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Sign and magnitude of Ruppeiner’s curvature RN is an empirical indicator of the respective nature and
strength of microstructures of a thermodynamic system. We investigate the properties of RN for black holes
in massive gravity and show that the behavior of microstructures at the HP transition point is significantly
altered by the graviton mass and horizon topology. In general, depending on the massive gravity
parameters, RN at HP transition point can be positive (negative) or even zero indicating respectively the
dominance of repulsive (attractive) or non-interacting behaviors. In particular, presence of a weak repulsive
type interaction is inferred in the large black hole branch at small pressures, which is new and in contrast to
the known behavior of only attractive interactions for this branch in massless gravity. Further, when the
graviton mass takes a critical value, the HP transition happens at zero temperature, where RN turns out to be
a universal constant, taking exactly the same value known for Schwarzchild black hole in AdS. Analysis of
the geometry of general black holes in AdS close to the HP transition point via novel near horizon scaling
limits, reveals the presence of fully decoupled Rindler spacetimes.
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I. INTRODUCTION

Investigation of phase transitions in black holes has been
a rich arena to explore as it has contributed immensely to
our understanding of its microscopic and macroscopic
properties. One of the celebrated transitions is of course
the one proposed by Hawking and Page, which happens
between a hot thermal gas and a stable large black hole
in a Schwarzschild black hole in anti–de Sitter (AdS)
spacetime [1]. The Hawking-Page (HP) phase transition
has another interpretation due to AdS=CFT duality as a
confinement/deconfinement transition in the boundary con-
formal field theory (CFT). In the black hole chemistry
program [2–5], where the cosmological constant Λ is con-
sidered to be dynamical giving a pressure P ¼ −Λ=8π, this
can also be understood as a solid-liquid phase transition.
For charged AdS black holes, there is also a critical region,
where this first order phase transition ends in a second order
one [6–8]. Both these phase transition points are mean-
ingful and their investigation from a microsctopic as well as
macroscopic point of view is still ongoing. Close to this
critical region, the thermodynamic quantities of charged
AdS black holes show special scaling behavior in terms of
charge q, here Entropy S ∼ q2, Pressure p ∼ q−2, and Tem-
perature T ∼ q−1 [8]. In a double scaling limit, where one
approaches the near horizon region together with the large
charge limit, the geometry turns out to be a fully decoupled

d-dimensional Rindler space-time [9]. The emergence of
decoupled space-times in the near horizon limit has given
enormous insights in to the physics of branes and extremal
black holes in general, through AdS=CFT dualities and
might teach us novel issues from the CFT point of view.
There is also an alternative approach to study phase

transitions, namely using Ruppeiner’s thermodynamic
geometry [10], which is a powerful diagnostic tool to
know and classify the nature of competing microstructure
interactions. The key quantity in this approach is the
thermodynamic curvature, whose divergences typically
reveal the points where the specific heat diverges, signally
the presence of a critical point or phase transition. This
method has been highly successful in understanding
physics around critical points [11–17], especially in the
context of extended thermodynamics. The analysis of
thermodynamic curvature denoted as RN , has revealed
interesting phase structure of charged black holes in
AdS, where some features of microstructures were
expected to be similar to the van der Waals system, but
do not hold [18–24]. For instance, analysis of RN shows
that, while an attractive microstructure interaction is dom-
inant for most of the parameter regime, like the van der
Waals system, there is also a contrasting feature, namely,
the presence of a weak repulsive interaction for small black
holes at high temperature [25]. There is a feature of
thermodynamic curvature that has not been studied
enough, that is its behavior close to a first order phase
transition point as a naive application of the method
does not show any divergence [26]. However, in the case
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of a d-dimensional Schwarzschild black hole in AdS, it has
recently been pointed out that RN at the Hawking-Page
transition point turns out to be a universal constant,
depending only on the dimension of spacetime [27]. The
universal constant thus defines a threshold, beyond which
the repulsive interactions of radiation become attractive in
nature aiding the formation of black holes[27]. An analo-
gous calculation for the black holes in AdS with hyperbolic
topology shows that RN calculated for special zero mass
solutions [28–30] turns out to be a universal constant along
a renormalization group flow in dual conformal field
theories [31].
The aforementioned developments motivate us to give a

closer look at the HP transition point, in both d-dimensional
Schwarzschild as well as corresponding black holes in
general theories of gravity. The HP transition though is
known to occur only when the horizon is spherical
and thermodynamic geometry was reported in [27], limited
to this case. In looking for existence of HP transition for
arbitrary horizon topologies, an important class of exam-
ples is black holes in massive gravity theories. These
theories have a remarkable feature which does not have
a counterpart in even general Lovelock theories, i.e., the
existence of HP transition as well as critical points in black
hole solutions with Ricci flat or hyperbolic horizons, apart
from the spherical horizon. Such black holes in AdS with
nontrivial topology are called topological black holes.
Though, thermodynamic geometry has been applied to
this system before to study criticality [15,22,32], physics
close to the HP transition point has not been explored yet.
Brief motivations and developments in massive gravity
theories are presented below, followed by a summary of our
results and organization of the paper.
Einstein’s general theory of relativity has been highly

successful with experimental confirmation of several
predictions, in particular, the recent observational evidence
of LIGO collaboration [33,34] on gravitational waves. On
the other hand, there are also important phenomena,
for instance, accelerated expansion of the universe and
the longstanding cosmological constant problem, among
others, which suggest extensions to go beyond Einstein’s
theory. In this regard, an appealing extension involves
massive graviton theories, motivated by hierarchy problems
and their usefulness in quantum theory of gravity [35,36],
which also seems to gel well with recent observations [37],
putting novel lower limits on the graviton mass. Massive
gravity theories have been historically important, which
were explored starting from the early models proposed by
Fierz and Paullo in 1939 [38], which went through various
modifications with the advent of new ideas, such as,
New massive gravites [39–42]. These theories have been
actively studied in current literature [43–49]. Novel
Black hole solutions, together with study of their thermo-
dynamical properties [50–53] and applications to cosmol-
ogy/astrophysics situations are also being explored with

