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Virial (aka scaling) identities are integral identities that are useful for a variety of purposes in nonlinear
field theories, including establishing no-go theorems for solitonic and black hole solutions, as well as for
checking the accuracy of numerical solutions. In this paper, we provide a pedagogical rationale for the
derivation of such integral identities, starting from the standard variational treatment of particle mechanics.
In the framework of one-dimensional (1D) effective actions, the treatment presented here yields a set of
useful formulas for computing virial identities in any field theory. Then, we propose that a complete
treatment of virial identities in relativistic gravity must take into account the appropriate boundary term. For
General Relativity this is the Gibbons-Hawking-York boundary term. We test and confirm this proposal
with concrete examples. Our analysis here is restricted to spherically symmetric configurations, which
yield 1D effective actions (leaving higher-D effective actions and in particular the axially symmetric case to
a companion paper). In this case, we show that there is a particular “gauge” choice, i.e. a choice of
coordinates and parametrizing metric functions, that simplifies the computation of virial identities in
General Relativity, making both the Einstein-Hilbert action and the Gibbons-Hawking-York boundary term
noncontributing. Under this choice, the virial identity results exclusively from the matter action. For generic
“gauge” choices, however, this is not the case.
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I. INTRODUCTION

In particle mechanics the virial theorem is a statistical
result. It provides a useful relation between the averages
over time of the total kinetic and potential energies for a
stable system of N bound particles. The theorem reads [1]

hTi ¼ −
1

2

XN
i¼1

hF⃗i · r⃗ii; ð1Þ

where T denotes the total kinetic energy and F⃗i the force
over the ith particle, which has the position r⃗i. The time
averaging, denoted by hi, amounts to a time integral,
hAi≡ ðΔtÞ−1 R tf

ti Adt, for any quantity A. Upon choosing
appropriately an integration interval Δt≡ tf − ti, the theo-
rem is, equivalently,

1

Δt

Z
tf

ti

�
T þ 1

2

XN
i¼1

F⃗i · r⃗i

�
dt ¼ 0: ½virialClausius�

ð2Þ

Equation (2) makes clear that the virial theorem amounts
to an integral identity. If the motion is periodic, choosing

Δt to be a multiple of the period, the integral exactly
vanishes and the ðΔtÞ−1 prefactor is unnecessary. But even
if the time integration is not exactly zero (for instance if
the motion is not periodic) for a system of bound stable
particles, the integrand is bounded, and the lhs of (2) can be
made arbitrarily small choosing a sufficiently large time
interval. In either case, the virial theorem holds to arbitrary
accuracy.
If the forces are conservative, derivable from a total

potential energy U, and if U is a homogeneous function of
degree n of the particles’ coordinates, then the virial theorem
takes the form hTi ¼ nhUi=2 [1]. For the special case of
inverse square law forces, n ¼ −1, we recover the familiar
result that the average kinetic energy (inmodulus) is one half
of the average potential energy (which is negative)1:Z

tf

ti

�
TþU

2

�
dt¼0: ½virialinversesquareforcelaw�

ð3Þ

1Here the integral is understood to be over a multiple of the
period.
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The virial identity (3) can be recovered by a scaling
argument. Consider the classical action of a particle,
S ¼ R tf

ti ðT − UÞdt, where the kinetic energy is T (which
is a homogeneous function of degree 2 of the velocity) and
the potential energy is U ¼ Uðr⃗Þ, here assumed to be a
homogeneous function of r⃗ of degree n. Consider that there
is a solution of the classical equations of motion r⃗ ¼ r⃗ðtÞ.
If one scales this fiducial solution by a factor of α,
r⃗ðtÞ → αr⃗ðtÞ, then T → α2T, while U → αnU. The corre-
sponding action2 Sα ¼

R tf
ti ðα2T − αnUÞdt should be sta-

tionary at the original fiducial solution:

∂Sα

∂α
����
α¼1

¼ 0 ⇒
n¼−1

Eq: ð3Þ; ð4Þ

where we assumed that Δt ¼ period. Note that n ¼ −1
guarantees the motion is periodic and choosing Δt ¼
period makes the above scaling a variational problem with
periodic boundary conditions rather than fixed boundary
conditions. This illustrates the derivation of a virial identity
from a scaling argument.
Originally presented by R. Clausius in 1870 [2], who

dubbed the rhs of (1) “virial,” the virial theorem has found
many applications in physics and mathematics. In the
context of gravitation, for instance, F. Zwicky first deduced
the existence of a gravitational anomaly, and suggested the
existence of “dark matter,” from an application of the virial
theorem [3].
In this paper we shall be interested in integral identities

that are virial-like (and thus, following the literature, will be
referred to as “virial identities”), but in field theory rather
than particle mechanics, obtained from scaling arguments.
The first example of such virial identities in field theory
arose as a “no-go” theorem for solitons.
The possible existence of soliton-type configurations

(particlelike solutions inspired by solitary wave solutions
of the Korteweg-de-Vries equation [4–7]) emerges as an
interesting question in any nonlinear field theory. The
robustness against decay of the “shape” of such solutions
is interpreted as a cancellation between nonlinear and
dispersive effects. In this context, Derrick’s theorem [8]
was put forward in 1964 as a generic argument against the
existence of stable, finite energy, time-independent solu-
tions in a wide class of nonlinear wave equations, in three
or higher (spatial) dimensions—see also [9,10] for an
earlier similar argument. This theorem results from a
scaling argument; for a 1þ 3 dimensional relativistic scalar
field theory of a scalar field Φ, with spatial gradient ∇Φ
and potential energy UðΦÞ, it results in the virial identity
(cf. Sec. III A)

Z
d3r

�ð∇ΦÞ2
3

þ UðΦÞ
�
¼ 0: ½virialDerrick� ð5Þ

Equation (5) represents the prototypical virial identity in
field theory. It has a simple interpretation. If the potential
energy is non-negative, since ð∇ΦÞ2 ≥ 0, then (5) can only
be obeyed for a constant Φ ¼ Φ0 [for which UðΦ0Þ ¼ 0].
Thus, there are no nonconstant configurations, and hence
no solitons.
The usefulness of virial identities is not exhausted in

establishing no-soliton theorems. In generic setups, which
include more general field theories (possibly also with
gravity) and more general Ansätze for the fields, virial/
scaling identities serve to understand the balance between
the different effects that allow the existence of solitonic or
black hole (BH) solutions (see e.g. Sec. III B). In this sense,
virial identities serve as a guide to construct new solutions.
Additionally, as for solitons, they can also be used to
establish no-go theorems for BHs with nontrivial matter
fields, also known as “no-hair” theorems—see e.g. [11–13].
Furthermore, in the context of numerical solutions, virial
identities serve as useful identities to test the accuracy of
such numerical solutions—see e.g. [14–16].
Despite these (and other) interesting applications, the use

of virial identities in the context of strong gravity as been
mostly restricted to spherically symmetric solutions and a
particular “gauge” (by which we mean a coordinate plus a
parametrization) choice. The main goal of this paper is to
present a generic methodology for establishing virial iden-
tities for equilibrium, asymptotically flat, localized configu-
rations using any “gauge” choice for the metric and matter
fields. In doing so, we will unveil a key ingredient, hitherto
neglected, that must be taken into account in relativistic
gravity applications—in general, there can be a nontrivial
contribution from boundary terms. In the context of General
Relativity (GR) the appropriate boundary term is the
Gibbons-Hawking-York (GHY) term [17,18], which must
be considered in order to derive the correct virial identity.
After establishing a general methodology, we shall test

the so obtained virial identities, providing examples cor-
responding to different field theories and parametrization
choices. One can face the virial identity in a certain model,
encompassing different fields as a “word” composed by
different “letters.” Computing the basic “letters” one can
efficiently piece them together into the virial identity
“word,” for a model composed by the different fields
analyzed here. Moreover, our analysis reveals a simpler
“gauge” choice for which the gravitational part does not
contribute. There is, therefore, a simple setup to compute
virial identities in GR just by computing the contribution of
the matter action, which can be safely used by virtue of the
generic understanding presented here.
This paper is focused on spherically symmetric

configurations, leaving the treatment of axially symmetric
configurations to a companion paper [19]. It is organized as

2The action of the scaled solution becomes a function of α,
whereas it is a functional of the particle’s path.
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follows. We start in Sec. II by considering the variational
treatment in particle mechanics. This section serves two
purposes. First, it builds a bridge between the scaling
transformation that yields virial identities and the familiar
standard variational treatment in Lagrangian mechanics.
Second, it introduces the notion of effective action (EA)
that, in practice, is the central object used in building virial
identities in field theory that yield a one-dimensional (1D)
EA (as in spherical symmetry). As we shall see, the virial
identities obtained in this section [Eqs. (16), (19), (22) and
(25)] can then be used as general formulae for the
subsequent problems found in field theory. In Sec. III,
we review Derrick’s theorem as the paradigmatical illus-
tration of a scaling argument and of a virial identity. But we
also show how a change of Ansatz leads to a way of
circumventing Derrick’s theorem allowing the existence of
scalar field theory, flat spacetime solitons known asQ-balls
[20]. In Sec. IV, we take a first look at GR. This section is
meant as pedagogical, and the virial relations obtained
therein are incomplete. Our goal is to illustrate two points.
First, there are simpler “gauge” choices to compute virial
identities. In the simplest parametrization, the Einstein-
Hilbert (EH) action results in a scale invariant EA; then it
does not contribute to the virial identity. Second, by
considering the case of electrovacuum, we show that the
(would be) virial identity derived solely from the EH-
Maxwell action is not correct, as it is not obeyed by the
Reissner-Nordström (RN) solution. The complete treatment
is then introduced in Sec. V, where we include the
contribution of the GHY boundary term and we provide
the complete virial identities for the vacuum and electro-
vacuum cases. In Sec. VI, we take advantage of the simplest
“gauge” choice to compute the virial identity for various
examples of field theories minimally coupled to Einstein’s
gravity, by considering simply the contribution of the
matter part. To emphasize the generic case, however, in
Sec. VII we discuss the virial identities for electrovacuum
and (massive-complex) scalar vacuum in isotropic coor-
dinates, confirming the nontrivial contribution from the
gravitational part, that is mandatory in order for the virial
identity to be obeyed by known solutions. We provide a
discussion and our conclusions in Sec. VIII. In this paper
we use units with G ¼ 1 ¼ c.

