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In this paper we discuss models satisfying the limiting curvature condition. For this purpose, we modify
the Einstein-Hilbert action by adding a term which restricts the growth of curvature. We analyze
cosmological solutions in such models. Namely, we consider a closed contracting homogeneous isotropic
universe filled with thermal radiation. We demonstrate that for properly chosen curvature constraints such a
universe has a bounce. As a result, its evolution is nonsingular and contains a “de Sitter–type” supercritical
stage connecting contracting and expanding phases. Possible generalizations of these results are briefly
discussed.
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I. INTRODUCTION

The idea that the Universe can have a prehistory before
the big bang is very old. Cyclic or oscillating cosmological
models were considered almost 90 years ago. Such models
were discussed in the famous book by Tolman published in
1934 [1]. He also demonstrated that the validity of the
second law of thermodynamics applied to the Universe and
increasing entropy make pure periodic models impossible:
each of the successive cycles should be longer and larger
than the previous one.
Even if one does not require the existence of an infinite

number of cycles before the formation of the present
Universe, it is interesting to analyze an option that the
Universe before the big bang had a phase of contraction,
usually called a big crunch. In such models the Universe
should experience a bounce, where its size takes some
minimal value. We denote the scale factor that enters the
Friedmann-Robertson-Walker metric for a homogeneous
isotropic universe as aðtÞ. Then, one of the Einstein
equations implies that

ä
a
¼ −

4πG
3

ðεþ 3PÞ; ð1:1Þ

where ε and P are the matter energy density and pressure,
respectively. Since at the bounce point where _a ¼ 0 one has
ä > 0, the equation of state should be such that

εþ 3P < 0. The famous Penrose-Hawking singularity
theorems imply that in a general case in order to escape
a cosmological singularity some of the energy conditions
for matter should be violated [2].
Singularities in standard cosmological models are con-

nected with an infinite growth of the spacetime curvature.
Markov [3,4] suggested that the existence of the limiting
curvature should be considered as a new physical principle.
He demonstrated that for a proper choice of the equation of
state in the cosmology the limiting curvature condition is
satisfied and solutions in such a model describe a bouncing
universe. A bouncing universe was discussed by Gasperini
and Veneziano in their pre-big-bang string cosmology
[5,6]. Nonsingular cosmological models that are based
on the use of nondynamical scalar fields to implement the
limiting curvature hypothesis were studied some time ago
by Brandenberger et al. [7,8]. More recently, the interest in
bouncing cosmological models has increased. This is
mainly connected with the remarkable increase in the
accuracy of cosmological observations. An interesting
and intriguing question is: if there was of a big crunch
phase, is it possible to find observational evidence of this?
A variety of different proposed bouncing cosmological
models have been discussed in several nice review articles,
which also contain references to the original publications
[9–20].
In this paper we discuss bouncing cosmological models

in a new recently proposed limiting curvature gravity
(LCG) theory [21]. The main idea of this approach is to
modify the Einstein-Hilbert action by adding a constraint
term which controls the curvature behavior and forbids its
infinite growth. In fact, this is a realization of the Markov’s
old idea about the existence of a limiting curvature. A
limiting curvature modification of a two-dimensional
dilaton gravity was considered in Ref. [21]. In this paper
we discuss four-dimensional LCG models. In the
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Friedmann-Robertson-Walker metric for a homogeneous
isotropic universe the Weyl tensor vanishes. Therefore, it is
sufficient to restrict the growth of the Ricci tensor.
We shall discuss two types of models. We first introduce

linear-in-curvature constraints. For this purpose, we add to
the action terms that are linear in the Ricci scalar and the
eigenvalues of the Ricci tensor. After this, we discuss
quadratic-in-curvature constraints. In both cases, we dem-
onstrate that there exists a wide class of curvature con-
straints for which the curvature remains uniformly bounded
during the evolution of the universe. A common property of
such limiting curvature gravity models is that the cosmo-
logical solutions have a bounce. A contracting universe at
some stage of its evolution, when its curvature reaches the
critical value, enters a supercritical regime. If the initial size
of the universe was large, then the corresponding super-
critical solution is always close to the de Sitter solution.
After passing the bounce point, the universe expands. We
demonstrate that at some moment of time it can leave its
supercritical regime, and one gets an expanding universe
filled with matter. After this it follows the standard Einstein
equations.
The paper is organized as follows. In Sec. II we recall

some well-known properties of the isotropic homogeneous
cosmological models and introduce notations that are used
later in the paper. LCG models and reduced actions for
these models are discussed in Sec. III. Sections IV–VII
discuss LCG models with linear-in-curvature constraints.
Sections VIII–X are devoted to the study of LCG models
with quadratic-in-curvature constraints. More general cur-
vature constraints are discussed in Sec. XI. Finally, Sec. XII
contains a summary of the obtained results, a discussion of
different aspects of LCG cosmological models and their
possible generalizations. Some additional technical details
and results used in the main text are collected in the
Appendix.

II. ISOTROPIC HOMOGENEOUS COSMOLOGY

Let us consider the cosmological metric in the form

ds2 ¼ −b2ðtÞdt2 þ a2ðtÞdγ2: ð2:1Þ

This metric is a direct sum of the one-dimensional metric
b2ðtÞdt2 and three-dimensional metric a2ðtÞdγ2, where
dγ2 ¼ γijdxidxj is a line element on a unit 3D sphere
S3. The metric dγ2 admits group Oð4Þ of symmetries. It is
well known that:
(1) A scalar function on S3 invariant under the action of

this group is a constant.
(2) There does not exist a nonvanishing vector field

invariant under the group of symmetries.
(3) A symmetric rank-two tensor field Aij on S3

invariant under the group of symmetries is
Aij ¼ Aγij, where A is a constant.

Consider a symmetric tensor A in a spacetime with
metric (2.1) which respects its symmetry. Then, it has the
following form:

Aμ
ν ¼ diagðAðtÞ; ÂðtÞ; ÂðtÞ; ÂðtÞÞ: ð2:2Þ

It is easy to see that AðtÞ and ÂðtÞ are eigenvalues of the
tensor Aμ

ν. We call them temporal and spatial eigenvalues,
respectively.
In what follows we use similar notations for other

symmetric rank-two tensors. For example, the Ricci tensor
Rμν has the form

Rμ
ν ¼ diagðR; R̂; R̂; R̂Þ: ð2:3Þ

Then, the Ricci scalar is

R ¼ Rþ 3R̂: ð2:4Þ

We keep the coefficient b2ðtÞ of the metric (2.1) as an
arbitrary function. This will allow us to obtain a complete
set of the gravitational field equations from a reduced
metric, but later, after the variations, we put bðtÞ ¼ 1. This
is nothing but a gauge-fixing condition corresponding to
synchronous gauge. The eigenvalues R and R̂ of the Ricci
tensor can be expressed in terms of two structures p and q,

R ¼ 6ðqþ pÞ; R ¼ 3q; R̂ ¼ qþ 2p; ð2:5Þ

q ¼ 1

b2

�
ä
a
−

_a
a

_b
b

�
; p ¼ _a2 þ b2

a2b2
: ð2:6Þ

The traceless part of the Ricci tensor

Sμν ¼ Rμ
ν −

1

4
δμνR ð2:7Þ

has the following eigenvalues:

Sμν ¼ diagðS; Ŝ; Ŝ; ŜÞ; ð2:8Þ

where

S ¼ 3

2
ðq − pÞ; Ŝ ¼ −

1

2
ðq − pÞ: ð2:9Þ

The Weyl tensor for the metric (2.1) vanishes, that is, all
of the information about the spacetime curvature is encoded
in the Ricci tensor. Our goal is to study cosmological
models that obey the limiting curvature condition. A natural
way to do this is to impose restrictions on the eigenvalues of
the Ricci tensor. For example, one may try to restrict the
value of the Ricci scalar (2.4) which is a linear combination
of these eigenvalues. However, the form (2.5) of this
invariant implies that this does not work. The reason is
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simple: the function pðtÞ is positive definite, while the
function qðtÞ does not have a definite sign. Hence, the
growth of pðtÞ for a contracting universe can be compen-
sated by an increasing negative value of q, so that R
remains bounded. The well-known example of a con-
tracting universe filled with a thermal radiation clearly
illustrates this. The Kretschmann invariant for this solution,

K ¼ RμναβRμναβ ¼ 12ðq2 þ p2Þ; ð2:10Þ

grows infinitely, so that the limiting curvature condition is
violated. In what follows we discuss constraints that can be
used to prevent infinite curvature growth.

III. LIMITING CURVATURE GRAVITY

A. Action and gravity equations

The limiting gravity model is described by an action of
the form

I ¼ Ig þ Ic þ Im; ð3:1Þ

where Ig is the Einstein-Hilbert action,

Ig ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R; κ ¼ 8πG=c4; ð3:2Þ

and Im is the matter action. The term Ic is the constraint
action depending on the metric and the Lagrange multi-
pliers that generate constraints on the curvature. Later, we
will specify the form of these constraints and the corre-
sponding term of the action Ic. Now we just mention that
the imposed restriction on the curvature has the form of
inequalities (see discussion in Ref. [21]). They have the
following properties. Before the curvature reaches its
critical value the corresponding subcritical metric coincides
with a standard solution of the unmodified Einstein
equations. After the curvature reaches the critical value,
the solution becomes supercritical and it follows the
modified constraint equations which prevent further growth
of the curvature.
The variation of the total action (3.1) over the metric

gives the following “gravity” equations:

2ffiffiffiffiffiffi−gp δI
δgμν

¼ 0; ð3:3Þ

which have the form

Gμν ¼ κðTμν þ XμνÞ: ð3:4Þ

Here, Gμν is the Einstein tensor and

Tμν ¼ 2ffiffiffiffiffiffi−gp δIm
δgμν

; Xμν ¼ 2ffiffiffiffiffiffi−gp δIc
δgμν

ð3:5Þ

are the stress-energy tensors of matter and constraints.
Besides the gravity equations, the action I also gives
additional equations for matter and constraints which are
obtained by its variation over the Lagrange multipliers, that
are variables additional to the metric. If these equations are
satisfied and the actions Ic and Im are covariant, the
following relations are valid:

Tμν
;ν ¼ 0; Xμν

;ν ¼ 0: ð3:6Þ

These conservation laws guarantee consistency of the
gravitational equations.

