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The role of Lorentz symmetry in ghost-free massive gravity is studied, emphasizing features emerging in
approximately Minkowski spacetime. The static extrema and saddle points of the potential are determined
and their Lorentz properties identified. Solutions preserving Lorentz invariance and ones breaking four of
the six Lorentz generators are constructed. Locally, globally, and absolutely stable Lorentz-invariant
extrema are found to exist for certain parameter ranges of the potential. Gravitational waves in the
linearized theory are investigated. Deviations of the fiducial metric from the Minkowski metric are shown
to lead to pentarefringence of the five wave polarizations, which can include superluminal modes and
subluminal modes with negative energies in certain observer frames. The Newton limit of ghost-free
massive gravity is explored. The propagator is constructed and used to obtain the gravitational potential
energy between two point masses. The result extends the Fierz-Pauli limit to include corrections generically
breaking both rotation and boost invariance.
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I. INTRODUCTION

The foundational symmetries of General Relativity (GR)
include local Lorentz invariance and diffeomorphism
invariance, which exclude the graviton from acquiring a
mass. In linearized gravity, a massive graviton propagating
on Minkowski spacetime can be described by the Fierz-
Pauli term [1]. However, in the limit of vanishing mass, the
Fierz-Pauli term is discontinuous to linearized GR [2,3], as
in addition to the usual graviton modes it yields a massless
scalar mode, the Boulware-Deser ghost [4]. A theory of
massive gravity reducing to GR in the massless limit
requires instead a nonlinear completion [5]. This can be
constructed using a special nonlinear potential that elim-
inates the ghost mode due to the appearance of an extra
second-class constraint [6]. The action for massive gravity
can be formulated using two metrics, a dynamical metric
gμν and a nondynamical fiducial metric fμν [7], combined
in a five-parameter quartic potential that removes the two
ghost degrees of freedom [8]. The theory of massive gravity
and its developments, including bimetric and multimetric
versions, are reviewed in Refs. [9–11].
The nondynamical fiducial metric fμν in ghost-free

massive gravity can be viewed as a prescribed background
field that explicitly breaks the spacetime symmetries of GR
in a special way, thereby permitting a nonzero graviton
mass with no ghost mode. Astrophysical constraints require
the graviton mass to be less than 10−38 GeV [12], so a
nonzero value would represent a phenomenologically tiny
deviation from GR. In a broad context, small deviations

from a specified theory can be described in a model-
independent way using effective field theory [13]. The
general effective field theory containing all terms breaking
the spacetime symmetries of GR and its couplings to matter
has been developed [14]. This framework provides con-
ceptual insights about the breaking of spacetime sym-
metries in various theories modifying GR and remains the
subject of ongoing investigation, with numerous experi-
ments performed to measure the coefficients governing the
symmetry breaking [15]. For ghost-free massive gravity, it
enables the derivation of constraints on matter couplings
from searches for Lorentz violation [16].
In this work, we investigate some specific implications

of the breaking of spacetime symmetries in ghost-free
massive gravity. Our focus is primarily on properties related
to the Lorentz transformations that emerge in approxi-
mately Minkowski spacetime, although we expect many of
the concepts to apply in other background spacetimes as
well. These Lorentz transformations arise from a combi-
nation of local Lorentz and diffeomorphism transforma-
tions in curved spacetime [17] and moreover are the focus
of most experimental investigations [15], so they are of
particular interest in the present context. Here, we explore
two topics along these lines. The first concerns the static
extrema and saddle points of the potential and their Lorentz
structure. We show the theory admits a variety of solutions
including ones that are Lorentz invariant and others that are
Lorentz violating, and we classify the patterns of symmetry
breaking. We determine the local, global, and absolute
stability of solutions in the set of flat metrics, verifying that
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an absolutely stable Lorentz-invariant extremum exists for
special potential parameters.
The second topic concerns the phenomenology of flat

non-Minkowski fiducial metrics, fμν ∝ ημν. In approxi-
mately Minkowski spacetime, these can in principle gen-
erate observable signals of explicit Lorentz violation. We
study two scenarios of potential experimental interest,
gravitational waves and the limit of Newton gravity. For
gravitational waves representing excitations about
Minkowski spacetime, we demonstrate that the five modes
of massive gravity experience pentarefringence during
propagation. The modes are either superluminal or carry
negative energies in some observer frames; a result typical
of Lorentz-violating theories [18]. For Newton gravity, we
obtain the propagator and use it to determine the gravita-
tional potential energy between two point masses. The
modifications to the usual Yukawa form for the Fierz-Pauli
case include violations of both boost and rotation
invariance.
The organization of this work is as follows. In Sec. II we

present essential preliminary material. The action for
massive gravity adopted here and the definitions of relevant
variables are presented in Sec. II A. A summary of the
spacetime symmetries of the theory is provided in Sec. II B,
along with an outline of their implementation in approx-
imately Minkowski spacetime. In Sec. II C a decomposition
of the key matrix variable convenient for calculational
purposes is performed.
The investigation of extrema and saddle points of the

action is undertaken in Sec. III. We obtain the potential
governing static solutions and solve the resulting equations
of motion for flat fiducial metrics. Three cases are dis-
tinguished and treated in turn in Secs. III A, III B, and III C.
The static solutions are constructed and their Lorentz
properties established. In each case, the issue of local
stability, instability, or metastability is addressed using the
technique of bordered Hessians. The surface generated by
the Hamiltonian constraint and the positions of the sol-
utions on its connected sheets are used to establish global
and absolute stability properties.
In Sec. IV the linearized limit of massive gravity is

explored. We investigate the Lorentz properties of solutions
of the modified linearized Einstein equation that reduce to
Minkowski spacetime for vanishing fluctuations of the
dynamical metric. Gravitational waves are considered in
Sec. IVA. We construct the eigenenergies and eigenmodes
of the modified Einstein equation and study their splitting
for choices of the fiducial metric that differ from the
Minkowski metric. The limit of Newton gravity is exam-
ined in Sec. IV B. The propagator for linearized massive
gravity is obtained and used to determine the gravitational
potential energy between two stationary point masses. An
overall summary of the paper is provided in Sec. V, while
the Appendix describes technical details of certain integrals
required in the text. The conventions for metric, curvature,

and other signs and factors are those of Ref. [14],
Appendix A.

II. SETUP

In this section we discuss the form of the action for
massive gravity used in the present work. We summarize
key aspects of spacetime symmetries and their violations,
and we provide a matrix decomposition for the dynamical
variable of central interest in the analyses to follow.

