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Motivated by electromagnetic-field confinement due to plasma near accreting black holes, we continue
our exploration of the linear dynamics of an electromagnetic field propagating in curved spacetime in the
presence of plasma by including three effects that were neglected in our previous analysis: collisions in the
plasma, thermal corrections, and the angular momentum of the background black hole spacetime. We show
that: (i) the plasma-driven long-lived modes survive in a collisional plasma except when the collision
timescale is unrealistically small; (ii) thermal effects, which might be relevant for accretion disks around
black holes, do not affect the axial long-lived modes; (iii) in the case of a spinning black hole the plasma-
driven modes become superradiantly unstable at the linear level; (iv) the polar sector in the small-frequency
regime admits a reflection point due to the resonant properties of the plasma. Dissipative effects such as
absorption, formation of plasma waves, and nonlinear dynamics play a crucial role in the vicinity of this
resonant point.
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I. INTRODUCTION

In Ref. [1] (hereafter Paper I) we initiated an exploration
of the linear dynamics of an electromagnetic (EM) field
propagating in a plasma within general relativity. Previous
studies simply assumed that a photon propagating in a
plasma is dressed with an effective mass proportional to the
plasma frequency, so that its dynamics in curved spacetime
can be studied by solving the Proca equation for a massive
spin-1 field.
In Paper I we showed that the field equations are in

general much more involved and richer than the effective
Proca equation adopted in previous models (e.g., [2–4]). In
particular, focusing on a cold, collisionless, and nonrela-
tivistic plasma around a nonspinning black hole (BH),
we showed that there are only two propagating degrees of
freedom, as expected from plasma theory in flat spacetime.
The system therefore admits only a subset of the quasi-
bound states found in the Proca case [5], and in general the
existing quasibound modes are quantitatively different.
The scope of this follow-up work is to relax some of the

working assumptions of Paper I, in particular by consid-
ering: (i) collision effects in the plasma, including a
discussion of the resonant behavior in the polar sector;
(ii) thermal effects, which are relevant for the plasma in
accretion disks around astrophysical BHs; (iii) the angular
momentum of the central BH, which might turn the

quasibound states into unstable modes at the linear level
due to superradiance [6–8].
The above effects depend on the typical electron density

and temperature of the plasma surrounding a BH, so in the
following it might be useful to estimate the typical scales
involved in astrophysical environments. We shall consider
BHs in a wide range of masses from stellar origin to
supermassive (in practice, assuming simply that M ≳M⊙)
and an arbitrary dimensionless spin parameter ã (such that
0 ≤ ã < 1). The typical temperature of a thin accretion disk
at a distance r from the BH is approximately [9]

T ≃ 5 × 107α−1=4
�
M⊙

M

�
1=4

�
r
M

�
−3=8

K; ð1Þ

where α ∼Oð1Þ. The typical electron density near the BH
depends strongly on its mass and on the geometry of the
accretion flow. For a M ∼ 106 M⊙ BH, the particle density
can be as high as ne ≈ 1021 cm−3 (ne ≈ 1014 cm−3) for
geometrically thin (thick) accretion disks at the Eddington
mass accretion rate [9,10]. For much lower accretion rates,
or for quasispherical accretion, the electron density is much
smaller, ne ≈ 104 cm−3 or lower, depending on the ambient
density at infinity (see, e.g., [11]).
In the following we shall be mostly interested in

configurations in which the plasma frequency,
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ωpl ¼ ðnee2=meÞ1=2; ð2Þ

is smaller than the inverse size of the BH (we use
G ¼ c ¼ 1 units throughout), i.e.,

ωplM ∼ 0.25

�
M
M⊙

��
ne

1 cm−3

�
1=2 ≲ 1; ð3Þ

which limits the magnitude of the electron density for a
given BH mass.
In this work, we show that collision and thermal effects

do not significantly affect the quasibound states in the
astrophysical environments of interest, and that the spec-
trum can become superradiantly unstable at a linear level
when the BH rotates. In general, the spectrum deviates from
the one predicted in Proca theory [6,7,12–15], and a
detailed analysis of perturbation theory in inhomogeneous
plasmas is necessary to describe it.

II. GENERAL EQUATIONS

An analysis of the dynamics of EM perturbations
propagating in a (magnetized) plasma in curved spacetime
was considered in Ref. [16], where the authors derived the
perturbed system of equations in a plasma model consisting
of a cold, nonrelativistic, collisionless fluid of electrons and
ions. Here we summarize this framework (see also Paper I)
and extend it to take into account plasma collisions and
temperature effects.

A. Cold and collisionless plasma

Let us denote the number density and four-velocity of
the electrons (of mass me and charge e) by ne and uμ,
respectively, while Jμ stands for the ion current density.
The system of differential equations for the plasma quan-
tities reads

∇νFμν ¼ eneuμ þ Jμ; ð4Þ

uμ∇μuν ¼ e=meFν
μuμ; ð5Þ

∇μðnuμÞ ¼ 0; ð6Þ

uμuμ ¼ −1: ð7Þ

The above system simply consists of Maxwell’s equations
in the presence of sources, the electron-momentum equa-
tion, the continuity equation for the electron fluid, and the
normalization of the electron’s four-velocity. In particular,
the momentum equation (5) relates the four-acceleration
aν ¼ uμ∇μuν to the external forces acting on the electrons,
which for cold, collisionless plasmas only arise from the
macroscopic EM field. As we shall discuss, we account for
the gas temperature or electron-ion collisions by including
extra terms in Eq. (5).

We study the linearized dynamics of the system by intro-
ducing the small perturbations ñ, ũμ, F̃μν ¼ ð∂μÃν − ∂νÃμÞ,
so that e.g., Fμν ¼ Fbackground

μν þ F̃μν and so on. We neglect
higher-order perturbations of the plasma and EM field, as
well as any perturbation of the background metric gμν
(since the gravitational backreaction of these fields is
small). We also neglect perturbations of the ions, since
they will be suppressed with respect to those of the
electrons by a factor ∝ me=mion ≪ 1.
We introduce the effective metric tensor

hμν ¼ gμν þ uμuν; ð8Þ
which projects vectors and tensors onto hypersurfaces
whose normal vector is the electron four-velocity.
A generic tensor can be decomposed in the direction of
the four-velocity and along the orthogonal directions by
contracting it with the four-velocity and with the effective
metric, respectively. Performing the decomposition of the
four-velocity gradient leads to

∇μuν ¼ ∇ðμuνÞ þ∇½μuν� ¼ ωνμ þ θνμ − uμuα∇αuν; ð9Þ
where

ωμν ¼
1

2
ðvμν − vνμÞ; ð10Þ

θμν ¼
1

2
ðvμν þ vνμÞ; ð11Þ

are the symmetric and antisymmetric part of the projected
four-velocity gradient (the vorticity and deformation ten-
sors, respectively), and vμν ¼ hμαhνβuα;β. Note that if the
electron four-velocity is hypersurface orthogonal (and
therefore the orthogonal planes are spacelike hypersurfa-
ces) the plasma is vorticity free and vice versa. We also
define the electric component of the EM tensor as Eμ≡
Fμ