B. Reduced action and reduced gravity equations

The tensor G for the metric (2.1) is

−Gμ
ν ¼ diagðG; Ĝ; Ĝ; ĜÞ; ð3:7Þ

G ¼ 3p; Ĝ ¼ pþ 2q: ð3:8Þ

Similarly, the tensors T and X, respecting the symmetry of
the metric (2.1), have the form

Tμ
ν ¼ diagðT ; T̂ ; T̂ ; T̂ Þ; ð3:9Þ

Xμ
ν ¼ diagðX ; X̂ ; X̂ ; X̂Þ: ð3:10Þ

Then, the gravity equations (3.4) reduce to the following
equations:

−G ¼ κðT þ XÞ; ð3:11Þ

−Ĝ ¼ κðT̂ þ X̂Þ: ð3:12Þ

Equation (3.6) and the conservation property of the
Einstein tensor, Gμν

;ν ¼ 0, give

Ĝ ¼ Gþ 1

3

dG
d ln a

; ð3:13Þ

X̂ ¼ X þ 1

3

dX
d ln a

; ð3:14Þ

T̂ ¼ T þ 1

3

dT
d ln a

: ð3:15Þ

In particular, these relations imply that if the temporal
gravity equation (3.11) is valid, the spatial gravity equa-
tion (3.12) is also satisfied.
It is convenient to use symmetries of the cosmological

spacetimes and write down a reduced action for our
gravitational system. Namely, it is easy to check that the
4D gravity equations (3.3) taken on the spacetime (2.1) can
be equivalently derived from the dimensionally reduced
action
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I ¼ 2π2
Z

dta3bL; ð3:16Þ

where L is the Lagrangian of the system evaluated on the
metric (2.1) and 2π2 is the volume of the unit sphere S3.
For example, the dimensionally reduced Einstein action is

Ig ¼
6π2

κ

Z
dta3bðpþ qÞ: ð3:17Þ

The variation of this action over the temporal b and spatial a
components of the metric after imposing the gauge-fixing
condition b ¼ 1 gives�

1

2πa3
δIg
δb

�
b¼1

¼ 1

κ
G ¼ 3p

κ
;�

1

6πba2
δIg
δa

�
b¼1

¼ 1

κ
Ĝ ¼ pþ 2q

κ
: ð3:18Þ

C. Thermal radiation

We choose the stress-energy tensor of the matter in the
form

Tμ
ν ¼ diagð−ε; P; P; PÞ; T ¼ −ε; T̂ ¼ P;

where ε is the energy density and P is the pressure. In what
follows we assume that the matter is hot thermal radiation
with the equation of state P ¼ 1

3
ε. The conservation law

(3.15) is satisfied if

ε ¼ Ca−4; ð3:19Þ

where the factor C is defined by the temperature T of
radiation and the number of massless degrees of free-
dom n.1

For a closed homogeneous and isotopic universe filled
with a thermal radiation, the total energy E and entropy S of
the universe are given by

ε¼E
V
¼ αBT4;

S
V
¼ 4

3
αBT3; αB ¼

nπ2k4B
30ℏ3c3

: ð3:21Þ

Here T is the radiation temperature and V ¼ 2π2a3 is the
volume of the closed universe. In the case of only
electromagnetic radiation, n ¼ 2. At high temperature
many other fields become effectively massless. For exam-
ple, at the temperature corresponding to 300 GeV this

number is about n ≈ 106. The relation (3.21) allows one to
express the constant C in Eq. (3.19) in terms of the entropy
S, which is a conserved quantity. One gets

ðaTÞ3 ¼ 3S
8π2αB

ð3:22Þ

and, hence,

C ¼ νℏc

�
S
kB

�
4=3

; ν ¼ 3

16π3

�
90

nπ

�
1=3

: ð3:23Þ

For pure electromagnetic radiation, n ¼ 2 and we have
ν ≈ 0.014686. Thus, the value of the constant C is defined
by the entropy of the thermal gas in the Universe and can be
estimated from observations [22]. For example, the con-
tribution of photons to the entropy is S=kB ∼ 5.4 × 1089

and, hence, C ∼ 6.5 × 10117ℏc, which is a huge number.
The other massless particles like neutrinos contribute
similar amounts to the entropy and energy density.
Let us note that at the stage of contraction the thermal

radiation dominates. When the growing temperature
becomes high enough particles with mass m ≪ T becomes
ultrarelativistic and their contribution to the energy density
is similar to the contribution of massless particles (pho-
tons), while the contribution of the particles with m > T is
relatively small. For this reason, in what follows we assume
that the contracting universe is radiation dominated.

IV. LINEAR-IN-CURVATURE CONSTRAINTS

A. General form of linear constraints

In order to control curvature growth one can impose a
restriction on the eigenvalues of tensors constructed as a
linear combination of the Ricci tensor Rμ

ν and Rδ
μ
ν , where R

is a Ricci scalar. We call such constraints linear in
curvature. Let us discuss the case of the linear constraints
first and return to the discussion of other constraints
constructed from curvature invariants later.
As earlier, we denote by S a traceless part of the Ricci

tensor, and Q ¼ 1
6
RI. Here I is a unit tensor. We denote

Z ¼ cSSþ cRQ: ð4:1Þ

One has

Z ¼ diagðZ; Ẑ; Ẑ; ẐÞ: ð4:2Þ

The eigenvalues of S and Q are linear functions of the
quantities p and q defined by Eq. (5.3). Hence, Z has the
same property. Using Eqs. (2.5) and (2.9), one gets

Z ¼
�
cR −

3

2
cS

�
pþ

�
cR þ 3

2
cS

�
q; ð4:3Þ

1Let us note that the stress-energy tensor for thermal radiation
can be derived from the reduced action

Im ¼ v
Z

dta3bLm; Lm ¼ −Ca−4: ð3:20Þ
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Ẑ ¼
�
cR þ 1

2
cS

�
pþ

�
cR −

1

2
cS

�
q: ð4:4Þ

We shall restrict the curvature by imposing the conditions

jZj ≤ Λ; jẐj ≤ Λ: ð4:5Þ

Consider a two-dimensional ðp; qÞ plane (see Fig. 1). A
domain in this plane where the inequalities (4.5) are
satisfied is restricted by straight lines,

Z ¼ �Λ; Ẑ ¼ �Λ: ð4:6Þ

We call of these lines as describing temporal and spatial
constraints, respectively.

B. Constraint action

In order to provide the inequality constraints (4.5) we
add the following expressions to the reduced action (3.16):

Ic ¼ 2π2
Z

dt a3bLc;

Lc ¼ L0 þ L̂þ þ L̂−;

L0 ¼ −χðZ − Λþ ζ2Þ;
L̂� ¼ −χ̂�ðẐ ∓ Λ� ζ̂2�Þ: ð4:7Þ

As we shall see later, the constraint Z ¼ −Λ does not give
any restrictions on the physically interesting solutions. That
is why we did not include the corresponding term in the
action.
The variation of this action over the Lagrange multipliers

gives the following equations:

Z − Λþ ζ2 ¼ 0; χζ ¼ 0; ð4:8Þ

Ẑ� ∓ Λ ∓ ζ̂2� ¼ 0; χ̂�ζ̂� ¼ 0: ð4:9Þ

These equations imply that the system has two different
regimes. In the subcritical regime, where χ ¼ χ̂� ¼ 0, the
nonvanishing parameters ζ and ζ̂� are defined in terms of
Z and Ẑ�, respectively. In this regime the action Ic does not
contribute to the gravity equations, so the evolution of the
universe follows its standard solutions of the unmodified
Einstein equations.
In the supercritical regime, one of the constraint equa-

tions is saturated and the corresponding Lagrange multi-
plier ζ or ζ̂� becomes zero. This means that one of the
constraint equations

Z − Λ ¼ 0; ð4:10Þ

Ẑ� ∓ Λ ¼ 0 ð4:11Þ

is valid. The corresponding control function χ or χ̂�
becomes “dynamical” and its evolution in the supercritical
regime is defined by the gravity equations.
The contributions X and X̂ of the constraint action Ic to

the gravity equations can be obtained as follows. Since the
constraint functions Z and Ẑ� are linear combinations of
the functions p and q given by Eq. (2.6), it is sufficient to
find the variations over the metric of the following reduced
actions:

Ip ¼ 2π2
Z

dt a3bup; ð4:12Þ

Iq ¼ 2π2
Z

dt a3buq; ð4:13Þ

Iu ¼ 2π2
Z

dt a3bu: ð4:14Þ

Here u ¼ uðtÞ stands for one of the control functions. The
variations of these reduced actions over the temporal b and
spatial a coefficients of the metric after imposing the
gauge-fixing condition b ¼ 1 give

Xp ≡ 1

2π2a3
δIp
δb

¼
�
−
_a2

a2
þ 1

a2

�
u;

X̂p ≡ 1

6π2ba2
δIp
δa

¼ −
1

3

_a
a
_uþ 1

6

�
−
_a2

a2
− 2

ä
a
þ 1

�
u;

Xq ≡ 1

2π2a3
δIq
δb

¼ _a
a
_uþ 2

_a2

a2
u;

X̂q ≡ 1

6π2ba2
δIq
δa

¼ 1

6
üþ 2

3

_a
a
_uþ 1

3

�
_a2

a2
þ ä
a

�
u;

Xu ≡ 1

2π2a3
δIu
δb

¼ u;

X̂u ≡ 1

6π2ba2
δIu
δa

¼ 1

2
u: ð4:15Þ

FIG. 1. p − q plane.
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V. SUBCRITICAL SOLUTIONS

At this stage the control functions χ or χ̂� vanish and the
functions ζ and ζ̂� drop out of the equations. As a result,
the standard Einstein equations govern the dynamics of the
radiation-dominated universe. The temporal Einstein equa-
tion is