A. Basics

Consider the action for ghost-free massive gravity in the
form [7]

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2m2

X4
n¼0

βnenðXÞ
�
þ Sm; ð1Þ

where κ ¼ 8πG. The first term is the usual Einstein-Hilbert
action written in terms of the dynamical metric gμν and the
Riemann scalar curvature R. The second term can be
understood as a nonderivative scalar potential for the
dynamical metric, which depends on the mass scale m
and on five dimensionless parameters βn, n ¼ 0;…; 4.
Only two combinations of the latter have independent
physical meaning [7]. To ensure that the matrix of Poisson
brackets of second class constraints is invertible, the
parameters satisfy the condition [19] β1 þ 2β2 þ β3 ≠ 0.
The potential in the action (1) also involves a non-

dynamical fiducial metric fμν, which can be chosen as
desired but is often taken to be the Minkowski metric ημν.
The fiducial metric appears in the action in the combination
Xμ

ν ¼ ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν, where the matrix g−1f is assumed to

have only positive eigenvalues so that its square root is well
defined. The five invariant polynomials enðXÞ involve
traces of powers of the argument of Xμ

ν. They are defined
by e0ðXÞ ¼ 1 and the recursive relation [7]

enðXÞ ¼ −
1

n

Xn
k¼1

ð−1Þk½Xk�en−kðXÞ; ð2Þ

where ½·� indicates a trace, ½Z� ¼ Zμ
μ. It follows that

e0ðXÞ¼ 1;

e1ðXÞ¼ ½X�≡ trX;

e2ðXÞ¼ 1

2
ð½X�2− ½X2�Þ;

e3ðXÞ¼ 1

6
ð½X�3−3½X�½X2�þ2½X3�Þ;

e4ðXÞ¼ 1

24
ð½X�4−6½X�2½X2�þ3½X2�2þ8½X�½X3�−6½X4�Þ

≡detX: ð3Þ
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In four spacetime dimensions, enðXÞ≡ 0 for n ≥ 5. The
term with n ¼ 4 is nondynamical and hence can be omitted
from the action (1). The action can be extended by the
addition of a matter term Sm to describe the coupling of
matter as desired.
The analyses in the present work take advantage of a

duality property of the scalar potential [20],

ffiffiffiffiffiffi
−g

p
enðXÞ ¼

ffiffiffiffiffiffi
−f

p
e4−nðY Þ; ð4Þ

where

Y μ
ν ¼ ðX−1Þμν ¼

� ffiffiffiffiffiffiffiffiffiffi
f−1g

q �
μ

ν
: ð5Þ

For our purposes, it is advantageous to work with the
representation of the scalar potential in terms of the matrix
Y μ

ν rather than Xμ
ν. This replaces the determinant

ffiffiffiffiffiffi−gp
of

the dynamical metric with the determinant
ffiffiffiffiffiffi
−f

p
of the

nondynamical fiducial metric and thereby simplifies the
variational analysis. The second term in the action (1) then
takes the form −ðm2=κÞ R d4x

ffiffiffiffiffiffi
−f

p
V, where the potential V

is given by

VðY Þ ¼
X4
n¼0

β̄nenðY Þ; ð6Þ

with

β̄n ¼ β4−n: ð7Þ

The parameters β̄n are related to the parameters αn defined
in Part II of the review in Ref. [9] by

0
BBBBBB@

β̄0

β̄1

β̄2

β̄3

β̄4

1
CCCCCCA

¼

0
BBBBBB@

0 0 0 0 1

0 0 0 −1 −4
0 0 1 3 6

0 −1 −2 −3 −4
1 1 1 1 1

1
CCCCCCA

0
BBBBBB@

α0

α1

α2

α3

α4

1
CCCCCCA
; ð8Þ

with inverse

0
BBBBBB@

α0

α1

α2

α3

α4

1
CCCCCCA

¼

0
BBBBBB@

1 1 1 1 1

−4 −3 −2 −1 0

6 3 1 0 0

−4 −1 0 0 0

1 0 0 0 0

1
CCCCCCA

0
BBBBBB@

β̄0

β̄1

β̄2

β̄3

β̄4

1
CCCCCCA
: ð9Þ

The parameter α0 corresponds to the cosmological con-
stant, α1 to a tadpole contribution, α2 to a mass term
generalizing the Fierz-Pauli action, while α3 and α4
correspond to higher-order interactions.

B. Spacetime symmetries

The spacetime symmetries of the action (1) are keys to its
physical content. This subsection provides a brief summary
of some features of particular interest in what follows. A
recent discussion with more details and in a broader context
can be found in Ref. [17].
In considering spacetime symmetries of a theory, par-

ticularly one containing nondynamical backgrounds like
the fiducial metric fμν in the action (1), it is useful to define
two classes of transformations [14,21]. Observer trans-
formations change the observer frame, and hence they
amount to coordinate choices that leave unaffected the
physics. Geometrically, they act on the atlas of the
spacetime manifold. Particle transformations change
dynamical particles and fields, leaving invariant nondy-
namical quantities and thus modifying their couplings.
Geometrically, particle transformations act on the space-
time manifold and its tangent and cotangent bundles. A
physical symmetry under a particle transformation may
therefore be violated by the presence of a nondynamical
quantity even if the theory is invariant under the corre-
sponding observer transformation. Note that the two classes
of transformations expressed in a coordinate basis are
mathematically similar when nondynamical quantities
are absent and are then sometimes called passive and
active, but this similarity fails in the general scenario.
General coordinate transformations are prime examples

of observer transformations, implementing smooth coor-
dinate changes and leaving invariant the action (1). For
explicit calculations, a particular set of coordinates is often
selected, corresponding to a convenient choice of observer
frame. The fiducial metric fμν behaves as a (0,2) tensor
under general coordinate transformations, so a suitable
choice of coordinates can bring it to a convenient form. The
dynamical metric gμν is also a (0,2) tensor under general
coordinate transformations, so the choice of coordinates
affects its explicit form as well.
Local Lorentz transformations are particle transforma-

tions that act on the tangent space at each point on the
spacetime manifold. They thus change quantities defined in
a local frame while leaving unaffected ones defined in a
spacetime frame. We label spacetime coordinates by
Greek indices μ; ν;… and components in the local frame
by Latin indices a; b;…. The dynamical metric gμν in a
local frame can be related to the nondynamical Minkowski
metric ηab through the dynamical vierbein eμa according to
gμν ¼ eμaeνbηab. A local Lorentz transformation at point x
described by the matrix components Λa

bðxÞ acts on eμa,
gμν, and fμν as

eμa → Λa
beμb;

gμν → gμν;

fμν → fμν: ð10Þ
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Combinations of objects such as the matrix Y μ
ν inherit the

corresponding transformation properties. Since the action
(1) is specified in terms of objects defined in a spacetime
frame, it is invariant under local Lorentz transformations.
Diffeomorphisms are particle transformations consisting

of smooth maps of the spacetime manifold into itself and
hence embody the notion of local translations, with a
spacetime point xμ mapped to another point according to
xμ → x0μ ¼ xμ þ ξμðxÞ when expressed in a fixed coordi-
nate system. Under a diffeomorphism, dynamical quantities
transform as the induced pushforward or pullback. For
infinitesimal diffeomorphisms, dynamical quantities trans-
form via the Lie derivative, while nondynamical quantities
remain unaffected. For example, under an infinitesimal
diffeomorphism the vierbein, dynamical metric, and fidu-
cial metric transform as

eμa → eμa − eρa∂μξ
ρ − ξλ∂λeμa;

gμν → gμν − gρν∂μξ
ρ − gμσ∂νξ

σ − ξλ∂λgμν;

fμν → fμν: ð11Þ

As a result, diffeomorphism invariance is broken by all the
terms in the potential for the action (1) except the term
proportional to β0, which acts as a cosmological constant.
Manifold Lorentz transformations are particle transfor-

mations that act both on spacetime points and on local
frames as combinations of special diffeomorphisms and
local Lorentz transformations. They are of particular
interest in the present context because they are the
analogues in approximately Minkowski spacetime of
global Lorentz transformations in Minkowski spacetime
[17]. Given a fixed Λ in the Lorentz group, the correspond-
ing manifold Lorentz transformation consists of the special
diffeomorphism xμ → x0μ ¼ Λμ