interest, to identify possible deviations from Einstein’s
theory [54–60]. An important class of massive gravity
theories was proposed in [61], keeping holographic appli-
cations in mind and pointing out in particular that massive
gravity may be stable and also free of ghosts [62], apart
from the existence of black hole solutions [63–67]. There
are other advantages. For instance, massive gravity theories
hold promise in efforts to solve some of the mentioned
problems in Einstein’s theory as noted from [68–80]: such
as, the possibility to explain the current observations
coming from dark matter [81] and also relating to the
accelerating expansion of universe without the requirement
of any dark energy component [82,83]. It should be
mentioned that attempts to embed massive gravities in
string theory have been explored as well [84]. More
importantly, it has been shown that van der Waals type
liquid gas phase transitions and HP transition exist in the
extended phase space approach as studied in a number of
works in massive black hole chemistry [66,67,85–92].
Further, extension to the case of black hole solutions
and the study of their microstructures in the case of bimetric
gravity is expected to be interesting with novel observa-
tional constraints [93,94] and should be explored in the
future.
We should also mention that the metric found in [61] is

quite non-trivial and is in particular singular. The later
feature is useful, as in this context the mass of the graviton
can play a role identical to the one played by lattice in the
holographic models of conductor: the conductivity in
general consists of a Drude peak which in the massless
gravity limit approaches a delta function. More clearly,
nonlinear massive gravity theories need an auxiliary refer-
ence metric (which gives mass to gravitons) to get a
Boulware-Deser ghost-free theory [34,49,95]. In principle,
one can construct a special theory of massive gravity for
each choice of reference metric, which can be nondegen-
erate [49]. On the other hand, in the context of gauge/
gravity duality, massive gravity theories in AdS space with
a singular (degenerate) reference metric (see equation-
(2.4) are proposed to model a class of strongly interacting
field theories with broken translational symmetry (i.e.,
momentum dissipation). For example, one can build a
holographic model for normal conductors (having
momentum dissipation) with finite DC conductivity
[61,96], in contrast to massless gravity theories such as
Einstein and Gauss-Bonnet ones with infinite DC con-
ductivity [97–100]. Moreover, massive gravity theories
with singular reference metric can effectively describe
different phases of condensed matter systems with broken
translational symmetry such as solids, liquids, (perfect)
fluids [101–103], including applications to cosmological
situations [104].
Summary and organization of the rest of the paper is as

follows. The aim of this work is two fold. First is to
investigate the behavior of thermodynamic curvature RN at
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the HP transition point and bring out the effect of graviton
mass on nature of microstructures, in comparison to the
massless case [27]. Second, is to report that a fully
decoupled Rindler space time found earlier at the critical
point in charged black holes [9], is remarkably present at
the HP transition point too, in Schwarzschild as well
corresponding neutral black holes in AdS in massive
gravity. In this regard, in Sec. II, we start by writing down
important thermodynamic relations for black holes in
AdS in massive gravity theories, which is followed by
the discussion of their phase structure, including the HP
transition for various topologies in Sec. II A. Here, we point
out an interesting feature for black holes with hyperbolic
topology, which was noted earlier in the spherical topology
case [105], namely the presence of a critical value of
graviton mass m̂, where the HP transition happens at zero
temperature. In Sec. III, we start by obtaining a general line
element on thermodynamic phase space with temperature
and volume as fluctuating coordinates and use this to obtain
an analytic expression for the associated thermodynamic
curvature RN . Analysis of thermodynamic curvature at the
HP transition point, i.e., RN jHP, reveals novel features,
which have no counter part in the massless limit of Einstein
gravity. A contrasting feature is that the universal constancy
of RN jHP noted in [27], is explicitly broken in massive
gravity. This is because in the current example, the nature
as well as the strength of interaction, depends on horizon
topology as well as varies drastically with massive gravity
parameters at HP transition. In particular, there is a critical
pressure (or cosmological constant value) depending on
massive gravity parameters, which governs whether the
microstructure interactions are effectively attractive, repul-
sive or in balance (a point where RN jHP vanishes).
Curiously, when the graviton mass reaches a critical value
m̂, the behavior of microstructures is found to be universal
and identical to Schwarzschild black holes in AdS in
massless gravity, as curvature RN jHP becomes a universal
constant independent of all parameters of the theory.
Section IV, is devoted to exploring novel near horizon
limits at the HP transition point of Schwarzschild black
holes in AdS as well as their neutral counterparts with non-
trivial topology in massive gravity theory, to show the
existence of the decoupled Rindler geometry found earlier
for charged systems in [9]. We end with a discussion of our
findings in Sec. V.

II. ADS BLACK HOLES IN MASSIVE GRAVITY

Let us start with the action for a four dimensional theory
of gravity with a negative cosmological constant Λ,
together with mass term m for the graviton [66,85,106]:

I¼−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−2Λþm2

X4
i

ciU iðg;fÞ
�
: ð2:1Þ

Here,R is the Ricci scalar and ci’s are constants and f is a
reference metric. The quantities U i’s are formed as sym-
metric polynomials of the eigenvalues of a 4 × 4 matrix
Kμ

ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
, which are in turn given as:

U1¼½K�;
U2¼½K�2− ½K2�;
U3¼½K�3−3½K�½K2�þ2½K3�;
U4¼½K�4−6½K2�½K�2þ8½K3�½K�þ3½K2�2−6½K4�: ð2:2Þ

It is well known that the above system admits static
topological black hole solution, whose metric is given as
[66,85,106]:

ds2 ¼ −YðrÞdt2 þ dr2

YðrÞ þ r2hijdxidxj; ð2:3Þ

where fμν appearing above stands for the reference metric:

fμν ¼ diagð0; 0; c20hijÞ: ð2:4Þ

Here, c0 is a positive constant and hijdxidxj is a spatial
metric with constant curvature 2k and volume 4π, where i,
j ¼ 1, 2. The constant k can take different values, such as,
þ1, 0, or −1, in which cases, we obtain respectively black
holes with horizons of topology, spherical, Ricci flat, or
hyperbolic. As mentioned earlier, the reference metric in
Eq. (2.4) breaks the diffeomorphism invariance of the
theory in spatial directions (corresponds to momentum
dissipation in dual field theory), but not along the radial and
temporal directions (corresponds to conserved energy in
dual field theory) [61]. Though the reference metric in
Eq. (2.4) is singular, the theory is stable and ghost-free as it
preserves the Hamiltonian constraint [48,49,107]. Thus,
considering a particular form of reference metric fμν
prescribed in [66,85], the U i’s are simplified to:

U1¼
2c0
r
; U2¼

2c20
r2

; U3¼0; U4¼0; ð2:5Þ

where now one can set c3 ¼ c4 ¼ 0, as U3 ¼ U4 ¼ 0. The
lapse function YðrÞ is [66,85,106]:

YðrÞ ¼ k −
m0

r
−
Λr2

3
þm2

�
c0c1
2

rþ c20c2

�
; ð2:6Þ

with the integration constant m0 corresponding to the
mass M of the black hole. The solution in Eq. (2.6),
is asymptotically AdS and if the graviton mass term
is dropped by setting (m ¼ 0), it reduces to the
Schwarzschild-AdS black hole for k ¼ þ1 [66,85]. We
also note that the choice of the reference metric with
graviton mass terms leave the solution with a Lorentz-
breaking property [61]. It should also be mentioned that
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the vacuum solution (obtained by settingm0 ¼ 0 in (2.6)] is
not an AdS space unless graviton mass is zero, i.e., m ¼ 0.
The thermodynamic quantities are given in terms of the

horizon radius rþ, which is the largest positive root of
YðrþÞ ¼ 0. Especially, the temperature T, mass M and
entropy S of the black hole are given as [66,85]:

T¼Y 0ðrþÞ
4π

¼ k
4πrþ

−
rþΛ
4π

þ m2

4πrþ
ðc0c1rþþc2c20Þ; ð2:7Þ

M¼m0

2
¼ rþ

2

�
k−

Λ
3
r2þþm2

�
c0c1
2

rþþc20c2

��
; ð2:8Þ

S ¼ πr2þ: ð2:9Þ

In the extended thermodynamics approach, the pressure
is provided by a dynamical cosmological constant,1 as
p ¼ − Λ

8π ¼ 3
8πl2 in four dimensions, with l being the AdS

radius. The thermodynamic conjugate of p is the thermo-
dynamic volume V. In this set up one identifies the massM
of the black hole with the enthalpyH [2], leading to the first
law of black hole thermodynamics given as [66,85]:

dM ¼ TdSþ Vdpþ C1dc1; ð2:10Þ

where

V ¼
�∂M
∂p

�
S;c1

¼ 4π

3
r3þ; ð2:11Þ

C1 ¼
�∂M
∂c1

�
S;p

¼ c0m2r2þ
4

: ð2:12Þ

The specific heat at constant volume CV , and at constant
pressure Cp are found to be [106]:

CV ¼T

�∂S
∂T

�
V
¼0;

Cp¼T

�∂S
∂T

�
p
¼2S

�
8pS2þSðkþm2c20c2Þþm2c0c1S3=2ffiffi

π
p

8pS2−Sðkþm2c20c2Þ
�
:

ð2:13Þ

A. Phase structure

From the expression of Hawking temperature (2.7),
when

ϵ≡ ðkþm2c2c20Þ; ð2:14Þ

is greater than zero, one can see that there exists a minimum
temperature T0 of the black hole, given by [85]

Tmin ¼ T0 ¼
ffiffiffiffiffiffiffiffi
2ϵp
π

r
þm2c0c1

4π
; ð2:15Þ

with horizon radius r0 ¼
ffiffiffiffiffiffi
ϵ

8πp

q
. For T > T0, there exist a

pair of black holes, small (rþ < r0) and large (rþ > r0), as
shown in Fig. 1(a). The small black holes are thermo-
dynamically unstable due to negative specific heat Cp,
whereas the large black holes are stable with positive Cp,
while Cp diverges for the black hole with horizon radius r0
[See Fig. 1(b)].
As shown in Fig. 2(a), for T < T0, no black holes can

exist, except the vacuum phase characterized by vanishing
free energy F. The large black holes are metastable having
positive free energy when T0 < T < THP, while at
T ¼ THP, the free energy of the large black hole equals
to the vacuum free energy, where the Hawking-Page (HP)
transition happens between the vacuum phase and large
black hole phase. For T > THP, the large black hole phase
having negative free energy is globally stable than vacuum
phase [85].
The expressions for the free energy F and the Hawking-

Page phase transition temperature THP are given by [85];

F ¼ M − TS ¼ rþ
4

�
ϵ −

8πp
3

r2þ

�
; ð2:16Þ

THP ¼
ffiffiffiffiffiffiffiffi
8ϵp
3π

r
þm2c0c1

4π
: ð2:17Þ

The Hawking-Page phase transition happens at the horizon

radius rHP ¼
ffiffiffiffiffiffi
3ϵ
8πp

q
. The phase structure, as shown in

Fig. 2(b), is identical to that of the Schwarzschild-AdS
black holes with spherical topology ðk ¼ þ1Þ of massless
graviton case [27,109]. Thus, provided ϵ > 0, the presence
of massive graviton admits the Hawking-Page transition
for the black holes with topology flat (k ¼ 0) and hyper-
bolic ðk ¼ −1Þ as well, unlike the case of massless
graviton, where only the black holes with spherical topo-
logy ðk ¼ þ1Þ can under go Hawking-Page transition
[85,110].
From Eq. (2.17), one notes the possibility of having the

HP transition at zero temperature for specific choice of
parameters. Such a phenomenon in case of black holes
with spherical topology, where the dual field theory also

