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Dynamical wormbholes in Lovelock gravity
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In this study we present evolving wormhole configurations in third-order Lovelock gravity and
investigate the possibility that these solutions satisfy the energy conditions. Using a generalized
Friedmann-Robertson-Walker spacetime, we derive evolving wormhole geometries by considering a
constraint on the Ricci scalar. In standard cosmological models, the Ricci scalar is independent of the radial
coordinate r and is only a function of time. We use this property to introduce dynamic wormhole solutions
expanding in an inflationary cosmological background and explore the effects of higher-order Lovelock
terms on the dynamics of such wormholes. Our analysis shows that for suitable third-order Lovelock
coefficients, there are wormhole solutions that respect the weak energy condition (WEC). In addition to
this, we also present other wormhole solutions that satisfy the WEC throughout their respective evolution.
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I. INTRODUCTION

Wormbholes are throatlike geometrical structures which
have a characteristic to connect two parallel Universes or
otherwise distant parts of the same Universe. The first study
on the concept of wormholes was done by Ludwing Flamm
in 1916 [1] as a “tunnel structure” in the Schwarzschild
spacetime, however, after some time it was realized that the
solutions he obtained are not relativistically applicable.
After this work, a similar geometrical configuration was
proposed by Einstein and Rosen [2], a “bridge structure”
between black holes in order to obtain a regular solution
without a spacetime singularity. This solution is known as
Einstein-Rosen bridge. The concept of traversable worm-
holes was firstly defined by Morris and Thorne in 1988 [3].
In their influential work, Morris and Thorne investigated
static spherically symmetric wormhole configurations
using the principles of general relativity (GR) and pre-
sented the fundamental theory for traversable wormholes.
In this manner, it was found that these configurations
possess a specific trait, i.e., the exoticity of supporting
material. In other words, a traversable wormhole must obey
the fundamental flaring-out condition at the wormhole
throat. However, the fulfillment of this condition requires
an unknown source of exotic matter so that the energy-
momentum tensor originated from such types of matter
violates the null energy condition (NEC) [4,5].

As the classical forms of ordinary matter are believed to
satisfy the standard energy conditions, then, one of the most
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important challenges in wormhole scenarios is the estab-
lishment of these conditions. Hence, due to its problematic
nature, several avenues of research have been pursued in
recent decades in order to minimize the usage of exotic
matter. For instance, in [6], a particular class of spacetime
geometries admitting a traversable wormhole has been
constructed using arbitrarily small quantities of exotic
matter. In [7], it is shown that considering a general
equation of state for the fluid profiles can act in favor of
minimal usage of exotic matter. However, generalizing the
matter sector may not necessarily guarantee obtaining a
setting for nonexotic wormhole geometries [8]. An inter-
esting method for creating wormhole structures was pro-
posed by Visser and Poisson in [9] where, using the cut and
paste technique, they confined the presence of exotic matter
to a thin shell. Such an attractive approach led to the
introduction of the so-called thin-shell wormholes; differ-
ent and interesting aspects of such objects have been
studied extensively in the literature [10]. Like its counter-
part in GR, the issue of exotic matter distribution in
wormhole configurations has also been investigated in
modified gravity theories, since the modifications to the
GR theory may provide extra terms that support the
wormhole geometry without resorting to an exotic matter
source. In this respect, a huge amount of work has been
carried out during the past years to build and study
wormhole solutions within the framework of modified
gravity theories; for example, the study of wormhole
solutions in the framework of gravitational decoupling
[11], wormhole solutions in Brans-Dicke theory [12], f(R)
gravity [13], Born-Infeld theory [14], Einstein-Gauss-
Bonnet gravity [15,16], gravity theories with torsion
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[17], Kaluza-Klein gravity [18], f(Q) gravity with Q being
the nonmetricity term [19], and scalar-tensor gravity [20],
and solutions in the presence of a cosmological constant
have been reported in [21]. Recently, the possibility
of the existence of traversable wormholes in the context
of f(R,T) gravity have been reported in the literature,
such as wormhole formation with two types of varying
Chaplygin gas [22] and wormhole solutions satisfying the
energy conditions in the exponential f(R, T) gravity [23];
see also [24] for other solutions in this theory.

Though in the GR framework static wormhole configu-
rations require fluid sources that violate the NEC, there
are nonstatic (evolving) Lorentzian wormholes without
the need of exotic matter to sustain them. One way to
investigate such objects is to embed a wormhole spacetime
in a Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric, thus allowing the geometry to evolve in a cosmological
background. It is therefore shown that the resulting worm-
hole structures have different characteristics compared to
the static ones, namely, they can live for arbitrarily small or
large time intervals [25] or even satisfy the dominant
energy condition in the whole spacetime [26]. Further
studies along this subject have been performed towards
constructing dynamical wormhole geometries which satisfy
the energy conditions and also the averaged energy con-
ditions over timelike or null geodesics during a time period
[27,28]. An interesting scenario is that the expansion of the
Universe could increase the size of the static wormholes by
a factor which is proportional to the scale factor of the
Universe, in a time-dependent inflationary background
[29]. In this respect, evolving wormholes in a cosmological
background have been studied in [30], and dynamic
wormhole spacetimes supported by two fluids and also
by a polytropic equation of state have been investigated in
[31,32], respectively. Such configurations that respect
energy conditions have been also reported in the framework
of Einstein-Cartan gravity [33], braneworld scenarios [34],
higher-dimensional gravity theories [28,35], hybrid metric-
Palatini gravity [36], the pole dark energy model [37], f(R)
gravity [38], and other contexts.