G ¼ −κT : ð5:1Þ

In an explicit form this equation reads

_a2 þ 1

a2
¼ κC

3a4
: ð5:2Þ

Here we fixed the gauge and put b ¼ 1. In this gauge we
have

p ¼ _a2 þ 1

a2
; q ¼ ä

a
: ð5:3Þ

The spatial Einstein equation is the consequence of
Eq. (5.2) and it reduces to

ä
a
¼ −

κC
3a4

: ð5:4Þ

Note that the scalar curvature during this stage of evolution
vanishes. This means that a point representing the state of
the universe in the ðp; qÞ plane moves along the line Γ−
where q ¼ −p (see Fig. 1).
A solution of Eq. (5.2) is well known (see, e.g.,

Ref. [23]). It has the form

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2tamax − t2

q
; amax ¼

ffiffiffiffiffiffi
κC
3

r
; ð5:5Þ

where the integration constant is fixed by the condition
aðt ¼ 0Þ ¼ 0. Here amax is the maximal value of the scale
factor of the Friedmann universe. Note that t < 0 during the
contraction stage.
During the collapse of the universe its scale parameter

aðtÞ decreases and the energy density of matter grows. This
subcritical regime continues until the curvature reaches the
critical value at which the supercritical regime starts. It
happens when one of the constraint equations (4.10)–(4.11)
is satisfied. We denote the corresponding critical value of p
by λ−. Thus, the supercritical solution starts at the point
ðp ¼ λ−; q ¼ −λ−Þ. Let us find the parameters a0 and _a0 of
the contracting universe at this point. For p ¼ λ−, Eqs. (5.2)
and (5.3) give

a0 ¼
�
κC
3λ−

�
1=4

: ð5:6Þ

Using the definition of p, one gets

_a0 ¼ −½amaxλ
1
2− − 1�

1
2: ð5:7Þ

In the latter relation we choose a minus sign since we
assume that the universe is initially contracting. The
moment of transition to the supercritical stage is

t0 ¼ −
amax

λ
1
2−

��
1 −

1

amaxλ
1
2−

�1
2

− 1

�
: ð5:8Þ

VI. LINEAR-IN-CURVATURE CONSTRAINTS:
SUPERCRITICAL SOLUTIONS

A. General remarks

We are looking for constraints that restrict the curvature,
so that during all of the subsequent evolution of the
universe after it enters a supercritical regime the curvature
remains finite and restricted by a chosen universal value. To
characterize the value of the curvature one can use, for
example, the Kretschmann invariant K [Eq. (2.10)].
Let aðtÞ be a solution for a scale function which deter-

mines the size of the universe. For a general constraint, after
the solution enters the supercritical regime itmay terminate at
some finite time ts. This may happen if the differential
equation for aðtÞ determined by the constraint has a singular
point which prevents an extension of the solution beyond
time ts. We call such a constraint, which does not allow a
complete description of the evolution of the universe, a
singular one. In what follows we shall not consider such
constraints. Namely, we assume the following.
(1) The supercritical solution is not terminated at finite

time t.
(2) The constraint guarantees that during the supercriti-

cal regime the Kretschmann invariant is uniformly
restricted by some universal value which does not
depend on the parameters of the solution.

We call such a constraint a regular one. For this type of
constraint, the corresponding supercritical solution can either
be continued to t → ∞ or slip back to its subcritical phase. In
principal, if there exist several constraints, the supercritical
solution can also slip between them.
We assume that the constraint line C intersects Γ− at

p ¼ λ− where the solution enters the supercritical regime.
For the contracting universe, _a < 0 at this point. Using the
definition (5.3) for p and q, one can obtain the following
equation:

dp
dt

¼ 2
_a
a
ðq − pÞ: ð6:1Þ

While a point on C representing a supercritical solution is
located in the domain where q < 0, the negative value of _a
can only increase. Thus, in this domain _a < 0. One also has
q − p < 0 in the domain of the ðp; qÞ plane below Γ−.
Equation (6.1) shows that under these conditions the point
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representing the supercritical contracting universe in the
ðp; qÞ plane can move only with an increase of the
parameter p.

B. Regular linear constraints

To describe the evolution of the universe we use the two-
dimensional ðp; qÞ plane. Let Γ� be two lines on this plane
defined by the equations q ¼ �p, respectively. The sub-
critical evolution of a contracting radiation-dominated
universe is represented by the interval on Γ− (see Fig. 2).
Let C be a straight line representing the linear-in-

curvature constraint. We assume that this line intersects
Γ− at a point 0 and write its equation in the form

p − μq ¼ Λ: ð6:2Þ

The parameter Λ has dimensions of ½length�−2 and char-
acterizes the value of the limiting curvature. Since the left-
hand side of Eq. (6.2) is positive at the point 0, Λ is chosen
to be positive as well. In the presence of the constraint (6.2)
a point representing the evolution of the universe after it
reaches the point 0 starts its motion along a constraint C.
Let us discuss the corresponding supercritical solution.

1. Negative-μ case

Let us first assume that the parameter μ in Eq. (6.2) is
negative. Then, dp=dq ¼ μ < 0. If C does not meet
another constraint, both p and jqj along C grow infinitely
and as a result the Kretschmann invariant grows as well.
This means that such a constraint is not regular. For this
reason we assume that μ > 0.

2. μ > 1 case

Let us consider the case where μ > 1. At the point 0
where the supercritical regime starts, p − μq > 0 and one
has

p− ¼ −q− ¼ λ− ≡ Λ
1þ μ

: ð6:3Þ

After this, a representative point which is moving with the
increase of p enters the domain above Γ− and remains there
since the corresponding line C cannot intersect Γþ.
To find how the scale factor behaves in this case we

rewrite Eq. (6.1) in the form

dp
d lnða2=a20Þ

¼ q − p: ð6:4Þ

Here a0 is the size of the universe at the beginning of the
supercritical regime when p ¼ λ−. Integrating this equation
with the imposed initial conditions, we get

a ¼ a0 expð−FÞ; F ¼ 1

2

Z
p

λ−

dp
p − qðpÞ : ð6:5Þ

Here F is the expansion factor and the function qðpÞ is
defined by Eq. (6.2). The integral can be easily calculated
and one has

F ¼ μ

2ðμ − 1Þ ln
�ðμ − 1Þpþ ð1þ μÞλ−

2μλ−

�
: ð6:6Þ

The integration constant is chosen so that Fjp¼λ−
¼ 0.

Thus, the relation between a and p takes the form

a ¼ a0

�
2μλ−

ðμ − 1Þpþ ð1þ μÞλ−

� μ
2ðμ−1Þ

: ð6:7Þ

Since μ > 1 and p grows monotonically, the scale function
a monotonically decreases. The Kretschmann invariant
grows infinitely along the constraint while the size of
the universe shrinks. Thus, such a constraint is not regular.

3. Case 0 < μ < 1

Let us consider the last case where 0 < μ < 1. In this
case the constraint line C crosses Γþ. At the point of the
intersection pþ ¼ qþ ≡ λþ,

λþ ¼ Λ
1 − μ

> λ−: ð6:8Þ

One also has

μ ¼ λþ − λ−
λþ þ λ−

: ð6:9Þ

Let us introduce the dimensionless quantities

p̄¼ p
λþ

; q̄¼ q
λþ

; α¼ ffiffiffiffiffi
λþ

p
a; τ¼ ffiffiffiffiffi

λþ
p

t: ð6:10Þ

FIG. 2. Linear constraint in the p − q plane.
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Then, one has

p̄ − 1 ¼ μðq̄ − 1Þ; q̄ − p̄ ¼ 1 − μ

μ
ðp̄ − 1Þ: ð6:11Þ

Equation (6.5) can be used to find a relation between p̄
and α. It is sufficient to substitute into the expression for F
the function qðpÞ defined by Eq. (6.11). The integral can be
easily calculated and one has

F ¼ −
μ

2ð1 − μÞ ln
�ð1þ μÞ

2μ
ð1 − p̄Þ

�
: ð6:12Þ

Thus, the relation between α and p̄ takes the form

α ¼ α0 expð−FÞ ¼ α0

�ð1þ μÞ
2μ

ð1 − p̄Þ
� μ

2ð1−μÞ
: ð6:13Þ

By inverting this relation we find p̄ as a function of α, and
then by usingEq. (6.11)we also compute q̄ as a function ofα,

p̄ ¼ 1 −
2μ

1þ μ

�
α

α0

�2ð1−μÞ
μ

; ð6:14Þ

q̄ ¼ 1 −
2

1þ μ

�
α

α0

�2ð1−μÞ
μ

: ð6:15Þ

Let us demonstrate that for a chosen linear constraint a
contracting universe always has a bounce. Let us assume
that such a bounce exists. At this point, where _a ¼ 0, the
universe has a minimal size, which we denote by αb. Let p̄b
be the corresponding value of the parameter p̄ at this point.
Using Eq. (5.3), one has

p̄1=2
b αb ¼ 1: ð6:16Þ

After using Eq. (6.13), this condition takes the form

1

p̄b

�
2μ

ð1þ μÞð1 − p̄bÞ
� μ

ð1−μÞ ¼ α20: ð6:17Þ

For every 0 < μ < 1 the function on the left-hand side of
this relation grows infinitely when p̄b → 1. This means that
for an arbitrarily large α0, Eq. (6.17) has a solution. In other
words, the universe has a bounce. For large α0, this happens
when p̄b is close to 1. In this case one can omit the term
p̄1=2
b in Eq. (6.16).
Equation (6.17) allows one to express p̄ as a function of

α. After substituting this expression into the relation

ðα0Þ2 ¼ α2p̄ − 1; ð6:18Þ

one obtains the equation that determines the evolution of
the universe in the supercritical regime. Here a prime is a
derivative with respect to τ.

After the size of the universe reaches the minimal value
ab it expands again. The point representing it in the ðp; qÞ
plane moves again along the line C but now in the opposite
direction with the decreasing value of p̄. At the point where
the solution intersects Γ− it can leave the supercritical
phase. Such a solution describes an expanding universe
filled with thermal radiation. Let us emphasize that during
its evolution in the supercritical regime the value of the
Kretschmann invariant remains uniformly restricted. Thus,
the linear constraint (6.2) with 0 < μ < 1 is regular.

