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In this study we present evolving wormhole configurations in third-order Lovelock gravity and
investigate the possibility that these solutions satisfy the energy conditions. Using a generalized
Friedmann-Robertson-Walker spacetime, we derive evolving wormhole geometries by considering a
constraint on the Ricci scalar. In standard cosmological models, the Ricci scalar is independent of the radial
coordinate r and is only a function of time. We use this property to introduce dynamic wormhole solutions
expanding in an inflationary cosmological background and explore the effects of higher-order Lovelock
terms on the dynamics of such wormholes. Our analysis shows that for suitable third-order Lovelock
coefficients, there are wormhole solutions that respect the weak energy condition (WEC). In addition to
this, we also present other wormhole solutions that satisfy the WEC throughout their respective evolution.
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I. INTRODUCTION

Wormholes are throatlike geometrical structures which
have a characteristic to connect two parallel Universes or
otherwise distant parts of the same Universe. The first study
on the concept of wormholes was done by Ludwing Flamm
in 1916 [1] as a “tunnel structure” in the Schwarzschild
spacetime, however, after some time it was realized that the
solutions he obtained are not relativistically applicable.
After this work, a similar geometrical configuration was
proposed by Einstein and Rosen [2], a “bridge structure”
between black holes in order to obtain a regular solution
without a spacetime singularity. This solution is known as
Einstein-Rosen bridge. The concept of traversable worm-
holes was firstly defined by Morris and Thorne in 1988 [3].
In their influential work, Morris and Thorne investigated
static spherically symmetric wormhole configurations
using the principles of general relativity (GR) and pre-
sented the fundamental theory for traversable wormholes.
In this manner, it was found that these configurations
possess a specific trait, i.e., the exoticity of supporting
material. In other words, a traversable wormhole must obey
the fundamental flaring-out condition at the wormhole
throat. However, the fulfillment of this condition requires
an unknown source of exotic matter so that the energy-
momentum tensor originated from such types of matter
violates the null energy condition (NEC) [4,5].
As the classical forms of ordinary matter are believed to

satisfy the standard energy conditions, then, one of the most

important challenges in wormhole scenarios is the estab-
lishment of these conditions. Hence, due to its problematic
nature, several avenues of research have been pursued in
recent decades in order to minimize the usage of exotic
matter. For instance, in [6], a particular class of spacetime
geometries admitting a traversable wormhole has been
constructed using arbitrarily small quantities of exotic
matter. In [7], it is shown that considering a general
equation of state for the fluid profiles can act in favor of
minimal usage of exotic matter. However, generalizing the
matter sector may not necessarily guarantee obtaining a
setting for nonexotic wormhole geometries [8]. An inter-
esting method for creating wormhole structures was pro-
posed by Visser and Poisson in [9] where, using the cut and
paste technique, they confined the presence of exotic matter
to a thin shell. Such an attractive approach led to the
introduction of the so-called thin-shell wormholes; differ-
ent and interesting aspects of such objects have been
studied extensively in the literature [10]. Like its counter-
part in GR, the issue of exotic matter distribution in
wormhole configurations has also been investigated in
modified gravity theories, since the modifications to the
GR theory may provide extra terms that support the
wormhole geometry without resorting to an exotic matter
source. In this respect, a huge amount of work has been
carried out during the past years to build and study
wormhole solutions within the framework of modified
gravity theories; for example, the study of wormhole
solutions in the framework of gravitational decoupling
[11], wormhole solutions in Brans-Dicke theory [12], fðRÞ
gravity [13], Born-Infeld theory [14], Einstein-Gauss-
Bonnet gravity [15,16], gravity theories with torsion
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[17], Kaluza-Klein gravity [18], fðQÞ gravity withQ being
the nonmetricity term [19], and scalar-tensor gravity [20],
and solutions in the presence of a cosmological constant
have been reported in [21]. Recently, the possibility
of the existence of traversable wormholes in the context
of fðR; TÞ gravity have been reported in the literature,
such as wormhole formation with two types of varying
Chaplygin gas [22] and wormhole solutions satisfying the
energy conditions in the exponential fðR; TÞ gravity [23];
see also [24] for other solutions in this theory.
Though in the GR framework static wormhole configu-

rations require fluid sources that violate the NEC, there
are nonstatic (evolving) Lorentzian wormholes without
the need of exotic matter to sustain them. One way to
investigate such objects is to embed a wormhole spacetime
in a Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric, thus allowing the geometry to evolve in a cosmological
background. It is therefore shown that the resulting worm-
hole structures have different characteristics compared to
the static ones, namely, they can live for arbitrarily small or
large time intervals [25] or even satisfy the dominant
energy condition in the whole spacetime [26]. Further
studies along this subject have been performed towards
constructing dynamical wormhole geometries which satisfy
the energy conditions and also the averaged energy con-
ditions over timelike or null geodesics during a time period
[27,28]. An interesting scenario is that the expansion of the
Universe could increase the size of the static wormholes by
a factor which is proportional to the scale factor of the
Universe, in a time-dependent inflationary background
[29]. In this respect, evolving wormholes in a cosmological
background have been studied in [30], and dynamic
wormhole spacetimes supported by two fluids and also
by a polytropic equation of state have been investigated in
[31,32], respectively. Such configurations that respect
energy conditions have been also reported in the framework
of Einstein-Cartan gravity [33], braneworld scenarios [34],
higher-dimensional gravity theories [28,35], hybrid metric-
Palatini gravity [36], the pole dark energy model [37], fðRÞ
gravity [38], and other contexts.
In recent years, considerable interest has been focused

on the subject of higher curvature gravity theories, much
of which has been motivated through the attempts to
provide a quantum description for gravitational interac-
tion. Indeed, the quest for unifying the principles of
quantum mechanics with gravitation has a long history
and the first attempts to apply the standard quantization
techniques to the Einstein-Hilbert action indicated that
GR is nonrenormalizable [39]. However, GR action
becomes renormalizable when it is modified by higher
curvature terms [40]. Therefore, if our starting point is a
higher curvature classical theory of gravity instead of GR,
we can get a renormalizable theory in which such higher
curvature corrections can be regarded as candidates for
quantum gravity. On the other side, from historical point

of view, many efforts have been carried out in order to
unify gravitational interaction with other fundamental
ones. An approach to investigating this issue is to examine
theoretical frameworks based on higher dimensions, i.e.,
beyond our conventional four-dimensional spacetime. In
this respect, higher-dimensional gravity theories are taken
into account as important ingredients of contemporary
theories of fundamental physics, such as Kaluza-Klein,
string theory, supergravity [41], as well as holography
[42] and cosmological scenarios [43]. Since the advent
and development of these ideas, a great deal of effort has
been expended to seek out physically reliable alternatives
to GR theory. Of particular interest is Lovelock gravity,
which is a natural generalization of GR to higher dimen-
sions [44]. This theory is indeed the most general higher
curvature gravity that possesses second-order equations of
motion. The Lagrangian of Lovelock gravity is defined by
a sum of dimensionally extended Euler densities so that in
four dimensions all of the higher curvature correction
terms appear as total derivatives, and thus, the theory
reduces to GR. However, in higher dimensions, the new
correction terms do make nontrivial contributions to the
gravity sector of the action; see e.g., [45] for recent
reviews. Fortunately, in the framework of modified
gravity theories the use of exotic matter can be avoided,
thus providing opportunities for traversable wormholes,
and, among these theories, Lovelock gravity is not an
exception. In this manner, static traversable wormholes
have been introduced in third-order Lovelock theory [46],
where the presence of Lovelock terms helps the energy
conditions to be satisfied near the wormhole throat. Static
wormholes in vacuum in higher-dimensional Lovelock
gravity have been reported in [47] and dynamic wormhole
solutions in this framework with compact extra dimen-
sions were analyzed in [48]. The occurrence of spacetime
singularities has been also reported in the literature. In
[49], exact radiating spacetimes filled with a null fluid
have been found and application of these generalized
Vaidya solutions in braneworld scenarios has been stud-
ied. Moreover, the gravitational collapse of a null dust
fluid in Lovelock gravity has been studied in [50] where it
is shown that a naked singularity is formed whose nature
and strength depend on spacetime dimensions or the
power of the mass function. Also, in [51], the formation
of massive naked singularities and their properties in a
spherically symmetric dust cloud collapse has been
investigated within a class of Lemaître-Tolman-Bondi
spacetimes.
Motivated by the above results, we here seek for

expanding wormhole configurations in higher dimensions
in Lovelock gravity and check whether such dynamic
wormholes are able to fulfill the energy conditions in
arbitrary but finite time intervals. It is shown that higher-
dimensional evolving wormholes can be obtained, satisfy-
ing the NEC throughout the spacetime [52]. However, in
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four dimensions, the solutions satisfy the NEC for a
specific time interval. This paper is then organized as
follows. In Sec. II we review the field equations of third-
order Lovelock gravity and provide some preliminaries on
dynamic wormholes. Section III is devoted to the study of
cosmological wormhole models and energy conditions in
third-order Lovelock gravity. Finally, our conclusions are
drawn in Sec. IV.