νuν, the magnetic component as Bμν ≡ hμαhνβFαβ,
and the Larmor tensor as ωL

μν ¼ − e
me
Bμν. By differen-

tiating and expanding to first order the system of equa-
tions (4)–(7), we obtain a set of four differential equations
for the perturbed quantities F̃μν, euμ, and ñ. Using the
momentum and Maxwell’s equations, one can obtain an
equation for the perturbed EM tensor F̃μν, accounting for
the influence of the gravitational potential and the moving
plasma [16],

hαβuδ∇δ∇γF̃βγ − ω2
plF̃

αβuβ

þ
�
ωα

β þ ωL
α
β þ θαβ þ θhαβ þ

e
me

Eαuβ

�
∇γF̃βγ ¼ 0;

ð12Þ
where θ ¼ θμμ. The above equation is valid for any
stationary background geometry, in particular also for a
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spinning (Kerr) BH spacetime surrounded by a cold and
collisionless plasma. In the following, we analyze this
equation in the Landau gauge, Ãμuμ ¼ 0.
As discussed in Paper I, in Minkowski spacetime Eq. (12)

implies a dispersion relation with two solutions; the longi-
tudinal modes, with frequency ω ¼ ωpl, and the two trans-
verse modes, with ω2 ¼ jkj2 þ ω2

pl [17]. These dispersion
relations are modified by the presence of collisions and
finite-temperature effects—even in the flat-spacetime
limit—in a nontrivial way, as discussed below.
Finally, note also that Eq. (12) contains third-order

derivatives of the EM potential and, as discussed in
Paper I, differs significantly from the Proca equation often
used in the literature to model the effective mass of photons
propagating in a plasma.

B. Collisional plasma

In Paper I we ignored particle collisions in the plasma.
This amounts to assume that the collision rate between
electrons and ions is much smaller than the characteristic
oscillation frequency of the plasma, ωpl. In other words, it
was assumed that the time τ between two electron-ion
collisions is much longer than the other physical timescales
in the problem. Here we show that the inclusion of collision
effects does not affect our results in the astrophysical
environments of interest.
Let us first modify the set of Eqs. (4)–(7) in order to take

into account electron-ion collisions. The electron equation
of motion acquires an extra term [18]

uμ∇μuν ¼
e
me

Fν
μuμ −

1

τ
uν: ð13Þ

At the microscopic level, τ can be thought as arising from
Coulomb collisions between electrons and ions around the
BH [19]

τ ≃
2πm2

ev3e
nee4 logΛ

; ð14Þ

where ve is the typical electron velocity and logΛ is the
Coulomb logarithm. However, in the interest of generality,
in the following we will treat the collision timescale τ as an
independent parameter in the perturbed equations.
With this addition the perturbation equation (12)

becomes

hαβuδ∇δ∇γF̃βγ − ω2
plF̃

αβuβþ
1
τ
hαβ∇γF̃

βγ

þ
�
ωα

β þ ωL
α
β þ θαβ þ θhαβ þ

e
me

Eαuβ

�
∇γF̃βγ ¼ 0;

ð15Þ

where we highlighted the new term due to collisions
in bold.
In Sec. III we will solve this equation numerically for a

nonrotating BH, and show that the effect of collisions can
be safely neglected. As a back-of-the-envelope estimate,
one can compare the collision timescale due to electron-
proton Coulomb interactions with the other relevant time-
scale in the problem; ω−1

pl . For densities and temperatures of
astrophysical relevance, the collision timescale is much
longer than the plasma oscillation time,

τωpl ≃ 2 × 1011
�

T
107 K

�
3=2

�
ne

104 cm−3

�
−1=2

; ð16Þ

where we estimated the typical electron velocity as their
thermal velocity ve ≃ 0.03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ð107 KÞ

p
and took Λ ≃ 20.

Notice that τωpl ≫ 1 even for much higher values of ne, as
those typical of accretion disks in the vicinity of the BH.
Furthermore, using the background electron velocity to
estimate the collision timescale is a conservative choice. In
fact, when electrons are accelerated to relativistic velocities
(as in the case of the superradiant instability discussed
below), the collision timescale is even longer.

C. Warm plasma

So far, we have considered a cold plasma and ignored
pressure terms in the electron equations of motion. We now
turn our attention to thermal corrections arising in a warm
plasma with temperature T. Thermal corrections are con-
ceptually different from the relativistic and nonlinear
corrections studied in Refs. [20,21], arising from the
acceleration of electrons to very large velocities by a strong
electric field. These accelerations, however, do not imply
that the plasma temperature is high. In a warm (hot) plasma
the thermal velocity is comparable to (much higher than)
the typical velocities of the propagating modes, which
might not be the case even if the electrons are relativistic.
Here we study what happens when thermal motion is turned
on and the resulting thermal pressure gradients need to be
included.
The warm plasma model adopted here is an intermediate

framework between the cold plasma model (where thermal
motion is completely neglected) and the hot plasma model
(where thermal motion is relevant and cannot be treated
within the fluid description adopted here). Since the
velocities associated with the typical temperature of an
accretion disk [Eq. (1)] are smaller than, or at most
comparable to, the phase velocity of the propagating EM
mode described by a quasibound state (see Paper I and the
estimate below), an intermediate, warm-plasma approxi-
mation is well justified.
In a warm-plasma model, the momentum equation of

the electrons [Eq. (5)] must be modified with a pressure
correction [22],

PLASMA-PHOTON …. II. COLLISIONS, THERMAL … PHYS. REV. D 104, 104048 (2021)

104048-3



uμ∇μuν ¼
e
me

Fν
μuμ −∇νp; ð17Þ

where p ¼ nkBT is the pressure of an ideal gas. The system
of equations must be closed by an equation of state p ¼
pðρÞ with ρ ¼ mene in the nonrelativistic regime. In this
case the equation for the perturbed EM field [Eq. (12)] is
modified to

hαβuδ∇δ∇σF̃βσ − ω2
plF̃

αβuβ þ eγv2thh
α
β∇βñe

þ
�
ωα

β þ ωL
α
β þ θαβ þ θhαβ þ

e
me

Eαuβ

�
∇σF̃βσ ¼ 0;

ð18Þ

where v2th ¼ kBT=me is the electron thermal velocity and
we assumed a polytropic equation of state with index γ,
i.e., p ∝ ργ. This allows us to relate, at leading order, a
perturbation in the temperature T̃ to a perturbation in the
electron density: T̃ ¼ ðγ − 1ÞTñe=ne.
Maxwell’s equations also relate the density perturbation

to the perturbation of the EM tensor. The thermal correction
in Eq. (18) can thus be expressed in terms of the EM tensor
perturbation alone,

hαβuδ∇δ∇σF̃βσ − ω2
plF̃

αβuβ − γv2thh
α
β∇βuμ∇νF̃

μν

þ
�
ωα

β þ ωL
α
β þ θαβ þ θhαβ þ

e
me

Eαuβ

�
∇σF̃βσ ¼ 0;

ð19Þ

where again the term due to thermal pressure modifying
Eq. (12) is highlighted in bold. In the next section we shall
solve this equation numerically in a Schwarzschild back-
ground and show that the effect of the plasma temperature
can be safely neglected in realistic astrophysical settings,
especially for the dominant quasibound states of the
system. As a simple numerical estimate, Eq. (19) suggests
that thermal effects will be negligible as long as

