

Jðx;tÞ¼ ℏ
ð256mx2Þ

h
−9472x2þ4736xλþ832m2xλ−592λ2−208m2λ2−73m4λ2þ30ð128x2−4ð16þ17m2Þxλ

þð8þ17m2þ2m4Þλ2Þcos
h� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þm2

p �
t−3x�þ360m2λsin

h ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
t−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þm2

p
t−3x

ii
: ð25Þ

The functions are analytic, ∀ x ≠ 0, ∀ t ≥ 0; i.e., it is
nonanalytic only at the curvature singularity at x ¼ 0 and
not at the coordinate singularity at x ¼ λ. In Fig. 2 we show

the variation in probability density for two values of λ.
There appears to be a qualitative change in the behavior
after the horizon, that is more pronounced for smaller λ.
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In Fig. 3, snapshots of the density profile are shown for two
different times. Notice that the density is greater inside the
horizon and as expected, falls off away from the horizon, on
the outside. The time-stationary behavior is readily visible.
Our most decisive results appear in the profile in Fig. 4,

where we plot the current Jðx; tÞ for ℏ ¼ 1, m ¼ 3, for two
values of λ. In Fig. 4, we see that there is a small QBF
region for t ¼ 0 (actually for all values of t as well) near the
horizon x ¼ λ, that is shaded red in the figure. It can be
shown numerically that Jðx; tÞ is strictly negative (as
expected naïvely) for x ≪ λ as well as for x ≫ λ. This
can also be seen from the time slices in Fig. 4. The envelope
of the oscillatory plots in Fig. 4 is only positive for a finite
region surrounding x ¼ λ as shown. This suggests that
QBF is originated from only a finite region around the
Schwarzchild BH event horizon. A different superposition
and its associated QBF is provided in Fig. 5.
In fact size and shape of the region from where QBF

emerges changes (periodically) with time. Such a shift in
the QBF peaks is depicted for two different times t ¼ 0 and
t ¼ 5, in Fig. 6, an enlarged view of the QBF zone (marked
in red) for the λ ¼ 20 case of Fig. 4. In Fig. 4 it is to be
understood that QBF regions occur periodically along the
intervals in x. In Fig. 6 the QBF zone at t ¼ 0 (marked in

blue) are different from the QBF zones at t ¼ 5 (marked in
yellow) indicating how the QBF zones evolve with time.
Note that only for plane wave superpositions the corre-
sponding QBF occur periodically. Similar situations in
other QBF models are discussed in detail in [14].

FIG. 2. Plots of the density function ζðx; t ¼ 0Þ for two values
of λ.

FIG. 3. Plot of ζðx; tÞ at two different times, t ¼ 10 and
t ¼ 100, for λ ¼ 60.

FIG. 4. QBF (red region) observed from the plots of Jðx; t ¼ 0Þ
for two values of λ, on superposing k⃗ ¼ −x̂ and k⃗ ¼ −4x̂
solutions. The size of the QBF region increases with λ.
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IV. QUANTUM BACK FLOW
FOR RINDLER OBSERVERS

In this section we will briefly present another example of
QBF for a spacetime that has a close connection with the
Schwarzschild spacetime but has also essential differences
that is reflected in the corresponding QBF; the Rindler
spacetime (see for example [35]). Quite interestingly, even
though Rindler metric has a horizon, because of the
qualitative difference in the nature of the two horizons
the QBF also has a different structure that we will elaborate.
The Rindler horizon appears in the following way. The

world line of a point particle moving with constant proper
acceleration (that is, the acceleration measured by an
observer comoving with the said point) in flat (1þ 1)-
dimensional spacetime will be a hyperbola. World lines of
light rays asymptote to the arms of the hyperbola. Hence
the light ray paths constitute horizons bounding the Rindler
wedge in the sense that any signal from outside the wedge

cannot reach the accelerating particle since to do that it has
to overtake the light pulse. On the other hand, from the
point of view of the accelerated observer, the light pulse is
always at a constant distance (∼ inverse of the proper
acceleration) behind.
Clearly, the Rindler horizon is different from a