II. PARTICLE MECHANICS AND
EFFECTIVE ACTIONS

Some insight and useful formulas that will be used in the
field theory case can be obtained by addressing first particle
mechanics. Let us start with a recap of the elementary
variational treatment.

A. The standard variational treatment

Consider an action functional S, depending on a set of n
generalized coordinates qj (j ¼ 1…n), their first time

derivatives, _qj, and on the time coordinate t (so that
_qj ¼ dqj=dt). The action is the time integral of the
Lagrangian L:

S½qjðtÞ; _qjðtÞ; t� ¼
Z

tf

ti

Lðqj; _qj; tÞdt: ð6Þ

In the standard variational problem one aims at finding the
true path of the particle in Rn, which is a map,

½ti; tf� ∈ R → Rn

t → qjðtÞ; ð7Þ

traveled as a function of (time) t. This path extremizes the
action functional. To compute it, one considers an arbitrary
variation δqjðtÞ around a fiducial path, qjðtÞ, where the
endpoints are fixed, δqjðtiÞ ¼ δqjðtfÞ ¼ 0. This generates
a variation of the action δS. Hamilton’s principle (aka the
principle of least action) selects the true path as the fiducial
path if δSjδqj¼0 ¼ 0.
Explicitly, the variation (using the chain rule and

integrating by parts) reads

δS¼
Z

tf

ti

δLdt¼
Z

tf

ti

�∂L
∂ _qjδ _qjþ

∂L
∂qjδqjþ

∂L
∂t δt

�
dt

¼
�∂L
∂ _qjδqj

����t¼tf

t¼ti

þ
Z

tf

ti

�
−
d
dt

�∂L
∂ _qj

�
þ ∂L
∂qj

�
δqjdt: ð8Þ

For arbitrary variations under fixed endpoints, the first term
of the rhs of the last equation vanishes, and the second
terms yields a set of differential requirements for the true
path, the Euler-Lagrange equations,

d
dt

�∂L
∂ _qj

�
¼ ∂L

∂qj : ð9Þ

B. A scaling transformation of an effective action

In the standard variational treatment (8) the term
ð∂L=∂tÞδt was dropped under the assumption that the
Lagrangian has no explicit dependence on t. Moreover,
arbitrary variations of the path were considered. We shall
now consider a variation on the variational problem, where
an explicit dependence on (the analogue of) t is present and
it is a variation of this parameter that induces the variation
of the “path.” Instead of considering the path traveled in
time by a particle in Rn, however, we shall consider the
(spatial) profile of a map:

½ri;∞� ∈ R → Rn

r → qjðrÞ; ð10Þ
which is spanned as a function of a (spatial) coordinate r.
Having in view the field theory applications below, we
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choose the profile to start at r ¼ ri and end at r ¼ þ∞.
There are infinitely many possible profiles, but the true one
extremizes a certain EA,

Seff ½qjðrÞ; q0jðrÞ; r� ¼
Z

∞

ri

Lðqj; q0j; rÞdr; ð11Þ

where q0jðrÞ ¼ dqjðrÞ=dr. This EA does not have the
physical dimensions of an action. But it plays the role
of an action in the sense that it determines the true
configurations through a variational principle. By the same
token we shall be referring to the integrand in (11) L as an
effective Lagrangian.
In the standard variational treatment, we have considered

arbitrary variations of a fiducial path qjðtÞ. Now, we
shall vary the independent parameter r in a specific manner,
and consider the profile variation induced by the latter.
Concretely, we consider a transformation r → r̃ that
scales r but keeps ri as a fixed point. Thus

r → r̃ ¼ ri þ λðr − riÞ; ð12Þ

where λ is an arbitrary positive constant, such that r̃ ¼ ri
for r ¼ ri; ∀ λ (fixed point); the transformation trivializes
for λ ¼ 1: r̃ ¼ r. The new profile induced by the scaling
(12) is

qjðrÞ → qλjðrÞ ¼ qjðr̃Þ: ð13Þ

The EA of the scaled profile becomes a function of λ,
denoted as Seff

λ ,

Seff
λ ¼

Z
∞

ri

Lλ

�
qjðrÞ;

dqjðrÞ
dr

; r

�
dr

¼
Z

∞

ri

L
�
qjðr̃Þ;

dqjðr̃Þ
dr

; r

�
dr

¼
Z

∞

ri

L
�
qjðr̃Þ; λ

dqjðr̃Þ
dr̃

;
r̃ − ri
λ

þ ri

�
dr̃
λ
: ð14Þ

The true profile obeys the stationarity condition

∂Seff
λ

∂λ
����
λ¼1

¼ 0; ð15Þ

which, from the last equality in (14), yields

Z
∞

ri

�X
j

∂L
∂q0j q

0
j−L−

∂L
∂r ðr−riÞ

�
dr¼0: ½virialEA1�

ð16Þ

Unlike the standard variational procedure, yielding a set
of differential constraints, here we obtain an integral
constraint that should be obeyed if the qjðrÞ are solutions

of the Euler-Lagrange equations derived from (11).
Observe that the first two terms in the integrand of (16)
combine into a “Hamiltonian,”

H≡X
j

∂L
∂q0j q

0
j − L: ð17Þ

C. Effective Lagrangians depending
on second order derivatives

In field theory, we shall sometimes find effective
Lagrangians depending also on the second derivative of
the profile functions, q00j ðrÞ ¼ d2qjðrÞ=dr2. For instance,
the EH Lagrangian [cf. Eq. (42) below] depends on the
second derivatives of the metric. In such cases, to consider
the variational problem, the action (11) is replaced by the
more general

Seff ½qjðrÞ; q0jðrÞ; q00j ðrÞ; r� ¼
Z

∞

ri

Lðqj; q0j; q00j ; rÞdr: ð18Þ

Repeating the procedure of the previous subsection,mutatis
mutandis, we obtain the more general virial identity,

Z
∞

ri

�X
j

∂L
∂q0j q

0
jþ2

X
j

∂L
∂q00j q

00
j −L−

∂L
∂r ðr−riÞ

�
dr¼0:

½virialEA2� ð19Þ

D. Scalings affecting the integration limits

A further generalization is to consider a scaling that
affects the integration limits. The simplest example is to
replace (12) by

r → r̃ ¼ λr: ð20Þ

This transformation impacts nontrivially on the lower limit
of the action integral (18). To understand the corresponding
contribution to the virial identity, we repeat the steps in
Eq. (14) [allowing, as in Sec. II C, a further q00j ðrÞ
dependence] to find

Seff
λ ¼

Z
∞

λri

L
�
qjðr̃Þ; λ

dqjðr̃Þ
dr̃

; λ2
d2qjðr̃Þ
d2r̃

;
r̃
λ

�
dr̃
λ
: ð21Þ

Thus, the stationarity condition (15) now yields an extra
term:

Z
∞

ri

�X
j

∂L
∂q0j q

0
j þ 2

X
j

∂L
∂q00j q

00
j − L −

∂L
∂r r

�
dr ¼ riLðriÞ:

½virialEA3� ð22Þ
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E. Adding a total derivative to the effective Lagrangian

As a final discussion point, leading in fact to the formula
that will be most used in the field theory applications below,
we observe that in some circumstances there are boundary
terms that can be added to the Lagrangian, which take the
form of a total derivative. Consequently, these terms do not
affect the bulk equations of motion. A total derivative can,
however, affect the virial identity. Typically there can be a
trade-off between considering a total derivative or consid-
ering an effective Lagrangian with second order derivatives
(as in Sec. II C). The virial identities obtained using
either perspective are equivalent (for an illustration see
Sec. IVA below).
To see the explicit form of the virial identity when a total

derivative is present, consider an EA3

Seff ½qjðrÞ; q0jðrÞ; r� ¼
Z

∞

ri

L̂ðqj; q0j; rÞdr; ð23Þ

where the new Lagrangian L̂ contains a total derivative
term

L̂ðqi; q0i; rÞ ¼ Lðqi; q0i; rÞ þ
d
dr

fðqi; q0i; rÞ; ð24Þ

and f is some function that depends on the same variables
as the original effective Lagrangian L, up to first deriva-
tives. Performing the scaling (12), the stationarity condition
(15) now yields

Z
∞

ri

�X
j

∂L
∂q0j q

0
j − L −

∂L
∂r ðr − riÞ

�
dr

¼
�∂f
∂r ðr − riÞ −

X
i

∂f
∂q0i q

0
i

�þ∞

ri

: ½virialEA4� ð25Þ

Equations (16), (19), (22) and (25) provide useful
relations that can be readily used in the context of EAs
obtained from field theory models, as illustrated in the next
sections.

