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We obtain two types of Yang-Mills-dilaton black hole solutions in both Lifshitz and hyperscaling
violation spacetimes. We must consider at least three Yang-Mills gauge fields that interact with a scalar
field and either SO(n) or SO (n — 1, 1) gauge symmetry groups, where n + 1 denotes the dimension of the
spacetime. They lead to the spherical and hyperbolic solutions. The obtained solutions in the hyperscaling
violation spacetime fall into two categories for z #n —3 — ;‘—jﬁ and z=n-3-— ﬁe, where 0 =0
represents the Lifshitz spacetime. In order to have a real asymptotic behavior for the hyperscaling violated
black hole solutions, we should consider a negative value for the hyperscaling violation parameter as € < 0.
We also evaluate the thermodynamic quantities of the mentioned black holes and probe their thermal
stability in the grand canonical ensemble. For z > 2, the hyperscaling violated solutions are not thermally
stable forz <n —3 — %9, while they are stable for large r, withz > n —3 — ﬁe. We also check out the

critical behavior of the obtained black holes and obtain a Smarr relation for the solutions. The results also

announce of a first-order small-large phase transition for both black holes in the case 7 > T'.
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I. INTRODUCTION

AdS/CFT correspondence plays an important role in the
study of the strongly coupled systems. It relates these
systems in quantum field theory to the weakly coupled
classical relativistic gravitational ones in anti—de Sitter
(AdS) spacetime [1-3]. This correspondence is a useful
tool to analyze the condensed matter systems. It was shown
that some properties of the strongly coupled superconduc-
tors are descriptive by their dual gravitational spacetimes
[4-7]. There are some motivations to study the nonrela-
tivistic version of AdS/CFT in order to gain information
about the puzzles in unconventional condensed matter
physics [8—10]. Some real condensed matter systems do
not have relativistic symmetry, and they are described at
their critical temperatures by the nonrelativistic conformal
field theories [11,12]. The other is related to the fermions at
unitarity which can be discovered experimentally by cold
atoms. The interactions of these fermions are adapted
to provide a scale-invariant but nonrelativistic system.
Another reason originates from the high-temperature super-
conductor problem in modern condensed matter physics.
AdS/CFT has been successful to investigate all of them by
the nonrelativistic general relativity. Spacetimes with the
so-called Schrodinger group are the gravity duals for the
nonrelativistic scale-invariant systems with Galilean
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symmetry [13,14]. Lifshitz spacetimes are the other gravity
dual candidates which have no Galilean symmetry [15].
This spacetime is defined by the metric

I"2Z L2 D

dszz—ﬁdtz—l—?drz—i—rzdxﬁ_], (1)
where z > 0 and L are, respectively, the dynamical critical
exponent and the AdS radius and n+ 1 counts the
spacetime dimensions. This metric is not conformally
invariant, while it shows an anisotropic scaling symmetry

t — A%, X = A%, r— A7t (2)
This kind of spacetime can be a dual with nonrelativistic
conformal field theory describing multicritical points in
certain magnetic materials and liquid crystals [15]. For
z =1, the metric reduces to the usual one with the
relativistic isotropic scale invariance. The phase transitions
of many condensed matter systems are governed by fixed
points with the above scaling in Egs. (2). Also, with the
above anisotropy, the specific heat scales at low temper-
ature as Cy ~ T(""1/2 As the specific heat of the Fermi
liquids obeys from the linear relation Cy ~ T, so Lifshitz
scaling theories are good candidates in order to analyze
Fermi liquids for z = n — 1 [16]. Using AdS/CFT corre-
spondence, some properties such as viscosity [17] and
conductivity [18-21] have been studied for systems with
Lifshitz symmetry. In Ref. [22], the effects of the Lifshitz
dynamical exponent and the Weyl coupling on the holo-
graphic superconductors is investigated. Entanglement

© 2021 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.104059&domain=pdf&date_stamp=2021-11-24
https://doi.org/10.1103/PhysRevD.104.104059
https://doi.org/10.1103/PhysRevD.104.104059
https://doi.org/10.1103/PhysRevD.104.104059
https://doi.org/10.1103/PhysRevD.104.104059

NAEIMIPOUR, MIRZA, and NASIRIMOGHADAM

PHYS. REV. D 104, 104059 (2021)

entropy was also used to investigate holographic super-
conductor phase transitions related to a Lifshitz black hole
background [23].

Einstein gravity with a cosmological constant cannot
have Lifshitz solutions except for z =1. For z # 1,
Einstein’s equations may allow Lifshitz solutions only
by adding some higher-curvature tensors or matter sources
to this gravity. Studies of some modified gravities such as
Lovelock and quasitopological ones in the Lifshitz space-
time are in Refs. [24-27]. In Refs. [15,17,28-31], the
Lifshitz black hole solutions with matter sources such as
Brans-Dicke scalars, nonlinear electrodynamic theories,
and Proca fields have been investigated. Some investiga-
tions of the matter sources with massive gauge fields are in
Refs. [17,32-34]. They illustrate that it is not possible to
obtain an exact Lifshitz solution for their theories. To solve
this problem, Tarrio considered a dilaton field instead of the
massive gauge fields [35], which led to an analytic Lifshitz
black hole solution. Since the dilaton field plays as a
requirement of the string theory, so it appears at the low-
energy limit of this theory, and we should include it in our
study. Lifshitz black holes with a dilaton field have been
probed in Refs. [36,37]. Now, in continuation of Ref. [35],
we would like to obtain the exact Lifshitz-dilaton black
hole solutions in the presence of an interesting matter
source, i.e., non-Abelian Yang-Mills gauge theory.

Recently, some numeric solutions of the Lifshitz black
holes in FEinstein-Yang-Mills theory have been obtained
[38]. In our paper, we aim to use the Wu-Yang ansatz [39]
and obtain the exact solutions. Some black hole solutions in
the presence of the Yang-Mills theory are in Refs. [40—42].
A study of the FEinstein-Yang-Mills-dilaton black hole in
higher dimensions is in Ref. [43]. Topological black holes
in (n+ 1)-dimensional Einstein and Gauss-Bonnet
gravities have been probed, respectively, in Refs. [44,45].