γv2th ≃ γ10−2
ffiffiffiffiffiffiffiffiffiffiffiffi
T

107 K

r
≪ 1: ð20Þ

III. COLLISIONAL AND THERMAL
CORRECTIONS: NUMERICAL RESULTS

A. Harmonic decomposition and numerical method

We begin by studying how the EM quasibound states
computed in Paper I around a nonspinning BH are modified
by collisions and thermal effects. In a Schwarzschild
spacetime, the line element can be written as

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
2; ð21Þ

with fðrÞ ¼ 1 − 2M=r, where M is the BH mass. In this
background, both the vorticity and the deformation tensors
are zero. We also assume that the plasma is unmagnetized,
Bμν ¼ 0 (and therefore ωL

μν ¼ 0), and static. The latter
assumption is justified by the fact that the accretion
timescale is typically much longer than the dynamical
timescale of the EM modes, see Paper I. The electron
four-velocity in a static plasma is uα ¼ ðu0; 0⃗Þ, with
u0 ¼ fðrÞ−1=2. The electric field has then only one non-
vanishing radial component, Eα ¼ ð0; me=eðu0Þ2Γr

00; 0; 0Þ,
where Γμ

αβ are the standard Christoffel’s symbols of the
Schwarzschild geometry.1

In any spherically-symmetric spacetime, it is convenient
to separate the angular and radial parts of a field by
performing a multipolar expansion. Following Ref. [5],
we perform the same decomposition as in Paper I. Namely,
we introduce a basis of four-vector spherical harmonics,

Zð1Þlm
μ ¼ c1½1; 0; 0; 0�Ylmðθ;ϕÞ; ð22Þ

Zð2Þlm
μ ¼ c2½0; f−1; 0; 0�Ylmðθ;ϕÞ; ð23Þ

Zð3Þlm
μ ¼ c3r½0; 0; ∂θ; ∂ϕ�Ylmðθ;ϕÞ; ð24Þ

Zð4Þlm
μ ¼ c4r½0; 0; sin−1 θ∂ϕ;− sin θ∂θ�Ylmðθ;ϕÞ; ð25Þ

where c1 ¼ c2 ¼ 1, c3 ¼ c4 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

and Ylm are
the standard scalar spherical harmonics. The vector spheri-
cal harmonics satisfy the orthogonality conditionZ

dΩZðiÞlm
μ η̂μνZði0Þl0m0

ν ¼ δii
0
δll

0
δmm0

; ð26Þ

with η̂μν¼diag½1;f2;1=r2;1=ðr2 sin2θÞ�. The vector poten-
tial perturbation is then decomposed as

Ãμðr; t; θ;ϕÞ ¼
1

r

X4
i¼1

X
l;m

ciulmðiÞðt; rÞZðiÞlm
μ ðθ;ϕÞ: ð27Þ

Using this decomposition and working in the frequency
domain, ulmðiÞðt; rÞ ¼ ulmðiÞðrÞe−iωt, we can separate the polar

(even-parity) sector, described by the functions uð1Þ, uð2Þ,
and uð3Þ, from the axial (odd-parity) sector, described by
the function uð4Þ. This separation is a consequence of the
spherical symmetry of the background.
An important advantage of the ansatz (27) is that the field

equations can be put into a Schrödinger-like form with
respect to the tortoise coordinate, dr�=dr ¼ fðrÞ−1,

1Notice that the charge induced by the background electric
field will be very small, Q=M ∼me=e ≃ 5 × 10−22. This justifies
neglecting the backreaction on the metric and considering an
electrically neutral BH.
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d2

dr2�
uðiÞ − VðiÞðrÞuðiÞ ¼ 0; ð28Þ

where we have suppressed the l, m indices and where VðrÞ
is an effective potential. In the following, we will solve
these equations as an eigenvalue problem using a direct
integration shooting method, as in Paper I. This method
solves the differential equations by numerically integrating
from the horizon to infinity, imposing suitable asymptotic
conditions. The asymptotic behavior of the potential at the
horizon allows for a superposition of ingoing and outgoing
waves, but physical modes at the horizon must be purely
ingoing. Therefore, the perturbation near the horizon is
written as

uðiÞ ∼ e−kþr�
X
n

bðiÞnðr − 2MÞn; ð29Þ

where kþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðiÞðr → rþÞ

q
and the coefficients bðiÞn can

be found as a function of bðiÞ0 by solving the field equations
perturbatively near the horizon. For a collisionless plasma
around a Schwarzschild BH, kþ ¼ iω [1]. The solution at
infinity is also a superposition of ingoing and outgoing
waves,

uðiÞ ∼ BðiÞe−k∞r� þ CðiÞeþk∞r� ; ð30Þ

where k∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðiÞðr → ∞Þ

q
. For a nonspinning BH sur-

rounded by cold collisionless plasma, we found k∞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
plðr → ∞Þ − ω2

q
[1]. The solution BðiÞ ¼ 0 defines

outgoing waves at infinity, i.e., the quasinormal modes
of the problem, while the solution CðiÞ ¼ 0 describes
solutions that decay exponentially at infinity, i.e., the
quasibound states. In this work we are interested in the
latter, so we will impose CðiÞ ¼ 0.
The full Schrödinger-like equations for the EM pertur-

bations uðiÞ are then solved by matching the two asymptotic
expansions (29) and (30) withCðiÞ ¼ 0. This determines the
eigenvalues of the problem, i.e., the complex quasibound
frequencies ω ¼ ωR þ iωI . This method is extended in
Sec. IV to treat perturbations of a spinning BH.

B. Quasibound states in a collisional plasma

We follow the procedure outlined above to solve for the
EM perturbation in a collisional plasma, Eq. (15), around
a nonspinning BH. By performing the multipolar expansion
(27), Eq. (15) gives

f2u00ð4Þ þ2fMr−2u0ð4Þ þ r−3½r3ω2−frðlðlþ1Þþ r2ω2
plÞ�uð4Þ

þ fω2
pl

1− iτωf−1=2
uð4Þ ¼ 0; ð31Þ

for the axial sector, and

f2u00ð3Þ þ fFðrÞu0ð3Þ

þ
�
−
flðlþ 1Þ

r2
þ ω2 þ i

ffiffiffi
f

p
τωω2

pl

1 − iτωf−1=2

�
uð3Þ ¼ 0; ð32Þ

for the polar sector, where u0ðiÞ ¼ ∂ruðiÞ and FðrÞ is given in
Appendix A. As expected, when τω → ∞ we recover
the equations governing the collisionless case studied in
Paper I. Interestingly, the standard collisional term iτω
appearing in flat spacetime is modified by a redshift
factor, ð1 − 2M=rÞ−1=2.
In Figs. 1 and 2 we show the imaginary and real part

of the fundamental axial and polar modes, respectively,
as a function of the collision time, for four values of
the plasma frequency. For any value of ωp the dependence
on τ is qualitatively the same. Namely, for very large
collision timescales τ ≫ ω−1

pl , the frequencies coincide with
the collisionless frequencies. As expected, collisions are