III. FLAT SPACETIME FIELD THEORY

Let us now address two examples in flat spacetime
relativistic (scalar) field theory. The mandatory first exam-
ple is to review the original theorem by Derrick [8],
establishing the inexistence of solitons in a large class of
nonlinear field theories. We then consider a more generic
Ansatz for the scalar field configuration (allowing a
harmonic time-dependence) and illustrate how the virial
identity is compatible with the existence of solitons known
as Q-balls [20].

A. Derrick’s theorem

Consider the (possibly) nonlinear Klein-Gordon equa-
tion, describing a real scalar test field on Minkowski
spacetime:

□Φ ¼ 1

2

dU
dΦ

; ð26Þ

where UðΦÞ is a potential energy function. This can be
derived from the following “matter” action:

SΦ
m ¼ 1

4π

Z
d4x½−∂μΦ∂μΦ − UðΦÞ�: ð27Þ

Splitting the spacetime coordinates xμ ¼ ðt; rÞ into tempo-
ral and spatial coordinates, the action may be rewritten as:

SΦ
m ¼ 1

4π

Z
dtðS0 − S1 − S2Þ; ð28Þ

where

S0≡
Z

d3rð∂tΦÞ2; S1≡
Z

d3rð∇ΦÞ2; S2≡
Z

d3rUðΦÞ;

ð29Þ

and the integration is over the whole space. We will prove
that no stable, time-independent, localized solutions exist,
for any potential energy. Time-independence implies
S0 ¼ 0. By localized we mean that S1 and S2 are finite.
Due to the time-independence we may consider the EA

Seff ¼ S1 þ S2: ð30Þ

The existence of a localized solution, by Hamilton’s
principle, implies δSeff ¼ 0. Let the solution be ΦðrÞ;
due to the time-independence, extremizing the EA is
equivalent to extremizing the energy (δSeff ¼ δE). The
solution is stable if δ2E ≥ 0.
Let us define a scaled configuration ΦλðrÞ ¼ ΦðλrÞ,

where the radial coordinate suffers the dilation r → r̃ ¼ λr.
The energy of such scaled configuration is:

Eλ ¼
Z

d3r½ð∇ΦλÞ2 þUðΦλÞ� ¼
S1
λ
þ S2

λ3
: ð31Þ

Since, by assumption, the original configuration ΦðrÞ
(corresponding to λ ¼ 1) was a solution,�

dEλ

dλ

�
λ¼1

¼−S1−3S2¼0; ⇔ S2¼−
S1
3
: ð32Þ

Equation (32) is Derrick’s virial identity, Eq. (5). It relates
the total “kinetic” and potential energy. As mentioned in the
Introduction, inspection thereof is physically insightful:

3When considering a total derivative we do not consider
second derivatives in the effective Lagrangian, due to the
trade-off between these two types of terms.
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since the first term in the square bracket is clearly every-
where positive, for positive definite potentials there can be
no solution, regardless of being stable or not. On the other
hand,

�
d2Eλ

dλ2

�
λ¼1

¼ 2S1 þ 12S2 ¼ð32Þ − 2S1 < 0; ð33Þ

since S1 is manifestly positive. It follows that for any U,
even if it allows the existence of a solution (which may be
the case for a nonpositive U), the stretching of the
hypothetical solution decreases its energy and thus, such
a solution is unstable. These arguments illustrate how virial
identities can establish no-go theorems. A straightforward
generalization to higher dimensions can be found in the
Appendix.

B. Circumventing Derrick’s theorem: Q-balls

In the original work [8], Derrick observed that one way
to circumvent the theorem would be to allow localized
solutions that are periodic in time, rather than time-
independent. For a real scalar field, however, such con-
figuration would not be static (or stationary). Various
authors, starting with Rosen [21], considered a complex
scalar field Φ, described by the matter action4

SΦ�
m ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
gμνð∂μΦ∂νΦ�

þ ∂μΦ�∂νΦÞ −UðjΦjÞ
�
; ð34Þ

with a harmonic time-dependence:

Φðt; rÞ ¼ ϕðrÞe−iωt; ð35Þ

which guarantees a time-independent energy-momentum
tensor. Moreover, there is a global symmetry and a
conserved scalar Noether charge. Then, for some classes
of potentials (yielding nonlinear models), localized stable
solutions exist, which are known, following Coleman [20],
as Q-balls (since the Noether charge is typically
labelled Q).
Let us derive a virial identity for spherical solutions in

this model, to analyze how it is compatible with the
existence of spherical Q-balls. We use the standard spatial
spherical coordinates for the Minkowski background:
ðt; r; θ;ϕÞ. Due to the spherical symmetry, the action is
ðθ;φÞ-independent and these terms can be integrated right
away. Repeating Derrick’s argument, we now have that
SΦ�
m ¼ −

R
dtSeff , where the EA Seff is written as

Seff ¼
Z

∞

0

dr r2
�
−ω2ϕ2 þ

�
dϕ
dr

�
2

þUðjϕjÞ
�

≡ S0 þ S1 þ S2: ð36Þ

Consider, again, a rescaled configuration ϕλðrÞ ¼ ϕðλrÞ.
Its EA is

Seff
λ ¼

Z
∞

0

drr2
�
−ω2ϕ2

λ þ
�
dϕλ

dr

�
2

þUðjϕλjÞ
�

¼ S0 þ S2
λ3

þ S1
λ
: ð37Þ

Thus

�
dSeff

λ

dλ

�
λ¼1

¼ 0 ⇔ S0 þ S2 ¼ −
S1
3
; ð38Þ

or, explicitly,

Z
∞

0

dr r2
�
−ω2ϕ2 þ 1

3

�
dϕ
dr

�
2

þ UðjϕjÞ
�
¼ 0:

½virialQ–balls� ð39Þ

One observes that the harmonic time-dependence yields a
term with the opposite sign ð−ω2ϕ2Þ, so that the obstruc-
tion raised by Derrick’s theorem does not necessarily apply.
The existence of solutions, however, depends on the choice
of the potential. If one chooses the potential to be solely a
mass term UðϕÞ ¼ μ2ϕ2, then (39) becomes

Z
∞

0

dr r2
�
ðμ2 − ω2Þϕ2 þ 1

3

�
dϕ
dr

�
2
�
¼ 0; ð40Þ

and for bound states, which obey ω < μ, one immediately
concludes the inexistence of solutions. In other words, the
virial identity (39) implies that the scalar field must have
self-interactions, even with the harmonic time-dependence,
in order to yield solitonic solutions. Indeed, Q-balls are
constructed taking an everywhere positive potential with
self-interactions, and for which UðϕÞ − ω2ϕ2 < 0 in some
spatial regions.
Finally, let us remark how (39) can be readily obtained

from applying the virial identity formulas for the EAs in
Sec. II. Comparing (36) with (11) one identifies ri ¼ 0 and
the effective Lagrangian

Lðϕ;ϕ0; rÞ ¼ r2½−ω2ϕ2 þ ðϕ0Þ2 þUðjϕjÞ�: ð41Þ

Then, applying (16), a one-line computation yields (39).

4Here ‘�’ denotes the complex conjugate and, albeit still in flat
spacetime, we allow the Minkowski metric g to be written in
curvilinear coordinates.
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IV. GR IN SPHERICAL SYMMETRY—AN
INCOMPLETE TREATMENT

We now consider Einstein’s gravity. When deriving
solutions of the field equations, one considers the EH
action

SEH ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð42Þ

where R is the Ricci scalar of the spacetime metric gμν with
determinant g. In this way one neglects possible boundary
terms. As such, in this section we shall be considering
models with total action

S ¼ SEH þ Sm; ð43Þ

where Sm is some matter/fields action. This treatment will
turn out to be incomplete. To be clear, the (would be) virial
identities derived in this section are incomplete (and will be
completed in the next section). The purpose of this section
is twofold. First, it serves as a pedagogical introduction to
the need for the GHY boundary term in the derivation of the
correct virial identities. Second, it serves as an illustration
of how the virial identity derived for any such model
depends both on the choice of Sm and on the parametriza-
tion chosen for the metric. We shall now investigate such
“gauge” choices, starting with the simplest possible case: a
spherically symmetric spacetime in vacuum GR.

