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Twistors appear to provide a satisfactory treatment of angular momentum for gravitationally radiating
systems. The approach is manifestly Bondi-Metzner-Sachs (BMS) invariant, and there are no super-
translation ambiguities. The resulting definitions of center of mass and spin are appealing: unphysical
contributions from bad cuts are canceled off from the center of mass, and the spin appears formally as a
displacement of the center of mass into the complex. For transitions between asymptotically Minkowskian
regimes (nonradiative regimes with purely electric Bondi shear), when there is no supertranslation offset
(equivalently, radation memory) between the regimes, the results are in agreement with those deducible
from other approaches. However, when there is an offset, the results are different. The twistor-derived
change-of-origin formula is closely parallel to the special-relativistic one, with an algebraic cross-product
between the energy-momentum and a direction-dependent translation derived from the supertranslation.
(No supermomenta appear.) There is also a “longitudinal” contribution to the emitted angular momentum
(one sensitive to the total energy-momentum and not just the emitted energy-momentum), and terms which
are both linear and cubic in the gravitational radiation (whereas BMS-based definitions give purely
quadratic contributions). The first-order terms mean that the supertranslation offsets can contribute to the
exchange of angular momentum with gravitational radiation, even in weak-field limits. This is illustrated
with a simple almost-special-relativistic model.
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I. INTRODUCTION

Energy-momentum and angular momentum are funda-
mental quantities in non-general-relativistic physics, and
one would like to extend them to general relativity. We may
hope an extension will give insights to what the most
important kinematic degrees of freedom are, and even
guides for how to reconcile general relativity with quantum
theory.
An important class of systems to consider are those

which are isolated and emit gravitational radiation—Bondi-
Sachs spacetimes [1–3]. A good understanding of these
would mean not just identifying the total energy-momen-
tum or angular momentum, but quantifying what is carried
off as radiation is emitted.
Bondi and Sachs, in the first papers, put forward a

definition of energy-momentum. Evidence for it has
accumulated, and it is now broadly accepted. Angular
momentum, though, has been more problematic. In fact,
several, disparate, approaches have been suggested; these
differ in what sort of quantity the angular momentum is
taken to be and how it might be applied (see Ref. [4] for a
review). Those discrepancies reflect unsettled questions
about the foundations of the subject.

The primary purpose of this paper is to give a
new treatment of one of those approaches, the twistor
one [5–8]. This proposal so far seems satisfactory, being
manifestly Bondi-Metzner-Sachs invariant, having no
supertranslation ambiguity, and providing attractive def-
initions of spin and center of mass.1 The treatment here,
while explaining the twistor motivations, is cast in
conventional spacetime terms. No prior knowledge of
twistor theory is needed.
To explain the ideas and results more fully, and espe-

cially to clarify the motivations and consequences of the
fundamentally different choices involved in different
approaches, I will begin with some background.

A. Null infinity and Bondi shear

For Bondi-Sachs spacetimes, Penrose’s future null
infinity Iþ has certain universal properties [6]. It is
naturally a bundle of affine lines over S2, and we
coordinatize Iþ ≃R × S2 as ðu; θ;ϕÞ, with u a Bondi
retarded time parameter and ðθ;ϕÞ spherical polars. Here
the sphere may be identified with the space of asymptotic
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1Relativistically, one should, strictly speaking, call this the
center of energy, and the corresponding vector the first energy
moment, but I will keep the conventional terminology.
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null directions, and each fiber is called a generator of Iþ.
The group preserving the universal structure is the Bondi-
Metzner-Sachs (BMS) group, and it is the semidirect
product of the proper orthochronous Lorentz group
(which acts naturally on S2) and the supertranslations,
of the form u ↦ ú ¼ uþ αðθ;ϕÞ for suitably smooth α. In
particular, all cuts of Iþ, that is, cross sections u ¼ zðθ;ϕÞ
for suitably smooth z, are on equal footing, as far as the
universal structure goes.
A cut u ¼ zðθ;ϕÞ can be thought of as an instant of

retarded time (demarking radiation already emitted, in the
regime u ≤ z, from degrees of freedom remaining within
the system). We thus seek the energy-momenta and angular
momenta at arbitrary cuts of Iþ. This is much more
demanding than asking for the total energy-momentum
or angular momentum.
For any Bondi-Sachs spacetime, a key quantity is the

Bondi shear σ; it has dimension length. It is usually said to
be a (spin-weight two) function on Iþ, but that is not quite
accurate; it depends also on the choice of Bondi coor-
dinates (so it is a functional of that choice and, given that
choice, a function on Iþ). Under a passive supertransla-
tion as above, it changes as σ́ ¼ σ − ð2α, where ð is an
antiholomorphic derivative in the angular directions. This
can be regarded as a gauge change, and it will be
important shortly. The shear of a cut is the value of the
shear in a Bondi system for which the cut is a constant
value of the coordinate u; a cut is called good if it is shear-
free, and bad otherwise.
The shear admits an angular potential λ, such that

σ ¼ ð2λ. In general, the potential λ must be taken to be
complex, and the parts ð2ℜλ, ið2ℑλ are called the electric
and magnetic parts of the shear.
Notice that the supertranslational freedom only affects

the electric part of the shear. (A magnetic contribution to
the shear is thus always an obstruction to finding a
good cut and to identifying a cut with one for
Minkowski space.) It is also true that the supertranslations
which are identifiable as asymptotic translations are
those with ð2α ¼ 0, so translations do not alter the shear.
(While this gives an invariant identification of the trans-
lations as a subgroup of the supertranslations, there is
no invariant sense of a “pure,” that is, translation-free,
supertranslation.)
By a regime on Iþ, I will mean the open region bounded

by two disjoint cuts (or the semi-infinite region to the future
or past of one cut, or all of Iþ).
The quantity _σ (where the overdot denotes ∂=∂u) signals

the presence of gravitational radiation. A nonradiative
regime thus has _σ ¼ 0. Nonradiative regimes with magnetic
shear are in principle possible, but are usually considered
exotic, and it is suspected that in realistic situations
they can exist only transiently. Therefore most work
assumes that the nonradiating regimes of generic interest
have u-independent purely electric shear. I will call

those Minkowskian, for reasons which will become
apparent.2

If all of Iþ is a Minkowskian regime, then one can
solve the equation σ ¼ ð2α for a supertranslation α, and
there will be a four-dimensional family of good cuts, those
which are translations of α. In fact, this family can
naturally be given the structure of Minkowski space,
and virtually all workers accept that, in such a situation,
these cuts should be interpretable as origins for angular
momentum. (Had we started from Minkowski space, the
good cuts would be the intersections of the future null
cones of points with Iþ.) If a finite Minkowskian regime
persists long enough, it will also admit a four-dimensional
family of good cuts, interpretable as an open set in a
Minkowski space, and these would be accepted as origins
for the definition of angular momentum in the regime.3

However, if there are two distinct Minkowskian regimes,
their families of good cuts will generally be relatively
supertranslated; that is, there is a supertranslation mis-
match or offset. (When the two offset regimes encompass
the u → �∞ parts of Iþ, one sometimes says the shear
lies in an infrared sector.) This means that there can be no
invariant Poincaré motion identifying the corresponding
Minkowski spaces; this is the obstruction to finding a
space of origins modeled on Minkowski space. It is tied to
gravitational radiation memory.

B. Asymptotic covectors

Bondi and Sachs gave a definition of the energy-momen-
tum PaðzÞ at any cut, which is broadly accepted and
powerful. Its successes, which involve the formula itself,
have perhaps distracted from another, highly nontrivial,
aspect of the construction: the identification of a single
asymptotic cotangent space (call it T�

Iþ ≃R4, independent
of z) in which PaðzÞ takes values [9]. This space is rather
indirectly (and, in the original papers, rather implicitly)
defined. It is not a space of asymptotically covariantly
constant covector fields, for example—there is no such
space when gravitational radiation is present. That it is
nevertheless possible to identify T�

Iþ is a consequence of the
depth of the Bondi-Sachs structure. It is the fact that the
energy-momenta for different cuts z all take values in this
one spacewhich enables us to compare them, and to say how
much is carried off in radiation.
Indeed, the space T�

Iþ is not just cut independent, but
universal, that is, it depends only on the structure common

2A stationary regime is necessarily Minkowskian, but sta-
tionarity is too strong a condition to encompass many situations
of interest. For example, if a system fissions, the corresponding
regime may well become Minkowskian but not stationary.

3We will see below that there are Minkowskian regimes
which do not persist long enough to admit good cuts, but we will
also see that in the twistor approach this distinction is not
significant.
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to all Bondi-Sachs spacetimes. This means that energy-
momenta of different spacetimes can be compared (once we
fix a BMS motion identifying their Iþ’s), just as in special
relativity we can compare the energy-momenta and angular
momenta of two independently given systems (once we fix
a Poincaré motion specifying the relation between the two
frames of reference). It is universality we tacitly appeal to
whenever we think of the energy-momentum as being
significant, not just for each Bondi-Sachs spacetime indi-
vidually, but as a quantity of interest in comparing different
systems.

C. Origins and angular momentum tensors

For angularmomentum, the situation ismore delicate, due
to its origin dependence. I will show below that the precise
way this is encoded is critical, and thatwhen twistor theory is
used, a transition to general relativity is not problematic. But
I will start with a conventional treatment.
Conventionally in special relativity, angular momentum

is a tensor fieldMabðxÞ, where x is the origin about which it
is measured. If we want a similar formulation in general
relativity, then we must go beyond defining a vector space
T�
Iþ (or its dual TIþ), and come up with some sort of affine

space to serve as the set of origins. But the integrability
conditions for such a set are even more stringent than those
for T�

Iþ.
These difficulties appear immediately. As noted above,

in a Minkowskian regime, it is generally accepted that the
four-dimensional family of shear-free cuts should be
identifiable with the set of origins, but two such regimes
will generally be relatively supertranslated. This means that
there can be no Poincaré motion satisfactorily identifying
the spaces of origins for the two regimes. The obstruction to
integrability is explicitly calculable as the gravitational
radiation memory [7].
This is a significantly negative finding, and it bears some

reflection. Differing responses to it have resulted in very
different approaches to angular momentum. Some workers
(notably Newman and followers—see [10–14] and refer-
ences therein), in effect, drop the requirement that the space
of origins be affine. Others drop the four-dimensionality,
and indeed it is most common nowadays to pass to infinite-
dimensional spaces of origins (as in the BMS-based
approaches of Ashtekar and Streubel [15,16], and of
Dray and Streubel [17,18]; the idea using the BMS group
goes back to Winicour and Tamburino [19]).

1. BMS-based approaches

The BMS-based approaches exploit the formal parallel
with the Poincaré group. To develop this, they take the
space of all cuts as the space of origins. The angular
momentum then becomes a function Mabðzact; zpasÞ of two
arbitrary cuts, an active one zact specifying the instant of
retarded time at which we wish to evaluate the kinematics,

and a passive on zpas representing the choice of origin.4

This means that even at a fixed active cut the angular
momentum is an infinite-dimensional object, and indeed
one must bring in an infinite-dimensional family of new
kinematic quantities, the supermomenta, to treat the origin
dependence.
The resulting structure is a mathematically well-defined

system of “BMS charges,” dual to the generators of the
BMS group, modeled on the duality between the Killing
vectors in Minkowski space and the energy-momentum and
angular momentum. We do need more work to be confident
that the charges Mabðzact; zpasÞ which are called angular
momenta are being interpreted properly. [The “obvious”
definitions of spin and center of mass associated with
Mabðzact; zpasÞ do not have the properties one would hope
for. The spin is translation, but not supertranslation,
invariant, in zpas, and there is an ambiguity in the center
of mass5 [20].] Related to this, the infinite-dimensional
dependence on zpas is in tension with the hope that the
angular momentum at a fixed zact should be a few key
kinematic quantities.
Because of these questions, when one tries to apply the

BMS-charge definitions, for instance, to compute the
angular momentum emitted in an interval of radiation,
one searches for low-dimensional preferred families of cuts
zact, zpas naturally determined by the circumstances, to try
to have as firm an interpretational basis as possible.
I should remark that Dray and Streubel did make use of

Penrose’s quasilocal twistor ideas in defining their charges,
and indeed there are overlaps between their results and the
twistor ones. For Minkowskian regimes (which do have
preferred cuts), they agree, but in more general circum-
stances they differ.

2. Newman-type approaches

Approaches such as Newman’s involve selecting a
family of preferred cuts, or closely related structures, with
appealing geometric properties. In effect, this family serves
as (or encodes) the choice of possible origins for angular
momentum. In some of these approaches the family is to be
four-dimensional; in some, it is to be one-dimensional (and

4This terminology is due to Szabados [4]. It does not
correspond to the usual senses of active and passive trans-
formations, but it does make a distinction which is essential
here. For a conventional special-relativistic MabðxÞ, there would
be no active dependence (because it is a total angular momen-
tum); the choice of x would be the passive dependence.

5For any cuts zact, zpas, there is a translation τ ¼ τðzact; zpasÞ,
unique up to multiples of the energy-momentum, for which the
mass moments Mabðzact; zpas þ τÞ vanish. If we interpret the
vanishing of the mass moments as giving the center of mass, we
find then that for each active cut there is an infinite-dimensional
family of centers of mass, one zpas þ τ (modulo translations along
Pa) for each zpas. These different centers of mass are all mutually
relatively supertranslated.
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represent the system’s center-of-mass world line). In all
cases, it is defined in highly nonlinear terms and depends
on the radiation.
These points mean that the space of origins is not

universal. It may not be possible to even define angular
momentum except at a restricted set of cuts (or related
structures), and it is not a priori clear how to compare
different such angular momenta. (To my knowledge, this
issue has so far only been addressed at the infinitesimal
level.) On the other hand, the structures involved do code
important parts of the dynamic spacetime geometry, in
deep ways.
Although the twistor approach I will describe will differ

essentially in that it will be universal, it will connect with
Newman’s ideas in an important way. Newman and
Winicour pointed out that, in special relativity, one could
interpret spin as a displacement of the center of mass into
the complex [21]; general-relativistically Newman consid-
ered complexifying Iþ and its cuts in his theory ofH space
[10]. We will be led to a view related to these.

D. The twistor approach

I have emphasized the origin dependence of angular
momentum as the source of the difficulties in extending it
to general relativity; in conventional formulations of special
relativity, the angular momentum is a function MabðxÞ of
the point x in Minkowski space, but there is no invariant
four-dimensional affine space of origins in a general Bondi-
Sachs spacetime.
However, the specific way the problem of origins has

appeared in this discussion—a failure to find what would be
an asymptotic Minkowksi space—is a consequence not just
of the passage from special to general relativity but also of the
particular mathematical formulation of special-relativistic
physics which has been taken as the template for the
gravitational case—the calculus of tensor fields, with space-
time the basic object. If, instead of that, we use Penrose’s
twistor theory (which at the special-relativistic level is
equivalent to conventional theory, but whose basic object
is the space T of spinors of the conformal group), the passage
to the gravitational case is natural and unproblematic.6

Special-relativistic twistor space T is a four-complex-
dimensional vector space, equipped with certain structures
(a pseudo-Hermitian form, an alternating form, and an
“infinity twistor”). From these, it is possible to recover
Minkowski space with its metric, and so special-relativistic
physics can be recast in twistor terms [6].
The special-relativistic twistors themselves (the elements of

T ) can be interpreted in different ways, in particular as certain
spinor fields but also as geometric structures on Minkowski
space. What will be most important here is that there is a

distinguished class of twistors, the real twistors (those with
a vanishing norm), which can be interpreted as pairs
Z ¼ ðγ; πA0 Þ of null geodesics γ and tangent spinors πA0 .7

This structure turns out to arise naturally when we
formulate angular momentum spinorially. Recall that each
vector index a becomes a pair AA0 of spinor indices, and
that the metric has the spinor form gAA0BB0 ¼ ϵABϵA0B0 for a
distinguished skew form ϵAB. (Primed indices signify
conjugate spinors.) The skewness of the angular momen-
tum implies

MAA0BB0 ¼ μABϵA0B0 þ μA0B0ϵAB; ð1Þ

where μA0B0 ¼ μB0A0 is the angular momentum spinor. (The
choice of μA0B0 rather than μAB is conventional, as is the
choice of a primed tangent spinor πA0 rather than an
unprimed one.) Then

For a null geodesic γ with tangent spinor πA0 , the
component μA

0B0
πA0πB0 of the angular momentum is

constant along γ.