1A scenario where cosmological constant is varying can occur
in a gravity theory under various circumstances. For instance, in a
situation where the theory is embedded in a larger set up
consisting of other matter sectors, with possible origins in string
theory. A dynamical cosmological constant can arise as a vev of a
scalar field in a high energy theory under dimensional reduction,
where there are several dynamical scalar fields with their
respective potentials [108]. We do not pursue these aspects here.
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undergoes deconfinement transition at zero temperature
was already noted earlier in a specific holographic massive
gravity model [105]. This is plotted in Fig. 3(a) and
corresponds to the case with c1 ¼ 0. The presence of
graviton mass in the bulk breaks the translational invariance
and was argued to encode the rate of momentum dissipation
in the dual field theory. There is a new length scale in the
theory set by lm ≈ 1=m, which determines the distance
which the particles travel before shedding momentum. At a
critical value of graviton mass m̂2, the momentum dis-
sipation effects are strong and the critical temperature for
deconfinement is driven to zero. Here, one can also set the
graviton mass to zero and recover the usual HP transition

for Schwarzschild black holes in AdS. For generic horizon
topology in the bulk, the point where the HP transition
temperature goes to zero for different possible choices of
parameters and graviton mass can be studied, but there are
some differences. For instance, one can consider c1 < 0
where naively the HP transition temperature does approach
zero, but since the vacuum solution here contains horizons,
this case is not suitable (arguments are similar to the ones
given in [105]). The case with c1 ¼ 0 discussed above is
more interesting as seen from Figs. 3(a) and 3(b) for black
holes with spherical and hyperbolic topology respectively.
The curves indicate the line of first order transition
separating the vacuum and black hole phases, with HP

(a) (b)

FIG. 2. For the topological AdS black holes in massive gravity (a) Free energy F versus Temperature T plot at various horizon
topologies k for a fixed pressure p ¼ 0.2. Dashed curve indicates the small black hole branch, solid curve indicates the large black hole
branch, T0 is the minimum temperature and THP is the Hawking-Page phase transition temperature. (b) Phase structure in T–p plane for
horizon topology k ¼ −1 (Similar phase structure is observed for other topologies). The red and blue curves respectively correspond to
the black hole minimum temperature T0 and the HP phase transition temperature THP. (Here, the parameters m ¼ c0 ¼ 1, c1 ¼ 0.5,
c2 ¼ 2, are used.).

(a) (b)

FIG. 1. For the topological AdS black holes in massive gravity (a) Temperature T versus horizon radius rþ plot, indicating the
existence of minimum temperature T0 at r0, when ϵ≡ ðkþm2c2c20Þ > 0. For T < T0, no black holes can exist, except the vacuum
phase. For T > T0, there exist small (shown with dashed blue curve) and large (shown with solid blue curve) black holes. (b) Specific
heat Cp versus rþ plot, indicating the negativeCp for small black holes (dashed blue curve), positive Cp for large black holes (solid blue
curve), and Cp diverges for the black hole with horizon radius r0. (Here, the parameters k ¼ −1, m ¼ c0 ¼ 1, c1 ¼ 0.5, c2 ¼ 2,
p ¼ 0.2, are used. Similar behavior is observed for other topologies.).
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transition driven to zero temperature at a critical value of
graviton mass, m̂2 ¼ −k=ðc2c20Þ. Notice that in the hyper-
bolic topology case, there is no HP transition phenomena if
the graviton mass is set to zero as the system is dominated
by a black hole at all temperatures. With nonzero graviton
mass, the HP transition happens and the dual field theory
confines beyond the critical value m̂2, as seen in Fig. 3(b).
This is opposite to the behavior in spherical horizon
topology case. All these are interesting effects and it is
important to understand the behavior of microstructures in
some of these special limits. The plan of the next two
sections is to gather empirical information from thermo-
dynamic curvature, especially asm2 approaches m̂2, as well
as explore the geometry around the HP transition point in
general, in novel near horizon limits.

III. THERMODYNAMIC CURVATURE
AT THE HP TRANSITION POINT

Thermodynamic or Ruppeiner geometry can be thought
of as a macroscopic approach to gain understanding about
the microscopic aspects of a thermodynamic system, where
a thermodynamic curvature scalar carries much information
about the type of interactions. Thermodynamic geometry
has its roots in fluctuation theory, which starts from
studying the inverse of Boltzman entropy formula, namely:

Ω ¼ e
S
kB ; ð3:1Þ

where Ω stands for the number of microstates, S is the
entropy and kB is the Boltzmann constant. One starts by
considering a large thermodynamic system I0 in equilib-
rium, that consists in it a subsystem I, with the later having,
say, two independent fluctuating coordinates, xi where
i ¼ 1, 2. The probability Pðx1; x2Þ of having the state of the
system between ðx1; x2Þ and ðx1 þ dx1; x2 þ dx2Þ can
straightforwardly be related to the number of microstates

Ω from Eq. (3.1). In this situation, the second law of
thermodynamics states that the pair ðx1; x2Þ are frozen on
the values which maximize the entropy S ¼ Smax. In other
words, the pair ðx1; x2Þ actually describes thermodynamic
fluctuations around this maximum. One can now expand
the entropy about this maximum up to second order, which
shows that the probability is [10]:

Pðx1; x2Þ ∝ e−
1
2
Δl2 : ð3:2Þ

Now,

Δl2 ¼ −
1

kB

∂2S
∂xi∂xjΔx

iΔxj; ð3:3Þ

stands for the line element, which is a measure of the
thermodynamic distance between two neighborhood fluc-
tuating states. If the distance between these states is shorter,
the more probable is the fluctuation between them. Based
on various studies of the thermodynamic curvature R,
following from the metric in Eq. (3.3) for various fluid/
gas systems, such as ideal and van der Waals systems,
Fermi/Bose systems including quantum gases, the empiri-
cal understanding gained can be summarized as follows:
A negative (positive) sign of R indicates that attractive
(repulsive) type interactions are dominant in the system.
Furthermore, a larger negative (positive) value of curvature
signifies that the system is less (more) stable, which further
points toward the stability of Bose (Fermi) type systems
[111–115]. The divergences of R indicate the presence of
critical points and vanishing of curvature is suggestive of
balance of repulsive and attractive interactions, namely, a
noninteractive situation.
To obtain the thermodynamic curvature, the line element

in Eq. (3.3) needs to be computed for a choice of fluctuation
coordinates. In the current situation where entropy is
clearly the key thermodynamic quantity, the line element

(a) (b)