Magnetic monopoles and their condensation are neces-
sary in order to describe quark confinement with a dual
superconductor picture. For this purpose, the Abelian
projection method [46] explicitly breaks both the local
gauge symmetry and the global color symmetry by partial
gauge fixing. A new gauge-invariant way in SU(N) Yang-
Mills theory has been successful in order to introduce
gauge-invariant non-Abelian magnetic monopoles [47].
These non-Abelian magnetic monopoles have a dominant
contribution for confinement of fundamental quarks in
SU(3) Yang-Mills theory. There are also some topological
protected quantum computations in which non-Abelian
excitations such as Majorana fermions are used [48-51].
Non-Abelian topological superconductors can be deter-
mined by these fermions bound in the quantized vortices
[52]. On the other hand, as the spin currents of the
ferromagnets correspond to the SU(2) gauge fields in
the dual gravitational theory [53], one can obtain novel
perspectives for the condensed matter systems dual to the
non-Abelian Yang-Mills gauge theories. Our main

motivation to study Lifshitz-Yang-Mills black holes was
some of the above-mentioned non-Abelian nonrelativistic
physical systems with strongly coupled interactions.

Recently, a new metric has been introduced that not only
is not scale invariant, but also has a hyperscaling violation
factor [54-56]. In the AdS/CFT correspondence, the
hyperscaling violation in the field theory originates from
the distance noninvariancy of the dual metric under the
scaling. This metric is defined as

2 _20 r 2 L’ 2 2 g2
ds? = r7a- —ﬁdt +7dr +ridx;_ ), (3)

where 6 is referred to the hyperscaling violating exponent
and can decrease the dimension of the theory. It is spatially
homogeneous and covariant under the scale transforma-
tions (2). For & = 0, this metric reestablishes the Lifshitz
spacetime. For the special case 6 = n — 2, the related
spacetime can be a dual theory for the Fermi liquid [56].
Some solutions of the hyperscaling violation spacetimes
have been found in Refs. [57-60]. In the second part of this
paper, we aim to extend our study and obtain the dilaton
Yang-Mills black hole solutions with a hyperscaling
violation.

We divide the organization of this paper into two parts:
Lifshitz and hyperscaling violated Yang-Mills-dilaton
black holes. For the Lifshitz black holes, we first consider
the Yang-Mills theory with a dilaton field, then obtain the
Lifshitz solutions, and study the related physical properties
in Sec. II. In Sec. III, we study the thermodynamic
behaviors of the obtained Lifshitz solutions such as thermal
stability. We also study the critical behavior of the Lifshitz-
Yang-Mills-dilaton solutions in Sec. IV. In the second part
of this paper, we go to the Yang-Mills-dilaton black holes
with a hyperscaling violation parameter. In Sec. V, we
obtain the related solutions and then investigate the
thermodynamic and critical behavior of the obtained
solutions in, respectively, Secs. VI and VII. Last, a
conclusion of the whole paper is in Sec. VIIL

II. THE MAIN STRUCTURE OF THE LIFSHITZ-
YANG-MILLS-DILATON BLACK HOLE

In this section, we aim to obtain the Lifshitz-dilaton
black hole solutions in the presence of the Yang-Mills
theory. For this purpose, we consider three non-Abelian
gauge fields F; (i = 1, 2, 3) with gauge groups G:

b)

(@ _ 4 4l @ | b g a0) 400)
Fi/w - aﬂAiu - aUAiﬂ + e_icbcAiy Aiv ’ (4)

where ¢;’s (e, e,, e3) are the coupling constants for each
F; (Fy,F,,F5) and A;,’s refer to the gauge potentials. We
start our theory with the (n + 1)-dimensional action
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S =1e- /d”“x\/“(k V(® )——a D
_ Z e—4<§1<1>/(11—1)Flz> , (5)
i=1

where @ displays the dilaton field and V(®) is a potential
for this field. &; is a constant which measures the coupling
strength of @ and F?,

F12 = yabF('a)F(‘b»w’ (6)

717
where

Fab

_, r,=Cccce, 7
|detrab|l/N ab ad ™~ bc ( )

Yab = —

that N represents the parameters of each groups G; and
Cjy.’s are the structure constants of the groups By variation
of the action (5) with respect to g,,, A w s and ®, the field
equations of motion are obtained as follows:

2 V()
Ry = —— [26,;1)6@ + g,,,,}
+226451¢/n1>}, FO p0) L py
g ivA 2(n_ 1) tJpy |
(8)
Dy<e—4§i<1>/(n—l)FE(l)ﬂV) — l€—4§i<1>/(n—l)CZCASS)FECW#’ (9)
¢i

-1
V2 — dV

Z‘f’ ~#9/(=DF2 = 0. (10)

If we denote the coordinates of the groups G; as below

:—sm(\/_Q)H” Tsing;,

vk
X, = ﬁsin(\/@) cos 1= sin(g)), [=2,....,n—1,
x, = rcos(Vko), (11)

then we can attain the gauge potentials by the Wu-Yang
ansatz [39]:

AW = %(xldx —x,dx) fora=1=1,...,n—1,

AP = & (xdx; — x,dx)),  for b= (n—1)/2

; ﬁxlx xidx; orb=mn,...,n(n ,
I=1,...n=2,j=2,...,n—=1, and [<j, (12)

which have the Lie algebra of SO(n) and SO(n—1,1)
gauge groups. To obtain the Lifshitz solutions, we consider
the following metric:

27 2

m O g

+ P2[d6* + k' sin? (VkO)dZ ],

ds> = dr?