This suggests that we take the real twistors as origins,
rather than the points in spacetime. More precisely, each
real spinor carries both origin information (the null geo-
desic γ) and information about the choice of component
(the spinor πA0). The angular momentum is naturally a
function AðZÞ on the real twistors.
How can we carry this over to general relativity? Clearly,

the concept of pairs Z ¼ ðγ; πA0 Þ applies to the Bondi-Sachs
setting (requiring the null geodesics γ to meet Iþ), so we
have at least a natural space of real twistors in their
geometric interpretation. On the other hand, Penrose’s
quasilocal twistor construction, applied at any cut z of
Iþ, produces a twistor space TðzÞ, whose elements are
defined as certain spinor fields on z, and also a formula for
Az as a function on TðzÞ [5,6]. To bring these strands
together, one shows that all the twistor spaces TðzÞ are
canonically identifiable to a space T , and that the real
twistors embed naturally in T [7].8

The result is a formula AzðZÞ for the angular momentum
at a cut z about the twistor Z ¼ ðγ; πA0 Þ, which codes both

6The situation is very much an example of the differing insights
offered by competing mathematical and physical models that
Feynman discussed in his Messenger lectures [22] (pp. 168ff.).

7A spinor πA0 is tangent to γ if the associated null vector π̄AπA
0

is tangent to γ.
8Although we will not need a detailed analysis of the space T

here, some comments may help avoid potential confusion.
Penrose’s quasilocal twistors do not generically “integrate up,”
as the cut z is varied, to spinor fields on Iþ, and so the elements
of T are not spinor fields, in the ordinary sense, on Iþ. [Rather,
each element of T defines data which would determine an
element of TðzÞ on any cut z.] The space T is not a complex
vector space, but a manifold with certain weak singularities. A
choice of cut z determines a complex-vector-space structure on
T , this structure being Penrose’s TðzÞ, but the structure does
depend on the cut.
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the origin and the choice of component. (The twistor Z
need not be specially related to the cut z.)
Some consequences of this are worth pointing out:

(a) In passing from events to null geodesics, the concept
of an origin for the measurement of angular momen-
tum is delocalized in spacetime, but it becomes
localized in twistor space.

(b) The function AzðZÞ combines the energy-momentum
and angular momentum syncretically, for as the twistor
Z is varied both of these are determined. In the special-
relativistic case, this is a compact reflection of the
physical principle that these quantities together form a
Poincaré-covariant moment map (in the language of
symplectic mechanics). In passing to general relativity,
the twistor treatment keeps a close connection between
the angular momentum and energy-momentum.

(c) Since the space of pairs ðγ; πA0 Þ is evidently BMS
invariant, it is universal. Thus there is no difficulty at
all in comparing angular momenta at different cuts—
they are functions on the same space. In this sense,
there is no supertranslation problem.

(d) On the other hand, because the space of real twistors
has a weaker structure in the general-relativistic case
than in the special-relativistic one, we do need to
elucidate the interpretation of the twistorial angular
momentum. In doing this, we will see that super-
translation issues—for example, comparing two, rel-
atively supertranslated, Minkowskian regimes—enter
differently than in BMS-based approaches, and also
that the spin and center of mass acquire qualitatively
new general-relativistic corrections.

(e) Certain additional structure is provided by the twistor
construction (analogs, for T , of the reality structure,
alternating form, and infinity twistor on T ), and these
are used in working out the detailed properties of the
angular momentum.

E. Interpretation and results

I have explained how the angular momentum can natu-
rally be represented as a function, not on spacetime points
and component indices, but on real twistors ðγ; πA0 Þ. In
special relativity, those embed in a twistor space T with
a natural linear structure, and that allows a recovery of
the usual Minkowskian treatment. In general relativity,
however, even the manifold of real twistors has a weaker
structure, because of the supertranslational freedom in
shifting generators of Iþ relative to one another. This means
that in general no asymptotic “Minkowski space of origins”
exists, and we have to develop an interpretation of the
twistorial angular momentum which does not rely on this
concept.

1. Minkowskian regimes

The simplest case is a Minkowskian regime. There, the
twistor structures actually are equivalent to the Minkowski

ones, with the points of Minkowski spaceM being the good
cuts. Also AzðZÞ is entirely independent of the choice of
cut in the regime (even if z is not a good cut), so the energy-
momentum and angular momentum are those of a special-
relativistic system onM. (These points are consequences of
the discussion in Refs. [5,6].)
Next, consider the case of two, relatively supertranslated,

Minkowskian regimes, sayR and Ŕ. There is no difficulty
at all in simply comparing the angular momenta AR and
AŔ, for they are both functions on the same twistor space
T . However, the linear structures TðRÞ and TðŔÞ will be
different, so, while the angular momentum for each regime
will appear as a quadratic form with respect to that regime’s
preferred linear structure, it will appear as a more compli-
cated function when referred to the other regime’s linear
structure. There will be no simple relation between the
Minkowski spaces MðRÞ and MðŔÞ. The angular momen-
tum AzðRÞ will not appear as a special-relativistic angular
momentum on MðŔÞ, and vice versa. The need, then,
is to give a physically comprehensible interpretation of
AR − AŔ or equivalently to express AŔ in terms of the
Minkowski structure MðRÞ and vice versa.
We will find that this comparison can be made with

something very close to the Minkowskian change-of-origin
formula. Twistor theory in effect interprets the super-
translation between the regimes as a direction-dependent
translation (the direction in question being the same as that
determined by the spinor πA0 indexing the component).
Apart from this, the form of the transformation of angular
momenta from MðŔÞ to MðRÞ is the same as the
Minkowskian one.
These results are attractive and adequate for many

questions of physical interest. They differ from BMS-based
ones: the twistor transformation formula involves only
energy–momentum (not supermomenta); it is an algebraic
(not an integral) relation; in general, there are “longi-
tudinal” contributions (terms dependent on the energy
momenta of the regimes R and Ŕ, not just the difference
in their energy-momenta).
But we are also interested in understanding the angular

momentum in dynamic regimes. For these, we cannot rely
on a Minkowskian background; we must see what other
interpretations survive general relativistically.

2. Spin and center of mass

When we interpret the angular momentum of a specific
special-relativistic system, we almost invariably pass to its
center-of-momentum frame; then the mass momentsKa are
the time-space components of the angular momentum, and
the spin is given by the space-space components Ja.
It is possible to develop a parallel analysis for the

twistorial angular momentum (at any cut). That this can
be done is technically remarkable and comes from the
algebraic properties of an intricate set of constraints in
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twistor space. The result can be viewed as a general-
relativistic counterpart of the formula for

iðJAA0 þ iKAA0 Þzπ̄AπA0 ð2Þ

as a function of the choice of asymptotically constant
spinor πA0. In Minkowski space, the formula (2) would be
the usual complex representation of the angular momentum
(times i), as an element of the complex j ¼ 1 representation
of the Lorentz group. In the general-relativistic setting, we
find a complex j ¼ 1 term, but we also find j ≥ 2 terms,
which are Mλ, where M is the mass and λ is the angular
potential for the shear (σ ¼ ð2λ).9

The interpretations of the j ≥ 2 terms turn out to be
satisfying. For the center of mass, the ℜλ term gives a
supertranslation which has the effect of canceling any
gauge contributions in the choice of active cut. (For
instance, if ℑλ ¼ 0, the effect of the ℜλ term is to make
any shear at z appear as if it is due to z being a bad cut in a
Minkowskian regime, and to define the center of mass in a
natural way using the good cuts.) The result is a well-
defined center of mass which appears to directly reflect the
physics of the situation. (Compare Ref. [20].) And if one
interprets iMℑλ as a complex supertranslation, one finds a
direct general-relativistic version of a special-relativistic
result of Newman and Winicour [21] that spin can be
interpreted as a displacement of the center of mass into the
complex.
We find then, that there are good physical reasons to

accept the shear, or its angular potential λ, as j ≥ 2
contributions to the general-relativistic angular momentum.
This means that general relativistic angular momentum
should be regarded as unifying the special-relativistic
(j ¼ 1) contributions with the shear.

3. Strength of the effects

The Bondi-Sachs formulas tell us that the rate of energy-
momentum loss is proportional to j _σj2—it is purely
quadratic in the gravitational radiation. This provides an
important limitation on radiative effects.
The situation for angular momentum is more compli-

cated. The reason is that, general relativistically, both power
and _σ are dimensionless, whereas torque has dimension
mass (or length). This means that something must set the
scale for the rate of angular momentum loss, and there are
two quantities at Iþ which might be naturally expected
to do so: the curvature coefficient ψ2, and the shear σ.
Depending on these quantities’ relative sizes, and how each
combines with the radiation _σ, various behaviors are
possible. The matter is further complicated by the gauge
character of σ.

Let us consider the change in angular momentum
between two Minkowskian regimes, and suppose (at first)
no matter is present near Iþ. If there is no supertranslation
offset between the regimes, we find the change in angular
momentum can be expressed purely as a quadratic form in
the radiation field, and indeed agrees with the formula
given by BMS-based approaches. In particular, there is no
“longitudinal” contribution.
If there is a supertranslation mismatch, we find addi-

tional terms (not present in the BMS-based approaches):
one first order, and one third order in the radiation field.
Each of these terms is explicitly proportional to the
mismatch. The first-order one is also proportional to ψ2

(a “longitudinal” contribution), whereas the third-order one
involves only the radiation and is proportional to what
might be called the emitted energy aspect

R
u1
u0

j _σj2du.
Because of the different analytic forms of these terms,

and the relative freedom in ψ2 and σ, there is no obvious
concise broad statement one can make about which
dominates, even in the case of a uniformly weak radiation
limit. (For instance, although formally the first-order term
might be expected to dominate in those cases, we have seen
that it vanishes if there is no supertranslation mismatch.)
But there are some important observations we can make.
The positive-energy theorems bound what I have called

the emitted energy aspect, and thus limit the contribution of
the third-order term (to of the order M times a quantity
involving the pointwise suprema of jΔλj, jðΔλj).
The case of a supertranslation mismatch is the generic

one. If we imagine fixing a nonzero Δλ, then in a formal
sense for sufficiently weak radiation fields (small _σ) the
first-order term will dominate, and this will be true in many
practical cases. In particular, it will describe straightforward
models of the asymptotic linearized gravitational fields of
special-relativistic systems.
Consider a special-relativistic system of localized

bodies. In the approximation that the interactions are also
localized, so that the bodies may scatter, fission, and
combine, but in between they are freely falling and not
interacting, the first-order gravitational field computed
from them will give Minkowskian regimes on Iþ when
there is no interaction, but changes in σ from one of these
regimes to another. Twistor theory gives changes in angular
momentum. In the quadrupole approximation, we find for
this first-order effect

ΔJajfirst-order; quadrupole ¼
4

15G
ϵabcψcdΔλdb ð3Þ

in standard three-tensor notation, where ψablalb is the
quadrupole contribution to ψ2 and Δλablalb is the change
in the quadrupole part of λ (with la the normalized null
vector coding the direction). Beside the derivation from
twistor theory, a direct physical argument will be given for
such terms. So an ordinary system of particles, interacting

9Because many of the quantities of interest are spin-weighted
functions, I denote the multipole by j rather than l.
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by contact forces, emits a tiny, but first-order, amount of
angular momentum in gravitational radiation with each
scattering.

4. Two technical results

There are two further results, not in themselves twisto-
rial, but of interest for Bondi-Sachs spacetimes generally,
and useful here.
The first is a clarification of a point about Minkowskian

regimes on Iþ; recall that I have defined these as having
purely electric and u-independent shear. It is commonly
asserted that one can find good cuts in such regimes. I show
here that this need not be the case; one also needs the
Minkowskian regime to persist for a sufficiently long
interval. (But it will also be shown that this distinction
is irrelevant to the twistor approach, and the same obser-
vation will help with other approaches.)
The second result is the development of an explicit

abstract-index treatment of asymptotically constant spinors
and tensors. The issue here is that for many purposes one
wants to focus simply on their multilinear structure, but the
usual formalism brings in much further detail which may
not be needed and can be distracting. For example, an
asymptotically constant spinor is, strictly speaking, defined
as a certain equivalence class of spin-weighted fields. For
some purposes, we do want that detail, but often we would
like to think of it as a unit (that is, an object whose detailed
composition is irrelevant) πA0 .
Other authors have had related concerns. Often a basis is

introduced, and then computations are done in terms of the
components. This makes the multilinearity clear, but it
breaks the invariance. The approach here is a development
of that in Ref. [6]. I will use boldface symbols (e.g., Pa,
πA0 ), for the asymptotically constant spinors and tensors as
units, whereas ordinary tensor or spinor fields on spacetime
will be lightface.

F. Plan of the paper

The next section reviews the spinorial treatment of
angular momentum in special relativity, and Sec. III gives
the results we will need from special-relativistic twistor
theory. Section IV begins the passage to general relativity,
giving the definition of asymptotically constant spinors and
their tensor algebra. Section V recapitulates the key
definitions and formulas from twistor theory at Iþ.
Section VI treats the angular momentum of

Minkowskian regimes, including the comparison of rela-
tively supertranslated ones. The distinction between
Minkowskian and strongly Minkowskian regimes is
established there, too. Section VII points out that, although
an overall Minkowski space of origins does not exist
in general circumstances, for each fixed asymptotic
direction, corresponding to a choice of component of the
angular momentum, there exists a well-defined model of
Minkowski space modulo translations in that direction.

Section VIII derives the results for spin and center
of mass.
Sections IX, X, and XI discuss the emission of angular

momentum in terms of the order of the gravitational
radiation field involved, the first one giving a preliminary
discussion, and the next two giving the first- and third-order
effects, which are the ones not found in the BMS-based
treatments.
Section XII is given to discussion. An Appendix outlines

the connection between the asymptotic structure used here
and Bondi-Sachs spacetimes.
Notation, conventions, and background. This paper

assumes a familiarity with Penrose’s null infinity and the
Geroch-Held-Penrose version of the spin-coefficient for-
malism [6]. It does review (in Sec. II) the essential algebraic
properties of two-component spinors, and the Appendix
outlines the properties of future null infinity in connection
with Bondi-Sachs spacetimes. I have not assumed any
knowledge of twistor theory. The twistor ideas essential to
this paper are explained, but for the most part known
formulas are taken from the literature.
These matters, and all necessary background material,

not otherwise noted, will be found in Penrose and Rindler
[6,23], whose notation and conventions are followed. The
metric signature is þ − −− and ϵtxyz ¼ þ1 in a right-
handed orthochronous frame. The speed of light is unity,
but Newton’s constant G is written explicitly.
The symbol

H
denotes an integral over a cut of Iþ with

respect to the area form of the Bondi system.
In many places, we will be concerned with deriving

expressions for symmetric bilinear forms, most often the
angular momentum twistor AzðZ; ŹÞ. Such a form can
always be recovered from the associated quadratic form
AzðZÞ ¼ AzðZ; ZÞ via the polarization identity AzðZ; ŹÞ ¼
ð1=4ÞððAzðZ þ Ź; Z þ ŹÞ − AzðZ − Ź; Z − ŹÞÞ, and this
will be used without comment.