νxν mapping each space-
time point xμ to another point x0μ via the matrix Λμ

ν in a
fixed coordinate system, along with a special local Lorentz
transformation such that the vierbein and metrics transform
at each x as

eμa → ðΛ−1ÞρμΛa
beρb;

gμν → ðΛ−1ÞρμðΛ−1Þσνgρσ;
fμν → fμν: ð12Þ

In part of this work, we investigate features of massive
gravity in approximately Minkowski spacetime, where the
dynamical metric gμν contains only small fluctuations away
from the Minkowski metric ημν and the manifold Lorentz
transformations reduce to the usual notion of Lorentz
transformations in approximately Minkowski spacetime.
Within this scenario, the action (1) is invariant under
Lorentz transformations whenever the fiducial metric is
constant and proportional to the Minkowski metric,
fμν ∝ ημν, because the transformation law (12) for fμν

then coincides with the standard Lorentz transformation
under which ημν is invariant. However, for other fiducial
metrics fμν ∝ ημν, the transformation law (12) for fμν lacks
the usual action of Λμ

ν and so the action (1) violates
Lorentz invariance. We thus see that the diffeomorphism
violation arising from the mass term transcribes to Lorentz
violation in approximately Minkowski spacetime except
for the special choice fμν ∝ ημν. Note also that violations of
rotation symmetry are embedded in Lorentz violation
because rotations form a subgroup of the Lorentz group.
CPT transformations can be understood in Minkowski

spacetime as the product of charge conjugation C, parity
inversion P, and time reversal T. They are closely linked to
global Lorentz transformations in Minkowski spacetime,
with the link formally being established via the CPT
theorem [22]. In curved spacetime, CPT is challenging
to define but a practical implementation exists [14]. Under
this implementation, the action (1) is CPT invariant even
for nontrivial curvature. In approximately Minkowski
spacetime, a CPT transformation paralleling the usual
one can be constructed. CPT invariance is then a feature
of local realistic theories containing backgrounds carrying
an even number of spacetime indices, which includes the
fiducial metric fμν. The action (1) therefore exhibits CPT
invariance in approximately Minkowski spacetime as well.
We remark in passing that the implementation of the

above spacetime symmetries in alternative formulations of
massive gravity may require separate consideration. For
example, the alternative vierbein formulation [23] using the
dynamical vierbein eμa and a nondynamical fiducial
vierbein fμa explicitly violates both local Lorentz and
diffeomorphism invariances because fμa fails to transform
conventionally [17]. However, if the vierbeins satisfy the
condition eμafμcηcb ¼ ηacfμceμb, then this alternative
formulation is equivalent to the action (1) [23,24] and so
local Lorentz invariance is preserved. As another example,
bimetric massive gravity [20] involves two dynamical
metrics gμν, fμν. Their background values emerging from
extremizing the bimetric action therefore must solve the
equations of motion, which implies any Lorentz breaking is
spontaneous and accompanied by massless fluctuations
[25], which are Nambu-Goldstone modes [26]. Techniques
are available for handling the resulting phenomenological
complications [27], and many experiments have sought the
corresponding effects [15]. Investigating the implications
for bimetric massive gravity of these results and of the
methods discussed here would be of definite interest but
lies outside our present scope. Note that in contrast no
fluctuations are associated with the nondynamical fiducial
metric fμν in the action (1), where the Lorentz breaking is
explicit. The phenomenology of explicit breaking without
fluctuations can be explored in gravitational effective field
theory [28].
Given that manifold Lorentz symmetry is generically

violated in the action (1), it is of interest to determine the
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pattern of the symmetry breaking in any given scenario. As
an illustration of some relevant ideas consider the analysis
in Sec. III below of the extrema and saddle points of the
potential (6), which is a quartic in the matrix variable Y μ

ν.
The equation determining the extrema and saddle points is
therefore a cubic, with three independent solutions. Since
Y μ

ν has at most four different eigenvalues, it follows that at
least two of them must be degenerate and so at most five
of the six Lorentz generators can break. If three eigenval-
ues are degenerate, then three Lorentz generators are
broken, while if two pairs of eigenvalues are degenerate
then four Lorentz generators break. The above line of
reasoning reveals that the basic structure of the potential (6)
excludes one, two, or six broken Lorentz generators. As we
show in Sec. III, the cubic governing the extrema and
saddle points of the potential (6) has degenerate roots,
and so in fact the only solutions either are Lorentz
invariant or have four broken Lorentz generators. In the
latter case, the pattern of symmetry breaking is SOð1; 3Þ →
SOð1; 1Þ × SOð2Þ.
This pattern differs from ones known in other Lorentz-

violating models of gravity. Consider, for example, the
cardinal model [29], which is also an extension of GR
containing a nonlinear potential. It is constructed starting in
Minkowski spacetime with a symmetric two-tensor that
undergoes spontaneous Lorentz violation and requiring
self-consistent coupling to the energy-momentum tensor. In
the Lorentz-invariant case, this bootstrap procedure is
known to generate GR from a massless spin-2 field [30].
In the cardinal model, a unique combination satisfies the
integrability condition for self consistency at each order in
the field fluctuations [31]. The potential functions for the
cardinal model, defined by Eq. (134) of Ref. [29], match
the polynomials (3) for ghost-free gravity but serve as input
for the differential equations satisfied by the bootstrap
potentials rather than being combined to eliminate the
ghost. The cardinal model is thus a bootstrap theory like
GR but generically contains a ghost, while the action (1) for
massive gravity is ghost free but generically cannot be
obtained via a bootstrap. Known patterns of Lorentz
breaking for the cardinal potential exclude situations with
one or two broken Lorentz generators, as before. However,
they include ones with three, five, and six broken gen-
erators [32], which cannot occur in ghost-free massive
gravity as outlined above.