FIG. 1. Imaginary (top) and real (bottom) part of the axial l ¼ 1
mode for the quasibound states of a cold, collisional plasma in a
Schwarzschild background as a function of the collision time-
scale τ, normalized by the plasma frequency. For large collision
time τ ≫ 1=ωpl, the results are identical to the collisionless case
discussed in Paper I. When the collision time becomes very short,
τ ≪ 1=ωpl, the collisions between electrons and protons shorten
the lifetime of the bound states.
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irrelevant when the time between two collisions is much
longer than the characteristic time of plasma oscillations.
On the other hand, when the time between collisions is
short, τ ≪ ω−1

pl , the absolute value of the imaginary part
starts to increase, i.e., the lifetime of the mode is shortened.
Collisions between electrons and protons in this case
rapidly quench the quasibound states. However, as shown
in Eq. (16), the limit τ ≪ 1=ωpl is never realized in
astrophysical environments, and collisions can be safely
neglected. Indeed, realistic values of τωp are much bigger
than those shown in Fig. 1.
This numerical result can be understood analytically as

follows. Eq. (31) can be rewritten to resemble the standard
axial equation in the collisionless case, which coincides
with the Proca axial equation, as

Dτ
2uð4ÞðrÞ ¼ 0; ð33Þ

where Dτ
2 ≡ d2

dr2�
þ ω2 − fðlðlþ1Þ

r2 þ μ2effÞ has the same differ-

ential form as in Paper I but with the plasma frequency
replaced by a collisions-dependent effective mass

μ2eff ¼ ω2
pl

�
1 −

1

1 − iτωfðrÞ−1=2
�
: ð34Þ

The effective mass determines the behavior of the
quasibound states at infinity, k∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2effðr → ∞Þ − ω2

p
.

Clearly, in the limit τ → ∞, the effective mass tends to the
plasma frequency, and the collisionless spectrum is recov-
ered. In the opposite limit, τ → 0, the effective mass goes to
zero—unable to spatially confine the modes—and con-
sequently the quasibound spectrum is quenched. Similarly,
in the polar case we found an effective mass at infinity

μ2eff ∼ ω2
pl

�
1 −

1

1 − iτω

�
; ð35Þ

which asymptotically coincides with the axial one. Thus,
also in the polar sector the effective mass term at infinity
goes to zero as plasma becomes strongly collisional, and
the polar quasibound spectrum is quenched.

C. Quasibound states in a plasma
with thermal corrections

We now turn our attention to thermal corrections.
Applying the multipolar decomposition to Eq. (17), we
obtain a system of differential equations for the mode
functions in the frequency domain,

f2γv2thr
4u00ð2Þ þ

3

2
γðf − 1Þfr3v2thu0ð2Þ − f2r3ðγv2th − 1Þu0ð3Þ

− r2½flðlþ 1Þ þ γ=2ð6f2 þ f − 3Þv2th
þ r2ðfω2

pl − ω2Þ�uð2Þ þ
1

2
γfð3f þ 1Þr2v2thuð3Þ ¼ 0;

ð36Þ
f2r3u00ð3Þ þ ð1 − fÞfr2u0ð3Þ − fð−γv2th þ 1Þlðlþ 1Þr2u0ð2Þ

þ r½−fγv2thlðlþ 1Þ − fω2
plr

2 þ r2ω2�uð3Þ
− lðlþ 1Þr½γv2th − fð2γv2th þ 1Þ�uð2Þ ¼ 0; ð37Þ

r2f2u00ð4Þ þ rð1 − fÞfu0ð4Þ
− ½fðlþ l2 þ r2ω2

plÞ þ r2ω2�uð4Þ ¼ 0: ð38Þ

In the polar sector we find the usual distinction between
longitudinal uð2Þ and transverse uð3Þ modes. The former are
nondynamical in a cold plasma, but become propagating,
energy-transporting modes (Langmuir waves in flat space-
time [23]) due to the thermal corrections. Indeed, from
Eq. (36) it is easy to see that the degree of freedom uð2Þ
becomes dynamical only for vth ≠ 0. To show that this mode
behaves as a Langmuir wave, we take the flat spacetime
limit: for r → ∞ and in momentum space Eq. (36) reads

ω2uð2Þ ¼ ðω2
pl þ k2γv2thÞuð2Þ; ð39Þ

which is the Bohm-Gross dispersion relation describing
Langmuir modes in a warm plasma [23]. In the same limit,
the equation for the transverse mode (37) becomes

FIG. 2. Same as in Fig. 1 but for the polar sector. The behavior
of the modes is the same as in the axial case, and a quenching
occurs as τωpl ≪ 1.
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ω2uð3Þ ¼ ðω2
pl þ k2Þuð3Þ: ð40Þ

Therefore, this EM wave is unaffected by thermal correc-
tions at infinity. This is a general feature of a warm plasma
model in flat spacetime; transverse waves are unaffected by
pressure [24]. In curved spacetime, thermal corrections
couple longitudinal and transverse polar modes and the
dynamics are more involved.
On the other hand, and more importantly for our scope,

the axial sector governed by Eq. (38) is unaffected by first-
order thermal corrections and is the same as in the cold-
plasma case studied in Paper I. Indeed, being a transverse
mode, uð4Þ is unaffected at infinity, and due to the spherical
symmetry of the spacetime it does not couple to the polar,
longitudinal, thermally-affected modes even near the BH.
Given that the axial modes are the most relevant ones for
the quasibound spectrum of the system, we conclude that
warm-plasma corrections can be safely neglected when
studying EM quasibound states and superradiance in
astrophysical systems.
Thermal effects should be carefully considered for a hot

plasma, where transverse modes also become affected by
temperature [24]. In this case, the system must be studied
using kinetic theory, solving a set of coupled Vlasov-
Maxwell equations. A study of this type is beyond the
scope of this work and left for future investigation.

D. Polar quasibound states in the low plasma frequency
regime: Reflection point in inhomogeneous plasmas

In Paper I, we computed EM quasibound states in a cold,
collisionless plasma at the linear level. For the polar sector,
we were unable to explore the ωplM ≪ 1 regime with high
precision, and we could only provide an estimate of the
behavior of the quasibound spectrum in this limit. In the
following, we explain the physical origin of the issues
encountered in the polar sector in the low-plasma frequency
limit, relating them to the behavior of inhomogeneous
plasmas in flat spacetime. Furthermore, we show that, as in
flat spacetime, the inclusion of dissipative mechanisms
such as collisions, thermal or nonlinear effects can “smooth
out” the low-plasma frequency regime.
The fact that, in curved spacetime, plasma behaves as

an inhomogeneous medium—even when assuming a con-
stant electronic density—can be understood by inspecting
the monopole sector of the polar equation in the cold,
collisionless case. As shown in Paper I, this reads

ðω2 − ω2
plfÞuð2Þ ¼ 0: ð41Þ

This resembles the equation describing longitudinal modes
ψL in plasma physics: ϵψL ¼ 0, where ϵ is the dielectric
tensor.2 The solution to this equation gives the dispersion

relation for longitudinal modes, ϵ ¼ 0. By analogy, we
introduce an effective dielectric tensor in the BH background,