II. SPECIAL RELATIVITY, SPINORS, AND
ANGULAR MOMENTUM

The problems with treating angular momentum are
associated with its position dependence. Ultimately, this
issue will be resolved by using the following special-
relativistic property: if one changes position along a given
null geodesic and examines the components selected by
spinors compatible with the null tangent to the geodesic, the
result is invariant. I will show this algebraically here,
reviewing along the way some basics of two-component
spinors. This section is entirely special relativistic.

A. Preliminaries

Recall that there are two, complex-conjugate, spin
spaces SA and SA0

, each two-complex-dimensional. Each
vector index a can be converted to a pair AA0 of spinor
indices by means of the Infeld–van der Waerden symbols
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σa
AA0

, σaAA0 . We thus write vAA
0
and even va ¼ vAA

0
for a

vector va without comment. The null vectors are precisely
those that can be written in spinor form as �π̄AπA

0
, the plus

or minus sign according to whether the vector is future or
past directed. (The overbar indicates conjugation. The
choice of πA0 as the unconjugated spinor is not important
but is compatible with twistor conventions.) If such a
null vector va is the tangent to a null geodesic, any
primed spinor proportional to πA0 , or any unprimed
spinor proportional to π̄A, is said to be tangent to the
geodesic.
Each spin space is equipped with a nondegenerate skew

form: ϵAB and ϵA0B0 . (One should, strictly speaking, write
ϵ̄A0B0 for the latter, but for certain common spinor quantities,
when there is no danger of confusion, it is customary to
omit the overbar.) We denote by ϵAB minus the inverse of
ϵAB; then we have ϵABϵ

AB ¼ 2, and spinor indices are
raised and lowered with the conventions αA ¼ ϵABαB and
αA ¼ αBϵBA. Note that the skewness of ϵAB implies
αAαA ¼ 0. The metric tensor has the spinor form
gAA0BB0 ¼ ϵABϵA0B0 .
Because spin space is only two-dimensional, there are

considerable simplifications in the symmetry properties of
quantities with a number of spinor indices. If a quantity
ϕ���AB��� is skew on two indices (both primed or both
unprimed), it is necessarily proportional to the correspond-
ing ϵAB (or ϵA0B0 ). Thus any spinor may be decomposed
over its indices of a given type (primed or unprimed) into a
sum of totally symmetric spinors and epsilon factors.
An important application of this is to spacetime two-

forms. If Fab ¼ −Fba, then its spinor form FAA0BB0 must be
a sum or parts symmetric on A and B but skew on A0 and B0,
and a term skew on A and B but symmetric on A0 and B0.
Thus we have

FAA0BB0 ¼ ϕABϵA0B0 þ ϕA0B0ϵAB; ð4Þ

where ϕAB ¼ ϕBA, ϕA0B0 ¼ ϕB0A0 (and these are Hermitian
conjugates if Fab is real). The tie between spinors
and orientation is conveniently coded in this decomposi-
tion. The two complex quantities Fþ

AA0BB0 ¼ ϕA0B0ϵAB and
F−
AA0BB0 ¼ ϕABϵA0B0 are, respectively, self-dual and anti-self-

dual:

�F�
ab ≔ ð1=2ÞϵabcdF�

cd ¼ �iF�
ab: ð5Þ

Finally, here are the conventions for components. Often
one works with a dyad oA, ιA normalized to oAιA ¼ 1. The
components of a spinor ξA with respect to this are set by
ξA ¼ ξ0oA þ ξ1ιA. It is important to appreciate that this
convention holds, whether the spinor would naturally be
defined with its index up or down, for one finds ξ0 ¼ −ξ1
and ξ1 ¼ ξ0. (To see this, note that the normalization
condition gives ϵ01 ¼ 1, whence ϵ01 ¼ 1.)

B. Angular momentum spinorially

We will be especially interested in generalizing the
special-relativistic angular momentum, which is a position-
dependent two-form:

Mabðxþ τÞ ¼ MabðxÞ þ Paτb − Pbτa; ð6Þ

where Pa is the energy-momentum. In spinor terms, one
conventionally writes

MABA0B0 ¼ μABϵA0B0 þ μA0B0ϵAB; ð7Þ

where μAB is symmetric (and position dependent). The
three complex components of this spinor code the six
relativistic angular momentum components, three of these
being ordinary angular momentum and the other three the
mass moments, which determine the center of mass.
The key algebraic property of the angular momentum

will be this: Let us consider a change of position which is
purely null: τAA

0 ¼ π̄AπA
0
. Suppose we also look at com-

ponents of the angular momentum selected by the form
πA

0
πB

0
ϵAB. Then we find

MAA0BB0 ðxþ ατÞπA0
πB

0
ϵAB ¼ MAA0BB0 ðxÞπA0

πB
0
ϵAB

þ 2αPAA0 π̄BπB0πA
0
πB

0
ϵAB

¼ MAA0BB0 ðxÞπA0
πB

0
ϵAB

¼ 2μA0B0πA
0
πB

0
; ð8Þ

in consequence of the relation πB0πB
0 ¼ 0. Thus if one

considers the component μA0B0πA
0
πB

0
of the angular

momentum, this is unaltered by changes of position along
a null geodesic with tangent π̄AπA

0
. It is easily checked that

knowledge of this quantity, for all the different events x and
spinors πA0 , determines the angular momentum and, indeed,
the energy-momentum.
So the angular momentum can be viewed as a well-

defined function on pairs ðγ; πA0 Þ, where γ is a null geodesic
and πA0 is a tangent spinor, and the energy-momentum can
be recovered from this.
Relative to a unit future-directed timelike vector ta, the

orthogonal vectors Ja and Ka representing the spatial angular
momentum and mass moment, about x, are determined by

MabðxÞ ¼ ϵcdabtcJd þ Katb − taKb: ð9Þ

If we specialize to a center-of-momentum frame, so
Pa ¼ Mta, then a short calculation shows

2itAB0μA0B
0 ¼ JAA0 þ iKAA0 ; ð10Þ

and Ja will be the spin, withKa=M (modulo Pa) the center of
mass. For this reason, the quantity 2iμA0B0 is often convenient
to work with.
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It will be helpful, for the general-relativistic case, to
relate this to the view of tensors and spinors as elements of
certain Lorentz representations of functions on the sphere.
Allowing the null vector la to represent a point on the
sphere, the function ðJa þ iKaÞla gives the familiar com-
plex j ¼ 1 representation of the angular momentum.

III. TWISTORS IN SPECIAL RELATIVITY

For our present purposes, a special-relativistic twistor
can be regarded as a spinor field ωAðxÞ satisfying the
twistor equation:

∇A0ðAωBÞ ¼ 0: ð11Þ

The solutions to this have the form

ωAðxÞ ¼ ωA
0 − ixAA

0
π0A0 ð12Þ

for constant spinors ðωA
0 ; π

0
A0 Þ, which may be regarded as

the coordinates of the twistor. We write Zα for the twistor as
a whole and T for the space of twistors. Notice that πA0 ¼
π0A0 is origin independent, but ωA

0 ¼ ωAð0Þ depends on the
choice of origin. We may call πA0 the direction spinor of the
twistor. Twistor space T ≃ C4 is the space of twistors.
It turns out that T is the space of spinors of the conformal

group of Minkowksi space, that group being 4–1
covered by SUð2; 2Þ. The pseudo-Hermitian form is
ΦðZÞ ¼ ωAπ̄A þ conjugate. (In particular, this is indepen-
dent of the choice of origin.) A twistor is said to be null or
real if ΦðZÞ ¼ 0. (The scale of the alternating symbol ϵαβγδ
is determined by the components ϵABC

0D0 ¼ ϵABϵ
C0D0

.) The
conformal invariance is broken by the infinity twistor
Iαβ ¼ −Iβα, given by IαβZαŹβ ¼ ϵA

0B0
πA0 π́B0. The subgroup

of SUð2; 2Þ preserving this covers the Poincaré group.
A twistor Zα is said to pass through a point x if

ωAðxÞ ¼ 0; such a twistor is necessarily real.
Contrariwise, if ðωA

0 ; πA0 Þ are the coordinates of a real
spinor, then (a little algebra shows) the points on it are
exactly those of the form

γAA
0 ðsÞ ¼ BAA0 þ sπ̄AπA

0
; ð13Þ

where the null impact vector

BAA0 ¼ i
ωA
0 ω̄

A0
0

ω̄C0
0 πC0

ð14Þ

is real in consequence of the reality of the twistor. These
equations show that the points on the real twistor are a null
geodesic with tangent π̄AπA

0
.10

Any point x in Minkowski space, then, has a two-
complex-dimensional space of twistors passing through it,
those with coordinates of the form ðixAA0

πA0 ; πA0 Þ. In fact,
the two-dimensional totally real subspaces of T are in one-
to-one correspondence with the points of conformally
compactified Minkowski space M#, and the ones corre-
sponding to Minkowski space M itself are those whose
nontrivial elements satisfy IαβZβ ≠ 0, that is, πA0 ≠ 0. The
metric can also be expressed in twistor terms. Thus
Minkowski space M can be recovered from twistor struc-
tures. (For the metric, see Ref. [6].)
As explained earlier, in some cases we have a candidate

space T ≃ C4 but not a pseudo-Hermitian form Φ. Then we
may identify the complex two-dimensional subspaces of T
with the points of complexified conformally compactified
Minkowski space CM#, and those whose nontrivial ele-
ments satisfy IαβZβ ≠ 0 with complexified Minkowksi
space CM, but we cannot fix a real slice, and the structure
is too weak to define a special-relativistic angular
momentum.
The core of the analysis is that the energy-momentum

and angular momentum of a special-relativistic system can
be encoded twistorially. The kinematic or angular momen-
tum twistor has coordinate form

Aαβ ¼
�

0 PA
B0

PB
A0

2iμA
0B0

�
; ð15Þ

where μA
0B0

is the angular momentum spinor with respect to
the origin. The fact that Aαβ is a twistor—that it behaves
properly under changes of origin—is due to the trans-
formation law for angular momentum. For a real twistor Zα

we have

AαβZαZβ ¼ 2iμA
0B0 ðxÞπA0πB0 ; ð16Þ

where x is any point Zα passes through. We saw earlier, as a
sort of trick of spinor algebra, that this was independent of
the choice of point along the null geodesic; now we see that
this is a consequence of natural invariances encoded in the
twistor formalism. That (16) is a scalar—in particular, that
it is origin independent—comes from the compensating
change-of-origin formulas for the twistor Zα and the
angular momentum.
More generally, if Zα and Źα are real twistors, then

AαβZαŹβ ¼ 2iμA
0B0 ðxavÞπA0 π́B0 − ði=2ÞPaxadiffπB0 π́B

0
; ð17Þ

where xaav ¼ ðxa þ x́aÞ=2, xadiff ¼ xa − x́a, with xa and x́a,
respectively, any two points in the twistors Zα and Źα [7].
It is also possible to recover the spin and center of mass

in twistor terms. This is critical for the interpretation of
angular momentum in general relativity: it will be those

10If the denominator on the right of Eq. (14) vanishes, the null
geodesic is a generator of Iþ.
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results which will show us Bondi shear as a kind of angular
momentum.
Because of this key interpretational role, I will give here

the special-relativistic formula. While this underlies essen-
tial results below, the general reader need not sort through
the details here. The points to notice are that it involves an
intricate but natural set of constraints on the twistors Zα and
Źα which appear, but that these constraints do not involve
any choice of spacetime point. (In general relativity, it will
be the counterparts of these constraints which bring the
shear into the spin and center of mass.)
Let the twistors Zα and Źα be real, and also satisfy

AαβZαZβ ¼ AαβŹ
αŹβ ¼ 0. Let Pa be the energy-momen-

tum and M the mass. Set

α ¼ iMωAπ̄A=ðPAA0
π̄AπA0 Þ; ð18Þ

ά ¼ iMώA ´̄πA=ðPAA0 ´̄πAπ́A0 Þ: ð19Þ

(These symbols should not be confused with twistor
indices.) Note that the reality of the twistors implies α
and ά are real; also note that they are origin dependent
and have dimension length. In fact, they are the values of
the Bondi retarded time at which the geodesics strike Iþ,
in the center-of-momentum frame. It turns out that one
may satisfy the constraints, with no additional freedom, by
choosing πA0 , π́A0 and the real values α, ά arbitrarily.
A direct computation shows

ðAαβZαŹβ=IαβZαŹβÞðPBB0
π̄BπB0 ÞðPBB0 ´̄πBπ́B0 Þ ¼ M

2
½ðJAA0 þ iðKAA0 þ αPAA0 ÞÞπ̄AπA0 ðPBB0 ´̄πBπ́B0 Þ

− ðJAA0 þ iðKAA0 þ άPAA0 ÞÞ ´̄πAπ́A0 ðPBB0
π̄BπB0 Þ�; ð20Þ

and knowledge of this quantity, as a function of the
allowable twistors Zα and Źα, determines the angular
momentum in the form Ja þ iKa. Inspection shows that
the real part of this identity determines the spin Ja. The
imaginary part determines the mass moment Ka (or
equivalently, the center of mass Ka=M) relative to the
coordinate origin. When we come to the general-relativistic
twistor case, there will be no sense of a coordinate origin,
but we will see that this loss of structure is compensated by
a natural reinterpretation of the formula, one which
provides a satisfying, and arguably compelling, definition
of center of mass.

IV. ASYMPTOTICALLY CONSTANT
SPINORS AND TENSORS

When gravitational radiation is present, covariantly
constant spinor and tensor fields do not exist in the limit
of passage to Iþ: Sachs peeling, a basic scaling behavior of
the curvature, implies that there are obstructions. There
does exist, however, a concept of asymptotically constant
spinor and vector fields; for instance, the Bondi-Sachs
energy-momentum is an element of the space of asymp-
totically constant covector fields. The definition of these
fields is nonlocal: it involves solving equations which are
elliptic over the sphere of directions.

A. Null infinity and rescalings

For the rest of this paper, we will be working primarily at
future null infinity, and the notation will be adapted
accordingly. From now on, except as noted, the physical
spacetime and geometric quantities associated with it will
be denoted with hats: M̂, ĝab, ∇̂a, etc.; unhatted symbols

(M, gab, ∇a, etc.) will refer to the conformal extension.
Recall that gab ¼ Ω2ĝab and that M ¼ M̂ ∪ Iþ.
We will also make use of the Newman-Penrose formal-

ism. We recall that a normalized spinor dyad oA, ιA is
introduced, so that lAA

0 ¼ oAoA
0
is the generator of affinely

parametrized null geodesics ruling the u ¼ const hyper-
surfaces, mAA0 ¼ oAιA

0
is an antiholomorphic tangent to the

u ¼ const cuts, and nAA
0 ¼ ιAιA

0
is on Iþ a null generator;

the dyad is transported parallel along la. The spin- and
boost-weight covariant derivatives are Þ, ð, ð0, Þ0 in the la,
ma, ma, na directions.
A few points to note:

(a) We will be working at Iþ (or to first order off Iþ). At
Iþ, the direction of ιA is BMS invariant, but oA depends
on the Bondi system used. This will underlie the
invariance in the choice of certain components, below.

(b) The relative scaling of the physical and unphysical
dyads will come up: we have oA ¼ Ω−1ôA, ιA ¼ ι̂A,
oA ¼ ôA, ιA ¼ Ωι̂A.