II. ACTION AND FIELD EQUATIONS

The action in the framework of third-order Lovelock
gravity is given by

I ¼
Z

dnþ1x
ffiffiffiffiffiffi
−g

p ðL1 þ α02L2 þ α03L3Þ þ Sm; ð1Þ

where α02 and α
0
3 are the second- (Gauss-Bonnet) and third-

order Lovelock coefficients. L1 ¼ R is the Einstein-Hilbert
Lagrangian, the term L2 is the Gauss-Bonnet Lagrangian
given by

L2 ¼ RμνγδRμνγδ − 4RμνRμν þR2; ð2Þ

the third-order Lovelock Lagrangian L3 is defined as

L3 ¼ 2RμνσκRσκρτRρτ
μν þ 8Rμν

σρRσκ
ντRρτ

μκ

þ 24RμνσκRσκνρRρ
μ þ 3RRμνσκRσκμν

þ 24RμνσκRσμRκν þ 16RμνRνσRσ
μ

− 12RRμνRμν þR3; ð3Þ

and Sm contains the contribution due to matter fields. Now,
varying action (1) with respect to the metric, one gets the
field equations as

GE
μν þ α02G

GB
μν þ α03G

TO
μν ¼ κnTμν; ð4Þ

where κn ¼ 8πGn with Gn being the n-dimensional gravi-
tational constant, Tμν is the energy-momentum tensor of
matter field, GE

μν is the Einstein tensor, and GGB
μν and GTO

μν

are given by

GGB
μν ¼ 2ðRRμν −RμσκτRκτσ

ν − 2RμρνσRρσ − 2RμσRσ
νÞ

−
1

2
L2gμν; ð5Þ

GTO
μν ¼ −3ð4RτρσκRσκλρRλ

ντμ − 8Rτρ
λσRσκ

τμRλ
νρκ þ 2Rν

τσκRσκλρRλρ
τμ

−RτρσκRσκτρRνμ þ 8Rτ
νσρRσκ

τμRρ
κ þ 8Rσ

ντκRτρ
σμRκ

ρ

þ 4Rν
τσκRσκμρRρ

τ − 4Rν
τσκRσκτρRρ

μ þ 4RτρσκRσκτμRνρ þ 2RRν
κτρRτρκμ

þ 8Rτ
νμρRρ

σRσ
τ − 8Rσ

ντρRτ
σR

ρ
μ − 8Rτρ

σμRσ
τRνρ − 4RRτ

νμρRρ
τ

þ 4RτρRρτRνμ − 8Rτ
νRτρRρ

μ þ 4RRνρRρ
μ −R2RνμÞ −

1

2
L3gμν: ð6Þ

In Lovelock theory, for each Euler density of order k̄ in
n-dimensional spacetime, only the terms with k̄ < n
contribute to the equations of motion [53]. Therefore,
the allowed solutions of the Lovelock theory are derived
in n ≥ 7 dimensions. Note that action (1) is recovered in the
low energy limit of string theory [54].
In this work, we consider n-dimensional traversable

wormhole spacetimes by replacing the two-sphere [3] in
the angular part of the metric with an (n − 2)-sphere. This
gives the following form for the line element:

ds2 ¼ −e2ϕðrÞdt2 þ RðtÞ2
�

dr2

1 − bðrÞ=rþ r2dΩ2
n−2

�
; ð7Þ

where dΩ2
n−2 is the metric on the surface of the (n − 2)-

sphere, RðtÞ is the scale factor of the universe, ϕðrÞ is the
redshift function as it is related to the gravitational redshift,
andbðrÞ is thewormhole shape function. The shape function
must satisfy the flare-out condition at the throat [3], i.e., we
must have b0ðr0Þ < 1 and bðrÞ < r for r > r0 in the whole

spacetime, where r0 is the throat radius. The condition
ϕðrÞ ¼ 0 has been discussed in [55] that zero-tidal force
wormholes are supported by anisotropic fluid with a
diagonal energy-momentum tensor. Our aim here is to study
evolving wormholes with anisotropic pressures in an inho-
mogeneous spacetime which merge smoothly to the homo-
geneous FLRW model. In the present work, we consider
ϕðrÞ ¼ 0 in order to ensure the absence of horizons and
singularities throughout the spacetime. These evolving
Lorentzian wormholes are conformally related to another
family of staticwormholeswith zero-tidal force. Thegeneral
constraints on these functions have been discussed by
Morris and Thorne in [3]. It is clear that if bðrÞ and ϕðrÞ
tend to zero themetric (7) reduces to a flat FLRWmetric, and
as RðtÞ → constant the static Morris-Thorne wormhole is
recovered. In the model herein, we seek a way to determine
the shape function bðrÞ and the scale factor RðtÞ in order to
construct dynamical wormhole configurations. We use a
unit system with κn ¼ 1.
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In an orthonormal reference frame, the nonzero compo-
nents of the energy-momentum tensor read

Tν
μ ¼ diag½−ρðr; tÞ; Prðr; tÞ; Ptðr; tÞ; Ptðr; tÞ;…�; ð8Þ

where ρðr; tÞ is the energy density and Prðr; tÞ and Ptðr; tÞ
are the radial and transverse pressures, respectively. Thus,
the gravitational field equation (4) provides us with the
components of Tν

μ as

ρðr; tÞ ¼ ½ðn − 1ÞR2H2 þ ðn − 3ÞQþ 2p�ðn − 2Þ
2R2

þ αðQþH2R2Þðn − 2Þ½ðn − 1ÞR2H2 þ ðn − 5ÞQþ 4p�
2R4

þ βðR2H2 þQÞ2ðn − 2Þ½H2ðn − 1ÞR2 þ ðn − 7ÞQþ 6p�
2R6

; ð9Þ

Prðr; tÞ ¼ −
½2 _HR2 þ ðn − 1ÞR2H2 þ ðn − 3ÞQ�ðn − 2Þ

2R2
−
½4 _HR2 þ ðn − 1ÞR2H2 þ ðn − 5ÞQ�ðn − 2ÞαðQþH2R2Þ

2R4

−
½6R2 _H þ R2ðn − 1ÞH2 þ ðn − 7ÞQ�ðQþH2R2Þ2βðn − 2Þ

2R6
; ð10Þ

Ptðr; tÞ ¼
−2R2ðn − 2Þ _H −H2ðn − 1Þðn − 2ÞR2 − ððn − 4ÞQþ 2pÞðn − 3Þ

2R2

þ α½−4R2ððn − 2ÞH2R2 þ ðn − 4ÞQþ 2pÞ _H −H4ðn − 1Þðn − 2ÞR4�
2R4

þ αð−2ððn − 4ÞQþ 2pÞH2ðn − 3ÞR2 − ððn − 6ÞQþ 4pÞQðn − 5ÞÞ
2R4

−
β½2R2ðn − 2Þ _H þ R2ðn − 1Þðn − 2ÞH2 þ 3ðn − 3ÞðQn − 4Qþ 2pÞ�H4

2R2

þ β½−12ððn − 4ÞQþ 2pÞR4 _H − 3Qðn − 5Þððn − 6ÞQþ 4pÞR2�H2

2R6

þ β½−6Qððn − 6ÞQþ 4pÞR2 _H −Q2ðn − 7Þððn − 8ÞQþ 6pÞ�
2R6

; ð11Þ

where an overdot denotes a derivative with respect to time.
We define α ¼ ðn − 3Þðn − 4Þα02, β¼ðn−3Þðn−4Þðn−5Þ
ðn−6Þα03 and H ¼ _RðtÞ

RðtÞ for notational convenience and the

functions p and Q are given by

p ¼ b0r − b
2r3

; Q ¼ b
r3
: ð12Þ

One can check that, for RðtÞ ¼ constant and β ¼ 0,
Eqs. (9)–(11) reduce to the field equations as derived in
the paper by Bhawal and Kar [15]. It is also easy to check
that, for α ¼ 0 and β ¼ 0, the field equations become those
of higher-dimensional evolving wormholes in Einstein
gravity [52].