In recent years, considerable interest has been focused
on the subject of higher curvature gravity theories, much
of which has been motivated through the attempts to
provide a quantum description for gravitational interac-
tion. Indeed, the quest for unifying the principles of
quantum mechanics with gravitation has a long history
and the first attempts to apply the standard quantization
techniques to the Einstein-Hilbert action indicated that
GR is nonrenormalizable [39]. However, GR action
becomes renormalizable when it is modified by higher
curvature terms [40]. Therefore, if our starting point is a
higher curvature classical theory of gravity instead of GR,
we can get a renormalizable theory in which such higher
curvature corrections can be regarded as candidates for
quantum gravity. On the other side, from historical point

of view, many efforts have been carried out in order to
unify gravitational interaction with other fundamental
ones. An approach to investigating this issue is to examine
theoretical frameworks based on higher dimensions, i.e.,
beyond our conventional four-dimensional spacetime. In
this respect, higher-dimensional gravity theories are taken
into account as important ingredients of contemporary
theories of fundamental physics, such as Kaluza-Klein,
string theory, supergravity [41], as well as holography
[42] and cosmological scenarios [43]. Since the advent
and development of these ideas, a great deal of effort has
been expended to seek out physically reliable alternatives
to GR theory. Of particular interest is Lovelock gravity,
which is a natural generalization of GR to higher dimen-
sions [44]. This theory is indeed the most general higher
curvature gravity that possesses second-order equations of
motion. The Lagrangian of Lovelock gravity is defined by
a sum of dimensionally extended Euler densities so that in
four dimensions all of the higher curvature correction
terms appear as total derivatives, and thus, the theory
reduces to GR. However, in higher dimensions, the new
correction terms do make nontrivial contributions to the
gravity sector of the action; see e.g., [45] for recent
reviews. Fortunately, in the framework of modified
gravity theories the use of exotic matter can be avoided,
thus providing opportunities for traversable wormholes,
and, among these theories, Lovelock gravity is not an
exception. In this manner, static traversable wormholes
have been introduced in third-order Lovelock theory [46],
where the presence of Lovelock terms helps the energy
conditions to be satisfied near the wormhole throat. Static
wormholes in vacuum in higher-dimensional Lovelock
gravity have been reported in [47] and dynamic wormhole
solutions in this framework with compact extra dimen-
sions were analyzed in [48]. The occurrence of spacetime
singularities has been also reported in the literature. In
[49], exact radiating spacetimes filled with a null fluid
have been found and application of these generalized
Vaidya solutions in braneworld scenarios has been stud-
ied. Moreover, the gravitational collapse of a null dust
fluid in Lovelock gravity has been studied in [50] where it
is shown that a naked singularity is formed whose nature
and strength depend on spacetime dimensions or the
power of the mass function. Also, in [51], the formation
of massive naked singularities and their properties in a
spherically symmetric dust cloud collapse has been
investigated within a class of Lemaitre-Tolman-Bondi
spacetimes.

Motivated by the above results, we here seek for
expanding wormhole configurations in higher dimensions
in Lovelock gravity and check whether such dynamic
wormholes are able to fulfill the energy conditions in
arbitrary but finite time intervals. It is shown that higher-
dimensional evolving wormholes can be obtained, satisfy-
ing the NEC throughout the spacetime [52]. However, in
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four dimensions, the solutions satisfy the NEC for a
specific time interval. This paper is then organized as
follows. In Sec. II we review the field equations of third-
order Lovelock gravity and provide some preliminaries on
dynamic wormholes. Section III is devoted to the study of
cosmological wormhole models and energy conditions in
third-order Lovelock gravity. Finally, our conclusions are
drawn in Sec. IV.

II. ACTION AND FIELD EQUATIONS

The action in the framework of third-order Lovelock
gravity is given by

1= /d"“x,/—g(ﬁl + L+ L)+ S, (1)

where o) and o} are the second- (Gauss-Bonnet) and third-
order Lovelock coefficients. £; = R is the Einstein-Hilbert
Lagrangian, the term £, is the Gauss-Bonnet Lagrangian
given by

[,2 — R

{1

LRI — 4R, R 4 R2, (2)

the third-order Lovelock Lagrangian £; is defined as

L3 = 2RI R e RV + 8 R 5, RO R
+ 24RMNR 51y RP yy + IRRFR gy
+ 24RM* R, Ry, + 16RR,,RY,
- 2RR*R,, + R3, (3)
and S,, contains the contribution due to matter fields. Now,

varying action (1) with respect to the metric, one gets the
field equations as

Gy + 4GP + 5GP = K, T, (4)

where «, = 872G, with G, being the n-dimensional gravi-
tational constant, T, is the energy-momentum tensor of

matter field, G%, is the Einstein tensor, and G52 and G
are given by
GSP =2(RRy = Ruoe Ry = 2R s R = 2R, R%,)

upvo

1
- 5 ‘629/41/7 (5)
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- RT/)”KRGKT/)RUM + SRTD(T/)RJKT/JR/)K + SRO—DTKRT/}{TMRK/)

+ 4RI/T”KR{7K[4/)R/)T - 4RL/TGKRO'KT/)R/);4 + 4RT/)HKR(7K1/4R
RP,R7, — 8R?,., R7Ro — 8R7, R R

+ 8R*

vpp

o+ 2RR, PR
—4RR",, RP.