ϵeff ¼ 1 −
ω2
pl

ω2

�
1 −

2M
r

�
: ð42Þ

Note that in the near-horizon limit r ∼ 2M Eq. (41) admits
only the trivial solution uð2Þ ¼ 0. Indeed, no electrostatic
modes can exist at the BH horizon. Notice that the same
occurs in the case of a massive (both scalar and vector)
field, making the mass contribution subdominant at the
horizon [5,25,26]. In the flat spacetime limit, we recover
the standard solution for electrostatic modes ω2 ¼ ω2

pl, as
discussed in Paper I.
However, due to the BH curvature correction, the

effective dielectric gains a dependence on the radius,
ϵeff ¼ ϵeffðω; rÞ. Therefore, plasma can be considered
effectively inhomogeneous even when ne ¼ constant,
due to the spacetime curvature [27,28]. A peculiar char-
acteristic of inhomogeneous plasmas is the presence of a
spatial point, known as the reflection point, where the
dielectric tensor vanishes, i.e., ϵðω; rÞ ¼ 0. At this point,
the longitudinal electric field and some components of the
transverse magnetic and electric field diverge [29,30].
Clearly, this divergence is not physical; dissipation mech-
anisms should be added to the theory to make the field
equations well behaved at the reflection point.
Some of the most important dissipative channels are

absorbtion via collisions (as discussed above) and the
formation of plasma waves. When collisions are taken into
account, the dielectric tensor acquires an imaginary part,
the divergence is removed and a sharp (but finite) Breit-
Wigner resonance appears instead.3 Thermal corrections
can also cure the divergence near the point ϵ ¼ 0 [31,32].
Clearly, these two effects play a major role in a strongly

collisional or warm plasma. If dissipative effects are not
strong enough, although the divergence is removed, the
maximum value of the electric field may still be very large.
In this case, nonlinear effects will play the role of the
dominant dissipative effect [20]. A nonlinear treatment
would take into account the motion of electrons due to the
strong electric field, modifying the plasma density near the
resonance point. For an analysis of this nonlinear effect in
flat spacetime, see [30,33].
A similar situation arises in our system. The dielectric

tensor of Eq. (42) makes its appearance in the denominator
of the effective potential in the polar sector (see
Appendix A in Paper I). In the case at hand, another
important dissipation channel arises; the BH horizon. In the
large plasma frequency regime (Mωpl > 0.4), dissipation
through the horizon is sufficient to give rise to a complex

2The dielectric tensor reduces to a scalar when the plasma is
isotropic (unmagnetized), as assumed here.

3A system in which collisions play the role of the dominant
dissipative channel is the Earth’s ionosphere, where the dielectric
tensor depends on the altitude z [29].
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mode frequency with a non-negligible imaginary part
ωI ≲ ωpl, so that the dielectric tensor is complex and the
field is well behaved. On the other hand, in the small-
plasma frequency regime, the BH horizon alone cannot
quench the resonance and we have ωI ≪ ωpl. Given that in
the relevant astrophysical scenarios the plasma is cold and
collisionless to very good approximation, we expect that
nonlinearities will play the role of the dominant dissipative
channel in this regime. Nonlinear effects are therefore
crucial for the high-precision computation of the polar
sector for ωplM ≪ 1.
A nonlinear analysis of the system will appear in future

work of this series. In the following, we characterize the
role played by dissipative channels in the vicinity of the
reflection point by focusing on a strongly collisional
plasma as modeled in the previous sections. Although in
the astrophysical systems of interest collisions can be
neglected and the main dissipative effect is of nonlinear
nature, we use this analysis as a jumping off point to clarify
how the divergence is cured when the dielectric tensor
becomes complex.
Figure 3 shows the absolute value squared of the

complex polar wavefunction uð3Þ for different values of
the collision time τ for a small plasma frequency. The
position of the sharp peak corresponds to a vanishing
dielectric function, r=M ¼ 2=ð1 − ω2=ω2

plÞ from Eq. (42).
The peak is “smoothed out” as collisions come to dominate
over the resonance, showing that, when dissipation chan-
nels are included in the theory, the field becomes well
behaved. In flat spacetime, the effect of nonlinearity can
be similarly included by adding an effective collision

frequency, νeff , to the dielectric tensor [30,33]. Thus, we
expect that nonlinear effects should produce an effect
similar to the one shown in Fig. 3.

IV. PLASMA-INDUCED SUPERRADIANT
INSTABILITY: GENERAL FORMALISM FOR

LINEAR PERTURBATIONS

In previous sections we showed that collisions and
thermal corrections have a small effect on quasibound
states around a nonspinning BH. We are therefore justified
to neglect these effects, and to focus our attention on
plasma-induced superradiance in a Kerr background for a
cold, collisionless plasma. In this section we derive the
relevant linear perturbation equations to first order in the
spin using a slow-rotation expansion [34]. In the next
section we will numerically solve these equations to find
superradiant modes.

A. Linearized plasma-photon dynamics
in a Kerr spacetime

The line element of the Kerr metric in Boyer-Lindquist
coordinates reads

ds2 ¼ −dt2 þ Σ
�
dr2

Δ2
þ dθ2

�
þ ðr2 þ a2Þ sin2 θdϕ2

þ 2Mr
Σ

ða sin2 θdϕ − dtÞ2; ð43Þ

where ΔðrÞ¼ r2−2Mrþa2, Σðr; θÞ ¼ r2 þ a2 cos2 θ and
Ma is the angular momentum.

FIG. 3. Absolute value squared of the polar l ¼ 1 wavefunction uð3Þ for different values of the collision parameter τ at Mωpl ¼ 0.35.
As plasma becomes more collisional, the resonance at the reflection point is smoothed out.
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As in the nonspinning case, since the plasma accretion
timescale is much longer than the dynamical timescale of
the problem, we assume a static plasma. Static observers
exist outside the ergoregion of a spinning BH and their
four-velocity reads uα ¼ ðu0; 0⃗Þ, with u0 ¼ g−1=200 so that
Eq. (7) is satisfied. At Oða=MÞ the ergosphere coincides
with the outer horizon, rþ ¼ 2M þOða2=M2Þ, so that, to
this order, static observers exist all the way to the BH
horizon.
Using the momentum equation (5) we obtain the back-

ground electric four-vector field giving rise to the static
configuration, Eα ¼ ð0; me=eðu0Þ2Γr

00; me=eðu0Þ2Γθ
00; 0Þ,

which possesses both a radial and an angular component.
We also assume the plasma to be unmagnetized.
Contrary to the Schwarzschild case, where both the

vorticity and deformation tensors vanish, in the Kerr
spacetime the rotation of the BH induces a nontrivial
vorticity in the fluid. The vorticity tensor is antisymmetric
and has two nonvanishing components,

ωrϕ ¼ −
aðΣ − 2r2Þða2 − Δþ r2Þ
2r

ffiffiffi
Σ

p ðΔþ Σ − r2 − a2Þ3=2 sin
2 θ; ð44Þ

ωθϕ ¼ −
aΔða2 − Δþ r2Þffiffiffi

Σ
p ðΔþ Σ − r2 − a2Þ3=2 sin θ cos θ; ð45Þ

which are nonzero already to first order in the BH spin.
The deformation tensor remains zero in Kerr.
It is again convenient to separate the angular sector of the

field from the radial one through a multipolar expansion.
While in Schwarzschild the axial and polar sectors can
be fully decoupled from each other thanks to spherical
symmetry, in Kerr the axial and polar perturbations with
different index l are coupled, making the field equations
more challenging to solve [34]. Several methods were
developed in order to solve the equations of a massive
spin-1 field in a Kerr background, using a slow-rotation
expansion [6,7], analytical methods valid for ultralight
Proca fields [12,15], numerically either without separability
of the equations [13], or using a recently discovered
separability technique [14,35].
In the following, owing to the complexity of the field

equations for the problem at hand, we use the slowly-
rotating approach to solve the EM perturbation equa-
tion (12) perturbatively. The field equations are expanded
with respect to the dimensionless spin parameter ã ¼
a=M ≪ 1 around the nonspinning case ã ¼ 0, and solved
at different orders. This method was shown to perform
well for Proca fields at second order, even for values of the
spin close to extremality [6]. In our case, we are mostly
interested in whether the quasibound modes discussed
above and in Paper I can become unstable in the super-
radiant regime.