C. Matrix decomposition

The analysis of extrema and saddle points in Sec. III is
performed using the matrix variable Y μ

ν defined in Eq. (5),
with the special choice of fiducial metric fμν ¼ ημν. This
subsection provides a decomposition of Y μ

ν in terms of
variables convenient for the subsequent derivations.
The square of Y μ

ν can be written using the Arnowitt-
Deser-Misner decomposition [33],

ðY 2Þμν ¼ ðη−1gÞμν ¼
�
N2 − Niγ

ijNj −Nj

Nj γij

�
; ð13Þ

where γij ¼ gij is the spacelike part of the dynamical metric
with inverse γij, Ni ¼ g0i is the shift variable, and N ¼
ð−g00Þ−1=2 is the lapse. In the GR action, the shift and the
lapse appear linearly and multiply first class constraints. In
the case of massive gravity, however, the potential term in
the action destroys linearity, and the variables Nμ ¼
ðN;NiÞ acquire equations of motion determining them in
terms of the dynamical fields. This leaves 10 − 4 ¼ 6
propagating modes, including the Boulware-Deser ghost.
To eliminate the ghost from the spectrum, the equations

of motion for Nμ must involve only three of the four
degrees of freedom. This means that the equations of
motion depend on only three combinations ni of the four
variables Nμ, along with the metric variables γij. It is then
natural to perform a change of variables

fNi; N; γijg → fni; N; γijg ð14Þ

that eliminates the Ni in favor of the ni. The ni are auxiliary
fields fixed by their own equations of motion. The lapse N
does not appear in its own equation of motion and hence
acts as a Lagrange multiplier multiplying a constraint. This
constraint eliminates the Boulware-Deser ghost. It follows
that the potential must be linear in N after performing the
change of variables (14). Given the form of the decom-
position (13), the transformation of Ni must therefore be
linear in N,

Ni ¼ ðδij þ NDi
jÞnj: ð15Þ

The matrix Di
j is determined by the requirement that the

action be linear in N.
To implement this line of reasoning explicitly for Y μ

ν, we
take

Y μ
ν ¼

� ffiffiffiffiffiffiffiffiffi
η−1g

q �
μ

ν
¼ Aμ

ν þ NBμ
ν: ð16Þ

Squaring then gives

ðY 2Þμν ¼ ðA2Þμν þ NðA:Bþ B:AÞμν þ N2ðB2Þμν: ð17Þ

We can compare this result with the decomposition (13),
using the expression (15). It follows that
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A2¼
�
−nTγ−1n −nT

n γ

�
;

B2¼ð1−nTDTγ−1DnÞ
�
1 0

0 0

�
;

A:BþB:A¼
�
−nTDTγ−1n−nTγ−1Dn −nTDT

Dn 0

�
: ð18Þ

The first two of these identities determine the matrices A
and B upon taking matrix square roots, which are uniquely
defined if A2 and B2 are diagonalizable with non-negative
eigenvalues. This is indeed the case for sufficiently small
values of ni. We find

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nTDTγ−1Dn

q �
1 0

0 0

�
: ð19Þ

Choosing coordinates such that γij ¼ δij, we also obtain

A ¼ 1

N0

�−nTn −nT

n N0δþ nnT 1−N0
nTn

�
; ð20Þ

where N0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nTn

p
. Note that this expression is inde-

pendent of the matrix D.
The results (19) and (20) for the matrices A and B can

now be used to find the explicit form of Y 0
ν. This gives

Y 0
0 ¼ A0

0 þ NB0
0 ¼

−nTnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nTn

p þ NN0 ≡ Ñ;

Y 0
i ¼ A0

i þ NB0
i ¼

−niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nTn

p ≡ −ñi; ð21Þ

where we introduced the convenient variables Ñ and ñi.
The inverse relations are

ni ¼
ñiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ñT ñ
p ; N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ñT ñ

p
Ñ þ ñT ñ; ð22Þ

from which the partial derivative with respect to N is found
to be

∂
∂N ¼ ∂Ñ

∂N
∂
∂Ñ þ ∂ñi

∂N
∂
∂ñi ¼ N0 ∂

∂Ñ : ð23Þ

The partial derivative with respect to ni is a linear
combination of the partial derivatives with respect to ñi
and Ñ. Note that the Hamiltonian constraint is obtained by
taking the partial derivative of the Hamiltonian with respect
to the lapse N, so the result (23) implies it can alternatively
be obtained by taking the partial derivative with respect
to Ñ ¼ Y 0

0.

III. STATIC SOLUTIONS

Among the solutions obtained by varying the action (1)
are static ones with vanishing curvatures for both the
metrics gμν and fμν, which can be interpreted as flat
vacuum spacetimes. In this section these solutions are
classified and constructed. We take advantage of general
coordinate invariance to choose a special observer frame in
which the fiducial metric takes the form of the Minkowski
metric fμν ¼ ημν, and we determine the corresponding
solutions to the static equations of motion for the matrix
variable Y μ

ν. The explicit form of solutions for any other
flat fiducial metric fμν ∝ ημν can then be obtained via a
suitable general coordinate transformation.
The extrema and saddle points of interest are solutions of

the equations of motion obtained by varying the potential
(6). Since the term with parameter β̄0 is constant, it has no
effect on the equations of motion and hence can be set to
zero without loss of generality in the analysis. It therefore
suffices to study the equations of motion obtained from the
potential

UðY Þ ¼
X4
i¼1

β̄ieiðY Þ: ð24Þ

For the analysis, it is convenient to parametrize Y μ
ν as

Y μ
ν ¼

�
Ñ −ñi
ñj kij

�
: ð25Þ

The solutions for the variables ñi can be obtained directly
from their equations of motion, and we find

ñi ¼ 0: ð26Þ

To make further progress, we diagonalize the spacelike
part kij of Y μ

ν by applying an othogonal transformation
Y → OYOT , which amounts to a field redefinition and thus
leaves the physics unchanged. This brings Y μ

ν to the form

Y μ
ν ¼

0
BBB@

Ñ 0 0 0

0 λ1 0 0

0 0 λ2 0

0 0 0 λ3

1
CCCA: ð27Þ

The potential (24) then becomes

UðY Þ ¼ β̄1ðλ1 þ λ2 þ λ3Þ þ β̄2ðλ1λ2 þ λ2λ3 þ λ3λ1Þ
þ β̄3λ1λ2λ3

þ Ñ½β̄1 þ β̄2ðλ1 þ λ2 þ λ3Þ
þ β̄3ðλ1λ2 þ λ2λ3 þ λ3λ1Þ þ β̄4λ1λ2λ3�; ð28Þ

and it depends on the four field variables Ñ, λ1, λ2, λ3.