FIG. 3. The phase diagram in the case of massive coefficient c1 ¼ 0, showing that the Hawking-Page transition temperature THPðm2Þ
vanishes atm2 ¼ m̂2 ¼ −k=ðc2c20Þ for the black holes with a) spherical horizon topology (Here, the parameters p ¼ c0 ¼ 1, c2 ¼ −1=2,
are used matching [105]), b) hyperbolic horizon topology (Here, the parameters p ¼ c0 ¼ 1, c2 ¼ 2, are used). The first order phase
transition line terminates in a second order transition point at zero temperature and m2 ¼ m̂2.
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can be obtained by starting from the internal energy
U ¼ UðS; VÞ. We have the first law dU ¼ TdS − PdV,
which can be written as:

dS ¼ 1

T
dU þ P

T
dV; ð3:4Þ

with V representing the thermodynamic volume, conjugate
to pressure P ¼ −Λ=8πG [2,3,116]. We now take the
fluctuating variables to be ðx1 ¼ T; x2 ¼ VÞ, in which case
the line element can be written explicitly as [18,25,117]:

dl2U ¼ 1

T

�∂S
∂T

�����
V
dT2 −

1

T

�∂P
∂V

�����
T
dV2; ð3:5Þ

which can be also be written in a useful form as:

dl2 ¼ CV

T2
dT2 −

1

T

�∂p
∂V

�
T
dV2: ð3:6Þ

At this stage, the metric in Eq. (3.6) is quite general and any
thermodynamic system (not necessarily a black hole) can
be studied by computing the associated curvature from it.
Microstructures of van der Waals liquid-gas system studied
from the curvature coming from the line element in

Eq. (3.6) reveal a completely coherent and clear picture
of the nature of interactions [25]. For some specific case of
static black holes in AdS [6,8], additional normalization of
the thermodynamic curvature may be required to extract the
nature of interactions of microstructures [18,25]. This can
be seen from the fact ð∂S∂TÞV ¼ CV=T is zero from equa-
tion (2.13), translating to the metric being noninvertible.
One can deal with this situation by momentarily assuming
CV to a small non zero quantity and as the kB → 0þ limit
[18,25]. The curvature R can now be computed and CV
comes to be a overall multiplicative constant in it. One can
rescale to remove the dependence on CV and define a new
curvature as RN ¼ RCV , which carries the same empirical
information as R and gives consistent results for black holes
[18,25,26].
To proceed further, we use p ¼ − Λ

8π to invert Eq. (2.7)
and obtain the expression for equation of state pðV; TÞ as:

p ¼ 1

8π

�ð4πT −m2c0c1Þ
ð3V
4πÞ

1
3

−
ðkþm2c2c20Þ

ð3V
4πÞ

2
3

�
: ð3:7Þ

Using the above expression in Eq. (3.6) and with a suitable
normalization taking CV to be a constant as discussed
above, on obtains:

RN ¼ ð2ϵð36πÞ13 þ 3c0c1m2V
1
3Þð2ϵð36πÞ13 − 24πTV

1
3 þ 3c0c1m2V

1
3Þ

2ð2ϵð36πÞ13 − 12πTV
1
3 þ 3c0c1m2V

1
3Þ2 : ð3:8Þ

Let us start by mentioning that in the limit where the
graviton mass is set to zero, and for black holes with
spherical topology ðk ¼ þ1Þ, Eq. (3.8) reproduces the
result for thermodynamic curvature in [27] and is also
consistent with [22] in the appropriate limit. For the present
case, RN diverges for the black hole with minimum
temperature and this is consistent with the picture that
the specific heat at constant pressure in Eq. (2.13) also
diverges at this point. Since the small black hole branch is
unstable, we do not pursue this branch further. For the large
black hole branch, RN is finite and its sign depends on the
sign of the massive gravity coefficient c1. For c1 ≥ 0, as
shown in Fig. 4, RN is negative for the large black hole
branch, indicating the dominance of attractive interactions
for both metastable and stable large black holes, irrespec-
tive of horizon topology.
For c1 < 0, RN shows an interesting behavior, namely, it

can be positive, negative and also vanish in the large black
hole branch, i.e., there can respectively be repulsive,
attractive and non-interacting situations, in both metastable
and stable large black hole branches (See Fig. 5). If the
metastable branch is ignored, then the divergent behavior of
RN can also be dropped and one can start discussing the
physical behavior of microstructures beginning from the

HP transition point. This can be done by plugging the
corresponding temperature and thermodynamic volume in
Eq. (3.8) obtaining a curious result,

RN jHP ¼ −
�
3

2
þ c0c1m2

4

ffiffiffiffiffiffiffiffi
6

πϵp

s
þ 1

8

�
c0c1m2

4

ffiffiffiffiffiffiffiffi
6

πϵp

s �
2
�
:

ð3:9Þ

Setting m ¼ 0 in the above equation and taking ðk ¼ þ1Þ
for spherical topology RN jHP is a negative constant (−3=2),
matching the claim in [27] that for AdS Schwarzschild
black holes thermodynamic curvature is a universal con-
stant. For the AdS Schwarzschild case, RN is positive for
thermal AdS and negative for the black hole at the HP
transition point, where the microstructure interactions show
a crossover behavior from repulsive type to attractive type
as the stable large black hole is formed. However, this
process is expected to be more involved in the present case,
as from Eq. (3.9) RN is no longer a constant. There is
explicit dependence on pressure p and other parameters of
the system even at HP transition point, and hence the
universal constancy nature of thermodynamic curvature is
broken by the graviton mass terms. Further, in contrast to
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[27], where only the attractive type interactions are found
at this point for spherical topology case, there are more
general possibilities here. Although, the graviton mass
significantly alters the behavior of microstructures, for
T ¼ 0 one still gets RN ¼ 1

2
, which signifies repulsive type

interaction, irrespective of horizon topology and graviton
mass (see also [31] for related discussion). From Eq. (3.9)
for the case c1 ≥ 0, the nature of microstructures changes
from repulsive to attractive type beyond HP transition
point, as suggested by RN jHP, in accordance with the
massless graviton case [27]. The novel result is in the case
with c1 < 0 (See Fig. 6) which surprisingly reveals that
RN jHP apart from being negative, can also be positive or

even vanish at HP transition point. Since, HP transition is a
threshold for formation of stable large black holes, micro-
scopically, the corresponding process in massive gravity
is expected to be quite nontrivial than the case of
Schwarzschild black holes in Einstein gravity.
The point where the crossover happens is obtained from

RN jHP ¼ 0 ⇒ p ¼ 3c20c
2
1m

4

32πϵ
≡ p�: ð3:10Þ

Thus, for p > ð<Þp�, the effective interactions at the HP
transition point are attractive (repulsive). Such crossover
points are of profound significance as is evident from

(a) (b) (c)

FIG. 5. In the case of massive coefficient c1 < 0, the normalized scalar curvature RN as a function of thermodynamic volume V for
T ¼ 0.1, 0.105, 0.11 from bottom to top, at various horizon topologies k. The dashed and solid curves are for the metastable and
stable large black holes, respectively, while the black color dots represent HP transition points. (Here, the parameters
m ¼ c0 ¼ 1, c2 ¼ 2, are used.).