(13)

where dQ? ,_, denotes the metric of a unit (n — 2)-sphere
with constant curvatures k = —1, 1. To be clear, we have
mentioned some examples of the gauge groups in the
Appendix. We consider V(®) =2A, where A is the
cosmological constant. Now, if we substitute the gauge
potentials (12) and the metric (13) in Eqgs. (8)—(10), then the
Lifshitz-dilaton solutions of the Yang-Mills theory read as

1
O(r) = Vz—1In <f> (14)
s
and
kL*(n —2) m
= 1 -
) +z(z+11—3)r2 reen]
n— 2 2 o
(n— 2)L2 e

= In( 0)s2(z“), for z =n —3,

where s and m are the constants of integration and m is
related to the mass of the black hole. We use ry as a
necessary parameter to provide a dimensionless argument
for the logarithmic term. We set ry = 1 for simplicity. In
order to obtain the above asymptotic Lifshitz solutions, we
have fixed the parameters & (i = 1, 2, 3), €7, €3, and A as
below:

2 1 —
51:_\/Z——1’ 52__ Z—l’ 53: Z_lv
- )( 2)(z+1) ’ ’

n—1
PORUED ) ETETI] 16)

The results represent that, for n = 3, the Lifshitz-Yang-
Mills-dilaton solutions are the same as the ones in Maxwell
theory. So, we can deduce that there is an equivalence
between the Lifshitz-Yang-Mills-dilaton solutions of
SO(3) and SO(2, 1) gauge groups and a set of topological
solutions with k = 41, —1 in the linear Maxwell theory.
For n # 3, we could have been able to reach to a new class
of Lifshitz-Yang-Mills solutions which are different from
the ones in the Maxwell theory. The obtained solutions in
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FIG. 1.

Eq. (15) are divided into two parts: for z#n—3
and z =n - 3.

The parameters &; and &, diverge at z = 1. However, it
should be noted that the parameters &;’s are multiplied by
the dilaton field ®(r) = (n — 1)v/z—11In(r/s)/2 in the
field equations (8)—(10), so the coefficient v/z — 1 in the
denominator cancels out and there is no ambiguity. At
z =1, both ¢; and e, in Eq. (16) are equal to zero, and,
therefore, the tensor fields /| and F', have zero values. The
factor e~*i®/("=1) js multiplied to the zero tensor fields F,
and F,, and the result is zero. So, at z = 1, we recover the
Einstein-Yang-Mills theory with no ambiguity:

(n=2)L%¢2
kL2 m —W, for n ?é 4,
f(r): 1+—2__n+ (n=2)L2e2
r d —Tﬂn(é), for n = 4.
(17)

L*(n-2) ri+”_3

mre) =i Z(z+n-3)

According to the above relation and depending on the
values of the parameters es3, m, z, and n, the solutions can
indicate a black hole with two horizons, an extreme black
hole, or a naked singularity. To describe this behavior, we
have plotted function m(r, ) versus r for two fixed values
of the mass parameter (m = 5.1, 3.5) and different values of
es3, z, and n in Fig. 1. In Fig. 1(a), there is an extreme black
hole for the mentioned parameters with m = 5.1 and z = 3,
while there is a black hole with two horizons r_ and r, for
z > 3 and a naked singularity for z < 3. In Fig. 1(b) with
z =2, an extreme five-dimensional black hole can be
created for m = 5.1, if we choose e; in the range
1 < e3 < 2. So, a black hole with two horizons happens

b)z=2,n=4

2 —z+n-=3
(n—Z)Lze;r++’ 2

+ (z=n+3)
—(n =2)L?e3r7™ 3 1n(ry)s*=Y, for z =n-3.

The function m(r,) with respect to r, for s =1 and L = 1.

Therefore, z =1 is a well-defined limit of the Lifshitz-
Yang-Mills black holes.

We can conclude from the constraints (16) that, in order to
support the Lifshitz spacetime, we need to fix the coupling
constants of the two Yang-Mills gauge fields. It also shows
that, for the hyperbolic and dS solutions with the conditions
k = —1and A > 0, we terminate to the imaginary values for
e; and e, in the case z # 1. So, in order to refuse this
condition, we consider just the spherical and AdS solutions.
By these conditions, the obtained solutions (15) have the
asymptotic behavior f(r) — 1 as r — co.

Now, we would like to investigate the physical properties
of the Lifshitz-Yang-Mills-dilaton black hole solutions. If
we calculate the Kretschmann scalar R,,,R*"*, it goes to
infinity as r — 0. Therefore, it announces an essential
singularity located at the origin for the mentioned black
hole. We can also obtain the event horizon radius r, of the
solutions by fixing f(r,) = 0. This leads to

(e=1), for -3
s I#FN (18)

for small values of e5. All three figures indicate that it may
be more possible to see a black hole with inner and outer
horizons if we choose a large value for the parameter m.

In the next section, we are going to study the thermo-
dynamic characteristic of the Lifshitz-Yang-Mills-dilaton
black hole.

III. THERMODYNAMIC BEHAVIORS OF THE
LIFSHITZ-YANG-MILLS-DILATON
BLACK HOLE

Based on the AdS/CFT correspondence, one can use the
thermodynamic properties of an AdS black hole to study its
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dual system behaviors in the conformal field theory. Some
phenomena, such as the Nernst effect [61], quantum Hall
effect [62], and superconductors [4-7,22,23,63,64], have
been analyzed by this correspondence. In this section, we aim
to evaluate the thermodynamic quantities such as mass,
temperature, Yang-Mills charge, and the electric potential of
the Lifshitz-Yang-Mills-dilaton black hole and probe the first
law of thermodynamics. We also investigate the thermal
stability of the obtained solutions in the grand canonical
ensemble. It is hoped that the Lifshitz-Yang-Mills-dilaton
black hole thermodynamics will be good candidates for
better understanding condensed matter systems.

A. Thermodynamic quantities and first law

In order to obtain the mass of the Lifshitz-Yang-Mills-
dilaton black hole, we use the modified subtraction method
of Brown and York (BY) [65,66]. In this formalism, we
should write the metric (13) as below:

2

dR
2 = CA(R)E + e+ R 1
ds (R)dt +B(R)+Rd 1 (19)

where it requires R = r and

r(R)*
L%

7 2
R firim).