V. ALAN KOSTELECKÝ and ROBERTUS POTTING PHYS. REV. D 104, 104046 (2021)

104046-6



The equation of motion for Ñ yields the Hamiltonian
constraint,

β̄1 þ β̄2ðλ1 þ λ2 þ λ3Þ þ β̄3ðλ1λ2 þ λ2λ3 þ λ3λ1Þ
þ β̄4λ1λ2λ3 ¼ 0: ð29Þ

The equations of motion for the remaining three variables
λ1, λ2, and λ3 are

β̄1 þ β̄2ðÑ þ λ2 þ λ3Þ þ β̄3ðÑðλ2 þ λ3Þ þ λ2λ3Þ
þ β̄4Ñλ2λ3 ¼ 0;

β̄1 þ β̄2ðÑ þ λ1 þ λ3Þ þ β̄3ðÑðλ1 þ λ3Þ þ λ1λ3Þ
þ β̄4Ñλ1λ3 ¼ 0;

β̄1 þ β̄2ðÑ þ λ1 þ λ2Þ þ β̄3ðÑðλ1 þ λ2Þ þ λ1λ2Þ
þ β̄4Ñλ1λ2 ¼ 0: ð30Þ

The parameter β1 can be eliminated from these three
equations by working instead with their differences. For
example, subtracting the second equation from the first yields

ðλ2 − λ1Þ½β̄2 þ β̄3ðÑ þ λ3Þ þ β̄4Ñλ3� ¼ 0: ð31Þ

Similarly, we find

ðλ3 − λ1Þ½β̄2 þ β̄3ðÑ þ λ2Þ þ β̄4Ñλ2� ¼ 0; ð32Þ

and

ðλ3 − λ2Þ½β̄2 þ β̄3ðÑ þ λ1Þ þ β̄4Ñλ1� ¼ 0: ð33Þ

In what follows, we solve the system of these equations and
the Hamiltonian constraint (29) for each of three cases in
turn: case A with β̄4 ≠ 0, case B with β̄4 ¼ 0, β̄3 ≠ 0, and
case C with β̄4 ¼ β̄3 ¼ 0, β̄2 ≠ 0. This establishes the
complete set of desired static extrema and saddle points
of the action (1).

A. Case A: β̄4 ≠ 0

Consider first case A with β̄4 ≠ 0. We obtain here the
solutions, determine their local stability, and investigate
global stability for the subset of locally stable
configurations.

1. Static solutions

Inspection reveals that one class of solutions of
Eqs. (31)–(33) is obtained by taking λ1 ¼ λ2 ¼ λ3.
Substitution into Eq. (29) yields the cubic equation

β̄1 þ 3β̄2λ1 þ 3β̄3λ
2
1 þ β̄4λ

3
1 ¼ 0: ð34Þ

For the case β̄4 ≠ 0, this yields either one or three real
solutions for λ1. In terms of the discriminant

D ¼ 4β̄4β̄
3
2 − 3β̄23β̄

2
2 − 6β̄1β̄2β̄3β̄4 þ 4β̄1β̄

3
3 þ β̄21β̄

2
4; ð35Þ

the cubic (34) has three distinct real roots if and only if
D < 0, at least two coincident real roots if D ¼ 0, and one
real root if and only if D > 0. For D ¼ 0, three coincident
roots appear for the special case with β̄23 − β̄2β̄4 ¼ 0. From
the first expression in Eq. (30) it follows that

Ñ ¼ −
β̄1 þ 2β̄2λ1 þ β̄3λ

2
1

β̄2 þ 2β̄3λ1 þ β̄4λ
2
1

¼ λ1: ð36Þ

The second equality is obtained by substitution of the
solution for β̄1 obtained from Eq. (34). We conclude that
these solutions obey

Ñ ¼ λ1 ¼ λ2 ¼ λ3; ð37Þ

with all four variables given by a single root of the cubic
(34). The matrix Y μ

ν is therefore proportional to the
identity, which implies this class of solutions is manifold
Lorentz invariant. The existence of three real roots ensures
that three distinct solutions occur.
It can be verified fromEqs. (31)–(33) that the variables λ1,

λ2, and λ3 cannot all be different. However, a second class of
solutions can be obtained by setting any two of the λi equal,
while keeping the third distinct. Suppose for definiteness
that λ1 ¼ λ2 ≠ λ3. It then follows from Eq. (32) that

Ñ ¼ −
β̄2 þ β̄3λ1
β̄3 þ β̄4λ1

; ð38Þ

while Eq. (29) yields

λ3 ¼ −
β̄1 þ 2β̄2λ1 þ β̄3λ

2
1

β̄2 þ 2β̄3λ1 þ β̄4λ
2
1

: ð39Þ

From Eqs. (29) and (30), we find

ðλ3 − ÑÞ½β̄2 þ 2β̄3λ1 þ β̄4λ
2
1� ¼ 0: ð40Þ

Taking the second factor in this equation to vanish leads to a
divergent expression on the right-hand side of Eq. (39), so
λ3 ¼ Ñ is required. Combining this result with Eqs. (38) and
(39) then yields the identity

β̄1β̄3 − β̄22 þ ðβ̄1β̄4 − β̄2β̄3Þλ1 þ ðβ̄2β̄4 − β̄23Þλ21 ¼ 0; ð41Þ

with the solutions

λ1 ¼ λ2 ¼
β̄2β̄3 − β̄1β̄4 �

ffiffiffiffi
D

p

2ðβ̄2β̄4 − β̄23Þ
: ð42Þ

Note the appearance of the discriminant (35), with the
solutions being real iff D > 0. Using Eq. (38) then reveals
that
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λ3 ¼ Ñ ¼ −
β̄2 þ β̄3λ1
β̄3 þ β̄4λ1

¼ β̄2β̄3 − β̄1β̄4 ∓
ffiffiffiffi
D

p

2ðβ̄2β̄4 − β̄23Þ
: ð43Þ

The second class of solutions therefore obeys

Ñ ¼ λ3 ≠ λ1 ¼ λ2; ð44Þ

with the two subsets of equal variables specified as the two
roots of the quadratic (41). Since the matrix Y μ

ν differs
from the identity, this class of solutions violates manifold
Lorentz invariance. The pattern of symmetry breaking is
SOð1; 3Þ → SOð1; 1Þ × SOð2Þ. Note that we can obtain two
more pairs of analogous solutions by interchanging the role
of λ3 with λ1 and λ2 in turn. Note also that the solutions are
obtained assuming the form (27) for Y μ

ν, which is obtained
by a four-dimensional orthogonal transformation that leaves
unaffected the physics. The three-dimensional part of this
transformation amounts to a rotation and hence overlaps
with a Lorentz transformation, so the two discrete Lorentz-
violating solutions can be viewed as part of a continuous
rotation-degenerate solution that describes the same physics
as the discrete pair.
To summarize, for case A with β̄4 ≠ 0 we find two

possibilities distinguished by the sign of the discriminant
D. Case A1 has D ≤ 0. For D < 0 it contains three
Lorentz-invariant solutions obeying the condition (37)
and given by one root of the cubic (34). For D ¼ 0 only
two distinct Lorentz-invariant solutions survive, except for
the special case β̄23 − β̄2β̄4 ¼ 0 when all three Lorentz-
invariant solutions coincide. Case A2 has D > 0. It
includes one Lorentz-invariant solution satisfying the con-
dition (37) and given by the sole real root of the cubic (34).
This case also includes six Lorentz-violating solutions,
with the four variables Ñ, λ1, λ2, λ3 combining in pairs and
specified as roots of the quadratic (41).