C. Temporal and spatial constraints

Both temporal and spatial curvature constraints can be
written in a form similar to Eq. (6.2). Let us first apply the
results of the previous section to the temporal constraint. In
order to present it in the form (6.2) it is sufficient to choose
the coefficients cR and cS in Eq. (4.3) in the form

cR ¼ 1

2
ð1 − μÞ; cS ¼ −

1

2
ð1þ μÞ: ð6:19Þ

Then, one has

Z ¼ Λ; Z≡ p − μq; ð6:20Þ

Ẑ ¼ �Λ; Ẑ≡ 1

3
½ð1 − 2μÞpþ ð2 − μÞq�: ð6:21Þ

We choose 0 < μ < 1. Then, the temporal constraint (6.20)
intersects Γ− at the point −q ¼ p ¼ λ−, where
λ− ¼ Λ=ð1þ μÞ. The evolution of the universe is repre-
sented in the ðp; qÞ plane by two intervals: one is the interval
along Γ− until the point 0 where p̄ ¼ λ−, and the other is the
interval on the constraint lineC from 0 until the turning point
ðλþð1 − ΔpÞ; λþð1 − μ−1ΔpÞ. For a large initial size of the
universe α0 ≫ 1, the positive quantityΔp is small. After the
turning point the universemoves back alongC up to the point
0, where it can slip to the subcritical solution describing an
expanding universe.
Let us show that for this motion the spatial constraints

(6.21) are always satisfied. The spatial constraints define a
domain in the ðp; qÞ plane, where the corresponding
functions of curvatures are restricted. This domain is a
strip located between the straight lines Ẑ ¼ Λ and Ẑ ¼ −Λ.
We call these lines the upper and lower bounds, respec-
tively. We denote by p̂� the coordinates p of the points
where the spatial constraint Ẑ intersects Γ� lines. At these
points one has

Ẑþ ≡ Ẑðp̂þÞ ¼ ð1 − μÞp̂þ; ð6:22Þ

Ẑ− ≡ Ẑðp̂−Þ ¼ −
1

3
ð1þ μÞp̂−: ð6:23Þ

One can check that
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p̂þ ¼ �λþ; p̂− ¼∓ 3λ−: ð6:24Þ

In these relations the upper signs stand for the upper bound
constraint and the lower signs stand for the lower bound
constraint. It is easy to check that the curve representing the
evolution of the universe obeying the temporal constraint
always lies inside the domain restricted by upper and lower
bound lines. In other words, the spatial constraints do not
impose any restriction on the evolution of the universe and
hence can be ignored.

D. Evolution of the control function χ

Let us now discuss the gravity equations (3.11)–(3.12).
As we already mentioned, as a result of the conservation
law the second of these equations (the spatial equation) is
satisfied if the first (temporal) equation is valid. We rewrite
the latter in the form

X ¼ −
�
1

κ
Gþ T

�
: ð6:25Þ

Using expressions for G and T , one gets

−
�
1

κ
Gþ T

�
¼ C

a4
−
3

κ

_a2 þ 1

a2
: ð6:26Þ

The control function χ vanishes in the subcritical regime
where X is also zero. Equation (6.25) determines the
evolution of the control function in the supercritical regime.
In such a case, one can put ζ ¼ 0 and use the reduced action

Ic ¼ 2π2
Z

dta3bL0; L0 ¼ −χðp − μq − ΛÞ: ð6:27Þ

Taking the variation of the reduced action Ic over b and
putting b ¼ 1, one gets

X ¼ −Xp þ μXq þ ΛX χ : ð6:28Þ

Using Eq. (4.15), one obtains

X ¼ μ
_a
a
_χ þ

�
ð1þ μÞ _a

2

a2
−

1

a2
þ Λ

�
χ: ð6:29Þ

Combining Eqs. (6.25), (6.26), and (6.29), one can write
the equation for the control function χ in the following
dimensionless form:

μ
α0

α
χ̄0 þ

�
ð1þ μÞ α

02

α2
−

1

α2
þ 1 − μ

�
χ̄ ¼ 1 − μ

1þ μ

α40
α4

− p̄:

ð6:30Þ

Here χ̄ ¼ χ=λþ. This equation determines the time depend-
ence of the control function χ̄ in the supercritical regime.

For a given αðτÞ this is a first-order linear inhomogeneous
ordinary differential equation (ODE). This equation can be
written in such a form that the control function χ̄ explicitly
depends only on α,

μ

�
p̄ −

1

α2

�
dχ̄

d ln α
þ
�
ðp̄þ 1Þð1 − μÞ − ð2 − μÞ 1

α2

�
χ̄

¼ 1 − μ

1þ μ

α40
α4

− p̄; ð6:31Þ

where p̄ðαÞ and q̄ðαÞ are given by Eqs. (6.14)–(6.15).
Therefore, the time dependence of the control function is
uniquely determined by the time dependence of the scale
parameter αðτÞ. The evolution of the metric is symmetric
with respect to the time reflection ðτ − τbÞ → −ðτ − τbÞ at
bounce time τb. It is shown in the Appendix that there exists
a solution for χ̄ which has the same property.2

E. Phase diagram

In the previous discussion we focused on the description
of the evolution of the universe by using ðp; qÞ planes. Let
us now describe this evolution by using the phase-space
diagrams. Let us consider a two-dimensional space with
coordinates ðα;α0Þ. Equation (6.11) can be written in the
form

α00 ¼ 1

μ

�
α02 þ 1

α
− ð1 − μÞα

�
: ð6:32Þ

This second-order ODE is equivalent to the following
system of two first-order equations:

α0 ¼ z; ð6:33Þ

z0 ¼ 1

μ

�
z2 þ 1

α
− ð1 − μÞα

�
: ð6:34Þ

Phase diagrams for the system (6.33)–(6.34) are shown
in Fig. 3. A dashed line represents the de Sitter solution
which approximates a general solution near the turning
points.
The dynamics of the universe is described by the system

(6.33)–(6.34) with the initial condition

αðτ0Þ ¼ α0 ¼
�ð1þ μÞκ̄C
ð1 − μÞ3

�1
4

; ð6:35Þ

2Let us note that a similar property is valid not only for linear
in curvature constraints but also for a wider class of nonlinear
constraints (see the Appendix).

BOUNCING COSMOLOGY IN THE LIMITING CURVATURE … PHYS. REV. D 104, 104060 (2021)

104060-9



zðτ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ

1þ μ
α20 − 1

s
: ð6:36Þ

Let us denote

Λ ¼ 1

l2
: ð6:37Þ

The parameter l which has dimensions of length is the
critical length corresponding to the limiting curvature Λ.
Then, by using Eq. (3.23) one can write α0 in the form

α0 ¼ β

ffiffiffiffiffi
lPl
l

r �
S
kB

�
1=3

;

β ¼
�

1þ μ

2π2ð1 − μÞ2
�
1=4

�
90

nπ

�
1=12

: ð6:38Þ

Here lPl is the Planck length. An effective curvature radius
during inflation that is consistent with observations is
usually considered to be in the range 105–109lPl. If one
chooses the critical length l to be of the same order of
magnitude, then ðlPl=lÞ1=2 ≈ 3 × 10−3–3 × 10−5. Since the
entropy of our Universe is large (S=k ≈ 1090), the parameter
α0 is also very large, α0 ≈ 1025 − 1027.
The minimal value of the dimensionless radius is

achieved at the bounce point αb. For every choice of
parameters of the system μ and α0 the bounce point αb
can be found from the equation

1

α2b
¼ 1 −

2μ

1þ μ

�
αb

α0

�2ð1−μÞ
μ

: ð6:39Þ

Because α0 is assumed to be very large, the condition

α0 ≫ e
μ

2ð1−μÞ ð6:40Þ

is satisfied for all 0 < μ < μmax, where μmax is close to 1. In
this case, the bounce happens very close to unity,

αb ≈ 1þ μ

1þ μ
α
−2ð1−μÞ

μ

0 : ð6:41Þ

For example, for μ ¼ 0.97 one has αb ≈ 1.01. For smaller
values of μ the bounce radius becomes exponentially close
to 1. In the range α0 ≈ 1025 − 1027 the corresponding
number of e-folds N ¼ lnðα0=αbÞ is about 57 < N < 62.
Recall that during the supercritical stage the universe first
contracts from a0 to ab. Then, the inflationary stage begins
and it expands back to a0 with the e-fold number N. After
that, the Friedmann big bang expansion governed by the
standard Einstein equations continues, as depicted in Fig. 4.
In the vicinity of the bounce point the trajectory of the

supercritical evolution is very close to the de Sitter
spacetime (see Fig. 3). For very large values of α0, the
supercritical trajectory spends most of its time close to the
de Sitter solution. Qualitatively the de Sitter–like behavior
happens when the acceleration ä changes sign from
negative to positive. This is because the effective positive
cosmological constant corresponds to repulsive gravity
effects. Thus, the criterion of closeness of a supercritical
solution to the de Sitter metric is that q > 0. The scale
factor adS when q ¼ 0 can be estimated as follows. At this
point p̄ ¼ 1 − μ, and using Eq. (6.13) one gets

dS

Friedmann contracting

0 m

Friedmann expanding

Supercritical

10

–10

0

0 10 20 30

FIG. 4. Illustration of a typical phase diagram for the whole
trajectory which, besides the supercritical stage, contains sub-
critical Friedmann contracting and expanding stages. We use the
parameters μ ¼ 0.5 and α0 ¼ 8. The blue curve depicts the
supercritical stage of evolution, α0 → αb → α0. Black lines
represent the trajectories of contracting and expanding the
radiation-dominated stages. Their dashed parts depict how the
universe would evolve without the limiting curvature constraint.

FIG. 3. Phase plane ðα; zÞ for μ ¼ 0.5. For illustration purpose
only we put rather moderate values for the initial values
α0 ¼ 2; 4; 8; 16. At much larger α0 values the trajectories asymp-
totically approach the de Sitter hyperbola. The right panel depicts
trajectories in the vicinity of the bounce point.
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adS
a0

¼ αdS
α0

¼
�
1þ μ

2

� μ
2ð1−μÞ

: ð6:42Þ

For all values of 0 ≤ μ ≤ 1 we have 0.778 < adS=a0 ≤ 1,
i.e., the de Sitter–like stage always happens very soon after
the beginning of the supercritical regime.