(20)

A(R) =

f(r(R)) and B(R) =

It is a matter of calculation to show the quasilocal mass as

1

M:
= 8x

/2 & x/a{(Kap — Krap)}n®e. (21)

where K, is the extrinsic curvature of the metric and o
illustrates the determinant of o,, (the metric of the
boundary X). We specify n and £ as the timelike unit
normal vector to and a timelike killing vector field on the
boundary X, respectively. In the mass calculation process
(21), some divergences appear when we use the limit
r — oo. To avoid this problem, we consider a background
metric such as (19) with definitions (20) and

L*(n—2)
2(z+n=3)[r(R)P

fo(r(R)) = 1+ (22)

We obtain the mass of the background metric as below:

1
My = S . d"'x/o{(K), — K°/9,) }n g, (23)
where Kgb is the extrinsic curvature of the related metric.
Finally, the mass of the Lifshitz-Yang-Mills-dilaton black

hole is obtained:

(l’l _ 1)a)n—l
M =My =My === —5=m. (24)

where m is displayed in Eq. (18) and w,,_; is the volume of
the (n — 1)-dimensional hypersurface X. The temperature
of this black hole at the outer horizon r, may be obtained
as follows:

K 1

T = —= —

YT 2n

(n—2) 7—2 (Z+n_1) 4

— — r+ 1 r+
4z 4=t

i it
~3 (VMD)(V’/Z#)|r:r+ T 4Lt

r=ry
(n—2)els?=1)
4erZ_1;"Z++2

(25)

It shows that, unlike the lap function f(r), the temperature
has just one form for the twocases z #n —3andz = n — 3.
Using the so-called area law of entropy which is usable for
nearly most black holes [67-70], we obtain the entropy of the
Lifshitz-Yang-Mills-dilaton black hole as below:

4 T(l)n_l . (26)

We can also calculate the Yang-Mills charge of this black
hole from the Gauss law:

W1

1 /
— dn—l T F(i)F(té) — i
¢ 4ﬂ'\/(l’l—1)(ﬂ—2)/ xV T Fur) 4nL 1

(27)

In the purpose of probing the validity of the first law of
thermodynamics, we consider the mass M as a function of the
extensive parameters S and Q, where

IR A

The obtained results illustrate that the calculated value for T’
in Eq. (28) is equal to the temperature (25). So, the first law of
thermodynamics is established:

dM = TdS + UdQ, (29)

where, using the relations (18), (24), (27), and (28), the
electric potential U is obtained as follows:

U= <8M>S __(n=1)(n—2)s%2

20 i 4
1
X{_Z+n_3, forz#£n-3 (30)
In(r,), forz=n-3.
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B. Thermal stability

Here, we want to study the thermal stability of the
Lifshitz- Yang-Mills-dilaton black hole in the grand canoni-
cal ensemble for z > 1. We probe the behavior of the energy
M(S, Q) with respect to small variations of the entropy S
and charge Q. This study can specify whether the Lifshitz-
Yang-Mills-dilaton black hole exists physically or not. In
the grand canonical ensemble, the two parameters S and Q
are variables, and so the positive value of the Hessian
|

detH = —

2(z+n—=1) 16(2n—z—4)2*Q*s*72

matrix determinant may lead to thermal stability. This

matrix is found as
(%), (&%)
082 9S00
H= ¢ . 31)

PM M
(5%) (5
We obtain the Hessian matrix determinant of this black hole
[we abbreviate it to det(H)] as follows:

2(n —2)%s%72 ((z —2)L?
(-z+n-3)L%?

detH = —

zrt (n-2)

2 27—4 2744
ry L=

Z(z+n-1)

>, forz#n-3, (32)

2(n —2)*s%21In(ry) ((z —-2)L?

L4z—2 2

zrt (n—=2)r1

for z=n-3.

The obtained result in Eq. (32) shows that, for z <n —3
and z > 2, all three terms in the parentheses are non-
negative, which leads to det H < 0. Therefore, the solutions
with z <n—3 and z > 2 have no stable regions. For
z > n — 3, the phrase before the parentheses is positive,
and so the expressions in the parentheses determine the
positive value of det(H). For large values of r,, the
contribution of the second term in the parentheses gets
dominant. Since this term is positive, so the solutions with
z > n —3 may be stable for large r,. However, for small
r,, the third term has a dominant contribution. If
2n—z—4> 0, detH is positive, and if 2n —z -4 < 0,
det H is negative for small . For the solutions with z =
n—3and z > 2 in Eq. (33), det H is negative, and there is
no thermal stability.

The other necessary conditions in order to have thermal
stability in the grand canonical ensemble are the positive

’

16(2n -z - 4)ﬂ2Q2s22‘2) 64(n —2)’n* Q2s*

2z—4 ,2z+4 62—6 ,2z+4
L= L>0rs

(33)

|
values of the quantities (0°M/dS?),, and T... For a better
review on the thermal stability of the Lifshitz-Yang-Mills-
dilaton black hole, we have plotted 7', (0*M/d5?),, and
det(H) in Figs. 2—4 for L = s = 1. In Figs. 2 and 3, we just
consider the case z > n — 3, which may lead to thermal
stability. For different values of the exponent z with n = 8
in Fig. 2(a), det H is positive for all values of r_. This is in
accordance with our above statement. For these parameters,
(9°M /8S?),, is positive in Fig. 2(b), and so the sign of the
temperature determines the thermal stability. In Fig. 2(c),
there is a r, ,;,; Where 7', is positive for r, > r, .1, and
it decreases as the dynamical exponent z increases. So the
solutions with z > n — 3 and 2n — z —4 > 0 have a larger
stable region if we choose a large value for z.

In Fig. 3, we probe the thermal stability of the solutions
with different charges Q for the conditions z > n — 3 and

100 0.4
80
03
60 )
= 9
g— § 02
= S

40

0.1
20

(a) det(H)

(b) d>M/dS>

(c) TemperatureT

FIG. 2. Thermal stability with respect to r, for different z with Q0 =2 and n = 8.
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(b) d2M/dS?

(c) TemperatureT’

Thermal stability with respect to r, for different charge Q with z =7 and n = 4.

20
4
10 i o, 3
S j S
3 | 3
: 2
0 ~
12 4 6
1 r, 1
[N}
! 0=1
i --=--0=7
1 e 0=15
-10 L 0
0.6
(a) det(H)
FIG. 3.
9
6
3
To
)
<=

=

=

=

LA W

1
i
i
i

=

(a) det(H)

(b) d2M/dS?