TPKIL

vp vup

1
+4R*R R, — 8RR, R’, +4RR,, R, — R*R,,) — E£3gﬂ,,. (6)

In Lovelock theory, for each Euler density of order k in
n-dimensional spacetime, only the terms with k <n
contribute to the equations of motion [53]. Therefore,
the allowed solutions of the Lovelock theory are derived
in n > 7 dimensions. Note that action (1) is recovered in the
low energy limit of string theory [54].

In this work, we consider n-dimensional traversable
wormhole spacetimes by replacing the two-sphere [3] in
the angular part of the metric with an (n — 2)-sphere. This
gives the following form for the line element:

2 20(r) g2 2 dr? 2102
ds* = —e**"di*> + R(1) - b(r)/r+ r2dQ? L, (7)
where dQ?_, is the metric on the surface of the (n —2)-
sphere, R(t) is the scale factor of the universe, ¢(r) is the
redshift function as it is related to the gravitational redshift,
and b(r) is the wormhole shape function. The shape function
must satisfy the flare-out condition at the throat [3], i.e., we
must have b'(ry) < 1 and b(r) < r for r > ry in the whole

I
spacetime, where r is the throat radius. The condition
¢(r) = 0 has been discussed in [55] that zero-tidal force
wormholes are supported by anisotropic fluid with a
diagonal energy-momentum tensor. Our aim here is to study
evolving wormholes with anisotropic pressures in an inho-
mogeneous spacetime which merge smoothly to the homo-
geneous FLRW model. In the present work, we consider
¢(r) = 0 in order to ensure the absence of horizons and
singularities throughout the spacetime. These evolving
Lorentzian wormholes are conformally related to another
family of static wormholes with zero-tidal force. The general
constraints on these functions have been discussed by
Morris and Thorne in [3]. It is clear that if b(r) and ¢(r)
tend to zero the metric (7) reduces to a flat FLRW metric, and
as R(t) — constant the static Morris-Thorne wormhole is
recovered. In the model herein, we seek a way to determine
the shape function b(r) and the scale factor R(7) in order to
construct dynamical wormhole configurations. We use a
unit system with x,, = 1.
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In an orthonormal reference frame, the nonzero compo-
nents of the energy-momentum tensor read

where p(r, t) is the energy density and P,(r, ) and P,(r, 1)
are the radial and transverse pressures, respectively. Thus,
the gravitational field equation (4) provides us with the

T} = diag[—p(r,1), P.(r,t), P,(r,t), P,(r,t),...], (8)  components of T,* as
|
[(n=DRPH?* + (n-3)0 +2p|](n—2)  a(Q+ H?R*)(n—2)[(n—1)R*H* + (n - 5)0 + 4p]
p(r.t) = e + 2R
+ﬂ(R2H2+Q)2(n_2>[H22(Z6_ 1)R2+ (n_7)Q+6p]’ (9)
2HR? + (n— )R*H?> + (n=3)Q](n —2) [4HR*+ (n— 1)R2H? + (n — 5)Q](n - 2)a(Q + H*R?)
Prlr) == 2R B 2R*
[6R2H + R*(n — 1)H? + (n —7)Q](Q + H?R*)*p(n —2)
- 6 s (10)
2R
P(r.1) = —2R*(n—=2)H —H?*(n—1)(n —=2)R* = (n —4)Q +2p)(n - 3)
a[—4R?*((n = 2)H?R* + (n —4)Q +2p)H — H*(n — 1)(n — 2)R*]
v 2R*
n a(=2((n=4)Q +2p)H*(n = 3)R* — ((n = 6)Q +4p)Q(n - 5))
2R*
_ BRR*(n=2)H + R*(n = 1)(n = 2)H* + 3(n = 3)(Qn — 40 + 2p)|H*
2R?
L AE12((n = 4)0 + 2p)R'H = 30(n = 5)((n = 6)Q + 4p)R*] H?
2R®
+ﬂ[—6Q((n —-6)0+ 4p)R2h;I;6Q2(n —7)((n—-8)Q +6p)] ’ (11)

where an overdot denotes a derivative with respect to time.
We define a = (n —3)(n —4)a,, p=(n—-3)(n—4)(n-5)
R(1)

(n—6)al and H = &y for notational convenience and the

functions p and Q are given by

b'r—>b

b
2}"3 N Q:ﬁ (12)

p =
One can check that, for R(f) = constant and S =0,
Egs. (9)—(11) reduce to the field equations as derived in
the paper by Bhawal and Kar [15]. It is also easy to check
that, for @« = 0 and f# = 0, the field equations become those
of higher-dimensional evolving wormholes in FEinstein
gravity [52].