2. Local stability

Next, we investigate the local stability of the solutions
in the potential manifold. To establish the local stability of
unconstrained systems it suffices to determine the eigen-
values of the Hessian matrix, which are positive definite at
local minima, negative definite at local maxima, and inde-
finite at saddle points. However, the system of interest here
is constrained, which introduces an additional complica-
tion. An elegant way to determine the properties of the
Hessian on the constrained surface is to work instead with
the bordered Hessian [34], which is defined on an enlarged
space incorporating the Lagrange multiplier for the con-
straint along with the physical degrees of freedom. In the
present context, the method requires first finding the deter-
minant detHB of the 4 × 4 bordered Hessian associated
with the four variables fÑ; λ1; λ2; λ3g. If detHB > 0, then
the hessian has two eigenvalues of opposite sign. If instead
detHB < 0, then the hessian on the two-dimensional

constrained surface has either two positive or two negative
eigenvalues, and a principal minor must be calculated to
determine which alternative is realized. The principal minor
is the determinant detHB;m of the 3 × 3 matrix obtained by
removing from the Hessian a column and a row associated
with one of the variables λi. If detHB;m < 0 then both
eigenvalues of the constrained Hessian are positive, while if
detHB;m > 0 then both are negative.
For case A1 with D < 0 and three Lorentz-invariant

solutions, we find that the determinant of the full bordered
Hessian HB is

detHB ¼ −3ðβ̄2 þ 2β̄3λ1 þ β̄4λ
2
1Þ4: ð45Þ

This is negative definite provided a quadratic combination
of the variable λ1 is nonzero,

β̄2 þ 2β̄3λ1 þ β̄4λ
2
1 ≠ 0: ð46Þ

The zeros of this quadratic combination differ from the
solutions when the three roots of the cubic polynomial (34)
are all distinct, because the zeros correspond to the
stationary points of the cubic while the extrema and saddle
points of the potential correspond to its roots. Each of the
three Lorentz-invariant solutions therefore represents either
a maximum or a minimum. To determine which of these
occurs, we compute the principal minor

detHB;m ¼ 2ðβ̄2 þ 2β̄3λ1 þ β̄4λ
2
1Þ3: ð47Þ

The sign of this expression matches the sign of the
quadratic combination (46). The roots of the latter separate
the three values of λ1 corresponding to the three solutions,
so its sign alternates when they are ordered by the value of
λ1. It follows that when β̄4 > 0 the central solution has
negative value of detHB;m and hence is a local maximum,
while the other two have positive values with signs
coinciding with that of β̄4 and hence are local minima.
For β̄4 < 0 the situation is reversed, and the signs of
detHB;m for the two outer extrema again coincide with that
of β̄4.
The results for case A1 with D ¼ 0 can be viewed as

limits of the above analysis. In this scenario, at least two of
the three solutions merge. When two distinct solutions
remain, the ones that merge produce a local saddle point of
the potential, while the third is either a local maximum or a
local minimum. For the special case β̄23 − β̄2β̄4 ¼ 0, all
three solutions merge and the extremum becomes
degenerate.
Consider next the case A2, which has D > 0 with one

Lorentz-invariant and six Lorentz-violating solutions. The
Lorentz-invariant one corresponds to the sole root of the
cubic polynomial (34). The determinant of the correspond-
ing bordered Hessian and the principal minor are again
given by Eqs. (45) and (47). As this root lies outside the
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interval spanned by the roots of the quadratic combination
(46), the sign of the principal minor is again given by the
sign of β̄4. Thus, if β̄4 > 0 then the extremum is a local
minimum, while if β̄4 < 0 it is a local maximum.
For the Lorentz-violating solutions in case A2, the

determinant of the bordered Hessian turns out to be

detHB ¼ D2

ðβ̄23 − β̄2β̄4Þ2
; ð48Þ

which is positive definite. The two eigenvalues of the
constrained Hessian therefore have opposite signs, so the
Lorentz-violating solutions generically correspond to local
saddle points of the potential. The divergence of the bordered
Hessian at β̄23 ¼ β̄2β̄4 represents the singular limit that
interpolates between two scenarios for case A2, distin-
guished by the sign of β̄23 − β̄2β̄4, with each scenario having
one Lorentz-invariant and six Lorentz-violating solutions.

3. Global and absolute stability

With the extrema and their local stability properties in
hand, the issue of their global and absolute stability can be
addressed. We call an extremum globally stable if it is
locally stable and if no locally unstable extremum can be
reached via a smooth path in field space along which the
effective potential remains finite. This notion of global
stability thus depends on the branch structure of the
potential. The point is that two locally stable extrema on

a single branch of the potential can in principle be
connected via thermal fluctuations or quantum tunneling,
whereas two locally stable extrema lying on different
branches are disconnected by an infinite potential barrier.
Also, we refer to an extremum as absolutely stable if it is
globally stable and in addition lies at a lower potential than
any other globally stable extremum. To investigate the
global and absolute stability of the various extrema, we use
a combination of analytical and graphical methods. Note
that our techniques are applied within the space of flat
metrics. In principle, solutions identified as stable in this
context might be unstable to dynamical variations in the full
field space. However, the potential (6) is independent of
field derivatives, so the usual stability in the Einstein-
Hilbert case can be expected to carry over to the full theory.
A detailed investigation of this point would be of interest
but lies outside our present scope.
To set up the analytical approach, we solve the

Hamiltonian constraint explicitly for one variable, say λ3,
to obtain

λ3 ¼ −
β̄1 þ β̄2λ1 þ β̄2λ2 þ β̄3λ1λ2
β̄2 þ β̄3λ1 þ β̄3λ2 þ β̄4λ1λ2

: ð49Þ

Substituting this expression into the potential (28) with
Ñ ¼ λ3 then generates an effective potential Ūðλ1; λ2Þ that
is a function of the two remaining variables λ1 and λ2,

Ūðλ1; λ2Þ≡ Uðλ1; λ2; λ3ðλ1; λ2ÞÞ

¼ λ1λ2ððβ̄23 − β̄2β̄4Þλ1λ2 þ ðβ̄2β̄3 − β̄1β̄4Þðλ1 þ λ2Þ þ β̄22Þ þ ðβ̄22 − β̄1β̄3Þðλ21 þ λ22Þ þ β̄1β̄2ðλ1 þ λ2Þ þ β̄21
β̄2 þ β̄3ðλ1 þ λ2Þ þ β̄4λ1λ2

: ð50Þ

The crucial feature in this formula is the denominator. Any
surface in field space where it vanishes represents a singular
surface in the definition of Ū. Unless the numerator
vanishes as well, the behavior of Ū across this surface is
that of a first-order pole. This means that Ū tends to þ∞
when the surface is approached from one side, while Ū
tends to −∞ when approached from the other. The surface
therefore serves as a separator of two distinct branches
of Ū.
For case A1 with D < 0 and three Lorentz-invariant

extrema, we have λ1 ¼ λ2 and so the denominator takes the
form of the quadratic combination (46). The two zeros of
this quadratic lie between the roots of λ1 that define the
three extrema. We can therefore conclude that they lie on
separate branches of the potential Ū. This suggests that no
two of the three extrema can be smoothly connected in field
space. However, the above reasoning implicitly assumes
that the candidate path between the extrema satisfies the
condition λ1 ¼ λ2, so the possibility remains in principle

that a more complicated path exists that avoids the
singularity.
To check this possibility, we construct numerically a