(c) TemperatureT’

FIG. 4. Thermal stability with respect to . for different dimension n with z = 1.5 and Q = 2.

2n — z —4 < 0. In this figure, (0°M/8S?),, is positive for
all values of 7, , and so we should take a unit positive region
between T, and det(H ). The results represent that the black
hole is stable for large r, and this stable region increases if
we choose small charge values.

Although the exponent z is an integer, it may be
interesting to speak about the solutions with 1 <z < 2,
which are in the category z # n — 3. So, we have probed the
thermal stability of the solutions with z = 1.5 in Fig. 4.
This figure shows that, for the solutions with z < 2, det(H )
is positive only for dimensions n = 3, 4. For these values,
there is a r, ;,o Which the temperature is positive for
ry > Iymin2, and so thermal stability happens.

IV. CRITICAL BEHAVIOR OF THE LIFSHITZ-
YANG-MILLS-DILATON BLACK HOLE

Critical behavior is another interesting thermodynamic
issue which can be studied for a black hole. The first step in
this field was done by Hawking and Page that showed a

certain phase transition for the Schwarzschild-AdS black
hole [71]. Then, the critical behavior of the Reissner-
Nordstrom-AdS black hole was studied in Refs. [72,73].
The authors of these papers showed a first-order phase
transition similar to the van der Waals liquid gas one. In
Refs. [74-78], the cosmological constant A is considered as
a variable thermodynamic pressure, and so an analytical
equation of state such as P = P(v, T) may be obtained. A
glance at Refs. [79,80] reveals that it is not possible to have
a Smarr relation for the charged Lifshitz black holes. This
convinced the authors in Refs. [81,82] to consider both the
cosmological constant A and the square charge Q° as
thermodynamic variable parameters. It should be noted that
mass should be defined as the enthalpy of the black hole in
the extended phase space [74,83,84]. With these consid-
erations, the first law of thermodynamics in the extended
phase space is followed from

dM = TdS + VdP + ¥dQ?, (34)
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where W is referred to the conjugate of Q% with definition

oM

po () —_
(5),.

and M and Q are defined in Eqgs. (24) and (27). So, the
equation of state and the Smarr relation are obtained as
Q> = Q*(T,¥) and M = M(S, Q%, P), respectively. So, if
we consider the volume V = r/n, then its conjugate,
pressure, is obtained from Eq. (24) as

(n—1)(n—2)xs*2
(—z4n=3)L%3

—z+n-3
ry

(35)

n(n—1)r!
167L+H!

By the above definitions and Eqgs. (24)—(27), (35), and (36),
we can find a Smarr-type relation as below:

P= (36)

(z+n=3)M = (n—1)TS = 2PV + 2:¥0?,

for z# n -3, (37)

which there is no Smarr relation for the case z = n — 3. If
we substitute Eqgs. (27) and (35) in Eq. (25) and then solve
the related equation, we can obtain the equation of state

where they lead to W and the critical temperature 7'c:

—z+n-3

_(n=1)(n=2)as*7?

— _ (2—2)(1’1—2)L2 2
Yes (=z+n=3)L% < z(z+1)(z+n—1)> ’
(40)

7. et+n-1) <_ (z—2)(n—2)L? )Z
T (@=2)(z+2)aL N\ zz+ D(z+n-1))"

(41)

In order to have a real positive critical temperature, we
should choose either 1 < z < 2 or an odd number value for
z/2. As we explained in Sec. II, there is no ambiguity at
z =1, and so the thermodynamic relationships are correct
for this value. Our results show that the solutions with the
condition z/2 do not manifest any transitions, and so we
consider only the first constraint 1 <z <?2. We have
plotted the isotherms Q> —W¥ for the Lifshitz-Yang-
Mills-dilaton black hole with the condition 1 <z <2 in
Fig. 5. These figures demonstrate that there is a similarity

between the isotherms of the Lifshitz-Yang-Mills-dilaton

1337 (z—n+3)L3 3 \ = black hole and the ones in van der Waals liquid gas.
0% = — J Sy ( ] 5 2Z_2> o We can also probe the Gibbs free energy G of the
7(n—2)s (n=1)(n =2)zs obtained black hole. It may be obtained by
N L2 < (z—n+3)L¥3Y >—7+2~;—3
1672252 \(n = 1)(n — 2)ms*2 GO T) = M—TS = - (z+ 2)T3 P!
(z4n—1)L%* [ (z—n+3)L33Y \ 555 (=z+n-3)
1672 (n —2)s>72 \(n — 1)(n — 2)as*72 _ (n—-1)(n-2) 2+n=3
8z(z+n—-3)(—z+n=3)L1*
(38)
_ (n _ 1)(Z + 1) rz-‘rn—l
In order to obtain the critical points, we must apply the 8z(—z4+n-=3)Lst "+
conditions for 7 # n — 3, (42)
00? 0*Q? . . .
—| =0.—5 =0, (39) where, according to Egs. (35) and (38), r, is a function of
OF Ir, O Iz, the temperature and the square charge, r, = r, (T, 0?). We
2 —
1.5 l‘l
|
5 % :

40--12714 716 18
v

-

(a) z=12,n=3

FIG. 5.
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FIG. 6. Gibbs free energy versus Q% for s =2 and b = 1.

have also plotted G — Q? diagrams for different values of z
and n in Fig. 6. The swallowtail behavior of the diagrams
indicates that there is a first-order phase transitionfor 7’ > T'.