(a) (b) (c)

(d) (e) (f)

FIG. 4. In the case of massive coefficient c1 ≥ 0, the normalized scalar curvature RN as a function of thermodynamic volume V for
T ¼ 0.5, 0.52, 0.55 from bottom to top, at various horizon topologies k. The dashed and solid curves are for the metastable and stable
large black holes, respectively, while the black color dots represent HP transition points. (Here, the parameters m ¼ c0 ¼ 1, c1 ¼ 0.5,
c2 ¼ 2, are used.).
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earlier of charged black holes in AdS, where they give the
sign-changing curve at a temperature half of the spinodal
temperature [25]. These zero crossings of RN thus corre-
sponding to shift in balance of interaction type and change
in microstructure behavior of the black hole. We now
consider one possible interpretation for the result in
Eq. (3.10) in the present case. As seen from Fig. 6 the
curves for RN jHP start out as positive with value close to
the T ¼ 0 value, i.e., 0.5 and decrease further at higher
pressures, eventually becoming negative after p�. One thus
infers that in the presence of massive graviton, there is a
special situation for the black hole at HP transition point
which has no counterpart in the massless gravity case. That
is, RN jHP is positive at small pressures where the micro-
structure interactions are effectively repulsive, which is a
new feature for large black holes, although these inter-
actions are weaker than the corresponding ones of the
vacuum solution (as the absolute value of curvature is
smaller).
Having learned about the nature of interactions at the

HP transition point, one can also comment on their
strength, which can be inferred from the magnitude
jRN jHPj for two different ranges of the parameter c1.
From Eq. (3.9), when the massive coefficient c1 > 0,
jRN jHPj is highest for hyperbolic topology, followed by
flat and spherical topology, i.e.,

jRN jHPjðk¼−1Þ > jRN jHPjðk¼0Þ > jRN jHPjðk¼þ1Þ: ð3:11Þ

However, when the massive coefficient c1 < 0 and for a
certain range of parameters, the above order can be reversed,
i.e., jRN jHPjðk¼−1Þ < jRN jHPjðk¼0Þ < jRN jHPjðk¼þ1Þ. Some
values of c1 < 0 and possible range of pressures where this
happens are shown in Fig. 7.
Towards the end of Sec. II A, possibility of HP transition

at zero temperature was noted at a critical value of graviton
mass m̂2. The Ruppeiner scalar for the black holes with
spherical and hyperbolic horizons at this zero temperature

HP transition turns out to be RðTHP¼0Þ
N jHP ¼ −3=2 (from

Eq. (3.9)), matching the value found in the massless
graviton limit [27]. This is a universal constant independent
of horizon topology, other parameters and also graviton

mass. Thus, the d-dimensional value of RðTHP¼0Þ
N jHP at m̂2 is

also expected to be a universal negative constant (depend-
ing only on the space-time dimension), taking exactly the
same value known for d-dimensional Schwarzschild black
hole in AdS [27]. A possible explanation is that the nature
of microstructure behavior at this special point even in the
presence of massive graviton is expected to similar to
Schwarzschild case, i.e., repulsive interactions becoming
attractive beyond HP transition.

(a) (b) (c)

FIG. 6. In the case of massive coefficient c1 < 0, for various horizon topologies k, the normalized scalar curvature at HP transition
point (i.e., RN jHP) as a function of pressure p shows the sign changing behavior. (Here, the parameters m ¼ c0 ¼ 1, c2 ¼ 2, are used.).

(a) (b)

FIG. 7. The effect of horizon topology k on the strength of interactions at HP transition point (i.e., on jRN jHPj), (a) for the massive
coefficient c1 > 0, and (b) for the massive coefficient c1 < 0. (Here, the parameters m ¼ c0 ¼ 1, c1 ¼ −1.5, c2 ¼ 2, are used.).
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IV. DECOUPLED GEOMETRY AT THE HP
TRANSITION POINT

In this section, we take a closer look at the geometry near
the HP transition point in Schwarzschild black holes in AdS
and then generalize the results to corresponding solutions
in massive gravity theory. Let us first compare the scaling
of various quantities for charged and neutral black holes in
AdS, at the second order critical point and HP transition
point with respective parameters, as shown below.

Charged AdS black
holes at critical point

Schwarzschild-AdS black
holes at HP transition point

rcr ∼ q1=ðD−3Þ, rHP ∼ l,

Tcr ∼ q−1=ðD−3Þ, THP ∼ l−1,
pcr ∼ q−2=ðD−3Þ. pHP ∼ l−2.

Here D is the space-time dimension. Scaling of thermo-
dynamic quantities at the HP transition point2 with respect to
AdS length l [109] is similar to the scaling with respect to the
charge q1=ðD−3Þ at the critical point [8,9]. For charged black
holes in AdS, the proposal in [9] is that, as the critical point is
approached in a large charge limit together with a near horizon
limit, the black hole geometry decouples in to a d-dimensional
Rindler space-time. Now, in the case of Schwarzschild black
holes in AdS, an analogous double scaling limit at the HP
transition point can now be thought of as the limit in which
l → ∞ taken together with the near horizon limit. To see this,
consider the metric of the d-dimensional Schwarzschild-AdS
black hole geometry [118]:

ds2 ¼ −YðrÞdt2 þ dr2

YðrÞ þ r2dΩ2
D−2; ð4:1Þ

where the lapse function is

YðrÞ ¼ 1 −
16πM

ðD − 2ÞωD−2

1

rD−3 þ
r2

l2
; ð4:2Þ

and ωD−2 is the volume of the round SD−2 surface. Naively,
taking the l → ∞ on the above black hole solution in
Eq. (4.2), will give us the corresponding solution in flat
space-time, whose near horizon limit is the well known
Rindler2 × SD−2. Instead, by writing r ¼ rþ þ ησ and t ¼
τ=η and for small η, the metric for the Schwarzschild-AdS
black holes at the HP transition point becomes,