Schwarzschild black hole horizon: the former will be
present so long as the acceleration persists and is not
eternal as the latter (in the classical sense, disregarding
Hawking radiation). Furthermore the true singular nature of
the latter metric, where the curvature is infinite, is absent in
the former. Still, the horizon analogy can be pursued
further: in the Rindler case, a constant force is required
to maintain a constant proper distance from the Rindler
horizon; in the Schwarzschild case, a (redshifted) force
(∼ surface gravity) on a particle is needed to keep it
stationary on the horizon. Again, considering a sufficiently
massive black hole (so that the spacetime curvature is
extremely small), similar phenomena (red shift, time
dilation and so on) occur in the vicinity of both the
horizons and Unruh radiation in Rindler is an analog of
Hawking radiation in Schwarzschild. With an appropriate
rescaling, the Rindler metric structurally reduces to a
Schwarzschild form.
A convenient way to study the effects of a constant

acceleration is to exploit Rindler coordinates. For accel-
eration along the direction of motion, it is possible to show
that the acceleration is the same for an intertial frame and in
the proper frame of the accelerating particle. Hence one can
solve the motion of a particle in a Minkowski (laboratory)
frame in a straightforward way and transform it to the
comoving frame in which the accelerating particle is at rest,
which in this case is the Rindler frame. Interestingly the
metric in Rindler frame is that of a curved spacetime, with a
horizon, the Rindler horizon. This is agreeable to us since
we have already analyzed QBF for a generic curved
spacetime and can simply borrow the machinery to com-
pute QBF for Rindler spacetime. However, since the
Rindler metric is only defined within the Rindler wedge,
it is not feasible to consider QBF across the Rindler
horizon. One might heuristically argue that QBF suppos-
edly cannot violate special relativity, which would have
been the case if QBF across a Rindler horizon was allowed.
However, as we demonstrate below, the good news is that
QBF is nonvanishing inside the Rindler wedge.
As explained just above, the solution of Newton’s

dynamical equation,

ma ¼ dP
dT

¼ m
dðγUÞ
dT

; U ¼ dX=dT;

γ ¼ 1=

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U2=c2

q �
; ð26Þ

with a, the proper acceleration of the observer, being
given by

FIG. 5. Jðx; t ¼ 0Þ plot showing sizeable QBF on superposing
solutions with k⃗ ¼ −x̂ and k⃗ ¼ −5x̂.

FIG. 6. A magnified plot of the QBF region for t ¼ 0 (blue
curve) and t ¼ 5 (yellow curve), showing evolution of the QBF
region with time.
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U ¼ aT=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðaT=cÞ2

q
Þ: ð27Þ

Defining the proper time t by dT=dt ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U2=c2

p
Þ

one obtains the transformation laws [35]

X ¼
�
xþ 1

a

�
sinh½aðt − t0Þ� þ X0 −

1

a
;

T ¼
�
xþ 1

a

�
cosh½aðt − t0Þ� þ T0; ð28Þ

connecting the flat Minkowski metric

ds2 ¼ −dT2 þ dX2 ð29Þ

to the Rindler metric (in terms of proper time and space
coordinates x, t) given by

ds2 ¼ −ð1þ xaÞdt2 þ dx2; ð30Þ

where we have used the ð−1;þ1Þ signature and c ¼ 1.
Clearly, for x ∈ Rnf−1=ag, the Minkowski coordinates
satisfy −T < X < T (the Rindler wedge). Following
the same procedure outlined in the next two sections,

we obtain the scattering part of the wave function as,

ψRindðkÞ
s ðt; x⃗Þ ¼ A Ek

2πjx⃗j e
−iðEkt−kjx⃗jÞ½4aq2 − 2πδðq⃗Þ�. We con-

struct the superposition of two wave functions, with
k⃗ ¼ −x̂ and k⃗ ¼ −4x̂ and plot the probability density
ζðx; tÞ and current density Jðx; tÞ in Fig. 7. From the
plot of Jðx; tÞ in Fig. 7, we see that QBF indeed occurs
(marked in red) away from the Rindler horizon at jxj ¼ 1

a;
i.e., QBF is observed strictly “inside” the Rindler wedge.
Note that there are no divergences in the two profiles
of Fig. 7 near the horizon; we had to scale it up so that
the small amount of QBF shows up clearly, leading to
large but finite values of the respective observables near
horizon.