A. Vacuum: σ −N parametrization in
Schwarzschild coordinates

An often used Ansatz for a spherically symmetric metric
spacetime is

ds2¼−σ2ðrÞNðrÞdt2þ dr2

NðrÞþr2ðdθ2þsin2θdφ2Þ: ð44Þ

This Ansatz uses Schwarzschild-like coordinates, where r
is the areal radius, together with parametrizing functions
σðrÞ and NðrÞ. The EH action can then be reexpressed in
terms of an EA SEH ¼ ð4πÞ−1 R dtSeff , where

Seff ¼
Z

dr σr2R ¼ −
Z

fr½3rN0σ0 þ 2Nðrσ0 þ 2σ0Þ�

þ σðr2N00 þ 4rN0 þ 2N − 2Þgdr: ð45Þ

A distinctive feature is that this action depends on the
second derivatives of σ, N. The second derivative terms can
be collected into a total derivative, such that this EA is cast
in the form (23) with

Lðσ; N; σ0; N0; rÞ ¼ −2σð−1þ N þ rN0Þ;
fðσ; N; σ0; N0; rÞ ¼ −2r2Nσ0 − r2N0σ: ð46Þ

Admitting the existence of an event horizon, we take ri in
(23) to be ri ¼ rH, such that NðrHÞ ¼ 0. Then, the virial
identity is readily obtained from (25), yielding

2

Z
∞

rH

σ½N − 1þ ðr − rHÞN0�dr

¼ ½ð2rNσ0 þ rN0σÞð2rH − rÞ�þ∞
rH

: ð47Þ

A test on this identity is provided by the Schwarzschild
solution,

NðrÞ ¼ 1 −
2M
r

; σðrÞ ¼ 1; ð48Þ

with M constant. Indeed, for these choices both sides of
(47) give −4M. Thus, the total derivative term in the EA,
albeit not contributing to the equations of motion, gives a
nontrivial contribution to the virial identity (47).
Alternatively, we could have faced the EA (45) as being

of the type of (18) with an effective Lagrangian depending
also on second derivatives:

Lðσ; N; σ0; N0; σ00; N00; rÞ ¼ −r½3rN0σ0 þ 2Nðrσ00 þ 2σ0Þ�
− σðr2N00 þ 4rN0 þ 2N − 2Þ:

ð49Þ

Then, applying (19) yields an identity that is equivalent to
(47). This illustrates the equivalence observed between the
virial identities (19) and (25) in concrete examples.
Let us emphasize that, despite the apparently nontrivial

check provided by the Schwarzschild solution, the (would
be) virial identity (47) is incomplete. The correct version
will be given below in Eq. (67).

B. Vacuum: σ −m parametrization in
Schwarzschild coordinates

Virial identities depend not only on the choice of
coordinates but also on the choice of metric functions.
This is sharply illustrated by reconsidering the metric
Ansatz of the previous subsection (44) but with a seemingly
innocuous modification: taking as the parametrizing func-
tion the Misner-Sharp mass mðrÞ function [22], instead of
NðrÞ, given by

NðrÞ ¼ 1 −
2mðrÞ

r
: ð50Þ

In this case, the EA can be written as

Seff ¼4

Z
σm0drþ

Z
d
dr

½2σ0rð2m−rÞþ2σðm0r−mÞ�dr:

ð51Þ

This EA is again of the form (23) with
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Lðσ; m; σ0; m0; rÞ ¼ 4σm0;

fðσ; m; σ0; m0; rÞ ¼ 2σ0rð2m − rÞ þ 2σðm0r −mÞ: ð52Þ

Again, admitting the existence of an event horizon, we take
ri in (23) to be ri ¼ rH, such that 2mðrHÞ ¼ rH and
applying (25) yields

½−2σ0ðr2 þ 2mrH − 2rrHÞ − 2σm0rH�∞rH ¼ 0: ð53Þ

For Schwarzschild, m ¼ M and σ ¼ 1, and this identity is
trivially satisfied.
The peculiar feature of the (would be) virial identity (53)

is the absence of the integral term; only the boundary term
contributes. This is a consequence of the EH action for this
Ansatz being invariant (up to a boundary term) under the
scaling transformation (12), which is manifest from the fact
that the integrand (plus integration measure) of the first
term in (51) is σ dm

dr dr. We learn, by example, therefore, that
an appropriate choice of parametrization functions can
simplify the virial identities by trivializing some terms.
Thus, in spherical symmetry, the metric gauge (44) with the
σðrÞ, mðrÞ parametrization functions (50) is the simplest
choice for computing virial identities, which we shall
therefore use in (most of) the following cases.
Again, we emphasize that, despite the check of the

Schwarzschild solution (which now is more trivial), the
(would be) virial identity (53) is incomplete. The correct
version will be given below in Eq. (70).

C. Electrovacuum: an inconsistency

Our final example of this section will make clear that
there is one key ingredient missing in the computation of
virial identities for GR. We now consider spherically
symmetric solutions in electrovacuum. The action is (43)
with

SMaxwell
m ¼ −

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð54Þ

where Fμν ¼ ∂μAν − ∂νAμ is the Maxwell field strength.
Following the conclusion at the end of the last subsection
we take the metric gauge (44) with the σðrÞ, mðrÞ para-
metrization functions (50), and the Ansatz for gauge
potential,

Aμdxμ ¼ −VðrÞdt: ð55Þ

Defining the EA as SEH þ SMaxwell
m ¼ ð4πÞ−1 R dtSeff , we

find that the EA is again of the form (23) with

Lðσ;m;V;σ0;m0;V 0;rÞ¼4σm0 þ2r2ðV 0Þ2
σ

;

fðσ;m;σ0;m0;rÞ¼2σ0rð2m−rÞþ2σðm0r−mÞ: ð56Þ

The difference with (52) is the extra term depending on
ðV 0Þ2 in the effective Lagrangian. Applying (25), the new
identity becomesZ

∞

rH

dr
rðV 0Þ2

σ
ð2rH − rÞ

¼ ½−σ0ðr2 þ 2mrH − 2rrHÞ − σm0rH�∞rH : ð57Þ
If Eq. (57) was the correct virial identity, the RN

solution, which has

mðrÞ ¼ M −
Q2

2r
; σ ¼ 1; VðrÞ ¼ −

Q
r
; ð58Þ

should verify it. However, whereas the lhs of (57) vanishes,
the rhs gives

−m0rHj∞rH ¼ Q2

2rH
≠ 0: ð59Þ

The fact that Eq. (57) is not satisfied for the RN solution
means this is not the correct virial identity for the electro-
vacuum model.
In the next section we propose that the boundary term of

the gravitational action is mandatory in the correct treat-
ment of virial identities in GR. This boundary term is the
GHY term. As we shall see, the contribution of such a
term for the vacuum case turns out to be trivial for the
Shwarzschild solution with the parametrizations discussed
in this section. This explains the accidental (and thus
misleading) check provided by the Schwarzschild solution
to the incomplete vacuumGR virial identities (47) and (53);
but in the electrovacuum case, the boundary term provides
a contribution to the incomplete virial identity (57) which is
nontrivial for the RN solution and which precisely makes it
verify the correct virial identity, given below in Eq. (71).

V. GR IN SPHERICAL SYMMETRY—ADDING
THE MISSING GHY TERM

The GHY [17,18,23,24] term is a surface term that is
necessary for GR to have a well-posed variational principle
in a manifold with a boundary. In the case of a BH
spacetime (such as the Schwarzschild and the RN space-
times), there are boundaries at the horizon and at spatial
infinity that, in principle, need to be considered.
The complete gravitational action on a manifold M,

including the boundary term, is

Sgrav ¼ SEH þ SGHY ¼ 1

16π

Z
M

d4x
ffiffiffiffiffiffi
−g

p
R

þ 1

8π

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ðK − K0Þ; ð60Þ

where K ¼ ∇μnμ is the extrinsic curvature of the boundary
∂M with normal nμ, and γ is the associated 3-metric of the
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boundary. The extra K0 term corresponds to the extrinsic
curvature in flat spacetime (the background metric), nec-
essary to obtain a finite result.
The GHY boundary term will give an extra total

derivative to the EA. In this section we will compute it
in the spherical case, under the parametrizations we have
considered in Sec. IV. This will remain consistent with the
vacuum case and fix the issue raised in the electrovacuum
case.

A. Vacuum: σ −N parametrization in Schwarzschild
coordinates

We consider again the metric Ansatz (44). Assume the
spacetime has a boundary that is a spherical surface at a
specific radius r (like the spatial sections of the event
horizon). Thus, the normal vector is n ¼ ffiffiffiffi

N
p ∂r. Then

ffiffiffiffiffiffi
−γ

p ¼ σ
ffiffiffiffi
N

p
r2 sin θ; ð61Þ

K ¼ ∇μnμ ¼ ∂rnr þ
2

r
nr þ σ0

σ
nr ¼ 1

2

N0ffiffiffiffi
N

p þ
�
2

r
þ σ0

σ

� ffiffiffiffi
N

p
;

ð62Þ

K0 ¼
2

r
; ð63Þ

ffiffiffiffiffiffi
−γ

p ðK − K0Þ ¼
�
r2

2
σN0 þ 2rσðN −

ffiffiffiffi
N

p
Þ þ r2σ0N

�
sin θ:

ð64Þ

Defining as before an EA contribution for the GHY term,
Sgrav ¼ ð4πÞ−1 R dtSeff , we obtain an EA as in (23) with an
extra total derivative, defined by

fGHY ¼ r2σN0 þ 4rσðN −
ffiffiffiffi
N

p Þ þ 2r2σ0N: ð65Þ

Compared with (46), the old f cancels out completely.
This removes the second derivatives from the complete EA
(precisely the goal of the boundary term), which remains of
the form (23) with

Lðσ; N; σ0; N0; rÞ ¼ −2σð−1þ N þ rN0Þ;
fðσ; N; σ0; N0; rÞ ¼ 4rσðN −

ffiffiffiffi
N

p
Þ: ð66Þ

Then, the virial identity obtained from (25) is

2

Z
∞

rH

σ½N−1þðr−rHÞN0�dr¼½4σðN−
ffiffiffiffi
N

p
Þðr−rHÞ�þ∞

rH
:

½VirialvacuumGRσ-N� ð67Þ

This is the complete virial identity for vacuum GR in the
σ − N parametrization [correcting (47)]. One can check that
the Schwarzschild solution (48) still obeys it. The lhs

remains unchanged whereas the rhs still gives −4M (which
now comes from the limit at r ¼ þ∞).