ds2 ¼ −
�
σY 0ðrþÞ

η

�
dτ2 þ 1

ðσY 0ðrþÞ
η Þ

dσ2

þ ðr2þ þ 2ησrþÞdΩ2
D−2; ð4:3Þ

where, Yðr ¼ rþÞ ¼ 0 and Y 0 ¼ dYðrÞ
dr jðr¼rþÞ ¼ 4πT. Now, at

the HP transition point, we have T ¼ THP ¼ ðD−2Þ
2πl and

rþ ¼ rHP ¼ l [109,118]. We can now take a new double
scaling limit by approaching the horizon in the limit η → 0,
while at the same time taking the limit l → ∞, by holding
lη ¼ l̃ fixed. Then the metric (4.3) becomes:

ds2 ¼ −ð4πT̃HPÞσdτ2 þ
1

ð4πT̃HPÞ
dσ2

σ
þ dRD−2; ð4:4Þ

where, T̃HP ¼ THP=η. Also, in the limit l → ∞, the
cosmological constant Λ ¼ 0, and the metric on the round
SD−2 becomes flat (as the radius rHP of SD−2 diverges).
Thus, the metric (4.4) represents the line element for fully
decoupled (as the throat length diverges) D-dimensional
Rindler space-time with zero cosmological constant,
exactly analogous to the one uncovered for the charged
AdS black holes at critical point in [9]. The Rindler space-
time obtained here is also different from the standard
Rindler2 × SD−2 that one gets as the near horizon limit of
general non-extremal black holes.
The extension of above results to the case of massive

gravity in 4-dimensions [85,119] can be implemented in an
analogous manner, as the similarity in the scaling of
thermodynamic quantities at the critical point with respect
to charge, and, with respect to AdS length at the HP
transition point, continues to hold, as seen below:

Charged topological
AdS black holes in massive
gravity at critical point

Topological-AdS black
holes in massive gravity at HP

transition point

rcr ¼
ffiffi
6
ϵ

q
q, rHP ¼ l

ffiffiffi
ϵ

p
,

Tcr ¼ ϵ
3
2

3
ffiffi
6

p
πq
þ m2c0c1

4π , THP ¼
ffiffi
ϵ

p
πl þ m2c0c1

4π ,

pcr ¼ ϵ2

96πq2. pHP ¼ 3
8πl2.

Here, ϵ is defined in Eq. (2.14). To examine the near
horizon geometry for topological AdS black hole in
massive gravity at HP transition point, the metric in
(2.3) with corresponding values inserted becomes:

ds2 ¼ −
�
4πσTHP

η

�
dτ2 þ 1

ð4πσTHP
η Þ dσ

2

þ ðr2HP þ 2ησrHPÞhijdxidxj: ð4:5Þ
One can take the near horizon limit η → 0while at the same
time keeping l large, by holding lη ¼ l̃ fixed. However, in
addition to these limits, looking at the form of THP in
equation (2.17) one also needs to take the limit c1 → 0 to
get a consistent near horizon metric, for the case of arbitrary
topology.3 Thus, the metric in (4.5) then goes over to:

2Schwarzschild-AdS black holes at minimum temperature T0

also show the same scaling behavior as present at HP transition
point, which has in fact been used to propose a type of holo-
graphic duality in [27]

3If instead, one takes the m → 0 or c0 → 0, then, due to the
requirement of ϵ > 0 in Eq. (2.17), HP transition point ceases to
exist for arbitrary topology.

YERRA and BHAMIDIPATI PHYS. REV. D 104, 104049 (2021)

104049-10



ds2 ¼ −ð4πT̃HPÞσdτ2 þ
1

ð4πT̃HPÞ
dσ2

σ
þ dR2; ð4:6Þ

where, T̃HP ¼ THP=η, and both lη ¼ l̃ and c1=η ¼ c̃1 are
held fixed. This new triple scaling limit results in a
completely decoupled Rindler space-time with zero cos-
mological constant, matching the one obtained for charged
black hole at critical point in [120]. One also notes that a
l → ∞ limit cannot be taken in the case when the massive
coefficient c1 is negative, as the temperature in this limit

takes the value THP ¼ c0c1m2

4π , which is unphysical [119].
Thus, when c1 is negative, a non-trivial near horizon limit
as discussed above, which gives a decoupled geometry as in
[9], does not in general exist.
There is one other way to inspect the geometry of black

holes at the HP transition point, by studying the behavior of
probe particles in its background. For instance, for the case
of charged AdS black hole at the critical point, such a study
was performed in [9], which gives information about the
stability of the system. Following the methods in
[9,121,122], the effective potential for the motion of a
point particle of mass μ moving in the background of the
Schwarzschild-AdS black hole at the HP transition point is

VeffðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YHPðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ L2

r2

r
; ð4:7Þ

where the lapse function is

YHPðrÞ ¼ 1 −
16πMHP

ðD − 2ÞωD−2

1

rD−3 þ
r2

l2
; ð4:8Þ

and

MHP ¼
ðD − 2ÞωD−2

8π
lD−3; ð4:9Þ

with L denoting the angular momentum of the particle. The
effective potential in equation (4.7), which may generally

have a minimum at some value of rmin (> rHP), depending
on the values taken by μ and L. It was argued in [9], that the
presence of such a local minimum for a test particle at rest
would lead to a condensation and possibly an instability of
the black hole. As can be seen from Fig. 8(a), there is no
local minimum and the potential is purely attractive type
binding all the subsystems that make up the black hole
together. A similar analysis can be repeated for topological
AdS black hole in massive gravity at the HP transition
point, considering the effective potential (4.7) of the probe
with (using equation (2.6),

YHPðrÞ ¼ k −
2MHP

r
þ r2

l2
þm2

�
c0c1
2

rþ c20c2

�
; ð4:10Þ

and

MHP ¼ lϵ

� ffiffiffi
ϵ

p þm2c0c1
4

l

�
: ð4:11Þ

Fig. 8(b) confirms that there is no instability.