Using the multipolar expansion (27) and a frequency-
domain representation, at first order in the spin the field
equations assume the following form

ulð1Þ ¼ 0; ð46Þ

Al þQl;m½Ãl−1 þ ðl − 1ÞBl−1�
þQlþ1;m½Ãlþ1 − ðlþ 2ÞBlþ1� ¼ 0; ð47Þ

lðlþ1Þαl− imζlþ imγl−Ql;m½ðlþ1Þðηl−1−ðl−1Þδl−1Þ�
þ lQlþ1;m½ηlþ1þðlþ2Þδlþ1�¼0; ð48Þ

lðlþ 1Þβl þ imηl þ imδl −Ql;m½ðlþ 1Þðζl−1
þ ðl − 1Þγl−1Þ� þ lQlþ1;m½ζlþ1 − ðlþ 2Þγlþ1� ¼ 0;

ð49Þ

where Ql;m ¼
ffiffiffiffiffiffiffiffiffi
l2−m2

4l2−1

q
while the quantities Ai, Bi, Ãi, αi, βi,

ζi, γi, δi, and ηi involve the mode functions uið2Þ, u
i
ð3Þ, and

uið4Þ and their derivatives and are listed in Appendix B. This
set of equations has a similar schematic form as the one
obtained in the Proca case at linear order in the BH spin [6].
In particular, perturbations with a given parity and angular-
momentum number l only couple with perturbations of
opposite parity and index l� 1 (as shown in Appendix B,
the terms Ai, αi, ζi, γi are polar quantities, while Bi, Ãi, ηi,
βi, δi are axial). Note that Al, αl, and βl contain corrections
proportional to mã, whereas all other functions are propor-
tional to ã.
As a generic property of the set of linear perturbations,

the terms multiplied by Ql;m do not affect the spectrum at
first order in the spin and can be neglected at this order
[6,7,34,36]. This leads to an axial-led equation for ulð4Þ,

lðlþ 1Þβl þ imηl þ imδl ¼ 0; ð50Þ

and a polar-led system of equations for ulð1Þ, u
l
ð2Þ, and ulð3Þ,

ulð1Þ ¼ 0; ð51Þ

Al ¼ 0; ð52Þ

lðlþ 1Þαl − imζl þ imγl ¼ 0; ð53Þ

The two sectors are decoupled and do not involve couplings
between different l modes.

1. Axial sector at first order in the BH spin

Using the explicit form of the coefficients given in
Appendix B, Eq. (50) can be rewritten as
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D2uð4ÞðrÞ−
4amMω

r3
uð4Þ ¼

4mMaω2
plðr−2MÞ

lðlþ1Þr4ω uð4Þ; ð54Þ

where we have suppressed the l superscript and introduced

the differential operator D2 ≡ d2

dr2�
þ ω2 − fðlðlþ1Þ

r2 þ ω2
plÞ.

Equation (54) deviates from the axial equation of a
Proca field at first order in the spin [6] due to the presence
of the term on the right-hand side. This correction is due to
the vorticity tensor, which vanishes in the nonspinning
case. Therefore, even at first order, we expect the spectrum
to deviate quantitatively from that of a Proca field.

2. Polar sector at first order in the BH spin

The polar sector can be reduced, at first order in the spin,
to a single second-order differential equation

d2

dr2�
ψ − VðrÞψ ¼ 0; ð55Þ

for an appropriately defined field variable ψ (see
Appendix C). As in the nonspinning case, although the
original equations depended on two independent functions
uð2Þ and uð3Þ, the polar sector describes only one dynamical
degree of freedom. The other degree of freedom does not
propagate and remains electrostatic.
In the Schwarzschild limit (a → 0) the effective potential

reduces to the one obtained in Paper I. In the spinning
case, the potential depends on the azimuthal number m.
Moreover, the boundary condition at the horizon is modi-
fied, since Vðr → rþÞ ¼ −ðω2 − 2mωΩHÞ, where ΩH is
the angular velocity at the horizon of locally nonrotating
observers at first order in ã. Note that this factor coincides
with the expected superradiant factor, ðω −mΩHÞ2 at first
order in the BH spin.
As discussed in Sec. III D, owing to the importance

of nonlinear effects in the ωplM ≪ 1 regime, a nonlinear
analysis of the polar sector in a Kerr spacetime is necessary
to investigate its spectrum. Therefore, in the next section
we shall focus only on the superradiantly unstable axial
sector.

V. PLASMA-INDUCED SUPERRADIANT
INSTABILITY: NUMERICAL RESULTS

In this section we numerically solve the differential
equations derived in Sec. IV at the linear order in the BH
spin parameter. In order to do so, we need to specify the
plasma density profile which determines the radial depend-
ence of the effective photon mass. As in Paper I, we
consider two different plasma profiles: a homogeneous
density profile and a Bondi-like spherical accretion flow.
When the density is homogeneous, so is the plasma

frequency, ωpl ¼ constant. This approximation is not

realistic, especially close to the BH, but it allows us to
elucidate the structure of the equations.
We then consider a Bondi-like accretion model, which

provides the radial dependence of the electron density (and
therefore of the plasma frequency). This model is used to
describe accretion onto spherically symmetric compact
objects. The plasma frequency is written as

ω2
plðrÞ ¼ ω2

B

�
2M
r

�
λ

þ ω2
∞; ð56Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
B þ ω2

∞
p

is the plasma frequency at the horizon
(since in realistic settings ω∞ ≪ ωB, with a little abuse of
notation we shall refer to ωB as the horizon plasma
frequency). The slope λ depends on the adiabatic index
of the gas (e.g., λ ¼ 3=2 for monoatomic species). The
constant term ω∞ is the asymptotic plasma frequency at
infinity, i.e., the interstellar medium plasma frequency far
away from the central BH.
We solve Eqs. (33) and (55) numerically with the

shooting method described in Sec. III A and in Paper I.
The boundary conditions [and in particular kþ and k∞ in
Eqs. (29)–(30)] are modified according to the behavior of
the effective potential at the horizon and at infinity.