B. Vacuum: σ −m parametrization in Schwarzschild
coordinates

For the σ −m parametrization, on the other hand, where
NðrÞ is replaced by mðrÞ via (50), the extra total derivative
from the GHY boundary term is

fGHY¼2rσ0ðr−2mÞ−2σ

�
m0rþ2r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2m
r

r
−2rþ3m

�
:

ð68Þ

Adding this contribution to the old f in (52), (again)
cancels out the second derivatives in the complete EA
which remains of the form (23) with

Lðσ; m; σ0; m0; rÞ ¼ 4σm0;

fðσ; m; σ0; m0; rÞ ¼ −4σ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr

p
− rþ 2m�: ð69Þ

The virial identity obtained from (25) is then�
−4σ

�
r −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr

p − 1

�
ðr − rHÞ

�þ∞

rH

¼ 0:

½Virial vacuumGR σ-m� ð70Þ

One can check that for the Schwarzschild solution (σ ¼ 1,
m ¼ M ¼ constant) this is obeyed (considering carefully
the r ¼ þ∞ limit). Thus, this is the complete virial
identity for vacuum GR in the σ −m parametrization
[correcting (53)].

C. Electrovacuum: solving the inconsistency

From the results in Sec. IV C, and in the last
subsection V B, we can straightforwardly put together
the virial identity for the electrovacuum case to be

Z
∞

rH

rðV 0Þ2
σ

ð2rH−rÞ ¼
�
−2σ

�
r−mffiffiffiffiffiffiffiffiffiffiffi
r2−2mr

p −1

�
ðr−rHÞ

�þ∞

rH

:

½VirialelectrovacuumGRσ-m� ð71Þ

It is now simple to check that the RN solution (58) verifies
this virial identity (both the lhs and rhs vanish).

VI. GR IN SPHERICAL SYMMETRY
(σ −m PARAMETRIZATION): ILLUSTRATIONS

Being in control of the correct methodology, we shall
now compute the virial identity for different matter
models. We shall always use the metric Ansatz (44) with
the σ −m parametrization (50). The gravitational part of
the action is given by Sgrav, Eq. (60). This means the
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corresponding contribution to the virial identity is (70).
For the matter models to be considered here, this boundary
term does not contribute. This is a consequence of the
behavior of mðrÞ and σðrÞ at infinity and at the origin/
horizon, depending on whether we consider solitonic
solutions or BHs. At infinity these models have the
asymptotic behavior

σðrÞ ¼ 1þO
�
1

r

�
; mðrÞ ¼ M þO

�
1

r

�
; ð72Þ

and a careful analysis of the r → ∞ limit of (70) shows it
does not contribute. For the lower limit of (70), the models
we consider have the following behavior close to the
horizon:

σðrÞ¼σHþOðr−rHÞ; mðrÞ¼ rH
2
þOðr−rHÞ; ð73Þ

and we can see that the limit will be proportional to
ðr − rHÞ1=2, rendering the horizon contribution zero. For
solitons, at the origin,

σðrÞ ¼ σ0 þOðrn1Þ; mðrÞ ¼ Oðrn2Þ; ð74Þ

where n1, n2 are model dependent but typically greater
than 1 (for example, n2 ¼ 3 for all models discussed in
this section). This implies the r ¼ 0 contribution also
vanishes. Thus, the whole contribution that one needs to
consider to the virial identity comes from the matter action
itself. This illustrates how the correct choice of para-
metrizing functions simplifies the computation of virial
identities.
In all cases in this section, we end up with an EA of the

type (11) with an effective Lagrangian

Lðσ; m; X; σ0; m0; X0; rÞ; ð75Þ

where X denotes collectively the parametrizing functions
coming from the matter sector. The corresponding virial
identity is then computed from (16).
For all models discussed in this section, we have solved

numerically the field equations and evaluated the displayed
virial identities for a large sample of solutions in each case.
Although the relative errors depend on the values of various
input parameters, they are typical of order 10−5 or smaller.
An explicit illustration of this sort of numerical checking is
provided in Sec. VII C.

A. Solitonic solutions

Let us start by considering solitonic solutions, thus
without an event horizon. Therefore, ri ¼ rH ¼ 0.

1. Scalar boson stars

Scalar boson stars [25,26] are self-gravitating lumps of
a complex, massive scalar field—see also [27–30]. They
mimic Q-balls in their harmonic time-dependence. In
spherical symmetry they are described by the same scalar
field Ansatz as Q-balls (35). But unlike the latter they do
not require a self-interacting scalar field; the necessary
nonlinearities are provided by GR.
Consider the action that describes the self-gravitating

complex scalar field, using the Ansatz (35) in a model with
a self-interactions potential UðΦÞ,

S ¼ Sgrav þ SΦ�
m ; ð76Þ

where the latter action is explicitly given by (34).
The resulting effective matter Lagrangian is

Lðσ; m;ϕ; σ0; m0;ϕ0; rÞ

¼ r2σ

�
rω2ϕ2

ðr − 2mÞσ2 −
�
1 −

2m
r

�
ϕ02 −UðjϕjÞ

�
: ð77Þ

Then, the virial identity reads

Z þ∞

0

drr2σ

�
−
rω2ϕ2

σ2
3r − 8m
ðr − 2mÞ2 þ ϕ02 þ 3UðjϕjÞ

�
¼ 0:

½virial scalar boson stars� ð78Þ

For m ¼ 0, σ ¼ 1, this reduces to the Q-balls virial
identity (39). Equation (78) allows an immediate conclusion:
if ω ¼ 0 and the potentialUðϕÞ is everywhere non-negative,
the identity can never be respected, leading to a no-go
theorem [12]. Thus gravity is not enough to circumvent
Derrick’s theorem; even with gravity, a finite oscillation
frequency ω is necessary to have self-gravitating scalar
solitons (with a time-independent spacetime). We will see in
Sec. VI B 4 a distinct case: a matter model for which no
solitons exist in flat spacetime but where the coupling to
Einstein’s gravity makes them possible.

2. Dirac stars

Einstein’s gravity minimally coupled with spin 1=2
fields allows the existence of self-gravitating solitons
[31]. These solitons are also known as Dirac Stars—see
also [29,30,32]. The corresponding action is

S ¼ Sgrav −
i
4π

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
1

2
ðf=̂Dψ̄ ½A�g − ψ̄ ½A�=̂Dψ ½A�Þ þ UðΨÞ

�
; ð79Þ

where Ψ is a Dirac 4-spinor, with four complex compo-
nents, while the index [A] corresponds to the number of
copies of the Lagrangian. For a spherically symmetric
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configuration one should consider, at least, two spinors
with equal mass potential UðΨÞ; a single spinor will
necessarily make the soliton rotate, yielding a stationary
axially symmetric spacetime [33], rather than a spherical,
static spacetime. The “dashed” derivative is =̂D≡ γμD̂μ,

where γμ are the curved space gamma matrices and
D̂ ¼ ∂μ þ Γμ is the spinorial covariant derivative, with
Γμ being the spin connection matrices.
For the Dirac field, the matter Ansatz introduces two real

functions, hðrÞ and jðrÞ:

Ψ½1� ¼

0
BBBBBB@

cosðθ
2
ÞzðrÞ

i sinðθ
2
Þz̄ðrÞ

−i cosðθ
2
Þz̄ðrÞ

− sinðθ
2
ÞzðrÞ

1
CCCCCCA
eið12ϕ−ωtÞ; Ψ½2� ¼

0
BBBBBB@

i sinðθ
2
ÞzðrÞ

cosðθ
2
Þz̄ðrÞ

sinðθ
2
Þz̄ðrÞ

i cosðθ
2
ÞzðrÞ

1
CCCCCCA
eið−1

2
ϕ−ωtÞ; ð80Þ

where zðrÞ≡ ð1þ iÞhðrÞ þ ð1 − iÞjðrÞ and Ψ ¼ iψ̄ ½A�ψ ½A� ¼ 4ðh2 − j2Þ. The effective matter Lagrangian is

Lðσ;m;h;j;σ0;m0;h0;j0;rÞ¼ r2σ

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2m
r

r
ðjh0−hj0Þ−ωðh2þj2Þffiffiffiffiffiffiffiffiffiffiffi

1− 2m
r

q
σ
þ2hj

r
þUðΨÞ

4

#
: ð81Þ

Then, we get the virial identity5

Z þ∞

0

dr
r2σffiffiffiffi
N

p
�
ð3N þ 1Þðjh0 − hj0Þ þ ωðh2 þ j2Þ

σ

�
1

N
− 7

�
þ
�
8hj
r

þ 3

2
UðΨÞ

� ffiffiffiffi
N

p �
¼ 0: ½virialDirac stars� ð82Þ

Different from the scalar case, this identity does not provide
any clear indication for the mechanism allowing the
existence of solutions. However, in the flat spacetime limit,
(82) reduces toZ þ∞

0

drr2
�
ðjh0−hj0Þþ2hj

r
−
3

2
ωðh2þj2Þþ3

8
UðΨÞ

�
¼0;

ð83Þ
which can be further simplified through the field equations
to yieldZ þ∞

0

dr r2UðΨÞ ¼
Z þ∞

0

drr2½4ωðh2 þ j2Þ�: ð84Þ

Then, one observes that for a strictly positive potential,
UðΨÞ > 0, the solutions are supported by the harmonic
time-dependence, with w > 0.