V. DISCUSSION

To summarize, we have studied the QBF across the
event horizon of a Schwarzschild BH, using perturbative
solutions of the Schrödinger equation for a particle in the
BH background, near the horizon. In a superposition of
two ingoing modes, QBF is observed across the horizon.
Interestingly QBF persists for a finite spatial range. In our
stationary model, overall time dependence and related
observations of charge and current density are uniform
(without any decay). In the present toy model approach,
we have not attempted to provide quantitative estimates in
terms of a conventional observable, the total probability
(integrated over position) of QBF. We believe this weak-
ness can be overcome by considering wave packets,
instead of a simple superposition, as done here.
However it should be noted that wave propagation and
wave packet construction in curved (space and) spacetime
is itself an involved problem that has created a lot of
interest in recent years as well; some of the novel features
related to curved spacetime being decoherence of wave
packet due to its interaction with zero-point fluctuations
produced by a gravitational wave, ambiguity in defining a
particle excitation, among others (some relevant
references are [37–41]). Keeping this in mind we have
adhered to the toy model presented here which can
establish presence of a QBF across BH horizon. We plan
to introduce wave packets to study the QBF in this context
in near future.
We have also provided a brief description of QBF in

Rindler space where it occurs inside the Rindler wedge.
The present work raises several open questions and

possibilities: how do we interpret the QBF across BH
horizon? Can the QBF correspond to outgoing modes?
Does there exist any form of correlation between the
ingoing and outgoing (QBF) part of the wave function?
Even though QBF is an effect, distinct from information
leakage through Hawking radiation, can it lead to infor-
mation exchange between inside and outside horizon? Can
this type of QBF be realized in analog gravity models? We
conclude by noting several major differences between QBF

FIG. 7. Plots of the density function ζðx; t ¼ 100Þ (top) and the
current Jðx; t ¼ 100Þ for jxj ∈ ð1a ; 10Þ.
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(in BH case) and Hawking effect: QBF is a generic
quantum process present in wave function evolution, while
the Hawking effect is a semiclassical field theoretic
phenomenon applicable near the event horizon of a BH.
QBF is intimately connected to the external matter wave
function moving across BH horizon, whereas no external
matter degrees of freedom are involved in Hawking effect.
Again, there is no BH mass depletion due to QBF (it can
only acquire the mass of the ingoing part of wave function).
Also QBF is active for a limited period of time (for wave
packets as ingoing modes), and is restricted in a spatial
domain whereas BH mass decreases via Hawking radiation
resulting in a BH evaporation. The latter is present
throughout the time the BH is alive.
Since we have mooted the question of a possible

connection between QBF and information leakage, it is
natural to ask whether there are any comparable time
scales involved in the two processes. One such scale for
black holes is the scrambling time proposed in [42] that
refers to the process of quick delocalization of quantum
information in thermal states. It scales as the logarithm of
the number of degrees of freedom of the system. It was
also hypothesized that “Black holes are the fastest
scramblers in nature” [42]. Before proceeding further
let us observe that in the Schwarzschild black hole case
that we have discussed in detail, we have considered time
independent solutions and thus analysis of time scales is
beyond the scope of the present work. But, in previous
works involving time dependent QBF [6,7,10] it has been
shown that generically QBF persists for a finite period of
time and it can be nonzero for several time periods.
However one should be cautious since the time period can
be scaled to different durations with the restriction that the
integrated amount of probability transfer by QBF remains
the same [6,7,10]. Indeed, more study is needed before
one can make any conjecture regarding a possible con-
nection between the time scales involved in QBF and
information scrambling time (or any other relevant time
scale) for black holes.
Open problems (i) use renormalizable ingoing wave

packets for quantitative estimates of QBF, and (ii) inves-
tigate QBF in analog gravity models. As a physically
interesting example, in coastal region where a river
empties into an ocean (depending critically upon external

parameters), a tidal bore, i.e., a strong tidal wave, can
occur that pushes up the river, against the current. In the
horizon analogy for a tidal bore, a smooth wave front is
followed by a series of waves, traveling upstream forced
by high tides [43–45]. The bore acts as a horizon,
separating an analog white hole up along the river.
There is no wave propagation upstream to the bore and
only rapidly decaying evanescent waves can exist there in
the analogue white hole region. If we push the identi-
fication between QBF and tidal bore further, then in the
white hole situation the leakage of the evanescent waves
might be interpreted as the QBF. Recall that QBF also
remains active for a finite period of time (provided we use
wave packets for the ingoing modes). Clearly this analogy
demands further study.
We end by noting that a deeper analysis of the physical

interpretation of the QBF part is needed since apart from an
intriguing remark by Berry [11] regarding possible particle-
like nature of the QBF sector, not many observations are
present in the literature.
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APPENDIX