V. THE MAIN STRUCTURE OF THE
YANG-MILLS-DILATON BLACK HOLES
WITH A HYPERSCALING VIOLATION

In this section, we would like to extend the Lifshitz
solutions and obtain the hyperscaling violated Yang-Mills-
dilaton black holes. As we said in Sec. I, not only do these
solutions have a dynamical violation, but they also have a
hyperscaling violation, too. We rewrite this geometry as
below:

0 2E-07 4E-07 6E-07
(b)z=16,n=4
where a = —6/(n — 1) is the hyperscaling violation para-

meter. Following from the previous sections for the Lifshitz
solutions, we just consider the spherical hypersurface k = 1
to gain real solutions. If we use the field equations (8)—(10)
and consider a potential with a Liouville form for the dilaton
field

V(p) =2Ae*, (44)
then we get to a set of asymptotically Yang-Mills-dilaton

black hole solutions with a hyperscaling violation as
follows:

n—1 r
22 L2dr? d(r) = D(a+z=1)In{—|, (45
ds? — 2 _f(r)zr a2+ . r L Rde?), (43) (r) 5 Vie+D(a+z-1) n(b) (45)
L* r*f(r)
|
(n=2)Le3 2(atz-1
f(r) 14 Lz(n—2) m n (a+l)(z—n+3—(n—S%)a)rZ”H““b (et >’ fOI'Z;ﬁl’l—?)—l—(l’l—S)(X
- 2_ n— a n— 26
(z42a)(z+n=3+(n—1)a)r? =Dl _%m(%)bwﬂ—l), forz=n—-3+(n—>5)a.
(46)
where b is a constant of integration and we choose ry = 1. For the above solutions, one may find
: _ (n=DA/(a+D(a+z-1)+8(a+1) 6= a+1 £ = a+z-1
’ 4 /@t Datz=1) A Vi L L Ay
2 2(z— DA 4a+1) PR Sl PETCTRY
1 ] 2
(n=1)(n-2)2a+z+1) 7+ 2a
-1)(2 1 -1 1 4
A:—(n JRa+z+1)(z+ (n—1)(a+ )b—m’ 1= @ (47)

412

(=Dt Datz-1)
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For the limits A, « — 0 and b — s, the obtained solutions
reduce to the Lifshitz ones in Egs. (14)—(16). In order to
have the asymptotic behavior f(r) — 1 for the limit
r — oo, the two conditions z+ (n—1)(a+1) >0 and
2z + 2 4 4a > 0 should be satisfied. Also, according to the
relations in Eq. (47), the real solutions are accessible only

the solutions diverge. By these statements, if we consider
the region a > 0, all constraints are satisfied.

If we return the transformation @ = —0/(n—1), the
hyperscaling Yang-Mills-dilaton black hole solutions are
rewritten as below:

for (a + 1)(a + z — 1) > 0. They also show that we are not 1
allowed to consider the cases @ = —1 or « = 1 — z, since o(r) = 2 V(n=0-1[(z=1)(n-1)-6]In . (48)
|
(n—1)*(n—-2)L*¢3 2(z—1)—2- O 3_ 9
f(r)=1+ L*(n=1)(n-2) m (O=n+1)[(n=z-3) (n=1)=(n=5)6] > V3T oreFn=
[(n=1)z=20(z+n=3=-0)r* r=0-! %bm“)‘%lnh), for z=n—3-1=39,
—n+ T
(49)
where 6 should be negative: 8 < 0. For the above solutions, we obtain
L2(n=1)(n -
— ptn—0-1 z+n—0-3
mre) =13 + (n=1)z=20)(z+n-3-0) &
(n—1)2(n—-2)L%e3 n—z—0-3+24
T3 157+ P for 2t =3 =500 (50)
(Vl—(lg(_nn—jl))LZg rr_:_ 7—60-3+-42 152(z=1)—2 lln(r+) forz=n-3 __9
where, depending on the values of the parameters m, n, z, n=1-0
e3, and 6, the solutions may lead to a black hole with two §=-"+ 1 (53)

horizons, an extreme black hole, or a naked singularity.

VI. THERMODYNAMIC BEHAVIORS
OF THE HYPERSCALING VIOLATED
YANG-MILLS-DILATON BLACK HOLE

Now, we want to study the thermodynamic properties of
the hyperscaling violated Yang-Mills-dilaton black hole.
Using the Brown and York subtraction formalism, the mass
of this black hole is obtained as

(n—1-0)
m=""""7 1
167L"! " (51)

where m is defined in Eq. (50). The Hawking tem-
perature and the entropy of the hyperscaling violated
Yang-Mills-dilaton black hole are calculated as below:

il
AL, _,
:(z—i—n—é—l)ri (n—l)(n—Z)ri_2
4rL*H] 4r[z(n — 1) = 20]L*!
(n=1)(n = 2)e3b? =

—a
4n(0 —n+ 1)L S

T, =

+

(52)

Using the Gauss law in Eq. (27), the charge is obtained as
the following:

Q_

471'L1 z 43 (54)

It is obvious that, for & — 0, the obtained thermodynamic
quantities are reduced to Eqgs. (24)—(27). For the obtained
solutions, the first law of thermodynamics is established,
and the electric potential is followed from

_ <8M>  (n=1)(n—2)p* 2
= aQ ¢ - 2’,‘1 n+3+,z ]HLZZ_Z

n—1
« { (n—1)(n—z-3)—-0(n-5)° for z #n-=3,
In(r,),

In order to search for the physical existence of the hyper-
scaling violated Yang-Mills-dilaton black hole, we inves-
tigate the thermal stability of this black hole.

forz=n-3.
(55)

A. Thermal stability

In the attempt of probing the thermal stability of the
hyperscaling violated Yang-Mills-dilaton black hole, we
follow the formalism in Sec. III B. Therefore, we can obtain
the Hessian matrix determinant of this black hole [we
abbreviate it to Det(H)] as

104059-10
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FIG. 7. Thermal stability with respect to r, for different  with Q =1, z =28, and n = 5.
C1V2( — 2 \2p22-2 5
Detd — — 2(n=1)*(n-2)%*b r; _
[(n=1)(n—-2-3)—-0(n=5)](n—0—1)L*%"
" ((n -1D)(z=2)L*> z(z+n-6-1) 16[(n—-1)2n—z-4)—-20(n - 3)}712Q2b2z_2_112f1>
[(I’l— 1)z—20]ri (n—2)ri (n_g_ 1)L21—4riz+4_% ’
-5
for 2 #n—3-"—20. (56)
begpy 6401 = 12(n =222 Q%44 2(n—1)(n - 2)252 2 n(r )
e = — —
(I’l . 1)2L6z—6r2+z+4_% (l’l —-0- ])L4Z_2
" ((n -1)(z=2)L* z(z+n—-0-1) 16[(n—1)2n—z—-4)=20(n - 3)}7I2Q2b2z‘2_%>
[z(n—1) =20)r% (n-2)rk (n—6- I)Lzz—zxriﬁ“—% ’
n—>5
f =n-3- 0. 57
orz=n — (57)