3. Vector boson stars (Proca stars)

Spherical vector boson stars, aka Proca Stars [34] (see
also [29,30,35–38]), can be found in GR minimally
coupled to complex, massive vector fields. The model is
described by the action

S ¼ Sgrav −
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p ½FμνF�μν þ VðAÞ�; ð85Þ

where the complex vector field’s Ansatz is

Aμ ¼ ½fðrÞdtþ igðrÞdr�e−iωt; ð86Þ

and Fμν ¼ ∂μAν − ∂νAμ. The vector field is under a self-
interacting potential VðAÞ, where A≡ AμA�μ. One obtains
the effective matter Lagrangian,

Lðσ; m; g; f; σ0; m0; g0; f0; rÞ ¼ r2

σ
½−ðf0 − ωgÞ2 þ σ2VðAÞ�:

ð87Þ
The resulting virial identity is

Z
∞

0

dr
r2

σ

�
−ðωg − f0Þð3ωg − f0Þ þ 3σ2VðAÞ

þ 1 − N
N2

dVðAÞ
dA

ðσ2N2g2 þ f2Þ
�
¼ 0:

½virial Proca stars� ð88Þ

This identity reduces to the one in [34] for a massive, free
complex vector field. In the absence of self-interactions,
the above relation can be used to rule out nongravitating
solutions.

5Here, and in some other cases below, the identity is expressed
in terms of N, rather than m, for compactness, although the
computation is made with the σ −m parametrization.
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4. Einstein-Maxwell-Scalar (EMS) solitons

The EMS model is described by the action

S ¼ Sgrav þ
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
−
1

2
∂μϕ∂μϕ − fðϕÞFμνFμν −UðϕÞ

�
: ð89Þ

In this model Fμν is the Maxwell tensor and ϕ is a real
scalar field that is nonminimally coupled to the Maxwell
term through the coupling function fðϕÞ. Moreover, we
admit a self-interaction potential UðϕÞ for the scalar field.
Particlelike soliton configurations were found in [39] (see
also [40]). These configurations have a scalar field that
depends only on the radial coordinate, ϕ≡ ϕðrÞ.
For an electric 4-vector potential, Aμ ¼ VðrÞdt, the

resulting effective matter Lagrangian is

Lðσ; m;ϕ; σ0; m0;ϕ0; rÞ

¼ r2σ

�
fðϕÞ 2V

02

σ2
−
�
1 −

2m
r

�
ϕ02 −UðϕÞ

�
: ð90Þ

A first integral is obtained from the field equations that
simplify the EA, namely,

V 0ðrÞ ¼ −
Q
r2εϕ

; ð91Þ

where εϕ ¼ fðϕÞσ−1 can be thought of as a relative electric
permittivity that is caused by the nonminimal coupling
between the scalar and Maxwell fields.
Replacing the first integral into the Maxwell term, the

resulting virial identity isZ þ∞

0

dr

�
r2σϕ02 þ 3r2σUðϕÞ − 2

Q2

r2εϕ

�
¼ 0:

½virialEMS solitons� ð92Þ
Thevirial identity informs us that a particlelike solution can

be supported by the electric charge or a negative potential.

B. Black holes

As already mentioned in the Introduction, virial theo-
rems can be used to establish no-hair theorems for BHs (see
[13] for a review). Heusler and Straumann obtained virial
identities with that goal in [12,11] for the Einstein-Klein-
Gordon model [which we shall refer to as scalar vacuum—
Sec. VI B 1] and Einstein-Yang-Mills model [Sec. VI B. 4].
In order to consider BHs, in this subsection we take
ri ¼ rH ≠ 0.

1. No scalar hair theorem

The virial identity obtained for the model defined by (76)
can be generalized to include a putative horizon scale
rH. Using a scalar field Ansatz with a harmonic time-
dependence (35), one obtains6

Z
∞

rH

dr
�
1

σ

�
3ðr − rHÞðr − 2mÞ þ rðrH − 2mÞ

ðr − 2mÞ2
�
ω2r2ϕ2 þ σ

��
2rH
r

�
1 −

m
r

�
− 1

�
r2 þ

�
2rH
r

− 3

�
r2UðϕÞ

�	
¼ 0:

½virial scalar vacuum� ð93Þ

Putting rH ¼ 0 we recover (78). On the other hand, putting
ω ¼ 0 one keeps only the second line. For this special case,
inspection shows that the prefactor of U and the first term
(in the second line) are negative for r > rH. This establishes
a no-hair theorem for this model with ω ¼ 0 [12]. This
virial identity is not enough, however, to establish a no-hair
theorem for ω ≠ 0, albeit such a theorem can be established
using other methods [41,42].

2. EMS BHs

Let us reconsider the EMSmodel [14,15,43,44] described
by the action (89), but now taking into account the presence
of an event horizon. Then, the virial identity reads

Z
∞

rH

dr½IΦð0; rHÞ þ I½Φ�
U ðrHÞ − fðϕÞIMðrHÞ� ¼ 0;

½virialEMSBHs� ð94Þ

where the scalar terms are

IΦðω; rHÞ ¼
1

σ

�
3ðr − rHÞðr − 2mÞ þ rðrH − 2mÞ

ðr − 2mÞ2
�
ω2r2ϕ2

þ σ

�
2rH
r

�
1 −

m
r

�
− 1

�
r2ϕ02; ð95Þ

I½Φ�
U ðrHÞ ¼ rUð2rH − 3rÞσ; ð96Þ

whereas the Maxwell term reads

6We remark that there is a factor of 1=2 difference as compared
to Eq. (46) in [13], which comes from a different action
normalization.
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IMðrHÞ ¼ 2
ð2rH − rÞQ2

ε2Φr
3σ

: ð97Þ

As expected, (94) reduces to (92) when rH ¼ 0. The identity
(94) tells us that a nontrivial scalar hair requires a nonzero
electric charge. Indeed, as mentioned in Sec. VI B 1,
IΦð0; rHÞ < 0 outside the horizon. Furthermore (since

σ > 0), for a non-negative potential I½Φ�
U ðrHÞ is nonpositive

outside the horizon; thus the positive contribution
must come from the Maxwell term. Observe that when
Q ¼ 0, and when replacing IΦð0; rHÞ → IΦðω; rHÞ, (94)
becomes (93).

3. Einstein-Maxwell-Vector (EMV) BHs

The EMV model [45,46] is described by the action

S ¼ Sgrav þ
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
−
1

4
GμνGμν − fðBÞFμνFμν − UðBÞ

�
; ð98Þ

where Bμ is a real vector field that is nonminimally coupled
to the Maxwell term FμνFμν through the coupling function
fðBÞ, for which self-interactions (and a mass term) are
described by the potential UðBÞ. For the vector field we
consider, following [45], a time-independent vector field
Ansatz, Bμdxμ ¼ BtðrÞdt. The vector field kinetic term is
Gμν ¼ ∂μBν − ∂νBμ and B ¼ BμBμ. Assuming a purely
electric field, the effective matter Lagrangian becomes

Lðσ; m; Bt; σ
0; m0; B0

t; rÞ ¼
r2

σ
½−B02

t − fðBÞV 02 − σ2UðBÞ�:
ð99Þ

Then, using the electromagnetic equation of motion to
obtain a first integral (the charge Q),

∇μðfFμνÞ ¼ 0 ⇒ V 0 ¼ −
Qσ

r2f
; ð100Þ

the corresponding virial identity becomesZ þ∞

rH

dr

�
r − rH

r
N − 1

σN2

dfðBÞ
dB

Q2B2
t

r2fðBÞ2

þ rð2rH − rÞ
σ

�
B02
t þ Q2σ2

r4fðBÞ
�
− I½B�U ðrHÞ

�
¼ 0;

½virialEMVBHs� ð101Þ

where I½B�U corresponds to the contribution from the poten-
tial of the vector field,

I½B�U ðrHÞ ¼ r2σ

�
3UðBÞ − r − rH

r
N − 1

σN2

dUðBÞ
dB

B2
t

�
: ð102Þ

For a flat spacetime and UðBÞ ¼ 0 this reduces to

Z
∞

0

dr
1

r2

�
r4B02

t þ Q2

fðBÞ
�

¼ 0: ð103Þ

If f > 0, the virial identity (103) informs us that only the
trivial configuration B0

t ¼ 0 and Q ¼ 0 is possible. In this
case, of course, Bμ also became a gauge field (since the
mass term vanished).