(c) We will work in a Bondi system for which na is
divergence-free, so the spin coefficient ρ0 ¼ 0 at Iþ.

B. Asymptotically constant spinors

We want to know what conditions should be considered
to characterize an asymptotically constant spinor field ξA.
The first requirement should be that, with respect to a
physical Bondi basis ôA, ι̂A, the components of ξA should
be bounded at Iþ. This means that the (rescaled) compo-
nent ξ0 will vanish in that limit. That in turn means that the
component ξ1 ¼ ξAoA will be BMS invariant (unaffected
by additions of ιA to oA).
Now let us look to which of these fields should

be considered asymptotically constant. The covariant
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constancy condition would be the vanishing of ∇̂AA0ξB ¼
∇AA0ξB − ϵA

BϒXA0ξX, but keeping all of the components of
this tangent to Iþ results in an overdetermined system (if
gravitational radiation is present). However, if we just look
at those from contractions with ιA

0
, we do get a two-

dimensional space. So we define

SA ¼ fξjξ has type f1; 0g; ðξ ¼ 0 ¼ Þ0ξg; ð21Þ

where ξ is to be thought of as the component ξ1.
The definition of SA just given is conventional [6]. It is

rather abstract in that the spinor is represented by a single
spin-weighted field. We can, however, use another of the
components of the covariant-constancy condition to asso-
ciate with it a certain equivalence class of spinor fields:

ξ ↔ ξ̂A ¼ ξιA −Ωðð0ξÞoA; ð22Þ

where ξ̂A is taken to be defined on the first formal
neighborhood of Iþ (that is, working infinitesimally to
first order off Iþ), and also only modulo terms proportional
to ΩιA. (Passing to the equivalence class is necessary for
BMS covariance.) The notation ξ̂A is meant to suggest the
physical field (or more properly, equivalence class of fields)
corresponding to the asymptotic constant spinor. We may
define ξ̂1 ¼ ξ, ξ̂0 ¼ −ð0ξ. Note that ξ̂1 may be recovered
from ð0ξ̂0, as ξ ¼ −2½ð; ð0�ξ̂1 ¼ 2ðξ̂0, using the commutator

½ð; ð0�ζ ¼ −2sζ ð23Þ

on spin-weight s quantities ζ.
Higher-valence spinors (and so vectors and tensors) can

be built up out of tensor products of the spin spaces. If we
do this literally, they become fields on products of copies of
Iþ, satisfying certain differential relations. While we will
sometimes take that point of view, more commonly it will
be useful to consider the restrictions of those fields to the
diagonal (but enforce the differential relations derived
from off-diagonal considerations), and unless otherwise
noted we do this. In particular, then, the asymptotically
constant vectors are fields v of type f1; 1g satisfying
ð2v ¼ 0, Þ0v ¼ 0.
Since asymptotic spinors are certain fields on Iþ, dual

spinors would be strictly defined in terms of distributions.
However, in practice the skew form will be used to
identify duals.

C. Abstract notation and duals

Most often in this paper, we are interested in asymp-
totically constant spinors as elements of the two-complex-
dimensional vector space SA; revisiting their definition as
fields on Iþ would, for this purpose, be distracting. It will
be helpful to have a notation which reflects this. I will use
boldface:

ξ ↔ ξA ∈ SA: ð24Þ

As a first application of this, we note that the form (22)
allows us to see that the conventional expression for the
alternating form gives a well-defined limit at Iþ:

ϵABξAξ́
B ¼ ξð0ξ́ − ξ́ð0ξ; ð25Þ

and (applying ð0) one sees this is constant. This defines ϵAB.
We will consider dual spinors to be defined by the

lowering operation: ξA ¼ ξBϵBA.

D. Dyad from a spin frame at I +

It is sometimes useful to introduce a dyad oA, ιA

associated with the spin frame oA, ιA at a particular
generator γ of Iþ. We let oA and ιA be the elements o1

and ι1 in SA with

o1jγ ¼ 0; ð0o1jγ ¼ −1; ð26Þ

ι1jγ ¼ 1; ð0ι1jγ ¼ 0: ð27Þ

These are a properly normalized basis, and ιAoB − oAιB
provides an isomorphism from the local spin space at a
point on γ to SA. We have then ξA ¼ ξ0oA þ ξ1ιA with
ξ0 ¼ ξ̂0jγ ¼ −ð0ξjγ , ξ1 ¼ ξ̂1jγ ¼ ξjγ.
Then tAA

0 ¼ ð1=2ÞoAoA0 þ ιAιA
0
is the timelike vector

associated with the Bondi frame. This asymptotically
constant vector is (by definition) the same as the field

ð1=2Þo1o1 þ ι1ι1. That field has the constant value unity,11

reflecting the normalization of the spin frame to the Bondi
system.
The map SA → SA0

given by ξA ↦ tAA
0
ξA will come up.

The image is−ð1=2ÞoA0
ξ1 þ ιA

0
ξ0, and the field whose value

at γ is ξ0 andwhose ð derivative is ð1=2Þξ1 is there. Using the
commutator relation (23), one can verify the field is

−ð0ξ ↔ tAA
0
ξA: ð28Þ

V. RESULTS FROM TWISTOR THEORY

I give here the key formulas from the twistor theory of
angular momentum which we will need. See Refs. [6,7] for
derivations.

A. Twistors at I +

Twistors in Minkowksi space were defined as solutions
to the twistor equation (11). This equation is conformally

11This can be seen by noting the field will be determined by its
value and its ð, ð0, ðð0 derivatives at any given point, and the
derivatives will vanish at the defining generator. The field is that
denoted A in [6], their Eq. (9.6.27) ff.
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invariant, and so extends meaningfully to Iþ, but it is
generally overdetermined there and has only the trivial
solution. The general-relativistic twistor space T at Iþ is
constructed by keeping only certain, geometrically distin-
guished, components of that equation, restricted to certain,
geometrically distinguished, submanifolds of Iþ.
As mentioned above, the twistor space T is a bundle over

asymptotic spin space SA0 . The base space may be
identified by taking over the components

ð0ω0 ¼ 0; Þ0ω0 ¼ 0; ð29Þ

of Eq. (11), so ω0 represents an asymptotic primed spinor12

which is identified as iπA0
. If ω0 is not identically zero,

there will be a unique generator γ ¼ γðω0Þ ¼ γðπA0 Þ of Iþ
on which it vanishes. (We will not need the case of
identically zero ω0; see Ref. [7] for that.)
The remaining degrees of freedom for the twistor are

specified by certain data on γ, essentially a complex affine
two-space which can be thought of as the values one would
like to assign to ω1 and ð0ω1 on that generator. Given any
cut z, one can use these data and Penrose’s quasilocal
twistor equation to determine a field ω1 on z.13 For
simplicity, I will work with the u ¼ const cuts of a given
Bondi system; that will be enough for the results of this
paper. Then we have well-defined fields ω1 on Iþ.
Fix, then, a Bondi coordinatization, and a potential λ for

the shear relative to that, so that σ ¼ ð2λ. (It is often
convenient to fix the freedom in λ so that it has vanishing
j ¼ 0 and j ¼ 1 terms, but that is not necessary here.) The
field ω1 has the form

ω1 ¼ ω0ðλ − λðω0 þ αðω0 þ βω0; ð30Þ

where α and β (functions only of u) evolve according to

αðuÞ − αðu0Þ ¼ u − u0 þ λðu; γÞ − λðu0; γÞ; ð31Þ

βðuÞ − βðu0Þ ¼
�
ðω0

ðω0
ðð0λðuÞ − ð0λðu0ÞÞ

�����
γ

: ð32Þ

[These formulas are derived from certain components of the
twistor equation (11).] Each twistor is then specified by 4
complex degrees of freedom ðπA0 ; αðu0Þ; βðu0ÞÞ, with the

fiber coordinates αðu0Þ, βðu0Þ depending on the Bondi
system.
The infinity twistor is given by

IðZ; ŹÞ ¼ ϵA
0B0
πA0 π́B0 ; ð33Þ

the skew form on the base space SA0 .
A twistor is real iff ℑðλðγÞ − αÞ ¼ 0. Note that

this condition is independent of u, and also that it is
highly nonlinear if ℑλ has j ≥ 2 terms, because
ℑλðγÞ ¼ ℑλðγðπA0 ÞÞ. Recall that the j ≥ 2 parts of ℑλ
can be regarded as an obstruction to identifying z with a
cut of a Minkowskian Iþ; this is reflected in the strong
nonlinearity of the reality condition for T . This will play an
essential role in the interpretation of the twistorial angular
momentum.

B. Twistor fields and tangents at I +

Recall that we want to view real twistors in two ways: as
fields, and also as null geodesics together with tangent
spinors. In the previous subsection, formulas for the fields
(for a given Bondi coordinatization) were given; here I go
over the tangent spinors.
It will help to note that there is a certain complementarity

between the concepts of angle and displacement at finite
points versus at infinity. Two null geodesics which are
asymptotically abreast and parallel (approach zero angle, in
the sense of the physical spacetime, in the asymptotic
regime) will reach the same point at Iþ. On the other hand,
those geodesics will, in the rescaled spacetime, enter that
point with distinct tangents—they will have a nontrivial
angle, in the sense of the rescaled spacetime. In terms of
the data available to us at Iþ, then, the point at which the
geodesic strikes codes the physical direction, whereas the
tangent to the geodesic at that point has information about
the impact vector.
The projection πA0 already introduced codes for the

generator γðπA0 Þ at which the twistor strikes Iþ, and hence
the physical direction. This is defined whether the twistor is
real or not.
If a twistor is real, then the field ωA vanishes at a unique

point p on γðπA0 Þ. The tangent spinor to the twistor is
denoted πA0 ; it is a local spinor at p and should be sharply
distinguished from πA0 (an element of SA0 ).14 The compo-
nents of πA0 are

π00 ¼ ið0ω1jγðπA0 Þ; π10 ¼ iðω0jγðπA0 Þ: ð34Þ

The ratio of these tells us which of the null geodesics
through p is selected.

12The reader may be concerned that it is the 0 component of the
spinor which enters here, whereas it was the 1 component at the
beginning of Sec. IV B. The resolution is that the spinor field ωA

would not be asymptotically constant, even for Minkowski
spacetime.

13But in general this field is strongly cut dependent, so for
example, two cuts which agree in a neighborhood of γ but
disagree elsewhere will in general have different quasilocal ω1

fields in the neighborhood; only their data ω1, ð0ω1 at γ will
agree.

14The near-conflict in notation is unfortunate but grows out of
standard choices in the literature.
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C. The angular momentum twistor

The angular momentum twistor is given by

AuðZÞ ¼
−i
4πG

I
fψ1ðω0Þ2 þ 2ψ2ω

0ω1 þ ψ3ðω1Þ2g

¼ −i
4πG

I
fψ1ðω0Þ2 þ 2ðψ2 þ σ _̄σÞω0ω1Þg ð35Þ

(the equality following from an integration by parts).
The Bondi-Sachs energy-momentum is

PAA0
π̄AπA0 ¼ −1

4πG

I
ðψ2 þ σ _̄σÞω0ω0: ð36Þ

By writing ω0 ¼ iπA0 ¼ iðπ00oA
0 þ π10 ιA

0 Þ, using the dyad
of the previous section, one could compute the components
of PAA0

explicitly. The same principle will apply in parallel
cases below.

VI. ANGULAR MOMENTUM IN
MINKOWSKIAN REGIMES

This section develops the interpretation of angular
momentum in Minkowskian regimes, including multiple,
relatively supertranslated, ones. This is the commonest and
one of the most important situations in which difficulties in
treating angular momentum have arisen, especially the case
of comparing the angular momenta of a system before and
after the emission of gravitational radiation. We can bring
in much more special-relativistic structure than will be
available in the general, dynamic, case.
First, a point which has lingered for some time in the

analysis of Bondi-Sachs spacetimes is cleared up. It is
shown that a regime at Iþ which is Minkowskian need
not admit good cuts; regimes which do admit good cuts will
be called strongly Minkowskian. On the other hand, it is
noted that we may as a mathematical fiction extend any
Minkowskian regime to a strongly Minkowskian one.
In any one Minkowksian regime R, twistor theory

naturally defines a Minkowski space MðRÞ and, relative to
that, a special-relativistic energy-momentum PR

a and angular
momentum μA

0B0
R . In this case, the points of the Minkowski

space are identifiable, as usual, with the good cuts in the regime
(or its strongly Minkowskian extension). The energy-momen-
tum and angular momentum are strictly independent of the
choice of active cut zact within R. These results are direct
consequences of Penrose’s quasilocal construction.
But when we come to compare the angular momentum in

two or more Minkowskian regimesRj, we must go beyond
familiar special-relativistic structures, for the Minkowski
spaces MðRjÞ will generally be relatively supertranslated.
We will show that an almost-Minkowskian transformation
law holds: in referring the angular momentum of one
regime to another, one gets a term whose form has the usual
cross-product algebraic structure, but where the translation

involved is direction dependent (that is component depen-
dent), this direction-dependent translation being essentially
the gradient of the supertranslation.
This change-of-regime term is thus a (direction-

dependent) generalization of the special-relativistic one;
it is quite different from the corresponding formula in
BMS-based approaches (a change of passive origin), since
it does not bring in the supermomenta and it is algebraic
rather than integral. It is also what has been called
longitudinal, that is, it brings in more than just the differ-
ence in the initial and final energy momenta.
Because the change-of-regime term is linear in the

supertranslation, it will contribute at first order in the
gravitational radiation. In fact, we shall see below (Sec. X)
that this is also true of the other, “pure spin,” terms when
there is a supertranslation mismatch.

A. Minkowskian and strongly Minkowskian regimes

In a Minkowskian regime R, one can solve the equation
ð2λ ¼ σ to find a u-independent real potential λ (and one
could take its j ¼ 0 and j ¼ 1 parts to vanish, if desired).
Then if a cut u ¼ λþ τ, where τ is a translation, lies inR, it
will be a good cut. It is commonly asserted that in a
Minkowskian regime one can always find good cuts, but
this is not true.
For a counterexample, suppose λ is A sinðmϕÞ around the

equator, with m ≥ 2. Then the mean value of ðλþ τÞ2 over
the equator will be ≥A2=2 for any translation τ (since τ can
have only m ¼ 0 and m ¼ 1 components, which will, as
functions on the equator, be L2 orthogonal to λ), and hence
jλþ τj must be at least jAj= ffiffiffi

2
p

at somewhere on the
equator. If R lies within the strip juj < jAj= ffiffiffi

2
p

, then no
good cut can lie inside it.
If the Minkowskian regime persists for a sufficiently

long interval, it will contain good cuts, so for example a
half-infinite in or out regime will have this property: but in
general being able to find these cuts is an extra requirement.
I will say a regime is strongly Minkowskian if we can find
a four-dimensional family of good cuts in it. Of course, one
can always mathematically extend a Minkowskian regime to
a strongly Minkowskian one, simply by replacing the shear
on as large a domain as desired with the u-independent
Minkowskian values.
The distinction between Minkowskian and strongly

Minkowskian regimes will not matter for twistor
theory—twistor theory in effect automatically makes use
of the strongly Minkowskian extension in any case. For
BMS-based approaches, the significance is mixed. The
approaches themselves, by their nature, do not single out
any class of cuts, good or otherwise. On the other hand, the
interpretation of the BMS angular momenta at bad passive
cuts is ill-understood. It is conceptually helpful to put in
“by hand” the strongly Minkowskian extension and work
with the resulting good cuts.
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B. Minkowski space model for a Minkowskian regime

In a Minkowskian regime R, there is no gravitational
radiation, and this turns out to mean the twistor equation
will be integrable to fields ωA ¼ ω0oA þ ω1ιA independent
of the slicing. [This can also be verified from Eqs. (29) and
(30).] Then the twistor space TðRÞ has canonically a
vector-space structure. There is no magnetic shear, so
the reality structure Φ arises as a pseudo-Hermitian form
on TðRÞ and there is an associated Minkowski spaceMðRÞ
which may be used for describing the energy-momentum
and angular momentum.
The kinematic twistor AzðZÞ is defined [Eq. (35)] by

integrating the two-form

ψABCDω
CώDϵA0B0 ð37Þ

over z. In the case of u-independent shear, this is

−2½ψ1ðω0Þ2 þ 2ψ2ω
0ω1�m̄½amb� þ 2ψ2ðω0Þ2l½amb�; ð38Þ

and a direct computation shows that this is closed on Iþ.
Therefore the angular momentum AzðZÞ is independent of
the (active) cut z within R. Certainly the angular momen-
tum depends on the (passive) choice of origin—but that
choice is coded in the choice of the twistor Z, not the cut at
which the integral is done. In particular, the cut need not be
a good cut, and there is no requirement the regime be
strongly Minkowskian.
To interpret this more fully, we must look at how the

Minkowski space MðRÞ is defined. If the regime R were
strongly Minkowskian, the points in the Minkowski space
would be the shear-free cuts in R. However, even if the
regime itself is only Minkowskian, the points inMðRÞ will
be the shear-free cuts of the mathematically fictive strongly
Minkowskian extension. The result of this is that, twisto-
rially, the cut z appears simply as if it were a bad cut in a
strongly Minkowskian regime; the twistorial construction
in effect automatically creates this regime with its good
cuts, and uses those as the origins.
The argument just given is rigorous but abstract. I will

next show explicitly how the details work out for good
passive cuts (but where the active cut is arbitrary), that is,
how a special-relativistic angular momentum and energy-
momentum, the appropriate transformation law, are recov-
ered. Then I will examine the angular momentum at an
arbitrary passive cut; it is there we will find the change-of-
origin formula interpreting supertranslations as direction-
dependent translations.