F. Effective Lagrangian

Let us note that Eq. (6.32) coincides with the Euler-
Lagrange equation for the following Lagrangian:

L ¼ 1

2
mðαÞα02 − VðαÞ; ð6:43Þ

mðαÞ ¼ α−2=μ; ð6:44Þ

VðαÞ ¼ 1

2
α−2=μð1 − α2Þ: ð6:45Þ

Figure 5 shows the potential V as a function of its
argument α.
This Lagrangian determines the dynamics of the dimen-

sionless scale factor α during the supercritical regime. The
initial conditions for such motion are

α ¼ α0; ð6:46Þ

α0 ¼ α00 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ

1þ μ
α20 − 1

s
: ð6:47Þ

Since the Lagrangian (6.43) does not contain an explicit
dependence on time τ, the “energy”

E ¼ α0
∂L
∂α0 − L ¼ 1

2
mðαÞα02 þ VðαÞ ð6:48Þ

is conserved. Using the initial conditions, one can find

E ¼ −
μ

1þ μ
α
−2ð1−μÞ

μ

0 : ð6:49Þ

The motion with negative energy E in the potential VðαÞ is
bound. In particular, α always has a “left” turning point
where it takes the minimal value αb. This conclusion is in
agreement with the above general analysis of the evolution
of the scale factor in the theory of limiting curvature with
linear-in-curvature constraints. Let us notice that the
solution also has a “right” turning point where the scale
factor reaches its maximal value,

α� ¼ α0

�
1þ μ

2μ

� μ
2ð1−μÞ

: ð6:50Þ

If the coefficient μ is not very close to 1, then α� is of order
of α0 and larger than it. It should be noted that before the
scale factor reaches α� the solution crosses the line Γ−. If at
this point the control function χ vanishes, the solution can
slip to the subcritical regime. In the Appendix it is shown
that such a solution for χ exists. In such a case, the solution
for α leaves its supercritical phase and one gets an
expanding Friedmann-Robertson-Walker universe filled
with thermal radiation.

VII. A SPECIAL CASE: EINSTEIN CONSTRAINT

In the previous discussion we assumed that the parameter
μ was positive. Let us discuss the supercritical solutions in
the limiting case where this parameter tends to zero. Using
Eq. (6.11), we rewrite Eq. (6.13) in the form

lnðα=α0Þ ¼
μ

2ð1 − μÞ
�
ln

�
1þ μ

2

�
þ lnð1 − q̄Þ

�
: ð7:1Þ

For μ ≪ 1, one has

lnðα=α0Þ ¼
μ

2
ln
�
1 − q̄
2

�
þOðμ2Þ: ð7:2Þ

The supercritical evolution starts at the point where q̄ ¼
λ− ¼ −ð1 − μÞ=ð1þ μÞ and continues its motion along the
constraint line C until it reaches a bounce point in a close
vicinity of q̄ ¼ 1. During practically the entirety of this
evolution the ratio a=a0 is of the order of 1. Essential
change of the scale factor α occurs only when q̄ becomes
close to 1 so that

1 − q̄ ∼ expð−2=μÞ: ð7:3Þ

If we put μ ¼ 0 directly into Eqs. (6.20)–(6.21), we get

Z ¼ G ¼ p; Ẑ ¼ Ĝ ¼ 1

3
ðpþ 2qÞ: ð7:4Þ

This means that such a limiting constraint is equivalent to
putting restrictions on the eigenvalues of the Einstein tensor
G. We call these restrictions the Einstein constraint. The
temporal Einstein constraint is p ¼ Λ=3 ¼ const. The

FIG. 5. Potential VðαÞ for μ ¼ 0.5.
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conservation law (3.13) implies that the spatial constraint
Ĝ ¼ Λ is satisfied. The constraint line C is vertical, so that
λþ ¼ λ−. In the limit μ → 0 the parameter q̄ “jumps” along
this line from −1 to 1. The solution of the constraint
equation

α02 − α2 ¼ 1 ð7:5Þ

is

α ¼ coshðτÞ: ð7:6Þ

This is a de Sitter solution. This supercritical solution
begins at τ ¼ τ < 0, where

coshðτ0Þ ¼ α0 ¼
�
κCλ−
3

�1
4

: ð7:7Þ

After bounce at the moment τ ¼ 0 the universe begins to
expand.

VIII. QUADRATIC-IN-CURVATURE
CONSTRAINTS

A. General remarks

In our discussion of the linear-in-curvature constraints
we imposed restrictions on the eigenvalues of the linear
combinations of the Ricci tensor and the diagonal tensor
proportional to the Ricci scalar. Let us now discuss a more
general approach where the constraints are composed of
functions of scalar invariants constructed from the Ricci
tensor.3 The corresponding constraint can be written in the
form

fðp; q;ΛÞ ¼ 0: ð8:1Þ

This equation establishes a relation between the quantities
p and q, defined by Eq. (5.3), and determines a corre-
sponding constraint line C in the ðp; qÞ plane. Let us
discuss some general properties of such constraints. Let us
assume that ∂f∂q ≠ 0, so that the equation for the curve C (at
least over some its interval) can be written in the form
q ¼ qðpÞ. This is nothing but a second-order (nonlinear)
equation which is resolved with respect to the second
derivative,

ä ¼ Aða; _aÞ; ð8:2Þ

where the function Aða; _aÞ is determined by the constraint
equation (8.1). It may happen that this nonlinear equation
has a singular point at which the solution terminates. In
such a case, the corresponding constraint is singular.

To illustrate this, let us use the relation

_p ¼ 2
_a
a
ðq − pÞ; ð8:3Þ

which directly follows from Eq. (5.3) and which is
equivalent to Eq. (8.2).
As earlier, we consider the evolution of a radiation-

dominated universe at the state of contraction which is
represented (see Fig. 2) by the interval of line Γ− where
q ¼ −p. It starts at some point 1 and continues until it
meats the constraint line C at point 0. After this, the
solution becomes supercritical and moves along the con-
straint lineC. Since initially the universe contracts, _a < 0 at
point 0. Let us assume that in its further motion along the
constraint a point representing the universe enters the P−
domain (see Fig. 6). Since q is negative there, _a can only
decrease and hence remains negative. A turning point of
aðtÞ, if it exists, can only be located in the domain Pþ
where q > 0.
Let us assume that the constraint equation does not allow

the parameter p to be bigger than p⋆ and a solution of the
equation fðp; qÞ ¼ 0 near the point O with coordinates
ðp⋆; q⋆Þ has the form shown in Figs. 6 and 7. In the P−
domain, q − p < 0 and _a < 0. Equation (8.3) shows that _p
is positive there. Thus, in the vicinity of the point O in the
P− domain a point on the constraint curve representing a
solution with increasing time t moves towards the point O
(see Fig. 6). A solution cannot be continued beyond this
point. The point O itself is a singular point of the nonlinear
second-order ordinary differential equation (8.2). Such a
constraint is singular.
Consider a constraint that has a pointO with the maximal

value of p located in the Pþ domain (see Fig. 7). If _a is
negative atO, then using the above given arguments one can
conclude that such a constraint is singular. Let us assumenow
that _a at O is positive. Then, a point representing a solution

FIG. 6. A curvature constraint is singular if the line C
representing it in the p − q plane has a point O in the P−
domain where p has a local maximum.

3We still do not consider invariants that contain covariant
derivatives of this object.
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moves away fromOwhilep is decreasing. Thismeans that if
the motion along the constraint starts at point 0 on Γ−, then
the solution cannot reach the pointO. This happens because
before the solution reaches O where _a > 0 it first reaches a
point on the constraint line Cwhere _a ¼ 0. This is a turning
point of the solution. At this point, aðtÞ reaches its minimal
value. After this, the scale factor aðtÞ increases and a point
representing the solution moves back along the constraint
curve and the parameter p decreases. In other words, a point
of the constraint O where _a > 0 is not dangerous and the
supercritical solution never reaches it.
In what follows we shall not consider singular constraints

that do not allow a complete description of the evolution of
the universe. Let us note that a “natural” quadratic-in-
curvature constraint in which one restricts the
Kretschmann invariant belongs to a class of singular con-
straints. This can be easily seen since the corresponding
constraint function f ¼ p2 þ q2 − Λ and p reaches its
maximum when q ¼ 0 at the q ¼ 0 line. We shall focus
on nonsingular constraints. We shall demonstrate that for a
wide class of quadratic-in-curvature constraints there exists a
turning point of aðtÞ located in the Pþ domain, which for a
“large” initial size of the scale factor is always very close to
the line Γþ where q ¼ p.

B. Quadratic-in-curvature constraints

Let us now discuss a limiting curvature gravity model
with quadratic-in-curvature constraints. We denote

ρ ¼ 1

6
R ¼ pþ q; σ2 ¼ 1

3
SμνSμν ¼ ðp − qÞ2: ð8:4Þ

The most general square-in-curvature expression can be
written in the form

Z ¼ cSSσ2 þ cSRσρþ cRRρ2: ð8:5Þ

As will be explained later, it is sufficient to use this
constraint in the domain below Γþ where it can be written
in the form

Z ¼ ðcSS þ cSR þ cRRÞp2 þ 2ðcRR − cSSÞpq;
þ ðcSS − cSR þ cRRÞq2: ð8:6Þ

The equation

Z ¼ Λ ð8:7Þ
determines a second-order curve C in the ðp; qÞ plane. We
assume that this curve is an ellipse. The general ellipse can
be parametrized by its two semiaxes A and B ≤ A, and the
angle θ between the large semimajor axis and coordinate
axis p. In this parametrization, its equation is