III. WORMHOLE SOLUTIONS

A. Energy conditions

It is well-known that static traversable wormholes in four
dimensions violate energy conditions [56], which is due to

|

the fulfillment of the flaring-out condition near the throat
of the wormhole. However, the energy conditions can be
satisfied in the vicinity of static wormhole throats in the
framework of higher-dimensional gravity theories [57] and
the whole spacetime in the case of higher-order curvature
terms [58]. On the other hand, evolving wormholes may
provide a setting to avoid the violation of energy conditions
for a limited time period. For the sake of physical
reasonability of wormhole configuration the weak energy
condition (WEC) must be satisfied. This condition requires
that 7, U*U¥ > 0, where U* is a timelike vector field. For a
diagonal energy-momentum tensor, the WEC leads to the
following inequalities:

p >0, p+P. >0, p+P,>0. (13)

Note that the last two inequalities are defined as the
NEC. Using Egs. (9)—(11), one finds the following
relationships:
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(p— HR®)(n—=2) 2a(HR> = p)(n=2)(Q + H*R®) _3(Q + H*R*2(R* — p)(n —2)

p+Pr: R2 R4 RO ’ (14)
—R2n—2H+ (n-73 2a((n -5 3
PP, — R( )H;;( )Q+pJr (( 1)e4Q+ p)Q
N 2a[-R*(H*(n = 2)R2 + (n —4)Q + 2p)H + ((n = 3)Q + p)H*R?|
R4
_PBH*(n—2)R* + R*(6(n —4)Q + p)H* + Q((n — 6)Q + 4p)|H
R4
+3ﬂ(Q+H2R2)[R2((n—3)Q;6p)H2+((n—7)Q+5p)Q]’ (15)

where a prime and an overdot stand for differentiation with respect to r and ¢, respectively. From Eq. (14) we get at the throat,

1 - b

P+ Py, =—(n=2) (— + H) (1 +2aH? + 3pH" +

2R? r%

which shows that for « = 0, f = 0, and H = constant the
NEC, and consequently the WEC, are violated at the
throat, due to the flaring-out condition. In order to satisfy
p+ P, > 0 in Lovelock gravity, one can choose suitable
values of a, f, and H at the wormhole throat.

B. Cosmological wormholes

We now have three equations, namely the field equa-
tions (9)—(11), with the five unknown functions: p(r, 1),
P.(r,t), P,(r,t), b(r), and R(z). Therefore, in order to
determine the wormhole geometry, one can adopt several
strategies [59]. Here, we are interested in studying evolving
wormholes with anisotropic pressures in an inhomo-
geneous spacetime, which merge smoothly to the cosmo-
logical background. The wormhole solutions presented in a
cosmological background have the interesting property that
their Ricci scalar is independent of the radial coordinate r,
similar to what happens in the cosmological setting [60]. In
other words, the scalar curvature of the spacetime is a
function of time, only. The Ricci scalar corresponding to
the metric (7) will play a fundamental role in our analysis,
which is obtained as

(n—=2)[(n-3)0 +2p]

R(t.r) = (n—1)(nH?* + 2H) + R

(17)

It can be seen that the second term depends on the r
coordinate, and hence in a cosmological background
condition 2 R(z, r) = 0 leads to the following differential
equation:

(=300 20 p=0. (8

2a n 3p
r(z)R2 r3R4

6ﬁH2>

16
r%R2 ( )

[

The above differential equation provides us with the
following form for the shape function:

b(r) = Cir? + Cor ™, (19)

where C; and C, are constants of integration. We note that
the space slice + = constant of the metric (7) for the shape
function introduced (with C; = 0) coincides with the space
slice of the n-dimensional extension of the Schwarzschild
black hole [61]. Using the condition b(ry) = rq at the
throat, we get

b(r)=Cir = ri=3(Cir — 1)r* . (20)

Also the condition b'(ry) <1 leads to the following
inequality:

n—73

Ci<————.
! ra(n—1)

(1)

We can now obtain the constant Cy using the fact that the
spacetime is asymptotically FLRW, along with applying the
normalization C; =0,£1 for the curvature constant.
It is clear that solutions with C; = 0 (flat universe) are
asymptotically flat, i.e., @ tends to zero as r — oo. Also,
the condition b'(ry) < 1 is satisfied for the solution with
C; = —1 (open universe). For the case of the wormhole
solution with C; =1 (closed universe), the wormhole
configuration cannot be arbitrarily large. It is worth
mentioning that other curvature invariants, such as the
Kretschmann scalar, K = R¥"°R, ;5 5, and the Weyl square,
C? = C%7°C,,5, or combinations of them, can be utilized
in order to obtain nontrivial wormhole solutions. The

Kretschmann scalar for the spacetime metric (7) is given by
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2(n-2)
R4

2(n—1)
R4

K= [(n=3)0 +2p* + (4p + (2n = 6)Q)R*] + [(n —2)R* + 2R*R?). (22)
We then observe that the Kretschmann invariant cannot be separated into time and radial dependent functions, hence,
finding wormhole solutions using this invariant may not be as simple as utilizing the Ricci scalar. For the case of the Weyl

square we get

_4(n-3)(p-0)
C* = (n—1)R*

, (23)

where we see that since C? is separable in r and ¢ one can find nontrivial solutions for the shape function, assuming a
suitable form for the (#, r)-dependence of the Weyl square invariant.
With b(r) given by Eq. (20), along with using the field equations (9)-(11), we obtain