three-dimensional plot of the cubic surface defined by the
Hamiltonian constraint (29), using the parameters β̄1 ¼ 0.3,
β̄2 ¼ −1.3, β̄3 ¼ −1, β̄4 ¼ 1. See Fig. 1. The x, y, z axes of
the plot are labeled with values of λ1, λ2, λ3, respectively.
Equipotential contours of the effective potential Ūðλ1; λ2Þ
are displayed in grayscale shadings. The location of the
three Lorentz-invariant extrema is indicated by white dots.
Inspection of the figure reveals that the Hamiltonian
constraint involves three disconnected sheets, each con-
taining a single stationary Lorentz-invariant extremum.
This confirms that it is impossible to transit smoothly
from one extremum to another. The two extrema in case A1
that represent local minima are therefore both locally and
globally stable. Note, however, that the two globally stable
extrema generically lie at different potentials. It follows
that only the one at lower potential is absolutely stable.
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Since they are separated by infinite potential barriers,
neither thermal fluctuations nor quantum tunneling
between them can be expected to occur.
For case A2, which has D > 0 with one Lorentz-

invariant extremum and six Lorentz-violating saddle points,
the situation depends on the sign of the combination
β̄23 − β̄2β̄4. When β̄23 − β̄2β̄4 < 0, the quadratic equa-
tion (41) has no real roots, so the cubic polynomial in
(34) has no stationary points. The effective potential (50)
consists of just one branch, as the denominator never
becomes zero. Therefore, the solutions are connected by a
path in the λi space such that the effective potential Ū varies
continuously without passing through any singularity. This
result is confirmed numerically in Fig. 2, which displays
the cubic surface defined by the Hamiltonian constraint for
the parameters β̄1 ¼ 1, β̄2 ¼ −1, β̄3 ¼ 1, β̄4 ¼ 1 using the
same conventions as Fig. 1. The Lorentz-invariant
extremum is indicated by a white dot, while the
Lorentz-violating saddle points are indicated by black dots.
We thus conclude that the Lorentz-invariant extremum at a
local minimum is globally unstable. The excitation energy
required to destabilize it is the difference between the
energies of the Lorentz-violating saddle points and the
Lorentz-invariant local minimum.
In contrast, when β̄23 − β̄2β̄4 > 0, the analysis is more

involved. The cubic equation (34) has two stationary points
λ−, λþ corresponding to the roots of the quadratic combi-
nation (46). The single root of the cubic equation must be
either smaller than λ− or larger the λþ. We now claim that
this root for the Lorentz-invariant extremum and the two
roots with λ1 ¼ λ2 for the Lorentz-violating saddle points
are separated by λ− and λþ, assuming the three roots are
ordered from small to large.

To check this claim, we first evaluate the left-hand side C
of Eq. (34) at the center point ðλþ þ λ−Þ=2,

C ¼ β̄1β̄
2
4 − 3β̄2β̄3β̄4 þ 2β̄33

β̄24
: ð51Þ

It follows that if β̄4C > 0 then the Lorentz-invariant root λLI
is smaller than λ−, while if β̄4C < 0 then λLI is larger than
λþ. Next, we verify that the two Lorentz-violating roots
λLV;− and λLV;þ given in the solutions (42) are separated
from λLI and each other by λ− and λþ. If this is indeed the
case, then either

λLI < λ− < λLV;− < λþ < λLV;þ ð52Þ

or

λLV;− < λ− < λLV;þ < λ− < λLI: ð53Þ

One consistency condition for this involves the sign of the
difference between the midpoint of λLV;− and λLV;þ.
Calculation reveals that the difference is given by

λLV;− þ λLV;−
2

−
λ− þ λþ

2
¼ β̄4C

β̄23 − β̄2β̄4
: ð54Þ

Since β̄23 − β̄2β̄4 > 0 for this case, we see that if β̄4C > 0

then the midpoint between λLV;− and λLV;þ is larger than
ðλþ þ λ−Þ=2, while if β̄4C < 0 it is smaller. It therefore lies

FIG. 1. Cubic surface for case A1, with three Lorentz-invariant
extrema.

FIG. 2. Cubic surface for case A2 and β̄23 − β̄2β̄4 < 0, with one
Lorentz-invariant extremum and six Lorentz-violating saddle
points.
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in the opposite direction from λLI relative to ðλþ þ λ−Þ=2,
consistent with the claim.
To confirm that the three roots are positioned according

to the claim, we can compute explicitly the differences

λþ − λ−
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄23 − β̄2β̄4

q
jβ̄4j

; ð55Þ

and

λLV;þ − λLV;−
2

¼
ffiffiffiffi
D

p

2ðβ̄23 − β̄2β̄4Þ
: ð56Þ

The claim then follows if the conditions

����β̄1β̄24−3β̄2β̄3β̄4þ2β̄33
2β̄4ðβ̄23− β̄2β̄4Þ

����−
ffiffiffiffi
D

p

2ðβ̄23− β̄2β̄4Þ
>−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄23− β̄2β̄4

q
jβ̄4j

;

����β̄1β̄24−3β̄2β̄3β̄4þ2β̄33
2β̄4ðβ̄23− β̄2β̄4Þ

����−
ffiffiffiffi
D

p

2ðβ̄23− β̄2β̄4Þ
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄23− β̄2β̄4

q
jβ̄4j

;

����β̄1β̄24−3β̄2β̄3β̄4þ2β̄33
2β̄4ðβ̄23− β̄2β̄4Þ

����þ
ffiffiffiffi
D

p

2ðβ̄23− β̄2β̄4Þ
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄23− β̄2β̄4

q
jβ̄4j

; ð57Þ

all hold. Moving the second term in each of these relations
to the right-hand side and squaring, we find that almost all
terms cancel. All three inequalities reduce to

4ðβ̄23 − β̄2β̄4Þ3=2jβ̄4j
ffiffiffiffi
D

p
> 0; ð58Þ

which is valid by inspection. The claim that the three roots
are separated by λ− and λþ is thus verified.
The above calculation therefore suggests that for case A2

with D > 0 and β̄23 − β̄2β̄4 > 0 the Lorentz-invariant sta-
tionary extremum and the two Lorentz-violating saddle
points with λ1 ¼ λ2 lie on separate branches of the effective
potential Ūðλ1; λ2Þ. A similar argument applies for the other
four Lorentz-violating saddle points. However, the same
caveat applies here as for case A1, as we considered only
paths satisfying λ1 ¼ λ2. In fact, a graphical analysis
reveals that continuous paths exist that link the six
Lorentz-violating saddle points. This feature is manifest
in Fig. 3, which plots the cubic surface defined by the
Hamiltonian constraint for the parameters β̄1 ¼ 1, β̄2 ¼ 3,
β̄3 ¼ 1, β̄4 ¼ 1, with the conventions of Fig. 1. The
Lorentz-invariant extremum indicated by a white dot lies
on a disconnected component of the cubic surface, while
the Lorentz-violating saddle points indicated by black dots
are clustered around the throat of the other component. We
see that a smooth transition from the Lorentz-invariant to
the Lorentz-violating saddle points is impossible, so if the
Lorentz-invariant extremum is a local minimum then it is
also globally and absolutely stable. In contrast, smooth