In the Appendix we have elucidated some parts of our
calculations.
Equation (11) of main text.— We provide details of the

derivation of the solution of Schrödinger equation, using
Green’s function [36]

ψ ðk⃗Þ
s ðx; tÞ ¼

Z
d4x0G4ðt − t0; x − x0ÞVðt0; x0Þψ ðk⃗Þ

u ðt0; x0Þ;

ðA1Þ

which can be rewritten as

ψ ðkÞ
s ðx; tÞ ¼ e−iEkt

Z
d3x0G3ðx − x0ÞVðx0Þψ ðk⃗Þ

u ðx0Þ;

¼ e−iEkt

Z
d3x0

−Ek

2πjx − x0j e
ikjx−x0j

�
−
2GM
c2jx0jA − ℏ2∇2

1

A
þ 2ℏ2GM

jx0j3 x0ix0j∂ 0
i∂ 0

j
1

A
þm2c4

1

A

�
ðAeik:x0 Þ; ðA2Þ
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where E2
k¼ℏ2c2k2þm2c4. In the above, G4ðt − t0; x − x0Þ

and G3ðx − x0Þ refer to the four- and three-dimensional
Green’s functions, respectively. We use the notation of [36].
This yields

ψ ðkÞ
s ðx; tÞ ¼ −AEk

2π
e−iEkt

Z
d3x0

eikjx−x0j

jx − x0j
�
−

λ

jx0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

þ k2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p þm2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

−
λ

jx0j3 x
0ix0jkikj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�
ðeik:x0 Þ: ðA3Þ

After simplification we find

ψ ðkÞ
s ðx;tÞ¼−AEk

2π
e−iEkt

Z
d3x0

eikjx−x0j

jx−x0j

×

��
1−

2GM
c2jx0j

�
Ek−

2GM
Ek

ℏkiℏkj
x0ix0j

jx0j3
�
ðeik:x0 Þ:

ðA4Þ

We concentrate on the region near horizon jxj ¼ λ ≫ jx0j
and expand

→ jx − x0j ≈ jxj − x⃗:x⃗0

jxj ≡ jxj ≈ λ − x̂:x⃗0

so that in a standard approximation scheme in (A4),

eikjx−x0j

jx − x0j e
ik:x0 ≈

eikðjxj−x̂:x⃗0Þ

jxj − x̂:x⃗0
eik:x

0 ≈
eikjxj

jxj eiðk⃗−kx̂Þ:x⃗0

¼ eikjxj

jxj eiq⃗:x⃗
0
; q⃗ ¼ k⃗ − kx̂: ðA5Þ

Substituting these relations in (A4) we recover Eq. (11) of
original text.
Equation (13) of main text and FiðqÞ.—Exploiting

spherical symmetry for a generic case yields

FðqÞ ¼ 4π

q

Z
∞

0

drVðrÞr sinðqrÞ: ðA6Þ

For V ¼ 1=r, a regularization (in the form of a mass scale
μ) is needed:

F2ðq; μÞ ¼
4π

q

Z
∞

0

dr
e−μr

r
r sinðqrÞ ¼ 4π

μ2 þ q2
; ðA7Þ

where q⃗ ¼ k⃗ − kr̂; q ¼ 2k sinðθ=2Þ. Finally taking μ → 0
we find

F2ðqÞ ¼
4π

q2
: ðA8Þ

On the other hand, for F3ðqÞ we find, using the same
prescription as above, that

F3ðqÞ ¼
4π

q

Z
∞

0

sinðqrÞ
r2

dr;

diverges due to the singularity at r ¼ 0. Therefore, we
perform the integral,

F̄3ðqÞ ¼
4π

q

Z
∞

ϵ

sinðqrÞ
r2

dr: ðA9Þ

for some, ϵ ∈ Rþ.
Then we have

F̄3ðqÞ ¼ 2π

�
−CiðqϵÞ þ 2 lnðqÞ − lnðq2Þ þ 2

sinðqϵÞ
qϵ

�
;