(n=1)(n=2)arg*(Cyrg = 1)* (ro\**=2 _3B(n=1)(Ciro* = 1)*(n = 2)ry *(R°H> + C)) (1?2
2R* (7> 2R® <_)

p(r.t) =pep(t) = r

P(n=1)(Cirg* = 1) (n =2)rg® (1o =3
— 24
+ R6 7 ’ ( )
P(r) :PCb([)+(n—2)r52[2aR2H+ (aH2+%)(n4—3)R2+aC1(n—5)](C1 rg—1) <@> n-1
R r
a(Cir?=1)*(n=5)(n=2) [ry\ 22
2R* r
+3ﬁ[((n—3)H2+4H)R2+(n—7)C]](n—2)r52(R2H2+C1)(Clr%—1) ro)\"!
2R r
_3ﬂ(n—2)r54(C1r%—1)2[(n—7)C1+R2(2H+H2n—5H2)] ro 2'1‘2+r56(C1r%—1)3(n—7)(n—2)ﬁ o33
2R r 2R r ’
(25)
2aR*H + (aH?>+1)(n=3)R? +aC,(n-5)|(C,r3 -1 n=1
P () = LAY DR 0= 3)Cor ><@)
-
na(Cyr3—1)2(n=5) (re\ 2"~ 3p[((n=3)H>+4H)R> + (n=T7)C,](C 13 = 1) (R*H?> +C})ry? [ 1o\ "~
+ 4 - - 6 .
2R r 2R -
3B(CirE—1)2nry*[(2H + nH? = SH*)R? + (n—=7)Cy] ro\ 2 (Cirg=1)rg™B(n=7)(n=1/2) (ry33
2R r R® r ’
(26)
where the p., and P_, components correspond with the cosmological background and are given by
) (n=2)(n—1)(H*R*> + C))[(H*R* + 2CH*R> + C)p + (H*R* + C,R*)a + RY] 27)
Pcb =

2R® ’

([(2+4aH?)R* +4aR*C|H+ H*(1+aH*)(n—1)R*)(n=2) [(n=3)C,(1+2aH*)R*+aC*(n=5)|(n-2)
Por(t) == 2R N 2R?
B(n—2)[6R*H+ H?*(n—1)R*+ (n—7)C,|(R*H? + C, )2‘

2R®

(28)

Notice that for our solutions in a cosmological background, the components of p, P,, and P, are asymptotically independent
of r. Moreover, their first terms depend only on time corresponding to a cosmological background as described by FLRW
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spacetime. Let us now investigate the features of the evolving wormhole. We can determine the behavior of the scale factor
by applying a linear equation of state between the radial pressure and energy density of the cosmological background
profiles, i.e., P., = wp.,. We then obtain

R2(2HR* + H*(w+ 1)(n = )R> + (w+ )n—w =3)Cy)
+a(Cy + H*R?)[4wHR? + H*(w 4+ 1)(n = DR> 4+ ((w + D)n —w = 5)C}]
+ [6wHR? + H2(1 + w)(n = DR* + ((n = T)w — 1 + n)C,](C, + R*H?)*p = 0. (29)

One can check that for # = 0, the solution of Eq. (29) reduces to the scale factor for a higher dimensional in Gauss-Bonnet
gravity [62]. In the following subsections, with the help of the master equation (29), we will determine the behavior of the
scale factor and the related properties of the energy conditions for the wormhole geometry in the presence of Lovelock
gravity. Thus, in order to study an evolving wormhole in detail, we consider three cases: C; = 0 and C; = %1.

C. Solutions for the case C;=0

We first try to solve the differential equation (29) for the inflationary expanding regime, i.e., w = —1. We then obtain the
scale factor as R(t) = R,e’', where R, and h are real constants. In order to check the WEC we rewrite expressions (13) for
this solution, as

p@¢>—(”‘2x”‘”h“1+aﬁ*z%ﬂ_xa+3ﬂﬁxn—1xn—2)<@>M4-lﬁ:zl1195<@)wﬁv (30

2 2Ryre r roRSeM

p+Pr:_("—2)(n 3)(1+2ah®+3ph*) (@)’1—1_(:1—2)(;1 3)(a+3ph?) (@)2”_2_M<@>3n—3’

2 2 Zhl 4.4 4ht 6 6 0ht
2R3r Rir 2rSRSe

(31)

b P = (n—3)(1 + 2ah® + 3ph*) <@>n—l _(a+3pr?)(1 4 n) <@>2n—2 36(3n—1) (_)311—3' (32)

2R3rke*ht Ry rie* r 2r8R6 oht \ r
It is clear that both p + P, and p + P, tend to zero as t — oo, with opposite signs. Therefore, in the limit of large times, one

of the p + P, or p + P, quantities is negative and consequently the WEC is violated. However, it is seen that one can set the

14+2ah?
3h4 ’

coefficient of the £3 termas f = —
the throat for r = 0 are given by

such that the first term is eliminated. For this case, the values of these quantities at

(n=2)(n—=1)(2+ h¥aRSr§ + 2h°RSr§ + 3ah*R3r + (3R3r% + 4a)h?)