C. Twistors orthogonal to a cut

Suppose u ¼ z is a cut of Iþ; we should like to use
twistor structures, as well as we can, to interpret this cut as a
passive origin. That is, we should like to see if we can define
an angular momentum. If z were a good cut in Minkowski

space, then it would be the intersection of the future light
cone of a point p with Iþ, and the twistors through p, each
one of the form ðipAA0

πA0 ; πA0 Þ, would determine the
components μA

0B0
πA0πB0 of the angular momentum with

origin p.
In a more general spacetime, even if z is a good cut, there

is no guarantee that it actually is the intersection of the
future light cone of any point with Iþ. Nevertheless, there
is a natural geometric property of the Minkowskian case we
can take over: we can choose the twistors to meet the cut
orthogonally. This can be done whether z is good or not.
We find here the twistor Zðz; πA0 Þ orthogonal to z and with
projection πA0 to the base space.
We will suppose the field ω0 determining πA0 ∈ SA0 has

been fixed. Recall from Sec. VA that the twistors have the
form

ω1 ¼ ω0ðλ − λðω0 þ αðuÞðω0 þ βðuÞω0: ð39Þ

For a twistor to lie on the cut u ¼ z, we must have

αðzðγÞÞ ¼ λðzðγÞ; γÞ: ð40Þ

The null tangent to the cut is ma þ ðð0zÞna, and we require
the twistor’s tangent spinor

πA0 jγ ¼ π0
0
oA0 þ π1

0
ιA0

¼ ðiððω0ÞoA0 − iðð0ω1ÞιA0 Þjγ
¼ ðiððω0ÞoA0 þ iðð0λðω0 − iβðzðγÞÞðω0ÞιA0 Þjγ ð41Þ

to be orthogonal to the null tangent. This gives the equation

1∶ð0zjγ ¼ ððω0∶ðð0λðω0 − βðzðγÞÞðω0ÞÞjγ; ð42Þ

where the colons indicate ratios (possibly infinite), or

βðzðγÞÞ ¼ −
�
ðω0

ðω0
ð0ðz − λÞ

�
jγ: ð43Þ

In sum, given a cut u ¼ z, the twistor Zðz; πA0 Þmeeting z
orthogonally at γðπA0 Þ is given by Eqs. (39), (40), and (43).
[Recall that αðuÞ and βðuÞ are determined from their values
at any point on γ; Eqs. (31) and (32).]

D. Angular momentum at good passive cuts

In our Minkowskian regime with σ ¼ ð2λ, the good cuts
have the form u ¼ λþ τ, where τ is a translation. We may
identify

Au0ðZðλ; πA0 ÞÞ ¼ −i
4πG

I
u0

fψ1ðω0Þ2

þ 2ψ2ω
0ðω0ðλ − λðω0 þ u0ðω0Þg ð44Þ
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¼ 2iμA
0B0 ðλÞπA0πB0 ð45Þ

as 2i times the angular momentum, relative to (the passive
choice of) good cut u ¼ λ.

We will now show that the angular momentum measured
about the (passive choice of) good cut u ¼ λþ τ differs from
the above by the correct change-of-origin formula. We have

Au0ðZðλþ τ; πA0 ÞÞ ¼ Au0ðZðλ; πA0 ÞÞ þ −2i
4πG

I
u0

�
−ψ2

�
τðγÞω0ðω0 þ

�
ðω0

ðω0
ð0τ

�����
γ

ω0ω0

�	
: ð46Þ

The expression

τðγÞðω0 þ
�
ðω0

ðω0
ð0τ

�����
γ

ω0 ð47Þ

occurring in the integral above can be written as

− iτCC
0
oCoC0 ιB

0
πB0 ιA þ it1B

0
πB0τCC

0
ιCoC0oA

¼ iιB
0
πB0τCC

0
oC0 ð−oCιA þ ιCoAÞ ð48Þ

¼ −iιB0
πB0τAC

0
oC0 : ð49Þ

Thus the contribution from the integral in Eq. (46) is

−2iPAA0 ιB
0
πB0τAC

0
oC0πA0 ¼ −2iPAA0τAC

0
πC0πA0

; ð50Þ

so we have

Au0ðZðλþ τ; πA0 ÞÞ ¼ 2iμA
0B0 ðZðλ; πA0 ÞÞπA0πB0

− 2iPAA0
τAB

0
πB0πA0 ; ð51Þ

or equivalently

μA
0B0 ðλþ τÞ ¼ μA

0B0 ðλÞ − PAðA0
τAB

0Þ: ð52Þ

This is the correct special-relativistic form of the change-of-
origin transformation law, and so we see explicitly how
twistors reduce the angular momentum of a stationary
regime to the special-relativistic case. (The Dray-Steubel
BMS charges give the same result in this case, if the passive
cut is taken to be good.)

E. Angular momentum at a general passive cut

We now ask for the angular momentum at an arbitrary
passive cut z in a Minkowskian regime. As pointed out
above, this may be taken as AðZðz; πA0 ÞÞ, where Zðz; πA0 Þ is
the twistor with base πA0 and meets z orthogonally.
The key point is that (given πA0 ), this orthogonality

condition depends only on z to first order at γ. Therefore for
each γ, we may apply the previous subsection’s formulas,
with the translation τ [now τðγÞ] chosen so that λðγÞ þ
τðγÞ ¼ zðγÞ and ð0τ ¼ ð0ðz − λÞ at γ. These conditions are

τAA
0
π̄AπA0 ¼ ðzðγÞ − λðγÞÞtAA0

π̄AπA0 ; ð53Þ

τAA
0
tAB

0
πA0πB0 ¼ðð0ðz − λÞÞðιA0

πA0 Þ2: ð54Þ

We may also write the last condition as

τAA
0
tAB

0
πA0πB0 ¼ ðtBB0

π̄BπB0 ÞtAA0
πA0

∂ðz − λÞ
∂π̄A

: ð55Þ

The solution to these conditions has a natural and straight-
forward appearance, once we express the supertranslation
z − λ in a form adapted to the asymptotic spin space.
When, in the Bondi-Sachs formalism, we represent a

supertranslation by a function αðθ;ϕÞ, that function is really
the contraction of the corresponding BMS vector field with
the tetrad covector la, which is normalized by the condition
tala ¼ 1. It is convenient here to, in effect, drop this
normalization condition by contracting instead with π̄AπA0 .
To do this, extend αðθ;ϕÞ to a function of π̄AπA0 by setting

αðπ̄AπA0 Þ ¼ αðγÞðtAA0
π̄AπA0 Þ: ð56Þ

[So if αðγÞ were a translation αðγÞ ¼ vala, we would
have αðπ̄AπA0 Þ ¼ vAA

0
π̄AπA0 .]

This new function is then defined on the future null cone.
Its derivative is defined in all directions tangent to the cone,
and hence the gradient

∂
∂π̄AπA0

α ð57Þ

is well-defined modulo terms proportional to π̄AπA0
.

After a little algebra, we find

τAA
0 ðγÞ ¼ ∂ðz − λÞðπ̄AπA0 Þ

∂π̄AπA0
þ a multiple of π̄AπA0

: ð58Þ

This quantity can be viewed as a direction-dependent
translation, the direction determined by πA0 (which deter-
mines γ), modulo, for each direction, translations in that
direction. (It is not necessary for us to restrict that freedom,
but I will discuss doing so below.)
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We then have

Au0ðZðz; πA0 ÞÞ ¼ 2iμA
0B0 ðλÞπA0πB0 − 2iPAA0

τAB
0 ðγÞπB0πA0

ð59Þ

(independent of the freedom in τAA
0
). The interpretation of

this is that the angular momentum about z appears to be
what we would get by a γ-dependent translation τAA

0 ðγÞ
from the angular momentum associated with a good cut.
We cannot in this case represent the angular momentum at z
by simply a spinor μA0B0 ðzÞ, for the right-hand side of
Eq. (59) has a more complicated dependence on πA0 .
The formula (59) [together with the definitions (57) and

(58)] is the main result of this subsection. Its interpretation
is that the angular momentum in a Minkowskian regime
but at a bad passive cut acquires j ≥ 2 components. That is,
for a good cut, the angularmomentumAðZðz; πA0 ÞÞ, regarded
as a function of πA0 , lies in a pure j ¼ 1 complex representa-
tion of the Lorentz group, but for a general cut there are j ≥ 2
contributions as well.15 The j ≥ 2 contributions here are an
indication that the center of mass is supertranslated relative to
z; we will see this in more detail in Sec. VIII.
The way the supertranslation z − λ comes in is signifi-

cant. It is (as it would be for a translation in Minkowski
space) this quantity’s gradient which enters, and the form
of the change-of-origin term is (for each fixed πA0)
Minkowskian. (By contrast, for BMS charges the effect
of a supertranslation on the angular momentum involves an
integral over all directions of the supermomentum against
the action of the Lorentz generator on the supertranslation.)
A few remarks follow:
It is the formula (59) which is the most natural expression

of the angular momentum from the present point of view, but
one can ask how closely we may make this correspond to
more familiar expressions, that is, whether we could define
an angular momentum spinor at z. We could take

μA
0B0 ðZðz; πA0 ÞÞ ¼ μA

0B0 ðλÞ − PAðA0
τAB

0ÞðγÞ; ð60Þ

and in this sense one has a close parallel to the special-
relativistic formula (52), the ordinary translation being
replaced by a direction-dependent one, and so the angular
momentum spinor given a directional dependence as well.
But note that it is only the contraction μA

0B0 ðZðz; πA0 ÞÞπA0πB0

which is really defined by the arguments above, and that
μA

0B0 ðZðz; πA0 ÞÞ would itself be direction dependent.
Finally, let me comment on the freedom in the choice of

τAA
0 ðγÞ. There is no obvious way to fix this which respects

universality, but there is a natural BMS-invariant prescrip-
tion: as long as the Bondi-Sachs momentum is timelike,
one requires PAA0τAA

0 ðγÞ ¼ 0.

F. Comparison of Minkowskian regimes

In practice,we often have a systemwhich isMinkowskian
in some regimes, but emits radiation in others, and we wish
to compare the Minkowskian regimes’ angular momenta.
For instance—and this is the most-discussed case—we may
have a systemwhich emits radiation for only a finite interval,
and we want to compare the initial and final angular
momenta. (Of course, the assumption that the radiation is
only for a finite interval is an idealization—as indeed is the
assumption that Minkowskian regimes exist. Really these
are shorthand for considering limiting arguments, and
assuming that deviations from these idealizations are small.)
Each Minkowskian regime Rj will have an associated

Minkowski spaceMðRjÞ and an angular momentum spinor
field μA

0B0
Rj

defined on that space, but if there are super-

translation mismatches between the good cuts of the
different regimes, there can be no satisfactory Poincaré
identification of these Minkowski spaces. How can we
compare their angular momenta, and so meaningfully talk
of the angular momentum emitted in gravitational radiation
between Minkowskian regimes?
We may resolve this at one level by simply noting that

the twistorial angular momenta ARj
ðZÞ are all functions on

the same twistor space T , and so the differences ARk
ðZÞ −

ARj
ðZÞ are well-defined. Such a quantity represents the

angular momentum, taking as the (passive) origin the
twistor Z, emitted in passing from Rk to Rj. This would
be the most natural quantity to consider from a purely
twistorial point of view.
However, to make contact with more familiar treatments,

we would like to express the change in angular momentum
in terms of the special-relativistic data on the Minkowski
spaces MðRjÞ and MðRkÞ. This will code the same
concept, but in a different way. We know that some
non-Poincaré contribution must be involved.
We can read this off from the results above. Let λk be a

real u-independent potential for the shear in the regimeRk.
Referring all angular momenta to the regime Rj, we
express them all in terms of a choice of (passive) twistor
Zðλj þ τ;πA0 Þ. We will have

ARk
ðZðλj þ τ; πA0 ÞÞ

¼ 2iðμA0B0
Rk

ðλkÞ − PAA0
Rk

ðτA B0
kj þ τAB

0 ÞÞπA0πB0 ; ð61Þ

where τAA
0

kj ðγÞ is the angle-dependent translation correspond-
ing to the supertranslation λkðγÞ − λjðγÞ, as in Eq. (58).
We can thus think of the angular momentum of Rk

expressed in Rj as encoded in

ð2iÞ−1ARk
ðZðλj þ τÞ; πA0 Þ

¼ ðμA0B0
Rk

ðλkÞ − PAA0
Rk

τAB
0 − PAA0

Rk
τA B0

kjðγÞÞπA0πB0 ;

ð62Þ
15To see that there are no j ¼ 0 contributions, it is easiest to go

into a Bondi frame aligned with the energy-momentum.
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where the last term is the non-Poincaré contribution
involving the supertranslation of Rk relative to Rj. If
we want the difference in angular momentum in two of the
regimes, but expressed relative to our (passive) choice Rj,
we have simply to take the differences in the quantities (62)
for the two values of k.
There is an aspect of this which is worth pointing out. Let

us look at the angular momentum in Rk minus that in our
reference regime Rj, so this could in particular be the case
of the total angular momentum emitted by a system (taking
Rk the distant future and Rj the distant past at Iþ). The
difference in the angular momenta is

ð2iÞ−1ðARk
ðZðλj þ τÞ; πA0 Þ − ARj

ðZðλj þ τÞ; πA0 ÞÞ; ð63Þ

which is not antisymmetric in j and k. In other words, the
difference of the angular momentum inRk from that inRj,
expressed in terms ofMðRjÞ, is not minus the difference in
the angular momentum inRj from that inRk, expressed in
terms of MðRkÞ. The issue is the failure of a common
Minkowskian structure to exist.
The difference (63) in angular momenta is explicitly

½μA0B0
Rk

ðλkÞ − μA
0B0

Rj
ðλjÞ − ðPAA0

Rk
− PAA0

Rj
ÞτAB0

− PAA0
Rk

τA B0
kjðγÞ�πA0πB0 : ð64Þ

It is the last term in the square brackets, giving the
direction-dependent translation, which fails to be skew
in j and k. This term is also what has been called a
longitudinal contribution, meaning it depends not just on
the difference in energy momenta between the two
Minkowskian regimes, but the net energy-momentum.
Workers have considered the possibility of such terms,
but have generally used approaches which do not produce
them. (See Ref. [24], and references therein.)
One final comment: The last term in the square brackets

will not generally vanish even if the regimes Rj and Rk
are not relatively supertranslated, because λk − λj may
well be a nontrivial translation. (For instance, this will
happen if λj and λk are individually chosen to be trans-
lation-free in the frames defined by the energy momenta
in Rj and Rk, because those frames will generally be
different.) But then this term will provide the usual
change-of-origin contribution needed to compare the first
two terms.