�
cos2θ
A2

þ sin2θ
B2

�
p2 þ

�
sin2θ
A2

þ cos2θ
B2

�
q2

þ 2 sin θ cos θ

�
1

A2
−

1

B2

�
pq ¼ 1: ð8:8Þ

The coefficients A and B and the angle θ can be expressed
in terms of the coefficients cSS, cSR, and cRR and Λ. In these
variables the restriction on the curvature (8.7) implies a
restriction on the size of the ellipse and, in particular, on the
“length” of its major semiaxis A. A relation between the
limiting curvature Λ and A can be easily found. Instead of
this, it is more convenient to choose from the very
beginning the scale defined by A as a limiting curvature
parameter and to use A in order to introduce dimensionless
quantities that describe our system. Namely, we set

p¼Ap̄; q¼Aq̄; a¼ αffiffiffiffi
A

p ; t¼ τffiffiffiffi
A

p : ð8:9Þ

We also denote

γ ¼ B2

A2
; 0 ≤ γ ≤ 1: ð8:10Þ

Then, the constraint equation (8.8) takes the form

p̄2 þ γq̄2 − ð1− γÞ½ðp̄2 − q̄2Þ cos2θþ 2p̄ q̄ cosθ sinθ� ¼ γ:

ð8:11Þ

At the moment when the radiation-dominated Friedmann
stage matches the evolution along the constraint, we have

p̄0 ¼ −q̄0 ¼
κC

Λa4ðt0Þ
≡ λ−: ð8:12Þ

Using this initial condition and the constraint (8.11), we get
the relation between λ− and the parameters γ and θ,

FIG. 7. A curvature constraint is singular if the line C
representing it in the p − q plane has a point O in the Pþ
domain where _a is negative and p has a local maximum. For
_ajO > 0, such a point cannot be reached by a supercritical
solution.
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λ2− ¼ γ

ð1þ γÞ þ ð1 − γÞ sin 2θ : ð8:13Þ

The point ⋆ where dp=dq ¼ 0 (see Fig. 8) has coor-
dinates ðp̄⋆; q̄⋆Þ,

p̄⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ γsin2θ

q
;

q̄⋆ ¼ ð1 − γÞ sin θ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ γsin2θ

p : ð8:14Þ

We impose a condition q̄⋆ > p̄⋆, that is, the point ⋆ is
located above Γþ. This is possible if

0 < γ < 3 − 2
ffiffiffi
2

p
¼ ð

ffiffiffi
2

p
− 1Þ2: ð8:15Þ

For γ ¼ 0, the angle θ⋆ at which the point ðp̄⋆; q̄⋆Þ lies on
Γþ is

θ⋆ ¼ π

4
: ð8:16Þ

For γ ¼ 3 − 2
ffiffiffi
2

p
, the angle θ⋆ is equal to

θ⋆ ¼ 3π

8
¼ arctanð1þ

ffiffiffi
2

p
Þ: ð8:17Þ

When 0 < γ ≤ 3 − 2
ffiffiffi
2

p
, the range of θ such that q⋆ > p⋆ is

θmin < θ < θmax; ð8:18Þ
θmin ¼ arctan

�
1 − γ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ þ γ2

p
2γ

�
;

θmax ¼ arctan
�
1 − γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ þ γ2

p
2γ

�
: ð8:19Þ

The ellipse intersects Γþ at a point q̄ ¼ p̄ ¼ λþ, where

λ2þ ¼ γ

1þ γ − ð1 − γÞ sin 2θ : ð8:20Þ

Note that for a fixed γ, λ2þ as a function of θ gets its
maximum and minimum values at θmax and θmin, respec-
tively,

λ2þjmin ¼
γð3γ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ þ γ2

p
Þ

γ2 þ 4γ − 1þ ð1 − γÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ þ γ2

p ; ð8:21Þ

λ2þjmax ¼
γð3γ − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ þ γ2

p
Þ

γ2 þ 4γ − 1 − ð1 − γÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ þ γ2

p : ð8:22Þ

For small γ,

λ2þjmin ≃ γ; λ2þjmax ¼
1

2
ð1 − γÞ: ð8:23Þ

IX. EVOLUTION ALONG THE CONSTRAINT AND
BIG BOUNCE

Let us now discuss the evolution of the universe in the
supercritical regime for the quadratic constraint described
in the previous section. A point representing the unverse in
the ðp̄; q̄Þ plane starts its motion at p̄ ¼ q̄ ¼ λ− and moves
with increasing p̄ along the ellipse where q̄ ¼ q̄ðp̄Þ. We
now demonstrate that this monotonic motion continues
until the point reaches the vicinity of p̄ ¼ q̄ ¼ λþ where the
scale factor αðτÞ has a turning point. For this purpose, we
again use the following relation, which follows from the
definition of the quantities p̄ and q̄:

1

2

dp̄
d ln α

¼ q̄ − p̄: ð9:1Þ

It gives

αðp̄Þ ¼ α0 expð−FÞ; F ¼ 1

2

Z
p̄

λ−

dp̄
p̄ − q̄ðp̄Þ : ð9:2Þ

Here α0 is the dimensional value of the scale function α at
the beginning of the supercritical evolution, that is, at
p̄ ¼ λ−. According to our assumption, α0 ≫ 1.
In the next section we show that for the quadratic-in-

curvature constraint the integral in Eq. (9.2) can be

FIG. 8. Quadratic constraint in the p̄ − q̄ plane. The red line
from the center to the ellipse describes evolution during the
radiation-dominated stage. The red arc along the ellipse describes
evolution along the constraint until the point p̄ ¼ q̄. This line
p̄ ¼ q̄ corresponds to the de Sitter spacetimes. The point ⋆ with
½p̄⋆; q̄⋆� is the point where the tangent line to the ellipse is
vertical, dp̄=dq̄ ¼ 0.
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calculated explicitly. Now we demonstrate that the general
form of Eq. (9.2) allows one to prove that the supercritical
solution always has a bounce. Let us note that the integrand
in the expression for F is positive in the domain below Γþ
where p̄ < λþ and F is a monotonically increasing function
of p̄, which is logarithmically divergent at p̄ ¼ λþ. One can
use Eq. (9.2) to find p̄ as a function of α. Using the
definition of p̄, one has

ðα0Þ2 ¼ p̄α2 − 1: ð9:3Þ

Substituting p̄ðαÞ into this relation, one obtains an equation
that determines the evolution of the scale factor α as a
function of time τ. If this function has a minimum αb, then
the following condition should be satisfied:

1

p̄b

expð2FbÞ ¼ α20: ð9:4Þ

For λ− ≲ λþ, the parameter p̄ is of order of one. Since F
grows infinitely near p̄ ¼ λþ, Eq. (9.4) for large α0 always
has a solution p̄b which is located near λþ. This solution
determines the size of the universe αb at the turning point.
The parameter αb can be estimated as follows. Near λþ

one can write

p̄ ¼ λþð1þ ΔpÞ; q̄ ¼ λþð1þ ΔqÞ: ð9:5Þ

Using the ellipse equation, one finds

Δp − Δq ¼ μΔp; ð9:6Þ

where

μ ¼ −4
1þ γ − ð1 − γÞ sin 2θ

1þ γ þ ð1 − γÞðcos 2θ − sin 2θÞ : ð9:7Þ

In the range 0 < γ ≤ 3 − 2
ffiffiffi
2

p
and θmin < θ < θmax, the

parameter μ > 0.
If we denote by Δpb < 0 a position of the turning point,

then

Fb ¼
1

2

Z
λþð1þΔpbÞ

λ−

dp̄
p̄ − q̄ðp̄Þ : ð9:8Þ

The main contribution to this integral comes from the
vicinity of its upper limit. This gives

Fb ≈ −
1

2μ
ln jΔpbj: ð9:9Þ

Equation (9.4) implies

Δpb ≈ −ðλþα20Þ−μ: ð9:10Þ

At the turning point,

αb ¼
1ffiffiffiffiffiffi
pb

p : ð9:11Þ

Then, using Eqs. (9.5) and (9.10), one finds

αb ≈
1ffiffiffiffiffi
λþ

p �
1þ 1

2
ðλþα20Þ−μ

�
: ð9:12Þ

Hence, at the turning point αb is always larger than λ−1=2þ
and for large α0 its deflection from this value is small.
The existence of the turning point means that the universe
has a bounce where its contraction is changed to the
expansion.

X. EXACT SOLUTION

Let us demonstrate that for the quadratic-in-
curvature constraint one can obtain an explicit expression
relating p̄ and α. For this purpose we again use the
equation

q̄ ¼ p̄þ 1

2

dp̄
d ln α

: ð10:1Þ

Let us use Eq. (8.11) to express q̄ in terms of p̄,

q̄ ¼ up̄ − v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w − p̄2

p
w

; ð10:2Þ

where u, v, w are the following constants:

u ¼ ð1 − γÞ sin θ cos θ;
v ¼ ffiffiffi

γ
p

;

w ¼ ð1 − γÞcos2θ þ γ: ð10:3Þ

After substituting Eq. (10.2) into Eq. (10.1), one obtains a
first-order differential equation that determines α as a
function of p̄. A solution of this equation is

ln

�
α

α0

�
¼ w
2½v2þðu−wÞ2�

×

�
−v

�
arcsin

�
p̄ffiffiffiffi
w

p
�
−arcsin

�
λ−ffiffiffiffi
w

p
��

þðu−wÞ ln
���� p̄ðu−wÞ−v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w− p̄2

p
λ−ðu−wÞ−v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w−λ2−

p ����
	
: ð10:4Þ

The integration constant was fixed by the matching con-
dition at the moment when this supercritical solutions starts
and where p̄ ¼ λ−,

λ− ¼ κ̄C
3α40

: ð10:5Þ
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Equation (10.4) defines p̄ as a function of α. After
substituting this function into Eq. (9.3), one can find the
time dependence of the scale factor αðτÞ.
At the point p̄ ¼ q̄ ¼ λþ the argument of the logarithm in

Eq. (10.4) vanishes. Near this point, let p̄¼λþð1þΔpÞ.
Then, the leading asymptotic of Eq. (10.4) at small
jΔpj ≪ 1 is

Δp ≃ −
�
α

α0

�
2μ

; ð10:6Þ

where

μ ¼ 2½v2 þ ðu − wÞ2�
wðu − wÞ

¼ −4
1þ γ − ð1 − γÞ sinð2θÞ

1þ γ − ð1 − γÞðsinð2θÞ − cosð2θÞÞ : ð10:7Þ

For every fixed γ ∈ ½0; 3 − 2
ffiffiffi
2

p � the constant μ is positive in
the range θmin < θ < θmax [see Eq. (8.19)]. For the turning
point where α ¼ αb ≈ λ−1=2þ , Eq. (10.6) correctly reprodu-
ces Eq. (9.10).
Let us summarize: the evolution of the universe for

models with quadratic-in-curvature constraints is quite
similar to the case of linear constraints. Namely, there
exists a range of free parameters that specify a model for
which these constraints are not singular. For such con-
straints there always exists a bounce and the supercritical
solution is symmetric with respect to this moment of time.
The size of the universe at the bounce is close to λ−1=2þ and
always larger than this parameter. During this supercritical
phase the contraction of the universe is replaced by its
expansion. The results presented in the Appendix imply
that there always exists a solution of the gravity equations
for the control function χ that is time symmetric with
respect to the turning point. For this solution, at the moment
when the point representing the expanding supercritical
universe crosses Γ− it can slip to the subcritical regime.
This subcritical solution describes an expanding Friedmann
universe filled with thermal radiation which contains the
same entropy as the original collapsing world. The param-
eter Nb ¼ lnðα0αb

Þ for the expansion from the bounce point to
the beginning of the Friedmann phase is nothing but the
e-fold number (for a review of the restrictions on the e-fold
number in inflationary models from observations and their
cosmological implications see, e.g., Ref. [24] and refer-
ences therein).