p(r)|r:r0 = 6h4Rgr8 ) (33)
(1 +2ah*R5ry®> + 2(R5rg®> + a)h?)(n — 3)(n = 2)
() + P71y = A , (34)
and
2aR?r3(1 h* 2r%(1 RZ 6n—2)a)h? +3n -1
p(r) + PP, = aR5r(1 + n)h* + (2rg(1 4+ n)R5 + (6n — 2)a)h* + 3n ‘ (35)

2RSS

Figure 1 shows that it is possible to choose suitable values for the o parameter in order to satisfy the WEC at the throat. Also,
with increasing the value of r, the WEC is satisfied by choosing larger values of |a|. However, it is still possible to choose
appropriate values of the o parameter and, as Fig. 2 shows, the WEC is satisfied at all times and r > ry.
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-1 -0.5 0 0.5 1
o
FIG. 1. The allowed region for the @ parameter and wormhole

throat for R, =1, h=1,and n = 7.

1. Numerical solutions for the case C;=0

Since Eq. (29) cannot be solved analytically for R(z), we
proceed to numerically integrating this equation for a few
values of model parameters, a, 5, and w, and investigate the
WEC. For this purpose, we can substitute C; =0 into
Eq. (29) and obtain

d H(t)2(14+aH(1)?+pH(1)*) (w+1)(n—1)
EH(t) N 2w+4waH (1) +6wpH(1)* B

0.
(36)

Now, in order to check the WEC, we first investigate the
behavior of p(r) and p + p, for large r, which is given by
the following approximations:

(n—2)(n—1)H(1)?
2

+0 (#) . (37)

P [L+ aH (e + pH(1)

and

(n=2)(n—1)(w+ 1)H(t)?
2

x [1 + aH(t)? + BH(1)*] + O< ! ) . (38)

rn—l

ptprr=p+tp=

It is seen that for w > —1, a > 0, and > 0, both p and
p + p, are positive in the limit of large r and consequently
the WEC is satisfied. In Fig. 3 the scale factor versus time is
plotted for f = —1, 0, 1, @ = 1 in seven dimensions and for
w= —% (left panel) and w = 1 (right panel). Using then the
field equations (9)—(11) along with numerical values of the
scale factor, we can estimate the behavior of expressions for
the WEC. The numerical results are plotted in Figs. 4 and 5.
In these figures we can choose suitable values for the model
parameters so that the WEC will be satisfied at the throat of
the wormhole. In Fig. 4 we choose the parameters to be
a=1,p=1,and w = 1 with ry = 3 in seven dimensions.
We see that for large time the WEC is violated at the throat
(left panel), however, this condition holds as we move a way
from the wormhole; see the right panel. In Fig. 5, we depict
the quantities p, p + P,., and p + P, at the throat and at larger
radial distances for positive values of the  and o parameters
and w = —%, where we observe that all of these quantities
are satisfied. Hence, for these parameter values the WEC is
satisfied at all times and for r > r,. We further note that, as
we observe from Eq. (16), static wormhole solutions for
positive Gauss-Bonnet and Lovelock coefficients always
violate energy conditions due to the flare-out condition. Such
a violation of energy conditions holds in static wormhole
configurations, for all positive coefficients of higher-order
Lovelock gravity. While for dynamic wormhole configura-
tions, e.g., the cases with C; = 0 and w > —1, one can pick
out suitable positive values of Gauss-Bonnet and Lovelock
coefficients in order to fulfill the energy conditions at
the throat; see Figs. 4 and 5. In comparison to dynamic
wormholes in Gauss-Bonnet gravity, for which negative
Gauss-Bonnet coefficients lead to the satisfaction of energy
conditions throughout the spacetime, the presence of the
third-order Lovelock term helps to meet energy conditions
for positive Gauss-Bonnet coefficients.

FIG. 2. The behavior of p, p 4+ p, and p + p, versus r and ¢, respectively, from left to right, forw = -1, rg =2, a =1, f = —1,

R, = 0.5, and 7 = 1.5 in seven dimensions.
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FIG. 3. The behavior of R(¢) in seven dimensions forw = — % (left panel) and w = 1 (right panel), and fora = 1 and f = —1, 1, 0 from
top to bottom, respectively.

0.05

0.04

0.03

0.02

0.014

T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7
t

FIG. 4. The behavior of p + p;, p, and p 4+ p, with respect to time at the throat r, = 3 for the left panel and at r = 20 for the right
panel, from top to bottom, respectively. The model parameters are chosen as @ = 1, f =1, and w = 1 in seven dimensions.

FIG. 5. The behavior of p, p + p,, and p 4+ p, with respect to time at the throat ry, = 3 for the left panel and at r = 30 for the right

panel from top to bottom, respectively. The model parameters are chosen as a =1, f =1, and w = —% in seven dimensions.