III. WORMHOLE SOLUTIONS

A. Energy conditions

It is well-known that static traversable wormholes in four
dimensions violate energy conditions [56], which is due to

the fulfillment of the flaring-out condition near the throat
of the wormhole. However, the energy conditions can be
satisfied in the vicinity of static wormhole throats in the
framework of higher-dimensional gravity theories [57] and
the whole spacetime in the case of higher-order curvature
terms [58]. On the other hand, evolving wormholes may
provide a setting to avoid the violation of energy conditions
for a limited time period. For the sake of physical
reasonability of wormhole configuration the weak energy
condition (WEC) must be satisfied. This condition requires
that TμνUμUν ≥ 0, whereUμ is a timelike vector field. For a
diagonal energy-momentum tensor, the WEC leads to the
following inequalities:

ρ ≥ 0; ρþ Pr ≥ 0; ρþ Pt ≥ 0: ð13Þ

Note that the last two inequalities are defined as the
NEC. Using Eqs. (9)–(11), one finds the following
relationships:
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ρþ Pr ¼
ðp − _HR2Þðn − 2Þ

R2
−
2αð _HR2 − pÞðn − 2ÞðQþH2R2Þ

R4
−
3βðQþH2R2Þ2ðR2 _H − pÞðn − 2Þ

R6
; ð14Þ

ρþ Pt ¼
−R2ðn − 2Þ _H þ ðn − 3ÞQþ p

R2
þ 2αððn − 5ÞQþ 3pÞQ

R4

þ 2α½−R2ðH2ðn − 2ÞR2 þ ðn − 4ÞQþ 2pÞ _H þ ððn − 3ÞQþ pÞH2R2�
R4

−
β½3H4ðn − 2ÞR4 þ R2ð6ðn − 4ÞQþ pÞH2 þQððn − 6ÞQþ 4pÞ� _H

R4

þ 3βðQþH2R2Þ½R2ððn − 3ÞQþ pÞH2 þ ððn − 7ÞQþ 5pÞQ�
R6

; ð15Þ

where a prime and an overdot stand for differentiation with respect to r and t, respectively. From Eq. (14) we get at the throat,

ðρþ PrÞjr¼r0 ¼ −ðn − 2Þ
�
1 − b00
2R2r20

þ _H

��
1þ 2αH2 þ 3βH4 þ 2α

r20R
2
þ 3β

r40R
4
þ 6βH2

r20R
2

�
; ð16Þ

which shows that for α ¼ 0, β ¼ 0, and H ¼ constant the
NEC, and consequently the WEC, are violated at the
throat, due to the flaring-out condition. In order to satisfy
ρþ Pr > 0 in Lovelock gravity, one can choose suitable
values of α, β, and H at the wormhole throat.

B. Cosmological wormholes

We now have three equations, namely the field equa-
tions (9)–(11), with the five unknown functions: ρðr; tÞ,
Prðr; tÞ, Ptðr; tÞ, bðrÞ, and RðtÞ. Therefore, in order to
determine the wormhole geometry, one can adopt several
strategies [59]. Here, we are interested in studying evolving
wormholes with anisotropic pressures in an inhomo-
geneous spacetime, which merge smoothly to the cosmo-
logical background. The wormhole solutions presented in a
cosmological background have the interesting property that
their Ricci scalar is independent of the radial coordinate r,
similar to what happens in the cosmological setting [60]. In
other words, the scalar curvature of the spacetime is a
function of time, only. The Ricci scalar corresponding to
the metric (7) will play a fundamental role in our analysis,
which is obtained as

Rðt; rÞ ¼ ðn − 1ÞðnH2 þ 2 _HÞ þ ðn − 2Þ½ðn − 3ÞQþ 2p�
RðtÞ2 :

ð17Þ

It can be seen that the second term depends on the r
coordinate, and hence in a cosmological background
condition ∂

∂rRðt; rÞ ¼ 0 leads to the following differential
equation:

ðn − 3Þ d
dr

QðrÞ þ 2
d
dr

pðrÞ ¼ 0: ð18Þ

The above differential equation provides us with the
following form for the shape function:

bðrÞ ¼ C1r3 þ C2r4−n; ð19Þ

where C1 and C2 are constants of integration. We note that
the space slice t ¼ constant of the metric (7) for the shape
function introduced (with C1 ¼ 0) coincides with the space
slice of the n-dimensional extension of the Schwarzschild
black hole [61]. Using the condition bðr0Þ ¼ r0 at the
throat, we get

bðrÞ ¼ C1r3 − rn−30 ðC1r20 − 1Þr4−n: ð20Þ

Also the condition b0ðr0Þ < 1 leads to the following
inequality:

C1 <
n − 3

r20ðn − 1Þ : ð21Þ

We can now obtain the constant C1 using the fact that the
spacetime is asymptotically FLRW, along with applying the
normalization C1 ¼ 0;�1 for the curvature constant.
It is clear that solutions with C1 ¼ 0 (flat universe) are

asymptotically flat, i.e., bðrÞr tends to zero as r → ∞. Also,
the condition b0ðr0Þ < 1 is satisfied for the solution with
C1 ¼ −1 (open universe). For the case of the wormhole
solution with C1 ¼ 1 (closed universe), the wormhole
configuration cannot be arbitrarily large. It is worth
mentioning that other curvature invariants, such as the
Kretschmann scalar, K ¼ RαβγδRαβγδ, and the Weyl square,
C2 ¼ CαβγδCαβγδ, or combinations of them, can be utilized
in order to obtain nontrivial wormhole solutions. The
Kretschmann scalar for the spacetime metric (7) is given by
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K ¼ 2ðn − 2Þ
R4

½ðn − 3ÞQ2 þ 2p2 þ ð4pþ ð2n − 6ÞQÞ _R2� þ 2ðn − 1Þ
R4

½ðn − 2Þ _R4 þ 2R2R̈2�: ð22Þ

We then observe that the Kretschmann invariant cannot be separated into time and radial dependent functions, hence,
finding wormhole solutions using this invariant may not be as simple as utilizing the Ricci scalar. For the case of the Weyl
square we get

C2 ¼ 4ðn − 3Þðp −QÞ2
ðn − 1ÞR4

; ð23Þ

where we see that since C2 is separable in r and t one can find nontrivial solutions for the shape function, assuming a
suitable form for the ðt; rÞ-dependence of the Weyl square invariant.
With bðrÞ given by Eq. (20), along with using the field equations (9)–(11), we obtain