V. CONCLUSIONS

In this paper, we considered the 4-dimensional topo-
logical AdS black holes in massive gravity, where the
presence of massive graviton admits the Hawking-Page
transition for the black holes with various horizon topol-
ogies denoted by the parameter k, provided ϵ≡ ðkþ
m2c2c20Þ > 0 [85]. Taking the temperature T and thermo-
dynamic volume V as the fluctuation variables, we com-
puted the normalized Ruppeiner scalar curvature RN and
found novel behavior of microstructures at the HP tran-
sition point due the effect of graviton mass. Our findings
are summarized below.
RN diverges for the black hole with minimum tempera-

ture T0. The small black hole branch is neglected as they
are unstable, whereas for the large black hole branch, the
nature of microstructures depends on the sign of RN , which

(a) (b)

FIG. 8. The effective potential Veff with L ¼ 0, l ¼ 10, and μ ¼ 0.5, showing the absence of local minimum (a) Schwarzschild-AdS
black holes in various space-time dimensionsD, (b) 4-dimensional topological AdS black holes in massive gravity at various topologies
k (Here, the parameters m ¼ c0 ¼ 1, c1 ¼ 2, c2 ¼ 3, are used.).
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in turn is governed by the sign of massive coefficient c1.
In the case when c1 ≥ 0 and for the large black hole
branch,4 RN is negative indicating the dominance of
attractive type interactions among the black hole micro-
structures. On the other hand when c1 is negative, RN
can be positive, negative and also zero, from which one
presumes the presence of repulsive, attractive, and vanish-
ing interactions respectively, among the black hole micro-
structures. Interestingly, the microstructures in the zero
temperature case are quite unique, in the sense that the
value of the Ruppeiner scalar is RN ¼ 1

2
, which is inde-

pendent of their horizon topology and also graviton mass,
matching the claim of universal behavior made in the case
of hyperbolic black holes [31].
RN evaluated at the Hawking-Page transition point

gives an intriguing dependence on pressure, which is
unexpected, considering the recent proposal that RN should
probably be a universal constant at this point [27]. In the
Schwarzschild-AdS black hole with spherical horizon
topology ðk ¼ þ1Þ and massless graviton case, RN changes
sign to negative at the HP transition point during the
formation of stable black hole from thermal AdS. In
massive gravity case with c1 ≥ 0 this still is the case.
However, for c1 < 0, RN can be positive or zero, apart from
being negative, showing a novel feature of black hole
microstructures which is in contrast to massless graviton
case (see Fig. 6). The zero of RN jHP occurs at a critical

pressure p ¼ p� ≡ 3c2
0
c2
1
m4

32πϵ (or equivalently at a critical AdS

length l� ≡ 2
ffiffi
ϵ

p
c0jc1jm2), such that the nature of interactions of

microstructures are suggestively of attractive (repulsive)
type for p > ð<Þp�. Since the nature of microstructures
varies with parameters, the formation of black holes in
massive gravity theories is much more non trivial than
the simple explanation of repulsive interactions shifting
to attractive type at HP transition in Schwarzschild black
holes in Einstein gravity [27]. Though the interactions
of large black holes for non-zero graviton mass are
repulsive type for small pressures, they are weaker than
the microstructure interactions in the vacuum solution.
The strength of microstructure interactions at the HP

transition (i.e., the magnitude jRN jHPj) depends on the
topology parameter k and the massive gravity coefficient
c1. For c1 > 0 one has,

jRN jHPjðk¼−1Þ > jRN jHPjðk¼0Þ > jRN jHPjðk¼þ1Þ:

However, the order can be reversed, i.e., jRN jHPjðk¼−1Þ <
jRN jHPjðk¼0Þ < jRN jHPjðk¼þ1Þ, in the case of massive coef-
ficient c1 < 0, for some range of pressures as shown
in Fig. 7.

There are some special limits which are worth mention-
ing. The universal constant nature of Ruppeiner scalar
curvature RN at HP transition point [27] is broken due to the
graviton mass and can be restored in a special limit of
vanishing of the massive gravity coefficient c1. This is a
case where one takes the parameters, k ¼ 1, c0 ¼ 1,
c1 ¼ 0, and c2 ¼ −1=2 and the system under consideration
was called the holographic massive gravity model of
quantum field theories. Here, the breaking of diffeomor-
phism in bulk is due to the generation of effective graviton
mass [105] leading to momentum dissipation in the field
theory. In particular, there is a critical value of graviton mass
where momentum dissipation effects are strong, leading to
divergence of effective AdS length and also leading to a zero
temperature confinement-deconfinement transition. We find
that these phenomena persist in a more general case and also
with hyperbolic topology [see Fig. 3(b)], where HP tran-
sition can happen at zero temperature when the graviton

mass takes a critical value m̂2 ¼ −k=ðc2c20Þ. RðTHP¼0Þ
N jHP at

m̂2 is a universal negative constant [independent of graviton
mass, see Eq. (3.9)], taking exactly the same value found
earlier for d-dimensional Schwarzschild black hole in AdS
[27]. This intriguing result permits a speculation that the
Ruppeiner scalar curvature RN along the zero temperature
confinement-deconfinement transition in dual field theory
should also be a constant and also be independent of the
momentum-dissipation rate, indicating the strongly corre-
lated nature of microstructures. The universal behavior of
microstructures at this special point deserves further study
and it would be nice to directly compute RN in a holographic
dual model [105,123].
The geometry of the black hole close to the HP transition

point was also explored in new double and triple near
horizon scaling limits, respectively for the d-dimensional
AdS Schwarzschild black hole and their counterparts in the
massive gravity theory. In both the cases, with appropriate
parameter choices, the presence of a fully decoupled Rindler
space-time was seen, which is different from the standard
near horizon geometry of general nonextremal black holes.
A study of probe particles moving in the background of
black holes in AdS at the HP transition point shows that the
system is stable against small perturbations. Decoupled
space times in the near horizon limits of extremal black
holes and branes have opened up remarkable research in the
AdS=CFT in past. It is hoped that the decoupled Rindler
spacetimes found here would also turn out to be useful in
developing holographic understanding of HP transition in
near future.
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4Here, the behavior of RN with respect to massive coefficient
c1 for large black hole branch, is same as that of the correspond-
ing branch in charged black hole case [22].
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