D. Solutions for the case C;= -1 R(1) = R, sinh ( it > (39)

In this subsection, we study the open background by R;

using Eq. (29). We then find the analytical scale factor for ~ where R; is a positive constant. In this case, we obtain the
w=—1 as quantities p, p + P,, and p + P, as
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_(n—l)(n—Z) (n=1)n=-2) (n=1)(re>+1)2(n=2) [(ry\22
) ==+ “( 2R 2R‘3‘r(z‘ sinh (1) (70> )
(n—=2)(n—=1) 3(mn=2)(n—=1)(r3+1)? =2\ Bn=2)(n—=1)(rg> + 1) (133
i ﬁ( 2R§ ~ 2ry*RSsinh? (2—’3) ( ;E) ) > B RS 7§ sinh® (RL(:) <70> » (40)

p+P,:—(r(2)+1)(n 2)(n— 3)<@>”‘1+a<_(r§+1)(n—2)(n—3)(@)"—1_(r3+1)2(n 2)(n— 3)<Q>2n—2>

2rgR3sinh* () ryR3sinh’ () Rirgsinh® ()

—ﬂ( (n=2)(n=3)(r3+1) (r_:>"—1+3(n 2)(n=3)(r3+1)? <70>2" 2) _3ﬁ(n—2)(n—3)(r(2)+1)3 (r_ro>3"—3’

2RSsinh? (7)1 RSsinh® (3£) r§ 2RSsinh? (1)

(41)
e e e o

Itis seen that in GR (@ = 0 and # = 0) p + P, is always negative, implying the violation of NEC throughout the spacetime.
Let us now obtain p, p + P,, and p + P, at the throat of the wormhole for small times,

__m=Dm=2)(g+1)* (n=1)(n-2)[(f+aR})r5 —2p|(r5+1)* 1
p(rO) N 'B r8t6 2r0R2t4 + O(t_2> ’ (43)
B 3(r3+ 103 (n=2)(n=3)p (r3+1)*(n—2)(n—3)(34r3 — 3B + 2ariR3) 1
p+ Pr|,:,0 =- 21’82‘6 - 2r0R2t4 + O(l‘_2> ) (44)
and
O 3@n=10)(g+ 1) (r5+ 1)2((9—3n)B + 2aR5(1 4 n))rg —3(3n —1)] 1
PPl = - 2r510 a 2r§R21* + O<I_2> (43)

One can easily show that in the limit # — 0 the WEC is satisfied for # < 0 and arbitrary values of the a parameter. This is
due to the presence of the first term in Egs. (43)—(45). One can then suitably choose the model parameters so that the WEC
will be satisfied for r > r; and for all times; see Fig. 6.

FIG. 6. The behavior of p, p + p,, and p + p, versus r and ¢, respectively, from left to right, forw = -1, 7y =0.1,a =1, = —1, and
R; = 1.5 in seven dimensions.
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E. Solutions for the case C; =1

In the case of a closed background, we can choose the
wormhole throat such that the condition b'(ry) <1 is
satisfied, i.e., rO <= 1 To be a solution of a wormhole,
the condition 0 < r — b(r) is also imposed. The condition
b(r) = rleads to two real and positive roots given by r_ =
ro and r,, which is given by

n—1 n—-3 _

= Ty =0. (46)

Thus, the spatial extension of this type of wormhole solution
cannot be arbitrarily large. We then have a finite wormhole
configuration within the range r_ < r < r,. For instance,
consider n = 7 in Eq. (46). The r, is then found as

V22342127 37

ry = > . (47)

In Fig. 7, we plot the quantity 1 — b(r)/r versus r forn =7
and as it is observed the condition b(ry) < 1 is satisfied at
the throat. Also, increasing the dimension of space enlarges
the wormhole spatial extension. In order to study energy
conditions for this class of solutions we proceed with
obtaining the behavior of the scale factor, using Eq. (29)
forw = —1, as

|

1.07
0.8
0.6
1-b(r)/r 0.47

0.2

O T T T T
02 04 06 08 1'}\
0.2 f

FIG. 7. The behavior of 1—b(r)/r with respect to r for
ro = 0.1, n =7 with b'(ry) = —=2.94.

R(t) = R4 cosh <R4) (48)

where R, is a constant. In order to check the WEC we can
substitute the above solution into the expressions (9)—(11) to
obtain

(2 (B2 ().

ri—=1(n=2)(n=3) (ro\"! (r3-1)>%(n-2)(n-23) [(ry\ 22
) r3R} cosh? (%) <:> - Rir COSh4(RL4) <’?> )

)

(50)

_(=D(n=2) (= Dn=2) (2= 1)~ 1D2n=2) ()
p(r.t) = 2R + a< 2R? B 2Rjr??cosh4(R—2) <’?> >
(n=2)(n=1) _3(n=2)(n—1)(r§ —1)*
+ﬂ< ZRS B 2r0R6COSh4(O)
_(p=D(n=2)(n=3) (r\"' [
prPr= 2GR cosh? () (FO> —|—a<
303 = D(n=2)(n=3) (r\"" _3(r3 = D¥(
+ﬂ< 02r(2)R°cosh2( ) <0> Rr,
3(r3 = 1)%(n — "—3)
+’B< 02R2 8 cosh® (7 (") >
(5= 1)(n=3) fo)"™
p+P == 2r(())R4cosh2( (7())

Y r0 -1)(n—
r%R4 cosh2
+

1 N (rF=1>*(n+1) (ry 22
Rirgcosh*() \r

ﬂ(% ()"

R6 rg cosh* ()

G () o))