VII. QUOTIENT MINKOWSKI SPACES

Gravitational radiation makes it impossible to assign a
consistent Minkowski structure throughout the asymptotic
regime. These difficulties are associated with trying to
reconcile the behavior of the field in different asymptotic
directions. In subsequent sections, I will take up directly the
question of interpreting this directional dependence. Here,

however, I point out that for each fixed direction for the
components—fixed πA0—one does get a Minkowski-like
structure, valid for all cuts, even when gravitational
radiation is present. These results are limited, but worth
setting out.
For each generator γ of Iþ, we may consider the space of

null geodesics ending on γ. There is a three-dimensional
family of these, which may be identified with the quotient
M=π̄AπA0 , where πA0 is the spinor labeling the generator. In
twistor space T , this is the three-real-dimensional affine
subspace of the real elements of the fiber over πA0,
determined by requiring αðu0Þ − λðγ; u0Þ ∈ R when the
twistors are specified in the form (30). That is, there is a
direct natural identification of M=π̄AπA0 with the real
elements of the fiber over πA0 .
The angular momentum, at an active cut u ¼ u0 but

referred to a (passive) such twistor Z, is given by
Au0ðZÞ=ð2iÞ. A very slight extension of the computations
of the previous section (taking into account the fact that in
a nonstationary regime the combination ψ2 þ σ _̄σ, and not
just ψ2, appears in the kinematic twistor) shows that the
effect of a translation by τ on Z is to change the parameters
α and β specifying the twistor by

Δα ¼ −τðγÞ; ð65Þ

Δβ ¼ −
ðω0

ðω0
ð0τ

����
γ

: ð66Þ

Denote this translated twistor Z þ ΔZ. Then, again from
trivial adaptations of the previous subsection, we find the
special-relativistic change-of-origin formula:

Au0ðZ þ ΔZÞ ¼ Au0ðZÞ − 2iPAA0
τAB

0
πB0πA0 : ð67Þ

So as long as we keep πA0 fixed (up to a complex
multiple), we have a special-relativistic theory of angular
momentum in M=π̄AπA0

, valid for all cuts. It is only when
we want to relate the angular momentum in one direction to
that in another (in conventional terms, when we want to
compare different components) that more exotic structures
need to be brought in.

VIII. SPIN AND CENTER OF MASS

In special relativity, the representation of the angular
momentum as a valence-two tensor (or spinor) is adapted to
bringing out its transformation properties as one passes
from one frame to another. But for a given massive system,
there is a preferred frame, that determined by its energy-
momentum, and to interpret the angular momentum one
almost invariably passes to that frame. Then the space-
space components give the spin, and the time-space
components the mass moments (or equivalently the center
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of mass). Mathematically, these are elements of two j ¼ 1
representations of the orthogonal group.
In this section, I will explain the twistor treatment of spin

and mass moments. We will see that each of these becomes
a function of angle which has j ≥ 1 components, with the
j ≥ 2 contributions due directly to the angular potential λ
for the shear. This has two important effects: It gives the
center of mass and spin geometric, and physically attrac-
tive, interpretations. And it suggests that we think of the
ordinary (j ¼ 1) angular momentum and the shear (j ≥ 2)
as two parts of a single unified concept, the general
relativistic angular momentum.

A. Special relativity

In special relativity, it is possible to recover the angular
momentum and mass moments by looking at the twistorial
quantity

AαβZαŹβ=IαβZαŹβ ð68Þ

subject to the following constraints: the twistors Zα and Źα

are real, and also satisfy AαβZαZβ ¼ 0 ¼ AαβŹ
αŹβ. (We

will see shortly that the parts πA0 and π́A0 can be chosen
arbitrarily, and there will be a further one-real-dimensional
affine freedom for each twistor.) With these assumptions, a
straightforward calculation verifies the identity

ðAαβZαŹβ=IαβZαŹβÞðPAA0
π̄AπA0PBB0 ´̄πBπ́βÞ ¼ ð1=2Þ½ð2iPA

C0μA
0C0 þ iαPbPbtAA

0 Þπ̄AπA0 ðPBB0 ´̄πBπ́B0 Þ
− ð2iPA

C0μA
0C0 þ iάPbPbtAA

0 Þ ´̄πAπ́A0 ðPBB0
π̄BπB0 Þ�; ð69Þ

for some real α, ά, encoding the freedom remaining in Zα, Źα after imposing the constraints; note that the second term in the
square brackets is the same as the first, with accented and unaccented occurrences of α and πA0 exchanged. (The notations α, ά
fit with the use of these symbols for the general-relativistic twistors in Sec. VA, at the cut corresponding to the origin.) The
quantity 2iPA

C0μA
0C0

occurring on right isMðJAA0 þ iKAA0 Þ, whereM is the mass, Ja is the spin, and Ka is the mass dipole.
We see then that

ℜðAαβZαŹβ=IαβZαŹβÞðPAA0
π̄AπA0PBB0 ´̄πBπ́βÞ ¼ ðM=2ÞððJAA0

π̄AπA0 ÞðPBB0 ´̄πBπ́B0 Þ − ðJAA0 ´̄πAπ́A0 ÞðPBB0
π̄AπA0 ÞÞ: ð70Þ

As we may choose πA0 and π́A0 freely, this determines the spin (if the energy-momentum is known).
The imaginary part of Eq. (69) brings in origin-dependent quantities (Ka, α, ά). We will want to look for a way of

interpreting this which does not require reference to a spacetime origin, but it will be helpful to understand the details of the
relation first. Choose the time axis aligned with the energy-momentum, so Pa ¼ Mta. Then

ℑðAαβZαŹβ=IαβZαŹβÞðPAA0
π̄AπA0PBB0 ´̄πBπ́βÞ ¼ ðM=2ÞððKAA0 þ αPAA0 Þπ̄AπA0 ðPBB0 ´̄πBπ́B0 Þ

− ðKAA0 þ άPAA0 Þ ´̄πAπ́A0 ðPBB0
π̄BπB0 ÞÞ: ð71Þ

We see from this that, if we are willing to make use of the
origin to identify α, ά, then we may read off the mass moment
(for instance, by setting α ¼ ά ¼ 0 and varying πA0 , π́A0 ).
Suppose we restrict the twistors to pass through the point

xa. Then we will have α ¼ −xAA0
π̄AπA0=ðtAA0

π̄AπA0 Þ (and
similarly for ά). Note that if we take xa ¼ Ka=M, we will
have α ¼ −KAA0

π̄AπA0=PAA0
π̄AπA0 and hence

ðKAA0 þ αPAA0 Þπ̄AπA0 ¼ 0: ð72Þ

This is close to saying that the expression (71) will vanish
on the center of mass. It is not quite the same, because the
center of mass for a special-relativistic system is not a
point, but a world line (with tangent Pa). We may imple-
ment this by requiring, not Eq. (72), but

ðKAA0 þ αPAA0 Þπ̄AπA0 ¼ ðconstÞPAA0
π̄AπA0 ; ð73Þ

or equivalently, the left-hand side is a pure j ¼ 0 term in the
center-of-momentum frame.

B. General relativity

Can we take the twistor constructions over to general
relativity? We may form the quantity AðZ; ŹÞ=IðZ; ŹÞ, and
we may impose the constraints [AðZ; ZÞ ¼ AðŹ; ŹÞ ¼ 0 and
Z, Ź real], but the constraints are significantly more compli-
cated, because of the strongly nonlinear reality structure. For
this reason, it is not obvious that wewill have a parallel of the
right-hand side of Eq. (69), as a difference in two comple-
mentary terms, each a product of a quantity depending on πA0

and one depending on π́A0 . Remarkably, it turns out this is
possible.
The details of the algebra are straightforward but lengthy,

and Iwill just outline the steps and give the result. For twistors
Z and Ź in our form (30), write the kinematic twistor as
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AðZ; ŹÞ ¼ 2iμA
0B0
πA0 π́B0 þ iPAA0

tAB
0 ðαπ́A0πB0 þ άπA0 π́B0 Þ

þ iPAA0 ðβ́πA0 ´̄πA þ βπ́A0 π̄AÞ; ð74Þ

where PAA0
is the Bondi-Sachs energy-momentum as before,

and

2iμA
0B0
πA0 π́B0 ¼ −i

4πG

I
fψ1ω

0ώ0þðψ2þσ _̄σÞ

× ½ω0ðώ0ðλ−λðώ0Þþ ώ0ðω0ðλ−λðω0Þ�g:
ð75Þ

[The individual terms in Eq. (74) are not Lorentz invariant,
but depend on the Bondi frame.]

We use Eq. (74) to impose the constraints AðZ; ZÞ ¼ 0,
AðŹ; ŹÞ ¼ 0. We get

2iμA
0B0
πA0πB0 þ 2iαPAA0

tAB
0
πA0πB0 þ 2iβPAA0

π̄AπA0 ¼ 0;

ð76Þ

and similarly for Ź. We use these relations to eliminate β and
β́. The requirement that the twistors Z and Ź be real, which
is where the strongly nonlinear structure enters, is that
α − λðγÞ ¼ α − λðπA0 Þ and ά − λðγ́Þ ¼ ά − λðπ́A0 Þ be real.
Using these results, it is straightforward if lengthy to

compute the quantity (69) in the general-relativistic case.
Choosing the Bondi frame to be aligned with the energy-
momentum, the result is

ðAðZ;ŹÞ=IðZ;ŹÞÞðPAA0
π̄AπA0 ÞðPAA0 ´̄πAπ́A0 Þ¼ iμA

0C0
PA

C0 π̄AπA0PBB0 ´̄πBπ́B0 þði=2ÞαMPAA0
π̄AπA0PBB0 ´̄πBπ́B0

− the samewith accented and unaccented twistor quantities exchanged: ð77Þ

(The twistor quantities are πA0 , π̄A, α, and the accented
versions of these.) We will look separately at the real and
imaginary parts of this.

1. Spin

Comparing the real parts of Eqs. (69) and (77),
and remembering that α − λ is real, we identify the
spin as16

Jðπ̄AπA0 Þ ¼ −2ℑμA0C0
tAC0 π̄AπA0 − ℑðλðπA0 ÞÞPAA0

π̄AπA0 :

ð78Þ

(Recall the frame is aligned with the energy-momentum, so
PAA0 ¼ MtAA

0
.) In special relativity, this would be a pure

j ¼ 1 quantity JAA
0
π̄AπA0 (the first term on the right), but in

general relativity there are j ≥ 2 contributions from the
second term, coming precisely from the magnetic part of
the shear. In fact, this formula identifies the potential −ℑλ
for the magnetic shear as the j ≥ 2 part of the specific

(that is, per unit mass) angular momentum.17 This formula
is an exact counterpart, in general relativity, of the
Newman-Winicour interpretation of special-relativistic spin
as a displacement of the center of mass into the complex.
Here the form of the spin corresponds to an imaginary
supertranslation by ℑλ.
Note that the expression JAA

0
π̄AπA0 , which Eq. (78)

generalizes, may be called the relativistic component of
the spin determined by π̄AπA

0
, but on account of the

signature of the metric it is minus the usual definition of
the component in the corresponding spatial direction. One
should correspondingly regard Jðπ̄AπA0 Þ as the relativistic
quantity, but minus the spin associated with the spatial
direction determined by π̄AπA0

. [In this connection, note
that ℑλ may have components of both parities, but the sign
issue here is only the overall one for Jðπ̄AπA0 Þ.]

2. Center of mass

Now let us look at the imaginary parts of Eqs. (69) and
(77). Here α and ά will enter. We find

ðℜμA
0C0
tAC0 þðℜα=2ÞPAA0 Þπ̄AπA0 ðPBB0

π̄BπB0 Þ− the samewith accented and unaccented twistor quantities exchanged: ð79Þ

Following the argument at the end of the previous
subsection, we will now aim to define the center of mass
by choosing α as a function of πA0 so that

ð2ℜμA
0
C0 tAC

0 þ ðℜαÞPAA0 Þπ̄AπA0 ð80Þ

is a pure j ¼ 0 quantity (in our center-of-momentum
frame). We will have

ℜα ¼ ðℜαÞcm;0 þ ðℜαÞcm;1 ð81Þ

as a sum of j ¼ 0 and j ¼ 1 terms, with the first arbitrary and
16Unfortunately, in Ref. [7], the sign of the ℑλ contribution is

given incorrectly in the corresponding result, its Eq. (21), and this
error is carried over to its Eqs. (23), (24), and (1).

17Any j ¼ 0 or j ¼ 1 terms included in ℑλ cancel out in the
formula (78), using Eq. (74).
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ðℜαÞcm;1 ¼ −2
ℜμA

0C0
tAC0 π̄AπA0

PAA0
π̄AπA0

: ð82Þ

We recall (from Sec. VI C) that each value of αðπA0 Þ
determines the point on the generator at which the real twistor
strikes Iþ; this defines a one-parameter family of cuts,

z ¼ u0 þ λðu0; γÞ − α

¼ u0 þℜλðu0; γÞ − ðℜαÞcm;1 − ðℜαÞcm;0; ð83Þ

where u ¼ u0 is the active cut.
Formula (83) is a main result, giving the center of mass

of the system as a one-parameter family of cuts, indexed by
ðℜαÞcm;0. Each of the cuts is supertranslated relative to the
Bondi system by ℜλ, which has the effect of canceling any
“bad gauge” choice in the active cut z ¼ u0. (For instance,
in a Minkowskian regime, this construction automatically
selects good cuts as the center-of-mass world line, even if
the active cut is bad.) There is also a j ¼ 1 contribution
ðℜαÞcm;1, which may be regarded as fixing the conven-
tional, three-dimensional, information in the center of
mass, once the gauge issues associated with the electric
shear have been taken care of. Since relativistically the
center of mass is a world line, the parameter ðℜαÞcm;0 is
arbitrary.18 That we get a well-defined world line, and that it
is insensitive to what may be considered gauge perturba-
tions of the active cut, is physically satisfying, and arguably
compelling. (Compare [20].)
The center-of-mass formula (83) is parallel to the one

(78) for the spin. Besides a conventional (j ¼ 1) term, there
are j ≥ 2 terms, coming from the shear. The center of mass
is supertranslated by ℜλ (plus j ¼ 0, 1 terms) from the
active cut; for the spin, there was a formal supertranslation
by iℑλ (plus j ¼ 0, 1 terms).
One can choose a specific cut on the center of mass

which is closest (in the sense of L2 functions on the sphere)
to the active cut z ¼ u1 by requiring the j ¼ 0 part of
ℜλðu0; γÞ − ðℜαÞcm;1 − ðℜαÞcm;0 to vanish. Then

Kðπ̄AπA0 Þ ¼ Mðz − u0Þ
¼ ðℜλðu0; γÞ − ðℜαÞcm;1 − ðℜαÞcm;0Þ ð84Þ

may be interpreted as the mass moment with respect to the
cut z ¼ u1, again parallel to the spin formula (78).