XI. GENERAL CASE

We have discussed cases of linear and quadratic-in-
curvature constraints which admit rather complete analysis.
In this section we demonstrate that under quite general
assumptions many of the features of these models are also
valid for a wider class of curvature constraints. Namely, we

consider constraints constructed from the Ricci tensor
invariants. As earlier, we do not include invariants con-
taining derivatives of this tensor. Such a general constraint
can be written in the form

fðp; q;ΛÞ ¼ 0: ð11:1Þ
Here p and q are defined by Eq. (5.3) and Λ is a parameter
defining the limiting curvature. This constraint defines a
line C in the ðp; qÞ plane (see Fig. 9).
We make the following assumptions:
(1) The constraint curve C intersects both lines Γ− and

Γþ. We denote the coordinate p at the intersection
points by λ− and λþ, respectively.

(2) We assume that ∂f
∂q ≠ 0 on a segment of C between

Γ− and Γþ, so that on the interval p ∈ ½λ−; λþ� one
can express q as a function of p and Λ, q ¼ qðp;ΛÞ.

(3) This function on the interval p ∈ ½λ−; λþ� obeys the
condition dq

dp > 1.
The last condition implies that λþ > λ−. We denote by ξ

the minimal value of dq
dp on the interval p ∈ ½λ−; λþ�. Then,

one has

λþ
λ−

>
ξþ 1

ξ − 1
: ð11:2Þ

We assume that ξ is not very close to 1, so that the
parameters λþ and λ− are of the same order.
One can use Eq. (6.5) for the scale factor evolution for a

supercritical solution with the constraint (11.1),

a ¼ a0 expð−FÞ; F ¼ 1

2

Z
p

λ−

dp
p − qðpÞ : ð11:3Þ

Here qðpÞ is defined by the constraint equation. We denote

1

μ
¼ dq

dp

����
p¼λþ

: ð11:4Þ

FIG. 9. Behavior of a general constraint curve in the p − q
plane.
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Then, near p ¼ λþ one has

p − qðpÞ ∼ ðμ−1 − 1Þðλþ − pÞ: ð11:5Þ

Thus, the integrant in F has a pole at p ¼ λþ, so that this
integral is logarithmically divergent at this point and

expðFÞ ∼ 1

ðλþ − pÞð1−μÞ=μ : ð11:6Þ

Using the same arguments as in the earlier discussion of
linear and quadratic-in-curvature constraints, one can con-
clude that there exists a turning point where aðtÞ has
minimal values. The scale factor at this point can be found
by using Eq. (11.3). After the bounce a point representing
the supercritical solution moves back along the line C. To
summarize, the supercritical evolution of the universe for
the general constraint (11.1) satisfying the conditions 1–3 is
qualitatively the same as for linear and quadratic con-
straints. The control function χðtÞ for such a solution is
discussed in the Appendix.

XII. DISCUSSIONS

In this paper we studied the evolution of an initially
contracting isotropic homogeneous closed universe in the
limiting curvature gravity theory. For this purpose, we
modified a standard Einstein-Hilbert action by adding
terms that restrict the curvature invariants. This was done
in such a way that when the curvature is less than the
critical one the evolution of the universe follows the
standard (unconstrained) cosmological equations. We
called this regime a subcritical one. For such a solution,
the control function χ in the action vanishes.
After the spacetime curvature reaches its critical value a

solution follows along the constraint and the control
function χ becomes a nonvanishing function of time.
The solution can leave its supercritical regime if the control
function becomes zero. To make our discussion more
concrete we assumed that the contacting universe is initially
filled with a thermal gas of radiation and a transition from
sub- to supercritical regime occurs when the size of the
universe is large in the following sense. If the critical value
of the curvature is ∼1=l2, then we required that the size a0
of the contracting universe at the moment when its
curvature reaches this critical value obeys the condi-
tion a0=l ≫ 1.
There is a freedom in the choice of the term in the action

which controls and restricts the growth of the curvature. We
studied two types of constraints. The first class are
constraints that are linear in eigenvalues of the Ricci tensor.
Such constraints are represented by a straight line in the
ðp; qÞ plane. If this line crosses Γ� where q ¼ �p and
0 < dp=dq < 1 for it, then we demonstrated that the
evolution of the universe with such an inequality constraint
is the following. After the contracting universe reaches the

critical curvature and the evolution becomes supercritical,
its acceleration parameter q ¼ ä=a quite soon becomes
positive. If the scale factor at the transition point α0 is large,
then its further motion is very close to the motion of a
contracting de Sitter universe. It has a bounce where the
scale factor aðtÞ has the minimal value ab close to l and
begins expanding. Both the scale function aðtÞ and the
control function χðtÞ are symmetric under reflection with
respect to the turning point. The function χðtÞ becomes zero
again when the size of the expanding universe becomes
equal to a0. After this point, the solution leaves the
constraint and it describes an expanding universe filled
with thermal radiation. The entropy of this radiation is the
same as that during the contraction phase.
The second class of constraints that we discussed in this

paper are quadratic in curvature. We demonstrated that
there exists a wide variety of such (nonsingular) constraints
that guarantee that solutions are complete, that is, they do
not break at a finite time. In the ðp; qÞ plane the constraint
curves are ellipses with two parameters: the angle θ
characterizing the orientation of the ellipse, and the ratio
of its semiminor and semimajor axes γ. The size of the
major semiaxis characterizes the limiting curvature value.
We showed that if θ and γ obey some inequalities the
corresponding constraint is nonsingular. The evolution of
the universe for such nonsingular quadratic constraints is
similar to the case of linear-in-curvature constraints. After
the universe reaches the point where its curvature becomes
critical, the solution evolves along the constraint. During
this supercritical phase it reaches a point of bounce, after
which the scale function grows. The control function χ can
become zero again at this phase and the universe can leave
its supercritical regime. After this, one has an expanding
universe filled with thermal radiation which follows the
corresponding solution of the Einstein equations.
Let us emphasize that these results allow a natural

generalization. In Sec. XI we demonstrated that they can
be easily extended to the case when a constraint is not linear
or quadratic in the curvature but is described by a quite
general function of it.4 The qualitative behavior of the
supercritical solutions in such models remains qualitatively
the same. The solutions predict a bouncing point when the
contracting universe transitions to expansion.
In our discussion we assumed that a contracting universe

is filled with thermal radiation. This simplified our analysis
at one point, where we calculated the value of the scale
parameter a0 at the moment of transition of the solution
from the sub- to supercritical regime. The value of a0 can be
easily found for any other choice of the equations of state.
This changes nothing in the further supercritical evolution
of the universe, which was the main point of our discussion.
Another assumption was that our contracting universe is

4Here we do not consider more general invariants constructed
from the curvature and its derivatives.
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closed. The other two cases, k ¼ 0 and k ¼ −1 where the
universe is open, can be analyzed similarly. The main
difference is that a supercritical solution for aðtÞ does not
have a turning point, but it can reach zero value. However,
this does not mean that one has a physical singularity at this
point. The curvature invariants remain finite and bounded
and the singularity of the solution is a reflection of a “bad”
choice of the coordinates. The situation here is similar to
the case of a de Sitter model when coordinates with open
space slices are chosen. One can expect that by using
proper coordinates one can further trace the evolution of the
supercritical solution. It would be interesting to study these
cases in detail and to confirm (or disprove) that there is also
a bounce for these universes.
Many gravity models have been proposed in the liter-

ature that describe an inflationary stage of the Universe.
Some of these models involve either higher-order-in-
curvature terms or higher derivatives, or both. As a
consequence, these models are typically prone to insta-
bilities [19]. Some of these instabilities are related to the
presence of ghosts (see however the discussion in
Ref. [25]). Complications with ghosts can be avoided in
some versions of nonlocal higher-derivative theories of
gravity, and cosmologically viable models admitting non-
singular bouncing solutions can be constructed [16,26,27].
The analysis of the stability of cosmological solutions is a
nontrivial problem in both ghost-free higher-derivative
theories of gravity and systems with constraints [19].
In the models of limiting curvature gravity discussed in

the present paper a set of pairs of Lagrange multipliers χi
and ζi entering in a specific combination was introduced.
As a result, as soon as some function of curvature invariants
does not accede its limiting value, the gravity equations are
exactly those of the pure Einstein theory. This means that
during a subcritical stage all of the degrees of freedom and
physical effects are exactly the same as in general relativity.
No extra instabilities and ghosts appear. During the
supercritical stage the metric evolution is governed by
the constraints. Matching conditions provide us with the
initial data for the evolution of the metric and the Lagrange
multipliers. Further evolution is unambiguous and respects
the property of limiting curvature. If one includes a
constraint involving the Weyl tensor, then the growth of
all relevant curvature invariants can be bounded even if
instability modes appear. Of course, in more realistic
models one has to constrain all kinds of curvatures and
take into account anisotropic and other deviations from the
background geometry [19,28]. The control fields χ are very
special. They identically vanish in the subcritical regime
and this property allows one to obtain the uniquely
specified initial conditions for them at the beginning of
the supercritical regime. In the latter case the control field
obeys the linear inhomogeneous equation. The initial
conditions and the inhomogeneous term completely fix
the solution for χ. The control fields do not bring extra