Let us now obtain p, p + P,, and p + P, at the throat of the wormhole for small times,

(n—1)(r§R} + 2ar{R5 + (3 — aR3)r3 —

2$)(n-2)

(n=2)(n = 1)(r5 = 1)*(3p + argR?) , +0(*). (52)

ﬂ(ro) =
ZrSRg

6 8
roRy
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FIG. 8. The behavior of p, p + p,, and p + p, versus r and ¢, respectively, from left to right, forw = —1,ry = 0.1, R, = I, =1, and
p = —1 in seven dimensions.
(n=2)(n—=3)(r{ = 1)(38 + 2rjaR] + r§R3)
P + Pr|r=r = 6 p6
0 2ryRy
(n = 2)(n = 3) (1 = 1)(R3(=2a + R)rk + (68 + 4aRDE+9) , o 4 5
- 27’8R§ + ( )9 ( )
(rA=D)[(n=3)rgR} + ((4n —4)ry = 2(n + 1)R3rj)a + 4]
p+Pt|r:r0:_ 6 RO
2}"0 R4
r2=D[((6n=2)R2rt —4(n+ )RIr))a+ (n = 3)riR} + =
L (3= Dl((6n = 2R3 <2r06R>8 et (=R T o 54
4
where

2, = [(12n = 12)r2 = 9n + 3],

Also, the asymptotic behavior of p 4+ P, and p + P, is
obtained as

(n=3)(n=2)(r2 = 1)ri3(34 + R} + 2aR?)
2R$r"! cosh?(7%)

+0 (%) (55)

p+ P,

and

(n=3)(rd = 1)ri=3(36 + R} + 2aR?)
2R§r"! cosh? (%)

+0 (%) : (56)

In this case, we see that in GR limit (¢ =0, f =0) p + P,
is always negative, implying the violation of NEC at all
times. However, for the present model we can choose
suitable values for the a and f parameters so that we have
normal matter for the wormhole configuration. We note
that, asymptotically, the behavior of p + P, and p 4+ P, is in

p+P=-

5, = [(=12n + 12)r¢ + (420 — 30)12 — 27n + 9]5.

|

_ 3B+R;
2R

the WEC can be satisfied. In Fig. 8, we depict the quantities

p, p+ P, and p+ P, in terms of r and ¢ for Ry = 1,

ro =0.1,and n = 7.

so that

the opposite direction, then, one can set a =

IV. CONCLUDING REMARKS

In this paper, we have explored higher-dimensional
dynamical wormhole solutions in the framework of
Lovelock gravity by considering a constraint on the
Ricci scalar. In this context, the existence of higher
curvature terms may help to construct wormhole configu-
rations that respect energy conditions. In a cosmological set
up, microscopic dynamical wormholes produced in the
early universe may be inflated to macroscopic scales. Our
analysis shows that for all solutions with w = —1, one can
choose the Lovelock coefficients as > 0 and § < O with a
suitable value for the throat so that the wormhole solutions
obtained in this manner respect the weak energy condition
in whole space. For the case C; =0, one can choose
special values for second-order and third-order Lovelock
coefficients so that the WEC will be respected at the throat.
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Also in this case, we can choose positive second-order and
third-order Lovelock coefficients for w > —1 so that the
WEC is fulfilled asymptotically. For C; = —1 and suitable
values for the wormhole throat, one can choose the
Lovelock coefficients as a > 0 and # < 0 in such a way
that the energy conditions hold throughout the spacetime.
Moreover, for C; =1, a>0, and f <0 the energy
conditions are satisfied; however, wormhole configurations
constructed in this way can exist within a small region of
space. It should be noted that the existence of a curvature
singularity within the spacetime can be examined through
investigating the behavior of the Kretschmann invariant
(22) and others. In this sense, the divergence of the
Kretschmann invariant at some spacetime event signals
the occurrence of a spacetime singularity [63]. Regarding
our solutions, we observe that this invariant behaves
regularly for r > ry and thus, the spacetime geometry
has no curvature singularity in this range.

As the final remarks concerning the future of research
works, it is worth mentioning that during the past years
several branches of theoretical physics such as string
theory, supergravity, and Kaluza-Klein theory have pre-
dicted the presence of extra dimensions [64]. It is therefore
plausible to search for possible existence of geometrical
compact objects within higher-dimensional spacetimes. For
example higher-dimensional black holes, wormholes, and

positive mass solutions with naked singularities [65].
Moreover, the near horizon black hole solutions in
higher-dimensional models are of particular interest since
they can be regarded as windows to extra dimensions [66].
From a cosmological perspective, the possible existence of
extra dimensions is significant for inflationary scenarios
[67] and during the early cosmic times [68]. In [69] the
author has provided some observational criterion in order to
determine whether the extra dimensions are compact or
large and the phenomenological aspects of large, warped,
and universal extra dimensions are reviewed in [64,70]. In
this context, wormhole geometries without exotic matter
have been studied in [71]. Such solutions could be thought
of as similar to missing energies in collider phenomenology
which are expected to provide signals of the existence of
extra dimensions [72]. Therefore, the existence of such
configurations with extra dimensions in our universe
cannot be a priori excluded, and their possible astrophysi-
cal results could be a subject of further investigations.
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