C. Angular momentum and shear

In special relativity, we may have a number of systems,
each with an energy-momentum and angular momentum
represented by a covector and a tensor field on Minkowski

space. We compare them straightforwardly in terms of
those covariant quantities, but each individually has a
preferred timelike direction (along its energy-momentum),
relative to which the spin and center of mass can be
read off.
In general relativity, the covariant quantities are the

angular momentum twistors AzðZÞ at the different cuts of
Iþ; these are straightforwardly compared. At each of these
cuts, relative to the energy-momentum we may extract the
spin and center of mass. This determination is more
involved than in special relativity, reflecting the physical
reality that the system’s natural center of mass may be
supertranslated relative to z (and the corresponding
Newman-Winicour interpretation of the spin).
Mathematically, although AzðZÞ is a quadratic form on

each vector space TðzÞ, that vector space depends on the
shear [through Eq. (30)], and when we isolate the
spin and center of mass that dependence comes in
explicitly.
Remarkably, we find that the spin and center of mass

comprise not just the j ¼ 1 quantities familiar from special
relativity, but also j ≥ 2 terms, containing the information
in the shear. In other words, general-relativistically, the
angular momentum is to be understood as comprising both
the j ¼ 1 terms and the shear.

IX. GRAVITATIONAL RADIATION AND
EMISSION OF ANGULAR MOMENTUM

A central result of the Bondi-Sachs theory is that the
energy-momentum in gravitational waves is purely
quadratic in the radiation _σ—indeed, up to a factor, one
simply projects the j ¼ 0 and j ¼ 1 components of j _σj2.
That this is second order is a main reason that energy-
momentum loss by radiation is small in most cases. It is
natural to ask what the corresponding results for angular
momentum are.
The very simple form of the Bondi-Sachs expression is

possible because both the emitted power and _σ are
dimensionless (in general relativity). Torque, by contrast,
has dimension mass (or length), and so something must set
the scale of angular momentum emission in a radiating
system. The two natural quantities with this dimension are
ψ2 and σ, and we will find that they both enter.
Two observations are worth making at this point. The

first is that σ has a gauge character, and we must take this
into account in understanding the physical degrees of
freedom. The second is that because the two dimensionful
quantities ψ2 and σ can enter, as well as the dimensionless
_σ, the question of which (if any) contributions dominate in
given circumstances may be involved. This will be
important. (In the BMS-based approaches, the only dimen-
sionful quantity to enter is σ, and the behavior is more
uniform.)
There is a further point to bear in mind, a freedom in

splitting radiative from nonradiative terms. Because the

18The freedom to add j ¼ 1 terms to λ cancels in Eq. (83),
using Eq. (75). The freedom to add j ¼ 0 terms is absorbed
by ðℜαÞcm;0.
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emitted angular momentum will depend (in general) on ψ2

and σ, and those quantities are in turn determined by (say)
their initial values at some cut as well as _σ, the details of the
formulas in general will depend on which initial cut is
chosen. Those details will not affect the main points of the
discussion, however.
With this preamble, the properties of the emitted angular

momentum can be outlined.
The change in angular momentum contains terms which

are first, second, and third order in the gravitational
radiation. This can be see by inspection of the twistor
angular momentum formula (35), taking into account the u
dependence of the twistor field ω1 [Eqs. (30), (31), and
(32)] and the evolution equations

_ψ2 ¼ −ð2 _̄σ − σ ̈σ̄ þ 4πGT111010 ; ð85Þ

_ψ1 ¼ ðψ2 − 2σð _̄σ þ 8πGTð01Þ1010 ð86Þ

(where T111010 and Tð01Þ1010 are the appropriately confor-
mally rescaled components of the stress energy for material
radiation19). If we consider changes between Minkowskian
regimes, then the first- and third-order terms are both
proportional to the supertranslation offset between the
initial and final regimes. If there is no mismatch, then
the emission is quadratic (and agrees with the BMS-based
formula).
That first-order contributions exist suggests that in the

weak-field limit angular momentum emission could be a
more significant effect than energy-momentum emission.
We will see that this is true, and that in fact there is a sense
in which the supertranslation mismatches are important
carriers of angular momentum. That third-order contribu-
tions exist suggests that there may be important strong-field
deviations from the BMS-based formula. We will see that,
while the deviations can be important, there are also bounds
on them.
These points are developed in the next sections.

X. FIRST-ORDER EMISSION EFFECTS

I consider here the change in angular momentum
between two Minkowskian regimes. Without loss of gen-
erality, we may suppose u ¼ u0 is a cut in the first regime
and u ¼ u1 is a cut in the second (extending, if necessary,
the regimes to strongly Minkowskian ones). I will also
consider the values of ψ1, ψ2, and σ at u0 to be given initial
data, their values elsewhere determined by the evolution
equations.

A. The vacuum case

Notice that, as we work to first order in _σ, there is no net
change in the Bondi-Sachs energy-momentum. A compu-
tation gives

ΔAðZÞjfirst−order¼
−i
4πG

I
2ψ2ðu0Þω0

�
ω0ðΔλ−Δλðω0

þðΔλÞjγðω0þ
�
ðω0

ðω0
ð0Δλ

�����
γ

ω0

�
: ð87Þ

The terms on the second line of Eq. (87) give a
contribution corresponding to interpreting the supertrans-
lation mismatch Δλ as a direction-dependent translation, as
in Sec. VI. They correspond to a change in the center of
mass with j ≥ 2 components only (in the frame of the
Bondi-Sachs energy-momentum).
The terms on the right-hand side of the first line of

Eq. (87) are more interesting. They give a pure j ¼ 1
change in spin,20 but that j ¼ 1 change is sensitive to the
j ≥ 2 terms in the mass aspect ψ2ðu0Þ. Since the mass
aspect changes by terms which are first order or higher in
the gravitational radiation (assuming no material radiation
is emitted), to the order of the present approximation it
could be evaluated anywhere in the interval under
consideration.
I would like to caution that there is no simple criterion

for determining how the first-order contribution compares
to the second-order ones. Although at a formal level
the first-order terms dominate in the weak-field limit, if
there is no supertranslation offset, the first-order contribu-
tion vanishes (as does the third-order one), and the
twistor definition agrees with the BMS-based, second-
order, one.
In the approximation where we keep only terms up to

quadrupoles, a computation gives

ΔJajfirst-order;quadrupole ¼
4

15G
ϵabcψcdΔλdb ð88Þ

in standard three-tensor notation, where ψablalb is the
quadrupole contribution to ψ2 and Δλablalb is the change
in the quadrupole part of λ. (Note that this is structurally
similar to the Newtonian Δr × p, with corresponding
displacements Δr and Δλab, and momentum or mass terms
p and ψab combined via a cross product.)
I will close this subsection by giving a directly physical

explanation for the j ¼ 1 part of the expression (87).
Consider a system of small bodies, which initially are all

freely falling and can be well modeled over an interval of
interest as following geodesics in Minkowski space—that
is, the mutual gravitational interactions of the bodies can be

19By material radiation, I mean stress-energy which is carried
off across Iþ.

20Since ψ2ðu0Þ and Δλ are real, and only the ω0 part of the
twistor enters.
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neglected. The bodies may well be in relative motion,
however. If we wish to measure the spin angular momen-
tum from asymptotic geometric data, we do so by working
out the linearized gravitational response. We set up a Bondi
coordinate system, choosing the time axis to be aligned
with the total energy–momentum Pa. We also choose the
Bondi system so that the u ¼ const cuts are good; that is,
we have σ ¼ 0 initially. Then we compute

2iμA
0B0
πA0πB0 ¼ −i

4πG

I
ψ1ðω0Þ2; ð89Þ

as in Sec. VI. (We have λ ¼ 0 ¼ ω1.)
Now let us suppose one of these bodies fissions into two,

which move off from each other with some relative
velocities. This fission gives rise to a brief burst of
gravitational waves. We will assume that _σ is nevertheless
very small. Then we may neglect the energy radiated in the
waves, relative to all the masses and kinetic energies which
appear. In particular, the Bondi-Sachs energy-momentum
Pa will not change, to this approximation.
We want the spin angular momentum after the emission

of radiation. In this regime, the u ¼ const cuts will now
have a shear σ, purely electric and u independent, so these
will no longer be good cuts. We may pass to the good Bondi
coordinate ú ¼ u − λ (where ð2λ ¼ σ), and compute the
angular momentum in this new Bondi frame. To do this, we
find the curvature components (after the fission, and in the
new frame). There are contributions from both the evolu-
tion of the system and the change in spin frame (although
some of these vanish).
We will have

ψ́2jafter ¼ ψ2jbefore − ð2σ̄ ð90Þ

and

ψ́1jafter ¼ ðψ1 − λ _ψ1 − 3ððλÞψ2Þjbefore ð91Þ

¼ ðψ1 − λðψ2 − 3ððλÞψ2Þjbefore ð92Þ

(to this order). Thus the net change to 2iμA
0B0
πA0πB0 will be

2iΔμA0B0
πA0πB0 ¼ −i

4πG

I
fð−λðψ2−3ððλÞψ2Þðω0Þ2g

¼ −i
4πG

I
f−2ððλÞψ2ðω0Þ2þ2λψ2ω

0ðω0g;

ð93Þ

in agreement with the first line of Eq. (87).
In other words, the supertranslation mismatch gives rise

to a change in the spin because of the need to choose
a geometrically favored coordinate system (with good
u ¼ const cuts) to apply the simple formula (89) for
the spin.

It should be clear that this argument does not really
depend on the special-relativistic system being composed
of small bodies and changing by fission. What was actually
used was just that one had a transition from one
Minkowskian regime to another, that it was enough to
work to first order in _σ, and that no material radiation
escaped the system.

B. Mixed matter-radiation contribution

Material contributions do not appear explicitly in the
twistor formula for AzðZÞ, but they do enter when we
compute differences ΔAðZÞ, through the evolution equa-
tions (85) and (86) for ψ1 and ψ2. If we, as before, regard
initial data as given at u ¼ u0 and now both _σ and the
asymptotic values of the components of the stress–energy
as determining the geometry elsewhere at Iþ, we find the
additional material terms

ΔAðZÞjmatter ¼ −2i
I Z

u1

u0

½Tð01Þ1010 ðω0Þ2

þ T111010ω
0ðαðuÞðω0 þ βðuÞðω0Þ�du: ð94Þ

What is noteworthy here is that the second line of
formula (94) depends on the gravitational radiation field,
through αðuÞ and βðuÞ. The terms coupling the material to
the gravitational radiation are explicitly

ΔAðZÞjmixed ¼ − 2i
I Z

u1

u0

T111010ω
0

�
λðu; γÞðω0

þ
�
ðω0

ðω0
ð0λ

�����
γ

ω0

�
du; ð95Þ

where λ is determined from _σ. The terms in the expression
(95) are thus bilinear, in the stress energy and the
gravitational radiation. Note that the expression is sensitive
to the values of the potential λ throughout the radiative
interval, and not just to the supertranslation mismatch of the
ends. (In particular, it will generally bring in the magnetic
part of the shear.) Its angular dependence may also be quite
complicated, because of the highly nonlinear dependence
of λ on πA0 . These points mean that in particular this term
could produce j ¼ 1 contributions to both the spin and the
center of mass (as well as j ≥ 2 contributions).
As was the case for the purely gravitational first-order

term, there is no simple criterion for comparing the relative
sizes of the mixing term (95) with the quadratic effects.
Very roughly, the question would be how G times what we
may call the emitted material aspect

R
u1
u0

T111010du compares
with typical values of the shear within the period of
gravitational radiation.
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XI. THIRD-ORDER EFFECTS

The third-order contribution to the emitted angular
momentum is

ΔAjthird−order ¼
−2i
4πG

I �Z
u1

u0

j _σj2du
�
ω0

�
ω0ðΔλ

− ðΔλ − ΔλjγÞðω0 þ
�
ðω0

ðω0
ð0Δλ

�
jγω0

�
;

ð96Þ

where Δλ ¼ λðu1Þ − λðu0Þ. This formula has a number of
interesting properties: (a) It is explicitly proportional to
what I have called the emitted energy aspect (the inner u
integral). (b) It is also explicitly proportional to the differ-
ence Δλ in the angular potential for the shears, which is the
supertranslation mismatch between the bounding regimes.
(c) It depends only on the projection ω0 of the twistor to the
base space, not on the twistor’s position within the fiber. In
this sense, the contribution is “pure” angular momentum.
(d) A little work shows the j ≥ 2 contribution to be purely
electric, that is, to affect the center of mass but not the spin.
(For the j ¼ 1 terms, in general the question of which are
electric and which are magnetic is frame dependent.)
Combining points (a) and (b), we see that the third-

order term is essentially bounded by the radiated energy
times a pointwise supremum of a quantity constructed
from Δλ and ðΔλ (and ω0). The third-order term is
formally close to the first-order one (87), with the
radiation mass-aspect replacing ψ2, suggesting that in
many cases it will be bounded by (roughly) the first-order
term (87), but, because of the different angular depend-
ences of the radiation mass aspect and ψ2, this is only an
observation from which to start more careful analyses of
particular cases.

XII. DISCUSSION

When we attempt to treat angular momentum in general
relativity, we seek to extend a familiar idea to a qualitatively
new realm of physical conception. We have no assurance
that success is possible, and we cannot even be very precise
about what success would mean. We hope to uncover
structure which will provide us with new physical insights;
in particular, we hope to identify specially important
quantities.
It is natural to approach this problem by asking what, at

the deepest level we presently understand, seems to underly
angular momentum and conserved quantities generally.
This, though, leads immediately to a foundational conflict:
we are used to thinking of energy-momentum and angular
momentum as conjugate to isometries of spacetime, but it is
precisely those invariances which are discarded as we pass
to general relativity.

There are different reasonable responses to this. One
might seek formal structures in general relativity analogous
to the isometries, and aim to base the treatment on those;
we may regard the BMS charges as the result of such a
program. But alternatively we can take the conflict as a
signal that we should reconsider our ideas about what the
bases of the theory are. The group-theoretic understanding,
which we have supposed foundational, may rather be an
especially beautiful specialization, to the Minkowski-space
case, of some other, less obvious, structure existing in
general relativity.