ρðr; tÞ ¼ ρcbðtÞ −
ðn − 1Þðn − 2Þαr−40 ðC1r20 − 1Þ2

2R4

�
r0
r

�
2n−2

−
3βðn − 1ÞðC1r02 − 1Þ2ðn − 2Þr0−4ðR2H2 þ C1Þ

2R6

�
r0
r

�
2n−2

þ βðn − 1ÞðC1r02 − 1Þ3ðn − 2Þr−60
R6

�
r0
r

�
3n−3

; ð24Þ

Prðr;tÞ¼PcbðtÞþ
ðn−2Þr−20 ½2αR2 _HþðαH2þ1

2
Þðn−3ÞR2þαC1ðn−5Þ�ðC1r20−1Þ
R4

�
r0
r

�
n−1

−
αðC1r02−1Þ2ðn−5Þðn−2Þ

2R4

�
r0
r

�
2n−2

þ3β½ððn−3ÞH2þ4 _HÞR2þðn−7ÞC1�ðn−2Þr−20 ðR2H2þC1ÞðC1r20−1Þ
2R6

�
r0
r

�
n−1

−
3βðn−2Þr−40 ðC1r20−1Þ2½ðn−7ÞC1þR2ð2 _HþH2n−5H2Þ�

2R6

�
r0
r

�
2n−2

þr−60 ðC1r20−1Þ3ðn−7Þðn−2Þβ
2R6

�
r0
r

�
3n−3

;

ð25Þ

Ptðr;tÞ¼PcbðtÞ−
½2αR2 _HþðαH2þ 1

2
Þðn−3ÞR2þαC1ðn−5Þ�ðC1r20−1Þ

R4

�
r0
r

�
n−1

þnαðC1r20−1Þ2ðn−5Þ
2R4

�
r0
r

�
2n−2

−
3β½ððn−3ÞH2þ4 _HÞR2þðn−7ÞC1�ðC1r20−1ÞðR2H2þC1Þr−20

2R6

�
r0
r

�
n−1

−
3βðC1r20−1Þ2nr−40 ½ð2 _HþnH2−5H2ÞR2þðn−7ÞC1�

2R6

�
r0
r

�
2n−2

−
ðC1r20−1Þ3r0−6βðn−7Þðn−1=2Þ

R6

�
r0
r

�
3n−3

;

ð26Þ
where the ρcb and Pcb components correspond with the cosmological background and are given by

ρcbðtÞ ¼
ðn − 2Þðn − 1ÞðH2R2 þ C1Þ½ðH4R4 þ 2C1H2R2 þ C2

1Þβ þ ðH2R4 þ C1R2Þαþ R4�
2R6

; ð27Þ

PcbðtÞ¼−
ð½ð2þ4αH2ÞR4þ4αR2C1� _HþH2ð1þαH2Þðn−1ÞR4Þðn−2Þ

2R4
−
½ðn−3ÞC1ð1þ2αH2ÞR2þαC1

2ðn−5Þ�ðn−2Þ
2R4

−
βðn−2Þ½6R2 _HþH2ðn−1ÞR2þðn−7ÞC1�ðR2H2þC1Þ2

2R6
: ð28Þ

Notice that for our solutions in a cosmological background, the components of ρ, Pr, and Pt are asymptotically independent
of r. Moreover, their first terms depend only on time corresponding to a cosmological background as described by FLRW
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spacetime. Let us now investigate the features of the evolving wormhole. We can determine the behavior of the scale factor
by applying a linear equation of state between the radial pressure and energy density of the cosmological background
profiles, i.e., Pcb ¼ wρcb. We then obtain

R2ð2 _HR2 þH2ðwþ 1Þðn − 1ÞR2 þ ððwþ 1Þn − w − 3ÞC1Þ
þ αðC1 þH2R2Þ½4w _HR2 þH2ðwþ 1Þðn − 1ÞR2 þ ððwþ 1Þn − w − 5ÞC1�
þ ½6w _HR2 þH2ð1þ wÞðn − 1ÞR2 þ ððn − 7Þw − 1þ nÞC1�ðC1 þ R2H2Þ2β ¼ 0: ð29Þ

One can check that for β ¼ 0, the solution of Eq. (29) reduces to the scale factor for a higher dimensional in Gauss-Bonnet
gravity [62]. In the following subsections, with the help of the master equation (29), we will determine the behavior of the
scale factor and the related properties of the energy conditions for the wormhole geometry in the presence of Lovelock
gravity. Thus, in order to study an evolving wormhole in detail, we consider three cases: C1 ¼ 0 and C1 ¼ �1.

C. Solutions for the case C1 = 0

We first try to solve the differential equation (29) for the inflationary expanding regime, i.e., w ¼ −1. We then obtain the
scale factor as RðtÞ ¼ R2eht, where R2 and h are real constants. In order to check the WEC we rewrite expressions (13) for
this solution, as

ρðr; tÞ ¼ ðn − 2Þðn − 1Þh2ð1þ αh2 þ βh4Þ
2

−
ðαþ 3βh2Þðn − 1Þðn − 2Þ

2R4
2r

4
0e

4ht

�
r0
r

�
2n−2

−
ðn − 2Þðn − 1Þβ

r60R
6
2e

6ht

�
r0
r

�
3n−3

; ð30Þ

ρþPr¼−
ðn−2Þðn−3Þð1þ2αh2þ3βh4Þ

2R2
2r

2
0e

2ht

�
r0
r

�
n−1

−
ðn−2Þðn−3Þðαþ3βh2Þ

R4
2r

4
0e

4ht

�
r0
r

�
2n−2

−
3βðn−2Þðn−3Þ

2r60R
6
2e

6ht

�
r0
r

�
3n−3

;

ð31Þ

ρþ Pt ¼
ðn − 3Þð1þ 2αh2 þ 3βh4Þ

2R2
2r

2
0e

2ht

�
r0
r

�
n−1

−
ðαþ 3βh2Þð1þ nÞ

R4
2r

4
0e

4ht

�
r0
r

�
2n−2

−
3βð3n − 1Þ
2r60R

6
2e

6ht

�
r0
r

�
3n−3

: ð32Þ

It is clear that both ρþ Pr and ρþ Pt tend to zero as t → ∞, with opposite signs. Therefore, in the limit of large times, one
of the ρþ Pr or ρþ Pt quantities is negative and consequently the WEC is violated. However, it is seen that one can set the
coefficient of the L3 term as β ¼ − 1þ2αh2

3h4 , such that the first term is eliminated. For this case, the values of these quantities at
the throat for t ¼ 0 are given by

ρðrÞjr¼r0 ¼
ðn − 2Þðn − 1Þð2þ h8αR6

2r
6
0 þ 2h6R6

2r
6
0 þ 3αh4R2

2r
2
0 þ ð3R2

2r
2
0 þ 4αÞh2Þ

6h4R6
2r

6
0

; ð33Þ

ρðrÞ þ PrðrÞjr¼r0 ¼
ð1þ 2αh4R2

2r0
2 þ 2ðR2

2r0
2 þ αÞh2Þðn − 3Þðn − 2Þ

h4R6
2r

6
0

; ð34Þ

and

ρðrÞ þ PtðrÞjr¼r0 ¼
2αR2

2r
2
0ð1þ nÞh4 þ ð2r20ð1þ nÞR2

2 þ ð6n − 2ÞαÞh2 þ 3n − 1

2h4R6
2r

6
0

: ð35Þ

Figure 1 shows that it is possible to choose suitable values for the α parameter in order to satisfy theWEC at the throat. Also,
with increasing the value of r0 the WEC is satisfied by choosing larger values of jαj. However, it is still possible to choose
appropriate values of the α parameter and, as Fig. 2 shows, the WEC is satisfied at all times and r ≥ r0.
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1. Numerical solutions for the case C1 = 0

Since Eq. (29) cannot be solved analytically for RðtÞ, we
proceed to numerically integrating this equation for a few
values of model parameters, α, β, and w, and investigate the
WEC. For this purpose, we can substitute C1 ¼ 0 into
Eq. (29) and obtain

d
dt
HðtÞþHðtÞ2ð1þαHðtÞ2þβHðtÞ4Þðwþ1Þðn−1Þ

2wþ4wαHðtÞ2þ6wβHðtÞ4 ¼0:

ð36Þ

Now, in order to check the WEC, we first investigate the
behavior of ρðrÞ and ρþ pr for large r, which is given by
the following approximations:

ρ ≃
ðn − 2Þðn − 1ÞHðtÞ2

2
½1þ αHðtÞ2 þ βHðtÞ4�

þO
�

1

r2n−2

�
; ð37Þ

and

ρþ pr ¼ ρþ pt ≃
ðn − 2Þðn − 1Þðwþ 1ÞHðtÞ2

2

× ½1þ αHðtÞ2 þ βHðtÞ4� þO
�

1

rn−1

�
: ð38Þ

It is seen that for w > −1, α > 0, and β > 0, both ρ and
ρþ pr are positive in the limit of large r and consequently
the WEC is satisfied. In Fig. 3 the scale factor versus time is
plotted for β ¼ −1, 0, 1, α ¼ 1 in seven dimensions and for
w ¼ − 3

4
(left panel) and w ¼ 1 (right panel). Using then the

field equations (9)–(11) along with numerical values of the
scale factor, we can estimate the behavior of expressions for
the WEC. The numerical results are plotted in Figs. 4 and 5.
In these figures we can choose suitable values for the model
parameters so that the WEC will be satisfied at the throat of
the wormhole. In Fig. 4 we choose the parameters to be
α ¼ 1, β ¼ 1, and w ¼ 1 with r0 ¼ 3 in seven dimensions.
We see that for large time the WEC is violated at the throat
(left panel), however, this condition holds as we move a way
from the wormhole; see the right panel. In Fig. 5, we depict
the quantities ρ, ρþ Pr, and ρþ Pt at the throat and at larger
radial distances for positive values of the β and α parameters
and w ¼ − 3

4
, where we observe that all of these quantities

are satisfied. Hence, for these parameter values the WEC is
satisfied at all times and for r ≥ r0. We further note that, as
we observe from Eq. (16), static wormhole solutions for
positive Gauss-Bonnet and Lovelock coefficients always
violate energy conditions due to the flare-out condition. Such
a violation of energy conditions holds in static wormhole
configurations, for all positive coefficients of higher-order
Lovelock gravity. While for dynamic wormhole configura-
tions, e.g., the cases with C1 ¼ 0 and w > −1, one can pick
out suitable positive values of Gauss-Bonnet and Lovelock
coefficients in order to fulfill the energy conditions at
the throat; see Figs. 4 and 5. In comparison to dynamic
wormholes in Gauss-Bonnet gravity, for which negative
Gauss-Bonnet coefficients lead to the satisfaction of energy
conditions throughout the spacetime, the presence of the
third-order Lovelock term helps to meet energy conditions
for positive Gauss-Bonnet coefficients.

FIG. 2. The behavior of ρ, ρþ pr and ρþ pt versus r and t, respectively, from left to right, for w ¼ −1, r0 ¼ 2, α ¼ 1, β ¼ −1,
R2 ¼ 0.5, and h ¼ 1.5 in seven dimensions.

FIG. 1. The allowed region for the α parameter and wormhole
throat for R2 ¼ 1, h ¼ 1, and n ¼ 7.
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D. Solutions for the case C1 = − 1
In this subsection, we study the open background by

using Eq. (29). We then find the analytical scale factor for
w ¼ −1 as

RðtÞ ¼ R3 sinh

�
t
R3

�
; ð39Þ

where R3 is a positive constant. In this case, we obtain the
quantities ρ, ρþ Pr, and ρþ Pt as

FIG. 3. The behavior of RðtÞ in seven dimensions forw ¼ − 3
4
(left panel) and w ¼ 1 (right panel), and for α ¼ 1 and β ¼ −1, 1, 0 from

top to bottom, respectively.

FIG. 4. The behavior of ρþ pt, ρ, and ρþ pr with respect to time at the throat r0 ¼ 3 for the left panel and at r ¼ 20 for the right
panel, from top to bottom, respectively. The model parameters are chosen as α ¼ 1, β ¼ 1, and w ¼ 1 in seven dimensions.

FIG. 5. The behavior of ρ, ρþ pr, and ρþ pt with respect to time at the throat r0 ¼ 3 for the left panel and at r ¼ 30 for the right
panel from top to bottom, respectively. The model parameters are chosen as α ¼ 1, β ¼ 1, and w ¼ − 3

4
in seven dimensions.

DYNAMICAL WORMHOLES IN LOVELOCK GRAVITY PHYS. REV. D 104, 104050 (2021)

104050-9



ρðr; tÞ ¼ ðn − 1Þðn − 2Þ
2R2

3

þ α

�ðn − 1Þðn − 2Þ
2R4

3

−
ðn − 1Þðr02 þ 1Þ2ðn − 2Þ

2R4
3r

4
0 sinh

4ð t
R3
Þ

�
r0
r

�
2n−2

�

þ β

�ðn − 2Þðn − 1Þ
2R6

3

−
3ðn − 2Þðn − 1Þðr20 þ 1Þ2

2r04R6
3 sinh

4ð t
R3
Þ

�
r0
r

�
2n−2

�
−
βðn − 2Þðn − 1Þðr02 þ 1Þ3

R6
3r

6
0 sinh

6ð t
R3
Þ

�
r0
r

�
3n−3

; ð40Þ

ρþPr¼−
ðr20þ1Þðn−2Þðn−3Þ

2r20R
2
3sinh

2ð t
R3
Þ

�
r0
r

�
n−1

þα

�
−
ðr20þ1Þðn−2Þðn−3Þ

r20R
4
3sinh

2ð t
R3
Þ

�
r0
r

�
n−1

−
ðr20þ1Þ2ðn−2Þðn−3Þ

R4
3r

4
0sinh

4ð t
R3
Þ

�
r0
r

�
2n−2

�

−β

�
3ðn−2Þðn−3Þðr20þ1Þ

2R6
3sinh

2ð t
R3
Þr20

�
r0
r

�
n−1

þ3ðn−2Þðn−3Þðr20þ1Þ2
R6
3sinh

4ð t
R3
Þr40

�
r0
r

�
2n−2

�
−
3βðn−2Þðn−3Þðr20þ1Þ3

2R6
3sinh

2ð t
R3
Þr60

�
r0
r

�
3n−3

;

ð41Þ

ρþ Pt ¼
ðr20 þ 1Þðn − 3Þ
2r20R

2
3 sinh

2ð t
R3
Þ
�
r0
r

�
n−1

þ α

�ðr20 þ 1Þðn − 3Þ
r20R

4
3 sinh

2ð t
R3
Þ
�
r0
r

�
n−1

−
ðr20 þ 1Þ2ðnþ 1Þ
R4
3r0

4 sinh4ð t
R3
Þ
�
r0
r

�
2n−2

�

þ β

�
3ðr20 þ 1Þðn − 3Þ
2R6

3r
2
0 sinh

2ð t
R3
Þ
�
r0
r

�
n−1

−
3ðr20 þ 1Þ2ðnþ 1Þ
R6
3r

4
0 sinh

4ð t
R3
Þ

�
r0
r

�
2n−2

�
−
3βðr20 þ 1Þ3ð3n − 1Þ

2R6
3r

6
0 sinh

6ð t
R3
Þ

�
r0
r

�
3n−3

: ð42Þ

It is seen that in GR (α ¼ 0 and β ¼ 0) ρþ Pr is always negative, implying the violation of NEC throughout the spacetime.
Let us now obtain ρ, ρþ Pr, and ρþ Pt at the throat of the wormhole for small times,

ρðr0Þ ¼ −β
ðn − 1Þðn − 2Þðr20 þ 1Þ3

r60t
6

−
ðn − 1Þðn − 2Þ½ðβ þ αR2

3Þr20 − 2β�ðr20 þ 1Þ2
2r60R

2
3t

4
þO

�
1

t2

�
; ð43Þ

ρþ Prjr¼r0 ¼ −
3ðr20 þ 1Þ3ðn − 2Þðn − 3Þβ

2r60t
6

−
ðr20 þ 1Þ2ðn − 2Þðn − 3Þð3βr20 − 3β þ 2αr20R

2
3Þ

2r60R
2
3t

4
þO

�
1

t2

�
; ð44Þ

and

ρþ Ptjr¼r0 ¼ −
3ð3n − 1Þðr20 þ 1Þ3β

2r60t
6

−
ðr20 þ 1Þ2½ðð9 − 3nÞβ þ 2αR2

3ð1þ nÞÞr20 − 3βð3n − 1Þ�
2r60R

2
3t

4
þO

�
1

t2

�
: ð45Þ

One can easily show that in the limit t → 0 the WEC is satisfied for β < 0 and arbitrary values of the α parameter. This is

due to the presence of the first term in Eqs. (43)–(45). One can then suitably choose the model parameters so that the WEC

will be satisfied for r > r0 and for all times; see Fig. 6.