ðA10Þ

where, CiðzÞ is the cosine integral function defined as

CiðzÞ ¼ −
Z

∞

z

cos t
t

dt;

whose series expansion about 0, is given as,

CiðxÞ ¼ γ þ lnðxÞ þP∞
k¼1

ð−x2Þk
2kð2kÞ!. Here γ is the Euler-

Mascheroni constant.
The value of 2 lnðqÞ − lnðq2Þ is 2πi if q < 0 and 0 if

q > 0. Thus, more compactly,

F̄3ðqÞ ¼ 2π

�
−CiðqϵÞ þ 2πiΘð−qÞ þ 2

sinðqϵÞ
qϵ

�
; ðA11Þ

where ΘðxÞ denotes the Heaviside-Theta function. F3ðq⃗Þ
will be approximated by F̄3ðq⃗Þ and the limit ϵ → 0 will be
taken after differentiating F̄3ðq⃗Þ.
One-dimensional result (17) with units:

ψ ðkÞ
s ðx; tÞ ¼ A

2πx
e−iðEkt−kxÞ

�
2GMπ

c2

�
1

2
þm2c2

ℏ2k2

��
: ðA12Þ

DRIPTO BISWAS and SUBIR GHOSH PHYS. REV. D 104, 104061 (2021)

104061-10



[1] G. R. Allcock, Ann. Phys. (N.Y.) 53, 253 (1969); 53, 311
(1969).

[2] J. G. Muga, J. P. Palao, and C. R. Leavens, Phys. Lett. A
253, 21 (1999).

[3] J. G. Muga and C. R. Leavens, Phys. Rep. 338, 353 (2000).
[4] J. Kijowski, Rep. Math. Phys. 6, 361 (1974).
[5] W. van Dijk and F. M. Toyama, Phys. Rev. A 100, 052101

(2019).
[6] A. J. Bracken and G. F. Melloy, J. Phys. A 27, 2197 (1994).
[7] J. M. Yearsley, J. J. Halliwell, R. Hartshorn, and A. Whitby,

Phys. Rev. A 86, 042116 (2012).
[8] M. Penz, G. Grubl, S. Kreidl, and P. Wagner, J. Phys. A 39,

423 (2006).
[9] J. J. Halliwell, E. Gillman, O. Lennon, M. Patel, and I.

Rami, J. Phys. A 46, 475303 (2013).
[10] J. M. Yearsley and J. J. Halliwell, J. Phys. Conf. Ser. 442,

012055 (2013).
[11] M. V. Berry, J. Phys. A 45, 185308 (2012).
[12] J. Ashfaque, J. Lynch, and P. Strange, Phys. Scr. 94, 125107

(2019).
[13] G. F Melloy and A. J. Bracken, Ann. Phys. (Leipzig) 7, 726

(1998).
[14] M. V. Berry, J. Phys. A 43, 415302 (2010).
[15] A. Goussev, Phys. Rev. A 99, 043626 (2019).
[16] Y. Eliezer, T. Zacharias, and A. Bahabad, Optica 7, 72

(2020).
[17] M. Palmero, E. Torrontegui, J. G. Muga, and M. Modugno,

Phys. Rev. A 87, 053618 (2013).
[18] Sh. Mardonov, M. Palmero, M. Modugno, E. Ya. Sherman,

and J. G. Muga, Europhys. Lett. 106, 60004 (2014).
[19] M. Miller, W. C. Yuan, R. Dumke, and T. Paterek, Quantum

5, 379 (2021).
[20] M. Barbier and A. Goussev, Quantum 5, 536 (2021).
[21] A. Goussev, Phys. Rev. A 103, 022217 (2021).
[22] S. Hawking, Phys. Rev. D 14, 2460 (1976).

[23] S. Hawking, Commun. Math. Phys. 43, 199 (1975).
[24] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[25] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
[26] G. Penington, J. High Energy Phys. 09 (2020) 002.
[27] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,

J. High Energy Phys. 12 (2019) 063.
[28] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and

A. Tajdini, Rev. Mod. Phys. 93, 035002 (2021).
[29] G. Hooft, Int. J. Mod. Phys. A 11, 4623 (1996).
[30] G. Hooft, Found. Phys. 46, 1185 (2016).
[31] N. Gaddam, N. Groenenboom, and G. Hooft, arXiv:

2012.02357.
[32] P. Betzios, N. Gaddam, and O. Papadoulaki, J. High Energy

Phys. 07 (2021) 017.
[33] M. Gogberashvili, Int. J. Theor. Phys. 57, 1763 (2018).
[34] M. Gogberashvili, Int. J. Theor. Phys. 58, 3711 (2019).
[35] B. Knorr, Uniform Relativistic Acceleration, http://www

.physik.uni-leipzig.de (2010).
[36] I. Allali and M. P. Hertzberg, J. Cosmol. Astropart. Phys. 07

(2020) 056.
[37] W. L. Power and I. C. Percival, Proc. R. Soc. A 456, 955

(2000).
[38] M. Arminjon and F. Reifler, J. Phys. 306, 012061

(2011).
[39] V. A. Emelyanov, Eur. Phys. J. C 81, 189 (2021).
[40] T. Masaaki, M. Y. Ishizuka, and W. A. Okosa, Prog. Theor.