A. Intermezzo: The hydrogenic spectrum for
superradiantly unstable Proca modes

in the Kerr metric

It is useful to remind the reader of the known properties
of the superradiant modes of a Proca field with a constant
Stueckelberg mass μ ¼ ℏωpl around a Kerr BH.
Massive vector particles in Kerr spacetime can populate

gravitationally quasibound states described by a set of
complex eigenfrequencies ω ¼ ωR þ iωI , where typically
jωIj ≪ jωRj. The binding energy of the mode is described
by ωR, while ωI is related to the decay rate of the mode due
to dissipation of energy at the horizon only, since modes
with ωR < ωplðr → ∞Þ cannot dissipate at infinity and are
long lived. If the superradiant condition ωR < mΩH is met,
the decay rate will turn into a growth rate, leading to an
exponential amplification of the mode due to extraction of
rotational energy from the BH. In particular, since the
modes are confined in the vicinity of the BH by the Proca
mass, this amplification becomes a continuous process
leading to a superradiant instability [8]. The spectrum of a
Proca field in Kerr spacetime in the Newtonian limit (i.e., as
long as the Compton wavelength of the mode is much
larger than the size of the BH) is hydrogenlike [6,7,12],

ωR ∼ ωpl

�
1 −

ðMωplÞ2
2ðlþ Sþ 1þ nÞ2

�
; ð57Þ

MωI ∼ γlSðMωplÞ4lþ2Sþ5ðãm − 2rþωRÞ; ð58Þ
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where l is the total angular momentum of the state with spin
projections S ¼ −1, 0, 1 (with S ¼ 0 for axial modes and
S ¼ �1 for the two polarizations of polar modes), n is the
overtone number (n ¼ 0 for the longest-lived, fundamental
mode), and γlS are constants (given, e.g., in Ref. [8]). The
most unstable mode is the polar dipole with S ¼ −1, l ¼ 1.
In the spinning case the imaginary part acquires a factor
ωI ∝ ðωR −mΩHÞ, which depends on the BH angular
velocity ΩH. Therefore, in the superradiant regime,
ωR < mΩH, the modes with the smallest slope in the static
case (namely, the polar dipole with S ¼ −1 for the Proca
case) become the ones with the shortest instability time-
scale, τinst ¼ 1=ωI [8]. This analytical approximation is in
excellent agreement with exact numerical results in the
Newtonian limit [12–15,37–40].
In the next section we compute the EM superradiant

modes for the plasma-photon system and compare them
with the above hydrogenic behavior of a Proca field.

B. Constant density plasma

In Paper I, we showed that the axial spectrum of the EM
field around a nonspinning BH coincides with the axial
sector of a Proca field, i.e., the real and imaginary part in
the Newtonian regime coincide with Eqs. (57) and (58)
with S ¼ 0. On the other hand, the polar spectrum differed
from Proca’s and was subdominant in the large mass
coupling regime Mωpl > 0.4.
Since in the slow-rotation expansion the spin is intro-

duced perturbatively, we expect that the axial mode should
provide the shortest instability timescale in the superradiant
regime, at least for values of Mωp which are not too small,
in order to avoid the reflection point previously discussed
for the polar modes.
In Kerr, the field equations depend on the azimuthal

number m. Therefore, the spectrum is characterized by a
Zeeman-like splitting for different azimuthal numbers. In
particular, modes with m > 0 can become unstable if the
superradiant condition ωR < mΩH is satisfied. Figure 4
shows the absolute value of the imaginary part of the axial
modes with l ¼ 1 ¼ m at first order in the BH spin, for
different values of the homogeneous plasma frequency. The
black dots, for comparison, represent the modes of a Proca
field with mass ℏωp. Interestingly, despite the fact that
Eq. (33) deviates from the axial Proca equation at first
order, the two spectra almost coincide; the difference
between an EM and a Proca mode at fixed ωpl is always
less than 2%. When the superradiant condition ωR < mΩH
is met, the imaginary part changes sign and the modes
become superradiantly unstable. Since ωR ∼ ωpl and ΩH ∼
a=ð4M2Þ þOðã3Þ for a quasibound mode with Mωpl ≪ 1,
the superradiant condition is met at ã ∼ 4Mωpl, in good
agreement with the crossing points in Fig. 4. Note that,
since ΩH ¼ OðãÞ, the superradiant condition requires
ωplM ¼ OðãÞ or smaller, making it difficult to solve the

equations numerically. Indeed, strictly speaking the super-
radiantly unstable modes require Oðã2Þ corrections (see
Ref. [6] for a discussion), although first-order results are
already sufficiently accurate [8]. When Mωpl ≪ 1, the real
part of the modes depends only very weakly on the BH
angular momentum and is very well approximated by the
hydrogenic relation (57), just as for Proca fields [6].

C. Bondi accretion model

We now analyze the spectrum for a Bondi accretion
model, where the plasma frequency acquires a dependence
on the radius ωpl → ωplðrÞ as described by Eq. (56). The
modes can be obtained by solving Eq. (33) taking into
account the radial dependence of the effective mass.
Figure 5 shows the (absolute value of the) imaginary part

of the fundamental axial mode with l ¼ m ¼ 1 as a
function of the spin parameter ã for different values
of ωB in the case ω∞ ¼ 0.05=M. For these modes
ωR=ω∞ ∼ 1, therefore the superradiant condition ωR <
mΩH becomes 4Mω∞ < ã, in agreement with the crossing
points in Fig. 5. Consequently, for sufficiently low plasma
densities at the horizon, the system admits plasma-driven
superradiant modes, with much larger timescales than in the
ωpl ¼ constant case. As shown in Fig. 5, as ωB increases
the timescale of the mode also increases, and can become
comparable to the Salpeter time. For such weakly-unstable
modes, accretion must be taken into account; in particular,
our formalism becomes inaccurate in this regime, as we
assumed the plasma to be static.
As shown in Ref. [4] (by using a Klein-Gordon toy

model) and in Paper I, if the density at the horizon grows
above a critical value, the spectrum is completely
quenched, making the plasma-driven instability very fragile
in realistic configurations.

FIG. 4. Imaginary part of the axial l ¼ 1 ¼ m mode for
different values of the plasma frequency ωpl. The imaginary part
of the mode changes sign and becomes superradiant when the
superradiant condition ωR < mΩH is met. Black dots represent
Proca modes with l ¼ 1 ¼ m. The difference between the two
spectra is always less than 2%.
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VI. CONCLUSION

Studying the dynamics of an EM field propagating on a
plasma is already a complex and fascinating topic in flat
spacetime. In this work, we have extended our ongoing
analysis of the problem in curved spacetime, with the goal
of understanding the confining role of plasma around an
accreting BH.
In particular, we have extended our initial analysis [1] of

plasma-driven EM quasibound states in order to quantify
the impact of thermal and collisional corrections in the
plasma and the role of the BH spin. We showed that, for
what concerns the existence of long-lived, quasibound
EM states around an astrophysical BH, the plasma can
be considered cold and collisionless with excellent approxi-
mation. We also showed that, when Mωpl ≪ 1, the polar
sector generically features a spatial reflection point, due to
resonant properties akin to those of inhomogeneous plas-
mas in flat spacetime. Dissipation channels such as
collisions and nonlinearities can have a major impact on
these resonances and are in fact needed to cure the
singularities of the EM field at the reflection point.
We further demonstrated that the quasibound states can

turn unstable when the BH rotates above the superradiance
threshold. In particular, even in this case the axial sector
can be described by a Klein-Gordon toy model with
excellent approximation, while for the polar sector a
nonlinear analysis is required.
We limited our analysis to the case of linear perturbations

of the EM field and plasma quantities. However, nonlinear
effects in the plasma-photon interaction can quench the
superradiant instability [20]. Nonlinearities are also the
dominant dissipation mechanism curing the resonances in

the polar sector in the astrophysical systems of interest. The
next step will be to investigate the role of nonlinearities in
detail by either numerically solving the full systems of
equations, or by introducing effective nonlinear corrections.
We only considered nonrelativistic electrons, but rela-

tivistic corrections—which might also quench the super-
radiant instability [21]—can be accommodated in our
framework. Other interesting extensions of this work
include considering a magnetized plasma and studying
the photon-plasma interactions around a spinning BH for
generic spins. Finally, we have neglected the motion of
ions, which in unmagnetized plasmas can give rise to ion
acoustic waves. These modes typically propagate with
frequencies far below the electron plasma frequency,
so we expect them not to cause resonant behavior affecting
superradiance. Furthermore, ion acoustic waves are typi-
cally important when there is a large hierarchy between the
proton and electron temperature, Tp ≪ Te. This happens,
for instance, when a plasma passes through a shock wave,
but it is unlikely to happen due to superradiance only and
for isolated black holes. Therefore, we expect corrections
due to ion motions to be far less relevant to our problem
than nonlinearities.
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APPENDIX A: POLAR SECTOR WITH
COLLISIONS