FIG. 6. The behavior of ρ, ρþ pr, and ρþ pt versus r and t, respectively, from left to right, for w ¼ −1, r0 ¼ 0.1, α ¼ 1, β ¼ −1, and
R3 ¼ 1.5 in seven dimensions.
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E. Solutions for the case C1 = 1

In the case of a closed background, we can choose the
wormhole throat such that the condition b0ðr0Þ < 1 is
satisfied, i.e., r20 <

n−3
n−1. To be a solution of a wormhole,

the condition 0 < r − bðrÞ is also imposed. The condition
bðrÞ ¼ r leads to two real and positive roots given by r− ¼
r0 and rþ, which is given by

rn−1þ − rn−3þ − rn−10 þ rn−30 ¼ 0: ð46Þ
Thus, the spatial extension of this type of wormhole solution
cannot be arbitrarily large. We then have a finite wormhole
configuration within the range r− < r < rþ. For instance,
consider n ¼ 7 in Eq. (46). The rþ is then found as

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2r20 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r20 − 3r40

pq
2

: ð47Þ

In Fig. 7, we plot the quantity 1 − bðrÞ=r versus r for n ¼ 7
and as it is observed the condition b0ðr0Þ < 1 is satisfied at
the throat. Also, increasing the dimension of space enlarges
the wormhole spatial extension. In order to study energy
conditions for this class of solutions we proceed with
obtaining the behavior of the scale factor, using Eq. (29)
for w ¼ −1, as

RðtÞ ¼ R4 cosh

�
t
R4

�
; ð48Þ

where R4 is a constant. In order to check the WEC we can
substitute the above solution into the expressions (9)–(11) to
obtain

ρðr; tÞ ¼ ðn − 1Þðn − 2Þ
2R2

4

þ α

�ðn − 1Þðn − 2Þ
2R4

4

−
ðn − 1Þðr20 − 1Þ2ðn − 2Þ

2R4
4r

4
0 cosh

4ð t
R4
Þ

�
r0
r

�
2n−2

�

þ β

�ðn − 2Þðn − 1Þ
2R6

4

−
3ðn − 2Þðn − 1Þðr20 − 1Þ4

2r40R
6
4 cosh

4ð t
R4
Þ

�
r0
r

�
2n−2

�
þ β

�ðn − 2Þðn − 1Þðr20 − 1Þ6
r60R

6
4 cosh

6ð t
R4
Þ

�
r0
r

�
3n−3

�
; ð49Þ

ρþ Pr ¼
ðr20 − 1Þðn − 2Þðn − 3Þ

2r20R
2
4 cosh

2ð t
R4
Þ

�
r0
r

�
n−1

þ α

�ðr20 − 1Þðn − 2Þðn − 3Þ
r20R

4
4 cosh

2ð t
R4
Þ

�
r0
r

�
n−1

−
ðr20 − 1Þ2ðn − 2Þðn − 3Þ

R4
4r

4
0 cosh

4ð t
R4
Þ

�
r0
r

�
2n−2

�

þ β

�
3ðr20 − 1Þðn − 2Þðn − 3Þ

2r20R
6
4 cosh

2ð t
R4
Þ

�
r0
r

�
n−1

−
3ðr20 − 1Þ4ðn − 2Þðn − 3Þ

R6
4r

4
0 cosh

4ð t
R4
Þ

�
r0
r

�
2n−2

�

þ β

�
3ðr20 − 1Þ6ðn − 2Þðn − 3Þ

2R6
4r

6
0 cosh

6ð t
R4
Þ

�
r0
r

�
3n−3

�
; ð50Þ

ρþ Pt ¼ −
ðr20 − 1Þðn − 3Þ
2r20R

2
4 cosh

2ð t
R4
Þ
�
r0
r

�
n−1

− α

�ðr20 − 1Þðn − 3Þ
r20R

4
4 cosh

2ð t
R4
Þ
�
r0
r

�
n−1

þ ðr20 − 1Þ2ðnþ 1Þ
R4
4r

4
0 cosh

4ð t
R4
Þ
�
r0
r

�
2n−2

�

− β

�
3ðr20 − 1Þðn − 3Þ
2r20R

6
4 cosh

2ð t
R4
Þ
�
r0
r

�
n−1

þ 3ðr20 − 1Þ4ðnþ 1Þ
R6
4r

4
0 cosh

4ð t
R4
Þ

�
r0
r

�
2n−2

�
þ β

�
3ðr20 − 1Þ6ð3n − 1Þ
2R6

4r
6
0 cosh

6ð t
R4
Þ

�
r0
r

�
3n−3

�
: ð51Þ

Let us now obtain ρ, ρþ Pr, and ρþ Pt at the throat of the wormhole for small times,

ρðr0Þ ¼
ðn − 1Þðr60R4

4 þ 2αr40R
2
4 þ ð3β − αR2

4Þr20 − 2βÞðn − 2Þ
2r60R

6
4

þ ðn − 2Þðn − 1Þðr20 − 1Þ2ð3β þ αr20R
2
4Þ

r60R
8
4

t2 þOðt4Þ; ð52Þ

FIG. 7. The behavior of 1 − bðrÞ=r with respect to r for
r0 ¼ 0.1, n ¼ 7 with b0ðr0Þ ¼ −2.94.
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ρþ Prjr¼r0 ¼
ðn − 2Þðn − 3Þðr20 − 1Þð3β þ 2r20αR

2
4 þ r40R

4
4Þ

2r60R
6
4

−
ðn − 2Þðn − 3Þðr20 − 1ÞðR2

4ð−2αþ R2
4Þr40 þ ð−6β þ 4αR2

4Þr20 þ 9βÞ
2r60R

8
4

t2 þOðt4Þ; ð53Þ

ρþ Ptjr¼r0 ¼ −
ðr20 − 1Þ½ðn − 3Þr40R4

4 þ ðð4n − 4Þr40 − 2ðnþ 1ÞR2
4r

2
0Þαþ Σ1�

2r06R6
4

þ ðr20 − 1Þ½ðð6n − 2ÞR2
4r

4
0 − 4ðnþ 1ÞR2

4r
2
0Þαþ ðn − 3Þr40R4

4 þ Σ2�
2r06R8

4

t2 þOðt4Þ; ð54Þ

where

Σ1 ¼ ½ð12n − 12Þr20 − 9nþ 3�β; Σ2 ¼ ½ð−12nþ 12Þr40 þ ð42n − 30Þr20 − 27nþ 9�β:

Also, the asymptotic behavior of ρþ Pt and ρþ Pr is
obtained as

ρþ Pr ≃
ðn − 3Þðn − 2Þðr20 − 1Þrn−30 ð3β þ R4

4 þ 2αR2
4Þ

2R6
4r

n−1 cosh2ð t
R4Þ

þO
�

1

r2n−2

�
ð55Þ

and

ρþ Pt ≃ −
ðn − 3Þðr20 − 1Þrn−30 ð3β þ R4

4 þ 2αR2
4Þ

2R6
4r

n−1 cosh2ð t
R4Þ

þO
�

1

r2n−2

�
: ð56Þ

In this case, we see that in GR limit (α ¼ 0, β ¼ 0) ρþ Pt
is always negative, implying the violation of NEC at all
times. However, for the present model we can choose
suitable values for the α and β parameters so that we have
normal matter for the wormhole configuration. We note
that, asymptotically, the behavior of ρþ Pt and ρþ Pr is in

the opposite direction, then, one can set α ¼ − 3βþR4
4

2R2
4

so that

the WEC can be satisfied. In Fig. 8, we depict the quantities
ρ, ρþ Pr, and ρþ Pt in terms of r and t for R4 ¼ 1,
r0 ¼ 0.1, and n ¼ 7.