4. Einstein-Yang-Mills (EYM) BHs and solitons

Yang-Mills theories [47] are gauge theories based on
non-Abelian Lie groups. These theories are at the core of
the standard model of particle physics. Minimally coupling
these “matter” models to Einstein’s gravity leads to EYM
theories, which are described by the action

S ¼ Sgrav −
1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p
TrðF2Þ: ð104Þ

As an illustration of the role of virial identities in EYM
models, let us follow the work done by Heusler [12]. One
considers the purely magnetic SUð2Þ configuration with the
gauge potential 1-form A,

A ¼ ½pðrÞ − 1�ðτφdθ − τθ sin θdφÞ: ð105Þ

The usual basis of SUð2Þ is denoted as ðτr; τθ; τφÞ [48]; also
τθ ≡ ∂θτr, τφ sin θ≡ ∂φτr and τr ≡ ð2ijr⃗jÞ−1r⃗ · δ⃗; pðrÞ is
an unknown radial function, determined by solving the
field equations. The effective matter Lagrangian is

Lðσ; m; p; σ0; m0; p0; rÞ ¼ σ

�
1

2

�
1 −

2m
r

�
p02 þ ð1 − p2Þ2

4r2

�
:

ð106Þ

The virial identity in the presence of an event horizon isZ þ∞

rH

dr IYMðrHÞ ¼ 0; ½VirialEYM� ð107Þ

where the Yang-Mills term is

IYMðrHÞ ¼
σ

2

��
1þ 2m

r

�
rH
r
− 2

��
Np02

þ
�
1 −

2rH
r

ð1 − p2Þ2
2r2

�	
: ð108Þ

In the presence of a horizon, the virial identity does not exclude
the existence of BHs with hair. In fact these BHs exist [49–52]
and were an influential counterexample to the no-hair con-
jecture [53,54]. The same occurs when rH → 0: the virial
identity allows the existence of self-gravitating solitonic
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objects. In fact these solitons exist, as first pointed out by
Barnik and Mckinnon [48]. However, in the absence gravityZ þ∞

0

dr

�
p02

2
þ ð1 − p2Þ2

4r2

�
¼ 0; ð109Þ

which shows that no flat spacetime Yang-Mills solitons exist.
So, in this case, the coupling of the Yang-Mills source to
Einstein’s gravity is enough to allow particlelike solutions,
which are forbidden in flat spacetime.

5. Einstein-Maxwell-gauged-Scalar (EMgS) BHs

A gauged complex scalar field minimally coupled to
both the electromagnetic field and Einstein’s gravity is
described by the action

S ¼ Sgrav þ
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
−
1

4
FμνFμν − gμνDðμΦD�

νÞΦ
� −UðjΦjÞ

�
; ð110Þ

where Dμ ¼ ∂μ − ieAμ is the covariant gauge derivative. In
this case the global Uð1Þ symmetry of the scalar field is
gauged. Charged (gauged) boson stars in this model have
been discussed in [55,56]. Hairy BHs in this class of
models (with self-interactions) are also possible and have
been discussed in [57,58].
For a purely electric spherical configuration (55) and a

scalar field with a harmonic time-dependence (35), we get
the following effective matter Lagrangian:

Lðσ; m;ϕ; V; σ0; m0;ϕ0; V 0; rÞ ¼ r2σ

��
1 −

2m
r

�
ϕ02 þ UðjϕjÞ − ðω − eVÞ2ϕ2

ð1 − 2m
r Þσ2

−
V 02

2σ2

�
: ð111Þ

Then the corresponding virial identity for BH solutions reads [57]

Z
∞

rH

drr2σ

��
1 −

2rH
r

�
1 −

m
r

��
ϕ02 þ

�
3 −

2rH
r

�
UðjϕjÞ

	

¼
Z

∞

rH

drr2
��

1 −
2rH
r

�
V 02

2σ
þ
�
3 −

2rH
r

�
1 −

3m
r

�
−
8m
r

� ðω − eVÞ2ϕ2

N2σ

	
; ½VirialEMgS� ð112Þ

which reduces to (93) for the e ¼ V ¼ 0 case. One notices
that both factors in front of the scalar quantities on the lhs
have a fixed, positive sign, such that all this integral is
strictly positive (here we assumeUðjϕjÞ > 0). Therefore no
solutions with ϕ ≠ 0 can exist for V ¼ 0 (noMaxwell field)
and ω ¼ 0. Also, the factors in front of the Maxwell
quantities on the rhs are indefinite (although they become
positive asymptotically). Thus, for V ≠ 0 and/or ω ≠ 0 a
solution becomes possible (but not guaranteed).

VII. GR IN SPHERICAL SYMMETRY AND
ISOTROPIC COORDINATES

An alternative coordinate system to deal with spherical
spacetimes, often useful, is given by isotropic coordinates
—see e.g. [59]. In isotropic coordinates the radial coor-
dinate is not the areal radius. In this section we shall
compute the virial identity in isotropic coordinates for two
cases: electrovacuum and (massive-complex) scalar vac-
uum. We shall see that the correct virial identities, that
include a nontrivial contribution from the GHY boundary
term, are obeyed by known solutions of these models

(the RN BH and boson stars). This gives us a further
confirmation that the GHY term is indeed required to
construct the virial identity in a generic coordinate system
and parametrization.

A. A general result

Let us consider a general model, described by the action
S ¼ Sgrav þ Sm, where Sgrav includes also the GHY
boundary term, while Sm is the matter field(s) action (with
the presence of first order derivatives, only). As for the line
element, we consider a general form in terms of two
functions, f0, f1:

ds2¼−f20ðrÞdt2þf21ðrÞ½dr2þr2ðdθ2þsin2θdφ2Þ�: ð113Þ

The computation of the gravity effective action is very
similar to the case of Schwarzschild coordinates. Although
the bulk action R

ffiffiffiffiffiffi−gp
depends again on the second

derivatives of the metric functions f0, f1, they can be
collected into a total derivative, such that this EA is cast in
the form (23) with
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Z
dr f0f31r

2R ¼
Z

dr

�
2r2

�
2f00f

0
1 þ

f0f021
f1

�
þ df

dr

�
; with f ¼ −2r2ðf1f00 þ 2f0f01Þ: ð114Þ

We assume again that the spacetime boundary is a spherical
surface at some radius r, with a normal vector n ¼ 1=f1∂r.
Then one finds7

ffiffiffiffiffiffi
−γ

p ¼ f0f21r
2 sin θ; ð115Þ

K ¼ ∇μnμ ¼
1

f1

�
2

r
þ f00
f0

�
þ 2f01

f21
; ð116Þ

K0 ¼
2

rf1
; ð117Þ

ffiffiffiffiffiffi
−γ

p ðK − K0Þ ¼ r2ðf1f00 þ 2f0f01Þ sin θ: ð118Þ

One can easily see that, different from the case of
Schwarzschild-like coordinates, the contribution of the
GHY boundary term cancels out completely the total
derivative in the gravity bulk action (114). Then one finds
the following gravity effective Lagrangian:

Lðf0; f1; f00; f01; rÞ ¼ 2r2
�
2f00f

0
1 þ

f0f021
f1

�
: ð119Þ

When adding the EA for the matter sector of the model,
the result (25) implies the following form of the generic
virial identity

Vg þ Vm ¼ 0; ½virial isotropic general� ð120Þ

with the gravity contribution

Vg ¼ −2
Z

∞

ri

dr

�
rðr − riÞf1

�
2f00 þ

f0f01
f1

��
; ð121Þ

Vm being the matter contribution [as resulting from (25), in
terms of matter field(s) effective Lagrangian Lm].

B. Electrovacuum

As the simplest application of the above results, let us
consider the electrovacuum case, with the Maxwell action
as given by (54). The electric field is again purely electric,

with Aμdxμ ¼ VðrÞdt, while the Maxwell equations can be
integrated to give

V 0ðrÞ ¼ Q
r2

f0
f1

; ð122Þ

with Q as the electric charge.
The contribution Vm of the Maxwell field to the virial

(120) is computed from (25) (with LM ¼ 2r2f1V 02=f0).
After using (122) the final result reads

Z
∞

rH

dr

�
f0Q2

f1r3
þ rf01

�
2f00 þ

f0f01
f1

�	
ðr − 2rHÞ ¼ 0:

½virial electrovacuum isotropic� ð123Þ

After replacing the expression of the RN solution,

f0ðrÞ ¼
1 − r2H

r2

1þ M
r þ

r2H
r2

; f1ðrÞ ¼ 1þM
r
þ r2H

r2
;

where r2H ¼ M2 −Q2

4
; ð124Þ

the identity (123) simplifies to

Z
∞

rH

dr
4r2H
r3

ðr − 2rHÞ ¼ 4r2H

�
rH
r2

−
1

r

�����∞
rH

¼ 0: ð125Þ

This confirms that the RN solution obeys the identity (123).
Had we not included the GHY contribution, however, there
would be an extra contribution to the identity coming
from f ¼ −4r2f0f01 − 2r2f1f00 in (114). Then, from (25),
this would give the extra contribution to the virial
identity (120),�∂f
∂r ðr − riÞ −

X
i

∂f
∂q0i q

0
i

�þ∞

rH

¼ −½2rðr − 2rHÞð2f0f01 þ f1f00Þ�þ∞
rH

¼ 2ðM − 2rHÞ:
ð126Þ

The fact that this is nonvanishing for Q ≠ 0 means that a
virial identity derived solely from the EH plus Maxwell
actions is not obeyed by the RN solution (albeit, acciden-
tally, it is obeyed by the Schwarzschild solution as in the
discussion of Sec. IV). The correct identity must be derived
from the full gravitational action, including the GHY
boundary term. Moreover, using isotropic coordinates

7Note that, in computing K0, one considers a (flat) background
metric with a two sphere of radius rf1.