The polar sector in the presence of collisions on a
nonspinning background depends on the function
FðrÞ≡ GðrÞ=HðrÞ, where

GðrÞ ¼ fτω2
pl½ð3f þ 1Þf3=2lðlþ 1Þ

− 2iðf þ 1Þflðlþ 1Þτωþ 2iðf − 1Þfr2τωω2
pl

− 4iðf − 1Þr2τω3 þ 4ðf − 1Þ
ffiffiffi
f

p
r2ω2�

þ 2iωðτωþ i
ffiffiffi
f

p
Þ2½2f2lðlþ 1Þ þ ðf − 1Þr2ω2�;

ðA1Þ

FIG. 5. Superradiant axial modes with l ¼ 1 ¼ m in a Bondi
accretion model [see Eq. (56)] with plasma asymptotic frequency
ω∞ ¼ 0.05=M, for different values of the plasma frequency at the
horizon, ωpl ≈ ωB. The imaginary part of the modes is some
orders of magnitude smaller than in the ωpl ¼ const. case, and
can become comparable to the Salpeter time (marked as a dashed
line for the case of M ¼ 10 M⊙).
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HðrÞ ¼ 2r½fτω2
pl − ωðτωþ i

ffiffiffi
f

p
Þ�½ð

ffiffiffi
f

p
− iτωÞðflðlþ 1Þ − r2ω2Þ − ifr2τωω2

pl�: ðA2Þ

APPENDIX B: FIELD DECOMPOSITION IN KERR

In the following, we list the coefficients appearing in the decomposition of the plasma equations in a Kerr background,
Eqs. (47), (48), and (49),

Ãl ¼ 0; ðB1Þ

ηl ¼ −
2alðlþ 1ÞMω2

ðrðr − 2MÞÞ3=2 uð4Þ; ðB2Þ

Al ¼
i

r11=2ðr − 2MÞ5=2 ½−2amMrðM − rÞð2M − rÞ2u00ð3Þ þ ð2M − rÞð2amMð2MðM − rÞ − r4ω2Þ

þ lðlþ 1Þr4ωð2M − rÞÞu0ð3Þ þ 2amMð2M − rÞrð2M2 − 3Mrþ r2Þu0ð2Þ þ 2amMr3ω2ðr −MÞuð3Þ
þ ðr − 2MÞð4amMðM2 −Mr − r4ω2Þ − r4ωðr − 2MÞðl2 þ lþ r2ω2

plÞ þ r7ω3Þuð2Þ�; ðB3Þ

Bl ¼ −
2aM

r11=2ðr − 2MÞ5=2 ½rð2M − rÞð2M2 − 3Mrþ r2Þu00ð4Þ þ ð2M − rÞð−2M2 þ 2Mrþ r4ω2Þu0ð4Þ
þ ðM − rÞðl2ð2M − rÞ þ lð2M − rÞ þ r3ω2Þuð4Þ�; ðB4Þ

αl ¼
iω

r3=2ðr − 2MÞ3=2 ½−rðr − 2MÞ2u00ð3Þ þ 2Mð2M − rÞu0ð3Þ þ ðrðr − 2MÞ2u0ð2Þ þ 2Mðr − 2MÞÞuð2Þ
þ ωð2amM − r3ωÞ þ r2ðr − 2MÞω2

pluð3Þ�; ðB5Þ

ζl ¼ −
2aM

r9=2ðr − 2MÞ3=2 ½−lðlþ 1ÞðM − rÞð2M − rÞu0ð3Þ − r4ω2ð2M − rÞu0ð2Þ − lðlþ 1Þr3ω2uð3Þ

þ ðl2ð2M2 − 3Mrþ r2Þ þ lð2M2 − 3Mrþ r2Þ þ r3ω2ð3M − 2rÞÞuð2Þ�; ðB6Þ

δl ¼ −
4aM

r9=2ðr − 2MÞ3=2 ½rðr − 2MÞ2u00ð4Þ þ 2Mðr − 2MÞu0ð4Þ þ ðl2ð2M − rÞ þ lð2M − rÞ þ r3ω2Þuð4Þ�; ðB7Þ

γl ¼
4iamM

r9=2ðr − 2MÞ3=2 ½rðr − 2MÞ2u00ð3Þ þ 2Mðr − 2MÞu0ð3Þ − rðr − 2MÞ2u0ð2Þ þ r3ω2uð3Þ þ 2Mð2M − rÞuð2Þ�; ðB8Þ

βl ¼ −
iω

ðrðr − 2MÞÞ3=2 ½−rðr − 2MÞ2u00ð4Þ þ 2Mð2M − rÞu0ð4Þ
þ ðωð2amM − r3ωÞ þ l2ðr − 2MÞ þ lðr − 2MÞ þ r2ðr − 2MÞω2

plÞuð4Þ�: ðB9Þ

APPENDIX C: POLAR SECTOR IN KERR

In the following, we outline the procedure to derive the
polar potential from Eqs. (47) and (48), by neglecting the
terms multiplied by Ql;m and using the expressions given
in Appendix B. From Eq. (47), it is possible to obtain an
expression for u0ð2Þ as a function of uð2Þ; uð3Þ; u

0
ð3Þ, and u

00
ð3Þ.

This expression can be then inserted in Eq. (48),
obtaining an equation that only contains uð2Þ, uð3Þ, u0ð3Þ,

and u00ð3Þ. Thus, by solving this equation, it is possible to

write uð2Þ as a function of the degree of freedom uð3Þ
and its derivatives, uð2ÞðrÞ ¼ F ½uð3Þ; u0ð3Þ; u00ð3Þ�. Inserting
this in Eq. (48) allows us to obtain an equation for the
decoupled variable uð3Þ, which in general contains third-
order radial derivatives. However, the latter are Oðã2Þ and
can therefore be neglected to linear order in the BH spin.
The resulting equation is a second-order equation for
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the decoupled variable uð3Þ in the form a2ðrÞu00ð3Þþ
a1ðrÞu0ð3Þ þ a0ðrÞuð3Þ ¼ 0, where the coefficients ai are

functions of r and are at most linear in the BH spin. As
in the nonspinning case, therefore, only one degree of
freedom is propagating in the polar sector.

The differential equation for uð3Þ can also be written in a
Schrödinger-like form through a variable redefinition and
in terms of the tortoise coordinate. At first order in the spin,
V → −ðω2 − 2mωΩHÞ near the horizon and V → ω2

pl − ω2

at infinity.
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