IV. CONCLUDING REMARKS

In this paper, we have explored higher-dimensional
dynamical wormhole solutions in the framework of
Lovelock gravity by considering a constraint on the
Ricci scalar. In this context, the existence of higher
curvature terms may help to construct wormhole configu-
rations that respect energy conditions. In a cosmological set
up, microscopic dynamical wormholes produced in the
early universe may be inflated to macroscopic scales. Our
analysis shows that for all solutions with w ¼ −1, one can
choose the Lovelock coefficients as α > 0 and β < 0 with a
suitable value for the throat so that the wormhole solutions
obtained in this manner respect the weak energy condition
in whole space. For the case C1 ¼ 0, one can choose
special values for second-order and third-order Lovelock
coefficients so that theWEC will be respected at the throat.

FIG. 8. The behavior of ρ, ρþ pr, and ρþ pt versus r and t, respectively, from left to right, for w ¼ −1, r0 ¼ 0.1, R4 ¼ 1, α ¼ 1, and
β ¼ −1 in seven dimensions.
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Also in this case, we can choose positive second-order and
third-order Lovelock coefficients for w > −1 so that the
WEC is fulfilled asymptotically. For C1 ¼ −1 and suitable
values for the wormhole throat, one can choose the
Lovelock coefficients as α > 0 and β < 0 in such a way
that the energy conditions hold throughout the spacetime.
Moreover, for C1 ¼ 1, α > 0, and β < 0 the energy
conditions are satisfied; however, wormhole configurations
constructed in this way can exist within a small region of
space. It should be noted that the existence of a curvature
singularity within the spacetime can be examined through
investigating the behavior of the Kretschmann invariant
(22) and others. In this sense, the divergence of the
Kretschmann invariant at some spacetime event signals
the occurrence of a spacetime singularity [63]. Regarding
our solutions, we observe that this invariant behaves
regularly for r ≥ r0 and thus, the spacetime geometry
has no curvature singularity in this range.
As the final remarks concerning the future of research

works, it is worth mentioning that during the past years
several branches of theoretical physics such as string
theory, supergravity, and Kaluza-Klein theory have pre-
dicted the presence of extra dimensions [64]. It is therefore
plausible to search for possible existence of geometrical
compact objects within higher-dimensional spacetimes. For
example higher-dimensional black holes, wormholes, and

positive mass solutions with naked singularities [65].
Moreover, the near horizon black hole solutions in
higher-dimensional models are of particular interest since
they can be regarded as windows to extra dimensions [66].
From a cosmological perspective, the possible existence of
extra dimensions is significant for inflationary scenarios
[67] and during the early cosmic times [68]. In [69] the
author has provided some observational criterion in order to
determine whether the extra dimensions are compact or
large and the phenomenological aspects of large, warped,
and universal extra dimensions are reviewed in [64,70]. In
this context, wormhole geometries without exotic matter
have been studied in [71]. Such solutions could be thought
of as similar to missing energies in collider phenomenology
which are expected to provide signals of the existence of
extra dimensions [72]. Therefore, the existence of such
configurations with extra dimensions in our universe
cannot be a priori excluded, and their possible astrophysi-
cal results could be a subject of further investigations.
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(1996); P. Hořava and E. Witten, Nucl. Phys. B475, 94
(1996); A. Lukas, B. A. Ovrut, K. S. Stelle, and D.Waldram,
Phys. Rev. D 59, 086001 (1999); A. Lukas, B. A. Ovrut, and
D. Waldram, Phys. Rev. D 60, 086001 (1999).

[42] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); J. M.
Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); X. O.
Camanho and J. D. Edelstein, J. High Energy Phys. 04
(2010) 007; X. O. Camanho and J. D. Edelstein, J. High
Energy Phys. 06 (2010) 099; X. O. Camanho, J. D. Edelstein,
and M. F. Paulos, J. High Energy Phys. 05 (2011) 127; P. A.
Cano, Higher-curvature gravity, black holes and holography,
Ph.D thesis, arXiv:1912.07035.

[43] Y. Ezawa, H. Iwasaki, M. Ohmori, S. Ueda, N. Yamada, and
T. Yano, Classical Quantum Gravity 20, 4933 (2003); S.
Jalalzadeh, F. Ahmadi, and H. R. Sepangi, J. High Energy
Phys. 08 (2003) 012; S. Nojiri and S. D. Odintsov, Phys.
Rep. 505, 59 (2011); T. P. Sotiriou and V. Faraoni, Rev.
Mod. Phys. 82, 451 (2010); P. A. Cano, K. Fransen, and T.
Hertog, Phys. Rev. D 103, 103531 (2021).

[44] D. Lovelock, Aequ. Math. 4, 127 (1970); J. Math. Phys. 12,
498 (1971); J. Math. Phys. 13, 874 (1972).

[45] T. Padmanabhan and D. Kothawala, Phys. Rep. 531, 115
(2013); P. Bueno, P. A. Cano, V. S. Min, and M. R. Visser,
Phys. Rev. D 95, 044010 (2017); P. Bueno, P. A. Cano, Ó.
Lasso, and P. F. Ramírez, J. High Energy Phys. 04 (2016)
028.

MOHAMMAD REZA MEHDIZADEH and AMIR HADI ZIAIE PHYS. REV. D 104, 104050 (2021)