VIRIAL IDENTITIES IN RELATIVISTIC GRAVITY: 1D … PHYS. REV. D 104, 104051 (2021)

104051-15



the contribution of the gravitational action to (123) is
nonvanishing (and both the EH and GHY terms must be
considered) unlike the special “gauge” discussed in Sec. V.

C. (Massive-complex) scalar vacuum

As a second illustration, let us reconsider the scalar
boson stars already discussed in Sec. VI A 1. The action is
given by (76) and the scalar field Ansatz is given by (35).
Here, in order to test the virial identity for concrete
solutions, we take the simplest choice for the potential,
with a mass term only, UðjϕjÞ ¼ μ2ϕ2. Employing again
the metric Ansatz (113) this results in the scalar field
effective Lagrangian

Ls ¼ r2f0f31

�
ϕ02

f21
þ
�
μ2 −

w2

f20

�
ϕ2

�
: ð127Þ

In the absence of an event horizon, the scaling of
the radial coordinate is simply r → r̃ ¼ λr. Then, fol-
lowing the standard procedure, we obtain the simple
expression for the scalar field contribution to the virial
identity (120)

Vm ¼ 4

Z þ∞

0

drr2f0f1

�
ϕ02 þ 3f21

�
μ2 −

w2

f20

�
ϕ2

�
: ð128Þ

Then, the whole virial identity (120) reads

Z
∞

0

dr

�
r2f1

�
2f00þ

f0f01
f1

−2f0

�
ϕ02þ3f21

�
μ2−

w2

f20

�
ϕ2

��	
¼0: ½virialbosonstarsisotropic� ð129Þ

Different from the electrovacuum case, no exact solutions
are known for a boson star. Thus, to check numerically the
validity of the relation (120), we define a relative error,

err ¼ 1þ Vg

Vm
; ð130Þ

which would vanish for an infinity accuracy solution.
However, as seen in Fig. 1, err is never zero for a numerical
solution,8 and takes values compatible with other error
estimates. The natural interpretation of this result is that
the virial relation (120) holds also for boson stars in isotropic
coordinates.
As for the role of the GHY term, an analogous

computation to the one of the previous subsection yields

(taking into account the asymptotic behavior of the boson
stars) an extra −2M contribution to the gravity part in the
virial identity (withM the ADMmass). This is fundamental
for the solutions to obey the virial identity. In Fig. 1 (inset),
we show the same relative error as in the main panel, but
where Vg does not include the contribution from the GHY
boundary term. One observes that the error becomes order
unity, or larger, in this case.

VIII. CONCLUSIONS AND DISCUSSION

To goal of this paper is to present a primer for a clear and
efficient understanding of virial identities in nonlinear field
theories, in particular in relativistic gravity. As explained in
Sec. II, virial identities result from a specific type of
variational principle obtained from an EA. Thus, they
should be obeyed by the solutions of the Euler-Lagrange
equations obtained from that EA, which extremize any
variation. Nonetheless, virial identities are integral iden-
tities that appear independent from the field equations.
Thus, their analysis provides different insights and checks
than the ones provided by the analysis of the (differential)
field equations.
In spherical symmetry, considering an appropriate

Ansatz in any nonlinear field theory leads to an EA in

FIG. 1. The relative error (130) for the virial identity satisfied
by numerical boson stars in isotropic coordinates is shown as a
function of the ratio between the field frequency and field mass.
The inset shows the same relative error but without including the
boundary term in Vg.

8In constructing the boson stars in isotropic coordinates, we
have used the approach described in Ref. [60] (and in particular
the same solver [61] and the same grid with 251 points in the
radial direction). However, we have verified that the qualitative
picture displayed in Fig. 1 is recovered for other grid choices; as
expected, for a given solution, err decreases as the number of
points in the grid is increased. The fact that err always grows as
w → μ can be attributed to the delocalization of the solutions in
this limit, with ϕ → 0 and ðf1; f0Þ → 1.
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the radial variable. Then, Eqs. (16), (19), (22) and (25)
provide a straightforward way to compute the virial
identity. But it is mandatory that the EA contains all terms
necessary to completely define the model. In the case of
nonlinear field theories for which the original action
contains second derivatives of the fundamental variables,
the well-posedness of the field equations in manifolds with
boundaries requires the introduction of boundary terms.
Whereas the latter are irrelevant for many analyses (such as
computing the bulk solutions of the field equations), such
boundary terms can, and in general will, contribute to virial
identities. This is the case of GR, for which the EH action
has second order derivatives of the metric and the complete
gravitational action (60) needs the GHY boundary term.
We have shown that this term must be considered in order
to derive the correct virial identities in GR.
Nonetheless, there is a special “gauge” choice [corre-

sponding to the σ −m parametrization in Schwarzschild
coordinates (44) with (50)] where one can get away with
neglecting the boundary term and indeed the whole
gravitational action for the virial identity. This is because
the EH action for this “gauge” choice leads to a scale
invariant EA and the GHY boundary term does not
contribute, at least for the boundary conditions that apply
to asymptotically flat regular solitons or BHs. In this
context, it is important to stress that the scaling trans-
formation leading to virial identities is not a diffeomor-
phism; the EA results from the integral of scaled
configurations which is not simply a coordinate trans-
formation in the integral. Thus, in general, the EH action
will contribute to virial identities. But it turns out that there
is a nice “gauge” choice for which it does not, facilitating
thus the computation of virial identities.
This paper was focused on 1D EAs that are appli-

cable to spherical configurations. Having understood
clearly the foundations of the method we shall consider
n-dimensional EAs and the particular example of axially
symmetric configurations in GR in a companion paper
[19]. Another interesting question, that we hope to
consider in the future, is the case of modified gravity,
for which the boundary term needs to be appropriately
modified.

ACKNOWLEDGMENTS

This work is supported by the Center for Research
and Development in Mathematics and Applications
(CIDMA) and by the Center for Astrophysics and Gra-
vitation (CENTRA) through the Portuguese Foundation for
Science and Technology (FCT—Fundação para a Ciência e
a Tecnologia), references UIDB/04106/2020, UIDP/04106/
2020 and UIDB/00099/2020 and by national funds (OE),
through FCT, I. P., in the scope of the framework contract
foreseen in the numbers 4, 5 and 6 of the article 23, of the

Decree-Law 57/2016, of August 29, changed by Law 57/
2017, of July 19. J. Oliveira is supported by an FCT post-
doctoral grant through the project PTDC/FIS-OUT/28407/
2017 and A. Pombo is supported by the FCT Grant No. PD/
BD/142842/2018. We acknowledge support from the
Projects No. PTDC/FIS-OUT/28407/2017, No. CERN/
FIS-PAR/0027/2019 and No. PTDC/FIS-AST/3041/2020.
This work has further been supported by the European
Union’s Horizon 2020 research and innovation (RISE)
program H2020-MSCA-RISE-2017 Grant No. FunFiCO-
777740. The authors would like to acknowledge network-
ing support by the COST Action CA16104.

APPENDIX: DERRICK’S THEOREM
IN HIGHER DIMENSIONS

Consider the D ¼ nþ 1 dimensional flat spacetime with
the metric

ds2D ¼ −dt2 þ
Xn
i

dx2i : ðA1Þ

The scalar field action is now

SD ¼
Z

dt
Z

dnr½−∂MΦ∂MΦ − UðΦÞ�; ðA2Þ

where the index M takes values between 0 and n. By
following the same arguments as above, we obtain

SD ¼ −
Z

dtED ¼ −
Z

dtðID1 þ ID2 Þ; ðA3Þ

where

ID1 ≡
Z

dnrð∇nΦÞ2; ID2 ≡
Z

dnrUðΦÞ; ðA4Þ

with ∇n being the n-dimensional spatial gradient.
Assuming once again the same 1-parameter family of
configurations ΦλðrÞ ¼ ΦðλrÞ and extremizing the energy
in the same way, we obtain the following virial identity:

�
dED

λ

dλ

�
λ¼1

¼ ð−nþ 1ÞID1 − ðnþ 1ÞID2 ¼ 0:

½virialDerrickhigherD� ðA5Þ

Moreover, the stability condition is, using the virial identity,

�
d2ED

λ

dλ2

�
λ¼1

¼ nð−nþ 1ÞID1 − ðnþ 1Þð−n − 2ÞID2
¼ 2ð−nþ 1ÞID1 : ðA6Þ
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We see that for any n > 1, we always have that any solution
to the Klein-Gordon equation is unstable. At the same time,
the virial identity (A5) shows that both of the terms

involved have the same sign for n > 1 and a positive
definite potential, meaning that, in such a case, there are no
solutions regardless of stability.
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