A. The twistor proposal

Underlying the proposal developed here were two main
ideas: that the most useful property of angular momentum
is its comparability between different systems (or between
different configurations of one system), for this is what is
needed to formulate a statement of conservation; and that
Penrose’s remarkable quasilocal twistor construction seems
to capture something deep about general-relativistic kin-
ematics. To meld these, one looks for a universal twistor
structure at Iþ, that is, a twistor space which is defined
only in terms of the structure common to all Bondi-Sachs
spaces.
There is a distinguished class of twistors, the null or real

twistors, which can be identified with pairs ðγ; πA0 Þ of
a null geodesic and a tangent spinor. These are closely
linked to angular momentum, for in special relativity the
component

μA
0B0
πA0πB0 ð97Þ

of the angular momentum selected by πA0 is independent of
the choice of origin along γ. This suggests viewing the
angular momentum, not as a skew tensor-valued field
MabðxÞ on spacetime points, but as a function AðZÞ on
twistor space. Each twistor carries some information about
a spacetime origin (the geodesic) and a choice of complex
component (the spinor).
Making use of Penrose’s quasilocal twistor construction,

we can carry these ideas over to general relativity. We can
define a twistor space T , which is BMS invariant, indeed
universal for Bondi-Sachs spacetimes. The angular
momentum at any cut z is a function AzðZÞ on this space,
and so angular momenta at different cuts are directly
comparable.
Because the universal structure on T is weaker than that

in special relativity, we must explain how the function
AzðZÞ is related to more familiar concepts, of the angular
momentum as a tensor or spinor field, of spin and center
of mass. We know we cannot recover those structures
unchanged, but we do want to be able to view their general-
relativistic forms as physically comprehensible modifica-
tions of the special-relativistic case.
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The simplest situations are the Minkowskian regimes. In
any such one R, the theory creates an associated
Minkowski space MðRÞ, and the energy-momentum Pa
and angular momentum μA0B0 can be viewed as those of a
special-relativistic system on MðRÞ. This space, Pa, and
μA0B0 are independent of the choice of active cut in R. (In
particular, the center-of-mass world line is unambiguously
defined.)
Whenwe compare relatively supertranslatedMinkowskian

regimes, twistors give a formula which is an understandable
extension of the special-relativistic one. The effect of the
supertranslation is to contribute a change-of-origin term
which has the familiar algebraic cross-product structure, with
one factor being the energy-momentum and the other a
direction-dependent translation derived from the supertrans-
lation. This gives two, related, qualitatively new features.
First, the direction dependence of the translations in the
change-of-origin terms means that when we refer the angular
momentum of one Minkowskian regime to the Minkowski
structure of another, it acquires j ≥ 2 terms. Second, the
difference in angular momenta has a “longitudinal” contri-
bution proportional to the supertranslation mismatch.
At any cut (whether in a Minkowskian regime or not), we

found that the spin and center of mass could be computed.
Each of these had a familiar j ¼ 1 contribution, but also
j ≥ 2 terms, coming from the angular potential for the
Bondi shear. For the center of mass, these extra terms gave
a supertranslation which amounted to canceling what we
would like to regard as any spurious contributions arising
from a supertranslation of the active cut z relative to good
cuts. The j ≥ 2 parts of the spin were interpretable as a
supertranslation of the center of mass into the complex, in
keeping with a special-relativistic observation of Newman
and Winicour. (For some more general comments on the
connection between complex displacements and angular
momentum, see Ref. [25].)
This leads to a curious situation, where we have a strong

physical argument for the correctness of the center of mass,
and a strong mathematical coherence which makes us take
the spin result seriously—but we do not at this point have a
full physical understanding of the spin.
An especially interesting facet of this is its parity

properties (mentioned at the end of Sec. VIII.B.1), which
also underscore the difference between the twistor and the
BMS approaches. Let lAA0 ¼ π̄AπA0 , and let ĺAA0 be the
null vector with the spatial part reflected. Then we have in
general JðĺaÞ ≠ −JðlaÞ; that is, the spin as a function of
direction need not be parity odd, because there may be
parity-even parts of ℑλðlaÞ.
This is arrestingly different from special relativity and

from the BMS-charge results. There is no argument against
it in the present context, however. (The reason, usually, that
the angular momentum is parity odd is that it is taken to be

the conjugate to rotations, and a rotation in the positive
sense about a direction is the same as the rotation in the
negative sense about the opposite direction. But here
the direct link with rotations is not present.) Moreover,
the corresponding result for the center of mass (that the
supertranslation ℜλ may have parity-even parts) does not
seem problematic at all. Still, these comments show us only
that there is no basic contradiction in the twistor spin
having even-parity parts; they do not provide a physical
elucidation of this possibility.
There were significant departures from the BMS-based

formulas for the emission of angular momentum. Whereas
the BMS-based formulas were quadratic in the gravita-
tional radiation, the twistor formulas had first- and
third-order terms, present when there was a supertrans-
lation offset of the shear in the period after the radiation to
the period before; there was also an interesting mixed
gravitational radiation-radiated stress-energy term. One
consequence of these formulas is that the first-
order offsets in shear are consistently interpreted as
exchanges of angular momentum with the gravitational
radiation field. This was discussed in some detail in
the case of the first-order corrections derived from a
special-relativistic system, and it was shown that this
measure of angular momentum arose in a physically
natural way.
The twistor definition should not be regarded as divorced

from, much less in opposition to, group-theoretic structure—
it is rather a question of which group comes in, and how. One
could say that in the twistor approach the Poincaré structure
is minimally weakened in order to adapt to general relativity.
[This comes through in the existence of the quotient
Minkowski spaces M=π̄AπA0 , in the existence of twistor
space T as a manifold, and in the way AzðZÞ comprises
energy-momentum and angular momentum.] By contrast,
the BMS-based approaches make the transition to general
relativity, not by what one can view as a single weakened
Poincaré structure, but by introducing an infinite-dimen-
sional family of Poincaré groups.

B. Degrees of freedom

It is worth understanding just what degrees of freedom
are counted as angular momentum, and how these are
related to the geometry.
Penrose showed that, for each active cut z, the function

AzðZÞ was determined by a ten-real-dimensional set of
parameters, comprising the Bondi-Sachs energy-momen-
tum and six further ones, which we interpret as angular
momentum. But this is relative to the linear structure TðzÞ,
which depends on the shear. In other words, the particular
10 real degrees of freedom depend on the cut chosen,
through the shear. In fact, this linear structure is equivalent
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to the shear [for one can recover σ ¼ ððω1Þ=ω0, indepen-
dent of the twistor chosen]. Thus a fuller statement is that
AzðZÞ codes ten real parameters, relative to knowledge of
the shear.
When we evaluate, not just AzðZÞ, but the spin and the

center of mass, we impose reality conditions on the
twistors, and the shear enters more explicitly: in fact, all
the infinite-dimensional degrees of freedom of the shear, at
the active cut, are interpreted as parts of the general-
relativistic angular momentum. We have a strong motiva-
tion for accepting this interpretation, for it is what enables
the twistor definition to compensate for “bad” contributions
to the choice of active cut.
When we compare angular momenta at different cuts, we

must take into account their differing shears. The function
AzðZÞ − AźðZÞ will not be quadratic with respect to either
TðzÞ or TðźÞ, in general; it will be highly nonlinear. It has a
well-defined existence on the universal twistor space T , but
the possible such functions form an infinite-dimensional
family.
We may compare this with the BMS charges. Each of

these approaches brings in, in some sense, an infinite
dimensionality to the conserved quantities, even at a given
active cut: the twistors bring in the shear; the BMS charges
the supermomenta (equivalently, the passive cuts). The
characters of these are rather different, in that the shear
may be viewed as coding a conformally covariant part of
the second fundamental form of the cut (that is, its first-
order extrinsic geometry), whereas the supermomenta
code the mass aspect (a second-order piece). We have
seen that j ≥ 2 contributions to the twistor angular
momentum come in precisely in the shear; for the BMS
charges, for fixed zact and zpas, there are no j ≥ 2 parts, but
the effect of the different choices of zpas comes in through
the j ≥ 2 parts of the mass aspect. (The twistors at any one
cut only bring in a finite amount of information about the
mass aspect.)

C. Connection with canonical relativity

Underlying the BMS-based approaches is the expect-
ation of a link between conserved quantities and struc-
ture-preserving motions, and it is worth revisiting these
points. In general relativity, the link is expected to be
provided by canonical (Hamiltonian or symplectic)
mechanics. For radiative problems, one would presum-
ably phrase this in terms of data on what we may
schematically designate an -shaped Cauchy surface
(the middle portion lying in the physical spacetime and
meeting a cut z of Iþ, and the legs of the
representing the portion of Iþ to the past of z). From
this perspective, it is natural to investigate BMS motions,
and one would hope to be able to identify conjugate
Hamiltonian functions, which might well lead to the
BMS charges of Dray and Streubel. (See Wald and

Zoupas [26] for a suggested such identification, and
Ref. [20] for related comments.)
In this context, one seeks to understand a given space-

time by considering the evolution of Cauchy surfaces, the
BMS vector fields enter naturally to generate this, and it
may well turn out the BMS charges are central. But what,
then, would be the canonical interpretation of the twistor
quantities?
This is an interesting question and a possible avenue for

gaining a deeper understanding. The twistor angular
momenta would presumably be well-defined functions
on any properly defined phase space for Bondi-Sachs
spacetimes. One could take the angular momenta as
Hamiltonian functions and, at least formally,21 solve
for the associated vector fields on phase space and
Poisson brackets. Because the twistor approach is BMS
invariant, the vector fields and brackets should be so as
well.22

The vector fields would represent perturbations of
the spacetime, preserving the component of the twistor
angular momentum in question. There would be no
requirement, though, that those perturbations were
induced by diffeomorphisms, and indeed (given that those
which are induced by diffeomorphisms presumably come
from the BMS approach) one would expect the contrary.
We would hope for insights by finding out just what the
perturbations were.
These considerations suggest that the BMS charges and

the twistor angular momenta may be best viewed not so
much as competing proposals as answers to different
questions—aspects of angular momentum which would
be equivalent in other contexts, but are distinct in general
relativity.

APPENDIX: BONDI-SACHS SPACETIMES

Bondi-Sachs spacetimes model general-relativistic sys-
tems which can be considered isolated in the sense that one
can give a sharp definition of gravitational (and other
speed-of-light) radiation escaping from them. This amounts
to making hypotheses about certain features of their
asymptotics. In the original papers, these were formulated
in terms of coordinate expressions of the metric and falloff
conditions. Penrose showed that these could be recast in
terms of the existence of an idealized boundary, future null
infinity Iþ, for the spacetimes.
Penrose’s formalism is especially useful because it

allows the asymptotic structure to be represented in a
concise geometric way. In fact, for the questions in this
paper, the analysis is most clearly and conveniently done

21In these infinite-dimensional cases, there are sometimes
technical obstructions to doing this.

22If, as one would hope, gauge issues involving changes of
data on the part of the Cauchy surface in the finite spacetime can
be satisfactorily decoupled.
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at Iþ itself. In this Appendix, I will start by explaining
and motivating the asymptotic geometry; the Bondi-
Sachs spacetimes will be those which do admit such
structures. In fact, strictly speaking, Bondi and Sachs
dealt with the vacuum case, but the analysis here allows
some stress energy (for example, such as might be
expected from electromagnetic radiation), decaying as
one approaches Iþ. For technical details not given here,
see Ref. [6].
A physical Bondi-Sachs spacetime ðM̂; ĝabÞ is required

to embed as the interior of a manifold with boundary M
(with boundary Iþ). The boundary is the zero set of a non-
negative suitably regular function Ω on M, with ∇aΩ
nowhere zero on Iþ, and additionally there is a Lorentzian
metric gab on M such that gab ¼ Ω2ĝab on M̂. (It is
generally assumed that M is C4 in a neighborhood of
Iþ and that gab and Ω are C3.)
The boundary Iþ is required to be made up of points

which are the future limits of null geodesics in the physical
spacetime; for this reason it is called future null infinity.
(Not all null geodesics need have end points on Iþ; there
could, for example, be black holes.) Under reasonable
hypotheses on the falloff of the physical stress energy near
Iþ, this boundary is necessarily null.
That Iþ is null means that we may pass to its quotient by

its generators, and this quotient may be interpreted as the
(two-dimensional) space of asymptotic null directions.
That such a well-defined space exists (for all the five-
dimensional family of null geodesics meeting Iþ) is a
central feature of the asymptotic structure. We assume on
physical grounds that Iþ is diffeomorphic to R × S2,
with the R factors the null generators of Iþ. (Under
slightly stronger assumptions, this can be proved.)
Then the set of asymptotic null directions is diffeomorphic
to S2.
A key consequence of the Bondi-Sachs asymptotics is

that the quotient Iþ=generators are not just a sphere in the
differential-topological sense, but have a well-defined con-
formal, or equivalently complex, structure. (This too is due
to thematter falling off as one approaches Iþ; that forces the
spin coefficient σ0, measuring the shear up the generators of
Iþ, to vanish.) In other words, the space of generators has
naturally the structure of a Riemann sphere. For this reason,
the Newman-Penrose operators ð and ð0 (defined in terms of
the complex structure) are deeply bound with the Bondi-
Sachs asymptotics. The motions preserving this complex
structure are the fractional linear transformations, isomor-
phic to the proper orthochronous Lorentz group. It is this
structure which underlies the existence of asymptotically
constant spinors, vectors, and tensors.
If we choose a unit sphere metric on this space of

generators, it can be pulled back to Iþ (as a tensor field—
it will be degenerate as a metric), and this fixes the
freedom in the transverse derivative of Ω at Iþ, and this in
turn can be used to set the scale of the vector field na

tangent to the generators of Iþ. (In fact, then we have
na ¼ −∇aΩ at Iþ.) Although the particular scale will
depend on the unit sphere metric chosen, different such
choices will change na by factors constant along each
generator, and thus each generator acquires a well-defined
affine structure. A Bondi parameter (adapted to a par-
ticular unit-sphere metric) on Iþ is a suitably smooth
function u with na∇au ¼ 1.
Without additional hypotheses, the generators need not

be infinitely long (that is, the Bondi parameter need
not take all real values). The analysis of this paper
does not require this condition, but for simplicity I
have written in a few places as if the generators are
infinitely long.
The foregoing sketch explains the basis for most of the

analysis, that Iþ is a bundle of affine lines (or segments)
over S2. To relate this to the original Bondi-Sachs con-
struction, one extends the Bondi parameter u into the
physical spacetime, by requiring u to be a null coordinate.
The angular coordinates in the finite spacetime are then
taken to be constant along the generators of the u ¼ const
hypersurfaces. One may introduce an affine parameter r
along these generators, so that Ω ∼ r−1 asymptotically.
Then the physical metric in these coordinates is essentially
that of Bondi and Sachs.23 The original analysis was for the
strict vacuum case, but the present one would accommodate
the stress-energies usually accepted for radiation fields
(such as electromagnetism).
Associated with the Bondi frame at Iþ is a null tetrad,

where na is tangent to the null generators of Iþ, the vector
ma is a antiholomorphic tangent to the u ¼ const cuts, and
la is a null orthogonal to the cuts. (The only nonzero inner
products are lana ¼ 1, mama ¼ −1.) From these unphysi-
cally normalized null vectors an associated physically
normalized tetrad can be obtained by requiring the vectors
to be (physically) parallel transported along the generators
of the u ¼ const null hypersurfaces and taking n̂a ¼ na,
m̂a ¼ Ωma, l̂a ¼ Ω2la.
The particular fields which enter are some of the

Newman-Penrose spin coefficient and curvature quantities,
defined with respect to the tetrad adapted to the Bondi
frame. Of special note are the Bondi shear σ, measuring the
rate of astigmatic change of the la congruence as it passes
through Iþ, and the components Ψn (for 0 ≤ n ≤ 4) of the
Weyl tensor at Iþ. These components correspond to the
physical falloffs Ψ̂n ∼Oðr5−nÞ (this is the Sachs peeling
property), so the higher values of n correspond to longer-
range effects. It is Ψ4 and Ψ3 which, at Iþ, carry the
information of the radiation, and one has Ψ4 ¼ − ̈σ̄, Ψ3 ¼
−ð _̄σ there. The quantity − _̄σ thus is a potential for the
radiation; it is the Bondi news. (Because of the properties of

23Bondi and Sachs actually used a luminosity distance rather
than an affine parameter, but the latter is usually more convenient
mathematically.
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spin-weight functions, the news is uniquely determined
from Ψ3.) The component Ψ2 contains the lead Newtonian
term, and Ψ1 what one usually thinks of as the main
contribution to the angular momentum.

I should remark that the notation has been streamlined
because the analysis is wholly at Iþ; in other papers,
expressions such as σ0 and Ψ0

n are often used for what
appear here as the values of σ and Ψn at Iþ.
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