104050-14

https://doi.org/10.1140/epjc/s10052-012-2240-6
https://doi.org/10.1140/epjc/s10052-012-2240-6
https://doi.org/10.1103/PhysRevD.80.104033
https://doi.org/10.1103/PhysRevD.80.104033
https://doi.org/10.1103/PhysRevD.46.2464
https://doi.org/10.1103/PhysRevD.78.024005
https://doi.org/10.1103/PhysRevLett.107.271101
https://doi.org/10.1103/PhysRevLett.107.271101
https://doi.org/10.1103/PhysRevD.91.084004
https://doi.org/10.1134/S0202289315040027
https://doi.org/10.1134/S0202289315040027
https://doi.org/10.1103/PhysRevD.94.124006
https://doi.org/10.1140/epjc/s10052-016-4560-4
https://doi.org/10.1103/PhysRevD.95.064049
https://doi.org/10.1103/PhysRevD.95.064049
https://doi.org/10.1142/S0219887818502109
https://doi.org/10.1142/S0219887818502109
https://doi.org/10.1103/PhysRevD.98.124010
https://doi.org/10.1140/epjp/i2017-11799-6
https://doi.org/10.1140/epjp/i2017-11799-6
https://doi.org/10.3390/sym13071260
https://doi.org/10.1140/epjc/s10052-021-09668-7
https://doi.org/10.1140/epjc/s10052-021-09668-7
https://doi.org/10.1103/PhysRevD.59.064018
https://doi.org/10.1103/PhysRevD.59.064018
https://doi.org/10.1088/1475-7516/2009/11/013
https://doi.org/10.1088/1475-7516/2009/11/013
https://doi.org/10.1002/prop.202100023
https://doi.org/10.1002/prop.202100023
https://doi.org/10.1103/PhysRevD.94.024011
https://doi.org/10.1103/PhysRevD.85.084035
https://doi.org/10.1103/PhysRevD.85.084035
https://doi.org/10.1103/PhysRevD.68.064004
https://doi.org/10.1140/epjc/s10052-019-7596-4
https://doi.org/10.1140/epjc/s10052-019-7596-4
https://doi.org/10.1103/PhysRevD.98.123525
https://doi.org/10.1103/PhysRevD.98.123525
https://doi.org/10.1140/epjc/s10052-019-7206-5
https://doi.org/10.1140/epjc/s10052-019-7206-5
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1140/epjc/s10052-018-5538-1
https://doi.org/10.1142/S0218271819500044
https://doi.org/10.1142/S0218271819500044
https://doi.org/10.1103/PhysRevD.99.024051
https://doi.org/10.1103/PhysRevD.99.024051
https://doi.org/10.1142/S0218271819500986
https://doi.org/10.1142/S0218271819500986
https://doi.org/10.1103/PhysRevD.49.862
https://doi.org/10.1103/PhysRevD.53.722
https://doi.org/10.1103/PhysRevD.79.044034
https://doi.org/10.1103/PhysRevD.79.044034
https://doi.org/10.1088/0264-9381/23/20/004
https://doi.org/10.1088/0264-9381/23/20/004
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://ui.adsabs.harvard.edu/abs/1997AnIPS..13..249V/abstract
https://doi.org/10.1103/PhysRevLett.81.746
https://doi.org/10.1103/PhysRevD.58.044021
https://doi.org/10.1103/PhysRevD.58.044021
https://doi.org/10.1103/PhysRevD.83.044050
https://doi.org/10.1103/PhysRevD.83.044050
https://doi.org/10.1103/PhysRevD.47.1370
https://doi.org/10.1088/0264-9381/23/24/003
https://doi.org/10.1088/0264-9381/23/24/003
https://doi.org/10.1142/S0217732311035407
https://doi.org/10.1142/S0217732311035407
https://doi.org/10.1007/s10714-009-0780-3
https://doi.org/10.1103/PhysRevD.77.024042
https://doi.org/10.1103/PhysRevD.77.024042
https://doi.org/10.1088/0264-9381/23/20/004
https://doi.org/10.1088/0264-9381/23/20/004
https://doi.org/10.1007/s10714-005-0018-y
https://doi.org/10.1007/s10714-005-0018-y
https://doi.org/10.1103/PhysRevD.66.024015
https://doi.org/10.1103/PhysRevD.66.024015
https://doi.org/10.1103/PhysRevD.77.024022
https://doi.org/10.1103/PhysRevD.77.024022
https://doi.org/10.1103/PhysRevD.77.024023
https://doi.org/10.1103/PhysRevD.85.104010
https://doi.org/10.1103/PhysRevD.85.104010
https://doi.org/10.1103/PhysRevD.87.064012
https://doi.org/10.1103/PhysRevD.87.064012
https://doi.org/10.1140/epjc/s10052-013-2517-4
https://doi.org/10.1140/epjc/s10052-013-2517-4
https://doi.org/10.1103/PhysRevD.96.124017
https://doi.org/10.1103/PhysRevD.96.124017
https://doi.org/10.1103/PhysRevD.102.044003
https://doi.org/10.1016/j.aop.2014.12.028
https://doi.org/10.1016/j.aop.2014.12.028
https://doi.org/10.1140/epjc/s10052-021-09059-y
https://doi.org/10.1140/epjc/s10052-021-09059-y
https://doi.org/10.1016/j.dark.2021.100779
https://doi.org/10.1016/j.dark.2021.100779
https://doi.org/10.1140/epjc/s10052-017-5131-z
https://doi.org/10.1140/epjc/s10052-017-5131-z
http://www.numdam.org/article/AIHPA_1974__20_1_69_0.pdf
http://www.numdam.org/article/AIHPA_1974__20_1_69_0.pdf
http://www.numdam.org/article/AIHPA_1974__20_1_69_0.pdf
http://www.numdam.org/article/AIHPA_1974__20_1_69_0.pdf
http://www.numdam.org/article/AIHPA_1974__20_1_69_0.pdf
https://doi.org/10.1103/PhysRevD.10.401
https://doi.org/10.1103/PhysRevD.10.3337
https://doi.org/10.1103/PhysRevD.10.3337
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1007/BF01397481
https://doi.org/10.1016/0550-3213(95)00158-O
https://doi.org/10.1016/0550-3213(95)00158-O
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00308-2
https://doi.org/10.1016/0550-3213(96)00308-2
https://doi.org/10.1103/PhysRevD.59.086001
https://doi.org/10.1103/PhysRevD.60.086001
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1007/JHEP04(2010)007
https://doi.org/10.1007/JHEP04(2010)007
https://doi.org/10.1007/JHEP06(2010)099
https://doi.org/10.1007/JHEP06(2010)099
https://doi.org/10.1007/JHEP05(2011)127
https://arXiv.org/abs/1912.07035
https://doi.org/10.1088/0264-9381/20/22/016
https://doi.org/10.1088/1126-6708/2003/08/012
https://doi.org/10.1088/1126-6708/2003/08/012
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/PhysRevD.103.103531
https://doi.org/10.1007/BF01817753
https://doi.org/10.1063/1.1665613
https://doi.org/10.1063/1.1665613
https://doi.org/10.1063/1.1666069
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1103/PhysRevD.95.044010
https://doi.org/10.1007/JHEP04(2016)028
https://doi.org/10.1007/JHEP04(2016)028


[46] M. K. Zangeneh, F. S. N. Lobo, and M. H. Dehghani, Phys.
Rev. D 92, 124049 (2015); M. H. Dehghani and Z. Dayyani,
Phys. Rev. D 79, 064010 (2009); M. R. Mehdizadeh and
F. S. N. Lobo, Phys. Rev. D 93, 124014 (2016).

[47] G. Dotti, J. Oliva, and R. Troncoso, Phys. Rev. D 75,
024002 (2007); F. Canfora and A. Giacomini, Phys. Rev. D
78, 084034 (2008).

[48] M. R. Mehdizadeh and N. Riazi, Phys. Rev. D 85, 124022
(2012).

[49] T. Kobayashi, Gen. Relativ. Gravit. 37, 1869 (2005).
[50] M. Nozawa and H. Maeda, Classical Quantum Gravity 23,

1779 (2006); M. H. Dehghani and N. Farhangkhah, Phys.
Rev. D 78, 064015 (2008).

[51] H. Maeda, Phys. Rev. D 73, 104004 (2006); K. Zhou, Z.-Y.
Yang, D.-C. Zou, and R.-H. Yue, Int. J. Mod. Phys. D 20,
2317 (2011).

[52] M. K. Zangeneh, F. S. N. Lobo, and N. Riazi, Phys. Rev. D
90, 024072 (2014).

[53] M. H. Dehghani, N. Bostani, and A. Sheykhi, Phys. Rev. D
73, 104013 (2006).

[54] D. J. Gross and E. Witten, Nucl. Phys. B277, 1 (1986); R. R.
Metsaev and A. A. Tseytlin, Phys. Lett. B 191, 354 (1987);
C. G. Callan, R. C. Myers, and M. J. Perry, Nucl. Phys.
B311, 673 (1989); R. C. Myers, Phys. Rev. D 36, 392
(1987).

[55] M. Cataldo, P. Labrana, S. del Campo, J. Crisostomo, and P.
Salgado, Phys. Rev. D 78, 104006 (2008); M. Cataldo, P.
Meza, and P. Minning, Phys. Rev. D 83, 044050 (2011); M.
Jamil et al., Eur. Phys. J. C 67, 513 (2010); Mauricio
Cataldo, Luis Liempi, and Pablo Rodriguez, Phys. Lett. B
757, 130 (2016).

[56] D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997).
[57] S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys.

Rev. D 81, 104002 (2010); Classical Quantum Gravity 28,
025004 (2011); M. R. Mehdizadeh, M. K. Zangeneh, and
F. S. N. Lobo, Phys. Rev. D 92, 044022 (2015); M. H.
Dehghani and Z. Dayyani, Phys. Rev. D 79, 064010
(2009).

[58] T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov,
Phys. Rev. D 87, 067504 (2013).

[59] S. V. Sushkov, Phys. Rev. D 71, 043520 (2005); F. S. N.
Lobo, Phys. Rev. D 71, 084011 (2005); L. A. Anchordoqui,
S. E. Perez Bergliaffa, and D. F. Torres, Phys. Rev. D 55,
5226 (1997).

[60] E. Ebrahimi and N. Riazi, Astrophys. Space Sci. 321, 217
(2009); Phys. Rev. D 81, 024036 (2010).

[61] R. C.Myers andM. J. Perry, Ann. Phys. (NY) 172, 304 (1986).
[62] M. R. Mehdizadeh, Eur. Phys. J. C 80, 310 (2020).
[63] P. S. Joshi, Global Aspects in Gravitation and Cosmology

(Clarendon Press, Oxford, 1996); N. Ohta and T. Torii, Prog.
Theor. Phys. 124, 207 (2010); J. N. Borissova and A.
Eichhorn, Universe 7, 48 (2021).
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