degree of freedom to the system. In this sense they are not
dynamical.
There is a well-known generic problem of bouncing

cosmological models: the growth of the anisotropy at the
stage of contraction. Even if the anisotropy is initially small
and it can be described as a perturbation of isotropic
homogeneous space, its amplitude for a physically reason-
able equation of state grows fast so that during the
contraction the anisotropy would become strong at some
stage and may affect the dynamics of the universe. One can
expect that in the models with limiting curvature this
anisotropy growth could be suppressed by a proper choice
of the constraints that contain not only Ricci-tensor but also
Weyl-tensor invariants. When properly included, the cor-
responding constraint would not allow infinite anisotropy
growth. It is interesting and important to check whether this
is really so.
One might interpret the obtained results as follows. After

the curvature of the contracting universe reaches its
maximal value the matter does not contribute to the growth
of the curvature. Instead, the further growth of its stress-
energy tensor is compensated by the generation of the
control field χ. After passing the bounce and reaching the
point of slipping back to the subcritical phase, the hidden
thermal radiation (with its entropy) simply reappears. In
this sense, the thermal state of the inflating universe arises
without an additional reheating. Certainly this and other
interesting features of the bouncing cosmologies in the
limiting curvature gravity models require further detailed
analysis.
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APPENDIX: EVOLUTION OF THE CONTROL
FUNCTION χ

Let us consider the general curvature constraint that was
discussed in Sec. XI. We now discuss the gravity equations
that are obtained by variation of the action including this
constraint over the metric. During the supercritical stage the
metric is governed by the constraint. The gravity equations,
in fact, describe evolution of the control function χ. As we
discussed earlier, there is only one independent equation
which can be obtained by variation of the dimensionally
reduced action over the lapse function b. The constraint
(11.1) can be obtained from the action

Iχ ¼ 2π2
Z

dta3bLχ ;

Lχ ¼ χ½fðp; q;ΛÞ þ ζ2� ðA1Þ
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by its variation over the control function χ. Let us
emphasize that in order to derive a complete set of gravity
equations one should substitute the general expressions
(2.6) for p and q which contain the gauge function b.
In what follows we assume that conditions 1–3 formu-

lated in Sec. XI are satisfied and one can use Eq. (11.3) to
find p on the constraint line C as a function of the scale
parameter a.
Let us consider the gravity equation

1

va3
δ½Ig þ Iχ þ Im�

δb

����
b¼1

¼ 0 ðA2Þ

evaluated on the constraints (11.1), and ζ ¼ 0 becomes

Z
dt

�∂f
∂p

δp
δb

þ ∂f
∂q

δq
δb

�
χ

����
b¼1

¼ 1

κ
G −

C
a4

: ðA3Þ

Taking into account that for any function hðaÞ
Z

dt
δp
δb

hjb¼1 ¼ −2
_a2

a2
h ¼ −2

�
p −

1

a2

�
h; ðA4Þ

Z
dt
δq
δb

h ¼ −
�
ä
a
þ _a2

a2

�
hþ _a

a
_h

¼ −
�
pþ q −

1

a2

�
hþ

�
p −

1

a2

�
dh

d ln a
; ðA5Þ

we get the first-order linear inhomogeneous differential
equation

�
p −

1

a2

� dð∂f∂q χÞ
d ln a

− 2

�
p −

1

a2

� ∂f
∂p χ

−
�
pþ q −

1

a2

� ∂f
∂q χ ¼ 3p

κ
−

C
a4

: ðA6Þ

This equation does not explicitly depend on time, but only
on the parameter a. Written in this form, it determines χ as a
function of the scale factor a.
Since ∂f

∂q ≠ 0 on the interval p ∈ ½λ−; λþ�, we can redefine
the χ function as

ω ¼ ∂f
∂q χ; ðA7Þ

and the zeros of the control functions χ and ω are the same.
Then, one can write Eq. (A6) in the form

dω
d ln a

− UðaÞω ¼ WðaÞ; ðA8Þ

where y ¼ ln a, p ¼ pðaÞ, and

U ¼ 1þ q
p − 1

a2
þ 2

dqðpÞ
dp

; ðA9Þ

W ¼
3p
κ − C

a4

p − 1
a2
: ðA10Þ

At the moment t0 we have aðt0Þ ¼ a0 and Wðt0Þ ¼ 0
because the Einstein equations in a subcritical stage require

3p
κ

−
C
a4

¼ 0 ðA11Þ

identically.
The solution for the control function ω reads

ω ¼ e
R

y

y0
dyUðyÞ

ΩðyÞ; ðA12Þ

ΩðyÞ ¼ Ω0 þ
Z

y

y0

dyWðyÞe−
R

y

y0
dzUðzÞ

; ðA13Þ

where y ¼ ln a and y0 ¼ ln a0. At the matching point the
control function vanishes. This condition fixes the integra-
tion constant Ω0 ¼ 0.
The solution (A12)–(A13) is finite for all a between a0

and the bounce radius ab. This fact is not evident and needs
special analysis because both functions U and W have a
pole near the bounce point. This happens because the
function p − 1

a2 ¼ _a2

a2 in their denominators vanishes at the
bounce, where _a ¼ 0. In order to prove that these poles do
not lead to singularities for ω at ab, we analyze Eq. (A8) in
its vicinity. Let us analyze the asymptotic of this equation
when a → ab of this equation. Let x ¼ lnða=abÞ be a small
parameter. Then, using the expansion near the turning
point, one gets

p −
1

a2
¼ _a2

a2
¼ _a2

a2

����
b

þ a
_a
d
dt

�
_a2

a2

�����
b

xþOðx2Þ

¼ 2
ä
a

����
b

xþOðx2Þ ¼ 2qbxþOðx2Þ: ðA14Þ

Here qb ¼ qðab; a0;ΛÞ and pb ¼ pðab; a0;ΛÞ. As soon as
we know the evolution of the scale factor aðtÞ along the
constraint, we know pb and qb and therefore can determine
the evolution for the control functions ω and χ.
For small x one has

U ¼ 1

2x
þOð1Þ; W ¼ −

C1

2x
þOð1Þ; ðA15Þ

where the constant C1 is defined by the asymptotic
behavior of W at the bounce point,
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C1 ¼
3pb

κqb

�
κC
3
pb − 1

�
;

κC
3

¼ a40λ−: ðA16Þ

Then, the asymptotic of Eq. (A8) near the turning point
takes the form

dω
dx

−
1

2x
ω ¼ −

C1

2x
þOð1Þ: ðA17Þ

Because at the bounce point pb ∼ qb ∼ λþ > 0 and a20λþ is
a very big number, the constant C1 is positive and big too.
Equation (A17) shows that

ω ¼ C1 þ C2

ffiffiffiffiffi
jxj

p
þOðxÞ: ðA18Þ

The integration constant C2 can be determined using the
matching condition at a0. If tb is the moment of bounce then
near this point one has a ≈ ab½1þ qb

2
ðt − tbÞ2�. So that

ωja→ab
≈ C1 þ C2

ffiffiffiffiffi
qb

2

r
jt − tbj: ðA19Þ

Thus, at the bounce point ω is finite and approaches its
limiting value linearly in time. At the other moments all
integrands in Eqs. (A12)–(A13) are finite and the integrals
are finite too. Let us note that for the solution (A19) the
time derivative of ω at t ¼ tb has a jump. Such a jump is
allowed by Eq. (A6) for χ since at this point the coefficient
of the term containing the derivative of ω vanishes.
Now let us prove that under the imposed conditions 1–3

of Sec. XI the function W is always negative, provided the
constraints satisfy the condition dqðpÞ=dp > 0. Taking
into account that κC

3
¼ a40λ−, we rewrite W in the form

W ¼ −
3

κ

a2

_a2
Y; Y ¼ a40

a4
λ− − p: ðA20Þ

Using Eq. (6.5), we express Y in terms of p and qðpÞ,

YðpÞ ¼ λ−e
2
R

p

λ−

dp
p−qðpÞ − p: ðA21Þ

From the matching condition (A11) at the point p ¼ λ− we
have

Yjp¼λ−
¼ 0: ðA22Þ

Its derivative

dY
dp

¼ 2Y þ pþ q
p − q

ðA23Þ

also vanishes at the matching point p ¼ λ−, q ¼ −λ−,

dY
dp

����
p¼λ−

¼ 0: ðA24Þ

The second derivative of Y is

d2Y
dp2

¼ 2
ðY þ pÞð1þ dqðpÞ

dp Þ
ðp − qÞ2 : ðA25Þ

Since dq=dp is positive on the interval p ∈ ½λ−; λþ�, the
second derivative of Y is positive at the matching point.
This means that in the vicinity of λ− for p > λ− both Y and
dY=dp are positive. To prove that YðpÞ is positive on the
whole interval ðλ−; λþÞ we assume the opposite. Namely,
we assume that Y becomes negative at some point on this
interval. This means that there exists a point p1 ∈ ðλ−; λþÞ
where Y vanishes again. This may happen only if Y reaches
its maximum at p2 ∈ ðλ−; p1Þ. In this case dY=dpjp2

¼ 0

and, hence, there exists p3 ∈ ðλ−; p2Þ where dY=dp has a
maximum. At this point d2Y=dp2jp3

¼ 0, dY=dpjp3
> 0,

and Yðp3Þ > 0. This conclusion is in contradiction with
Eq. (A25) evaluated at the point p3. Thus, our assumption
that Y may vanish inside the interval ðλ−; λþÞ leads to a
contradiction and we must conclude that both dY=dp and Y
are non-negative during the whole supercritical stage.
Hence, W is negative for a < a0 and W ¼ 0 at a ¼ a0.
Using this property, one can show that ω is negative

during the whole evolution along the constraint. The
function χ differs from ω only by a factor ∂f=∂q and,
hence, it does not vanish as well. This means that the
control function χ does not vanish during a supercritical
stage except for the initial and final matching points
corresponding to the scale factor a0.
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