The thermal stability of the hyperscaling black hole may
follow from a similar behavior as the Lifshitz one. For z <
n—3—"=0andz > 2, we face a negative value for Det(H)
and so there is an instability. On the other hand, if we select
the solutions with z > n — 3 — =26, Det(H) behaves differ-
ently for small and large r . For large r, , the positive second
term in the braces in Eq. (56) is dominant and so Det(H) is
positive. For small r, it depends on the value of (n —
1)(2n — z —4) — 20(n — 3) in the third term. To know more
about this case, we have plotted Det(H ), d*M/dS?, and T ,
versus 7, in Fig. 7. Itis clear from Fig. 7(a) that, for large r ,
Det(H) > 0, but for small r,, withn = 5 and z = 8, Det(H )
depends on the values of 8. For the mentioned parameters,
d*M/dS?* > 0 and a positive temperature value recognizes
the thermal stability. Our results show that the stable region
usually happens for large r, .

For 1 <z < 2, Det(H) is positive in dimensions n = 4,
5, independent of the values of . So, 6 cannot influence the
stability regions of the solutions in the range 1 <z < 2.
Also, for z=n—-3 — ﬁé’, we cannot find a substantial
stable region for the hyperscaling violated Yang-Mills-
dilaton black hole.

VII. CRITICAL BEHAVIOR OF THE
HYPERSCALING VIOLATED
YANG-MILLS-DILATON BLACK HOLE

Now, we can use of the procedure in Sec. IV and probe
the critical behavior of the hyperscaling violated Yang-
Mills-dilaton black hole. In the extended phase space, the
first law of thermodynamics obeys the rule (34), where the
volume is V = r"=%/(n — ) and
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(n=1)2(n—=2)zb%2= rn3
= r
(n®=n(0+z+4)+z+50+3)L3%3""

0(n-5)
n—1

(58)
If we consider the pressure as
_ 1yl
the Smarr relation obeys from
(z+n=-0-3)M=(n-0-1)TS—-2PV
n 2[(n—1)z —26) w0
n—1
forz;én—3—n:?9. (60)

Using Eq. (52), we can obtain the equation of state for the
hyperscaling violated black hole:

0t — _ (n—0—1)L%3T 2=
4r(n—1)(n—2)b¥2
(n—60—1)L%2 20

57 b
167%((n — 1)z — 20)p%~21
(z+n-0-1)(n—0- 1)L2Z_4 274240,
1672(n = 1)(n = 2)p%2=5

(61)

where r, is a function of ¥ in Eq. (58). The Gibbs free
energy of the hyperscaling violated Yang-Mills-dilaton
black hole is obtained from the relation

G=M-TS, (62)

Z
-
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n=4

Critical behavior of the hyperscaling violated Yang-Mills-dilaton black hole with 6 = —1.

that the critical points of this black hole are read from:

(n—1)2(n—2)ab*=

‘I’C:_[(—Z+n—3)(n—1)_9(n_5)]L3Z_3
X(‘ (n=1)(n=2)(z=2)L° >-"z"-3—é?;fi‘i
2((z4+1)(n=1)=20)(z+n—-0-1) i
(63)
7. ((n=1@+1)-26)(z+n-6-1)
o=

(z=2)((n=1)(z+2)—40)zL*"!
(n—1)(n—2)(z—2)L? ;
x (_Z((n—1)(z+1)—29)(z+n—6’—1)> - (64

We have plotted the Q% — ¥ isotherms and G — Q? dia-
grams of this black hole in Fig. 8. The isotherms behave
like the van der Waals gas, and the Gibbs free energy shows
a first-order phase transition from a black hole with small
r, to a one with large r,.

VIII. CONCLUDING REMARK

In this paper, we achieved two new sets of higher-
dimensional Lifshitz and hyperscaling violated dilaton
black holes solutions in the presence of the Yang-Mills
gauge fields. Using the Wu-Yang ansatz, we considered
three Yang-Mills gauge fields, each with SO(n) and SO
(n — 1, 1) gauge symmetric groups. In the first part of this
paper, we paid attention to the Lifshitz spacetime with a
dynamical exponent z and obtained the Lifshitz-Yang-
Mills-dilaton black hole solutions. In the second part, we
used a spacetime that, in addition to the parameter z, also
has a hyperscaling violation parameter 6. For these sol-
utions, we considered a potential with a Liouville form for
the dilaton field. The obtained results manifested that, in
order to have the asymptotic real solutions, we must
fix 6 < 0.

104059-12



LIFSHITZ AND HYPERSCALING VIOLATED ...

PHYS. REV. D 104, 104059 (2021)

The obtained field equations led to the real solutions only
for the spherical hypersurface in the AdS Lifshitz and
hyperscaling violated spacetimes. We also had to fix the
coupling constants of the two gauge fields to support the
Lifshitz and hyperscaling violated spacetimes.

For n > 3, the obtained Yang-Mills-dilaton black hole
solutions are different from the ones in the Maxwell theory.
The Maxwell-dilaton Lifshitz solutions have just one
special form for each value of z, while our obtained
Lifshitz-Yang-Mills-dilaton solutions are set in two cat-
egories with z # n — 3 and z = n — 3. This is also true for
the obtained hyperscaling violated Yang-Mills-dilaton sol-
utions, and they are divided into two parts: z #n —3 —
2=3@and z = n — 3 — 2=36. Itis clear that & = 0 implies the
Lifshitz solutions.

We also studied the physical structures of the black holes.
The solutions announce an essential singularity at the origin.
Depending on the values of the parameters m, e, z, n, and 6,
a black hole with two horizons, an extreme black hole, or a
naked singularity may form from the obtained solutions. For
the large values of the mass parameter m, it is more possible
to have a black hole with inner and outer horizons.