Phys. 84, 5 (1990).
[41] A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev,

Phys. Rev. X 8, 011001 (2018).
[42] Y. Sekino and L. Susskind, J. High Energy Phys. 10 (2008)

065.
[43] M. V. Berry, New J. Phys. 20, 053066 (2018).
[44] M. V. Berry, New J. Phys. 21, 073021 (2019).
[45] We are thankful to Professor Michael Berry for pointing out

the possibility of this analogy.

QUANTUM BACKFLOW ACROSS A BLACK HOLE HORIZON IN A … PHYS. REV. D 104, 104061 (2021)

104061-11

https://doi.org/10.1016/0003-4916(69)90251-6
https://doi.org/10.1016/0003-4916(69)90253-X
https://doi.org/10.1016/0003-4916(69)90253-X
https://doi.org/10.1016/S0375-9601(99)00020-1
https://doi.org/10.1016/S0375-9601(99)00020-1
https://doi.org/10.1016/S0370-1573(00)00047-8
https://doi.org/10.1016/S0034-4877(74)80004-2
https://doi.org/10.1103/PhysRevA.100.052101
https://doi.org/10.1103/PhysRevA.100.052101
https://doi.org/10.1088/0305-4470/27/6/040
https://doi.org/10.1103/PhysRevA.86.042116
https://doi.org/10.1088/0305-4470/39/2/012
https://doi.org/10.1088/0305-4470/39/2/012
https://doi.org/10.1088/1751-8113/46/47/475303
https://doi.org/10.1088/1742-6596/442/1/012055
https://doi.org/10.1088/1742-6596/442/1/012055
https://doi.org/10.1088/1751-8113/45/18/185308
https://doi.org/10.1088/1402-4896/ab265c
https://doi.org/10.1088/1402-4896/ab265c
https://doi.org/10.1002/(SICI)1521-3889(199812)7:7/8%3C726::AID-ANDP726%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3889(199812)7:7/8%3C726::AID-ANDP726%3E3.0.CO;2-P
https://doi.org/10.1088/1751-8113/43/41/415302
https://doi.org/10.1103/PhysRevA.99.043626
https://doi.org/10.1364/OPTICA.371494
https://doi.org/10.1364/OPTICA.371494
https://doi.org/10.1103/PhysRevA.87.053618
https://doi.org/10.1209/0295-5075/106/60004
https://doi.org/10.22331/q-2021-01-11-379
https://doi.org/10.22331/q-2021-01-11-379
https://doi.org/10.22331/q-2021-09-07-536
https://doi.org/10.1103/PhysRevA.103.022217
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1103/RevModPhys.93.035002
https://doi.org/10.1142/S0217751X96002145
https://doi.org/10.1007/s10701-016-0014-y
https://arXiv.org/abs/2012.02357
https://arXiv.org/abs/2012.02357
https://doi.org/10.1007/JHEP07(2021)017
https://doi.org/10.1007/JHEP07(2021)017
https://doi.org/10.1007/s10773-018-3702-x
https://doi.org/10.1007/s10773-019-04242-0
http://www.physik.uni-leipzig.de
http://www.physik.uni-leipzig.de
http://www.physik.uni-leipzig.de
http://www.physik.uni-leipzig.de
https://doi.org/10.1088/1475-7516/2020/07/056
https://doi.org/10.1088/1475-7516/2020/07/056
https://doi.org/10.1098/rspa.2000.0544
https://doi.org/10.1098/rspa.2000.0544
https://doi.org/10.1088/1742-6596/306/1/012061
https://doi.org/10.1088/1742-6596/306/1/012061
https://doi.org/10.1140/epjc/s10052-021-08979-z
https://doi.org/10.1143/ptp/84.5.875
https://doi.org/10.1143/ptp/84.5.875
https://doi.org/10.1103/PhysRevX.8.011001
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1367-2630/aac285
https://doi.org/10.1088/1367-2630/ab2b19