We also studied the thermodynamic behaviors of the
black hole solutions. We obtained the thermodynamic
quantities such as mass, temperature, entropy, charge,
and electric potential which satisfy the first law of thermo-
dynamics. We also probed the thermal stability of the
obtained solutions in the grand canonical ensemble. For
this purpose, the positive values of the quantities such as the
Hessian matrix determinant, (9>M/ 852)Q, and temperature
are necessary. The hyperscaling violated Yang-Mills-
dilaton black hole solutions with z <n —3 — Z—j@ and z >
2 are not stable, while for z > n—-3 — ;—je, the stability
depends on the values of (n —1)(2n —z —4) —20(n — 3)
and 7' ;ie., if (n — 1)(2n — z — 4) — 20(n — 3) is positive,
Det(H) (Hessian matrix determinant for the hyperscaling
violated black holes) is positive for all r,, and so a positive
temperature determines stability. However, if (n — 1)(2n —
z—4) —20(n — 3) is negative, Det(H) has a negative value
for small r, and so we should find a unit positive region
between Det(H) and 7', . For 1 < z < 2, Det(H) is positive
only for n =3, 4, and so stability happens in these
dimensions, if 7, > 0. The thermal stability of the
Lifshitz- Yang-Mills-dilaton black hole obeys from a similar
behavior, if we choose the condition 6 = 0. If we choose a
large value for the charge Q, then the Lifshitz black hole
includes a large region in thermal stability.

We also checked out the critical behavior of both black
holes. We used a method in which both the cosmological
constant A and the square charge Q? play as thermody-
namic variables and the pressure P and ¥ = OM/0Q? are
the related conjugates. We could get to a Smarr-type
formula for z#n—3 and z#n—3—-"26 in Lifshitz

n—

and hyperscaling violated spacetimes, respectively. For the

obtained solutions with 1 <z <2, we found a similar
behavior between the isotherms of the black holes (Q* — ¥
isotherms) and the ones in van der Waals gas. Also, the
obtained results indicated a small-large black hole phase
transition at the critical point for 7 > T.

In the future, we intend to use these new non-Abelian
Yang-Mills Lifshitz solutions to obtain useful information
about possible dual systems such as ferromagnet spin
currents and quark confinement. We may also extend this
study and investigate the solutions for the other gauge
groups. It is also possible to probe the Joule-Thomson
expansion and obtain the quasinormal modes of the Lifshitz
and hyperscaling violated Yang-Mills-dilaton black holes.
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APPENDIX: DETAILS OF SOME GAUGE
GROUPS

To know more, here are the details of some gauge
groups. For the four-dimensional spacetime (n = 3), the
metric is defined as below:

ds* = —r—zzf(r)dt2 + L dr? + r’de*
= 209
r2{ sin® @d¢?, for k=1, (A1)
sinh? 0dg?, for k = —1.

If we consider the coordinates (11) for k =1 and n = 3,
Xy = rsinfcos ¢,
X, = rsin@sin ¢,

X3 = rcosf,

then the gauge potentials (12) of the gauge group SO(3) are
obtained as

e
A<1) = ﬁ(xldx3 - x3dx1),
e
A(z) = ﬁ (XQd.X'3 - X3d)€2),
A(B) = %(X]d)(z - dexl).

~

By simplification, they reduce to

ALY = e(=cos ¢do + sin O cos O sin pdep),

Af,z) = —e(sin ¢pdf + sin 0 cos O cos pddp),

AY = esin? 0dp, (A2)
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where the coupling constants are C}; = C3, = C3, = -1
andy,, = diag(1, 1, 1). We also define the gauge potentials
of the SO(2,1) gauge group in the four-dimensional
spacetime with k£ = —1 as follows:

A = e(=cos ¢d6 + sinh 0 cosh Osin pdp),

A = —e(sin¢dO + sinh 6 cosh 6 cos pdep),

AY = e sinh?0dp, (A3)

where C}, = C3, = —C3, = 1 and y,, = diag(-1,-1,1).
!

If we choose the five-dimensional spacetime (n = 4),

ds? = r—zzf(r)dtz + L2
~E 270
2{ sin?@(dg?* + sin® pdy?), fork=1,
;

sinh? @(d¢p* + sin” pdy?), fork=—1,

dr* + r2do*

(A4)

then the gauge potentials of the SO(4) gauge group with
k=1 are

Af,]) = —e(sin ¢ cos ydO + sin 6 cos O(cos ¢ cos wdgp — sin ¢ sinydy)),

A,(,z) = —e(sin ¢ sinyd6 + sin 6 cos O(cos ¢ sinwdgp + sin ¢ cosydy)),

3)

Af, = —e(cos ¢dO — sin 0 cos O sin pd¢p),

AW = —esin? 0sin? pdy,

AY) = e sin? 0(cos wdgp — sin ¢ cos ¢ sinydy),

Aff) = e sin® O(sin ydg + sin ¢ cos ¢ cos wdy),

where the coupling constants are defined as

Chau=Ci=ClH=C=C =C;, =1,

and y,, = diag(1,1,1,1,1,1).

Cgs - _Cgl - Cg4 = _Cgl - Cgs = _ng =1,

(AS)

(A6)

(A7)

For the gauge group SO(3,1) with k = —1, the gauge potentials have the forms

A,(,l) = —e(sin ¢ cos ydO + sinh @ cosh O(cos ¢ cos wdgp — sin ¢ sinydy)),

A,(,z) = —e(sin ¢ sinydl + sinh @ cosh 8(cos ¢ sinydep + sin ¢ coswdy)),

Ay = —e(cos ¢d6 — sinh O cosh Osin pdgp),

A,(,4) = e sinh? @sin” pdy,

Al(f) = —e sinh? (cos ydg — sin ¢ cos ¢ sinydy),

A,(f) = —esinh?O(sinydg + sing cos pcosydy),

(A8)

(A9)

where C},=Cl,=C3,=C}=C3 =C3,=1, C{=C3,=C3,=C3,=C4=C%,=1, and y,, =diag(-1,-1,—1,1,1,1).
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