paths do indeed exist between any pair of Lorentz-violating
saddle points. The passage from the situation in Fig. 2 to
that in Fig. 3, which interpolates via the limiting scenario
with β̄23 ¼ β̄2β̄4 and a singular bordered Hessian (48),
involves the separation of the sheet with the Lorentz-
invariant extremum from the sheet containing the six
Lorentz-violating saddle points and the formation of the
throat.
As a final example, we consider the minimal theory

obtained from the Fierz-Pauli Lagrange density by Hassan
and Rosen [7]. The corresponding cubic surface defined by
the Hamiltonian constraint is displayed in Fig. 4 for the
parameters β̄1 ¼ β̄2 ¼ 0, β̄3 ¼ −1, β̄4 ¼ 3, using the con-
ventions of Fig. 1. These parameters yield D ¼ 0 and
β̄23 − β̄2β̄4 ¼ 1, which is a limiting situation of the previous
analysis. In this case, two sheets of the cubic surface touch
at a conical singular point. The Lorentz-invariant extremum
λ0 ¼ λ1 ¼ λ2 ¼ λ3 ¼ 0 lies on the tip connecting the
touching sheets and is unstable. In contrast, the Lorentz-
invariant extremum λ0 ¼ λ1 ¼ λ2 ¼ λ3 ¼ 1 is positioned
on a disconnected component of the surface, as indicated
by a white dot. It has a negative determinant of the bordered
Hessian and a positive value for the principal minor, so it is
a local minimum that is globally and absolutely stable. This
model can be viewed as the limit of Fig. 1 with two of the
three sheets touching, or as a limiting case of Fig. 3 with the
throat pinching off.

B. Case B: β̄4 = 0 and β̄3 ≠ 0

Consider next case B with β̄4 ¼ 0, β̄3 ≠ 0. For rotation-
ally invariant solutions with λ1 ¼ λ2 ¼ λ3, reanalysis of
Eqs. (29)–(33) reveals that the cubic (34) becomes replaced
by the quadratic equation

FIG. 3. Cubic surface for case A2 and β̄23 − β̄2β̄4 > 0, with one
Lorentz-invariant extremum and six Lorentz-violating saddle
points.
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β̄1 þ 3β̄2λ1 þ 3β̄3λ
2
1 ¼ 0; ð59Þ

which has solutions

λ1 ¼
−β̄2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄22 − 4

3
β̄1β̄3

q
2β̄3

: ð60Þ

From the first expression in Eq. (30) it follows that
Ñ ¼ λ1, confirming that the extrema satisfy the condition
(37) for Lorentz invariance. Note that they are real
iff 3β̄22 − 4β̄1β̄3 ≥ 0.
To investigate local stability of these extrema, we

examine the determinant (45) of the bordered Hessian
and the principal minor (47). This shows that one extremum
is a local maximum of the constrained effective potential Ū
while the other is a local minimum, depending on the sign
of β̄2 þ 2β̄3λ1.
The effective potential in this case is the limit β̄4 → 0 of

the expression (50). It is therefore singular along the curve
satisfying

β̄2 þ β̄3ðλ1 þ λ2Þ ¼ 0: ð61Þ

The two Lorentz-invariant extrema are separated by this
curve, so we expect them to lie on separate branches of
the effective potential. This is confirmed by numerical
analysis. The double-sheeted hyperboloid defined by the
Hamiltonian constraint is shown in Fig. 5 for the param-
eters β̄1 ¼ 1, β̄2 ¼ 3, β̄3 ¼ 1, β̄4 ¼ 0, using the conventions
of Fig. 1. One of the two Lorentz-invariant extrema appears

on each sheet, so they cannot be joined by a smooth curve
on the surface. The extremum that is a local minimum of
the potential is therefore globally and absolutely stable.
For solutions without rotational symmetry, Eqs. (31)–

(33) require at least two of the λi to be equal. Taking
λ1 ¼ λ2 ≠ λ3, we find that Ñ ¼ −λ1 − β̄2=β̄3. Substitution
into Eq. (30) then yields

λ1 ¼ λ2 ¼
−β̄2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β̄1β̄3 − 3β̄22

q
2β̄3

: ð62Þ

Note that the solutions (60) are real if and only if
4β̄1β̄3 − 3β̄22 ≥ 0, contrary to the situation for the
Lorentz-invariant solutions. We also obtain

λ3 ¼ Ñ ¼
−β̄2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β̄1β̄3 − 3β̄22

q
2β̄3

; ð63Þ

confirming that the solutions obey the condition (44) for
Lorentz violation. Note that the roots of the solutions for λ3
and Ñ are interchanged relative to those for λ1 and λ2, as
before. Two additional pairs of Lorentz-violating solutions
are obtained by sequential interchange of λ3 with λ1 and
with λ2.
In this case, the determinant of the bordered Hessian is

obtained as the limit β̄4 → 0 of the expression (48),

detHB → ð3β̄22 − β̄1β̄3Þ2: ð64Þ

FIG. 4. Cubic surface for the minimal theory in Ref. [7], with
one Lorentz-invariant extremum.

FIG. 5. Double-sheeted hyperboloid for case B with two
Lorentz-invariant extrema.
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This is positive definite for 3β̄22 − β̄1β̄3 ≠ 0, so these
solutions have a constrained Hessian with one positive
and one negative eigenvalue, corresponding to local saddle
points of the effective potential.
The Lorentz-violating saddle points are separated by the

singular curve (61). However, numerical analysis reveals
that all six saddle points lie on a unique branch of the
effective potential. The Hamiltonian constraint in this case
defines a single-sheeted hyperboloid, shown in Fig. 6 for
the parameters β̄1 ¼ 1, β̄2 ¼ 1, β̄3 ¼ 1, β̄4 ¼ 0 with the
same conventions as Fig. 1. All six saddle points lie near
the throat of the single-sheeted hyperboloid. Smooth
transitions between all the saddle points are therefore
possible.

C. Case C: β̄4 = β̄3 = 0 and β̄2 ≠ 0

Finally, we consider case C with β̄4 ¼ β̄3 ¼ 0, β̄2 ≠ 0.
We find that a single Lorentz-invariant solution exists,
given by

Ñ ¼ λ1 ¼ λ2 ¼ λ3 ¼ −β̄1=ð3β̄2Þ: ð65Þ

This solution is a local minimum of the effective potential if
β̄2 > 0 and a local maximum if β̄2 < 0. The solution set of
the Hamiltonian constraint is a single-sheeted plane,
illustrated in Fig. 7 for the parameters β̄1 ¼ 1, β̄2 ¼ 3, β̄3 ¼
β̄4 ¼ 0 using the same conventions as Fig. 1. As a result, if
the extremum is a local minimum then it is globally and
absolutely stable.

Note that case Cwith a localminimum is the only scenario
for which the potential remains bounded frombelow over the
entire range of field variables. Branches of the effective
potential that are unbounded belowoccurwhen the surface of
theHamiltonian constraint contains a sheetwith either a local
maximum or a saddle point. This occurs for all situations in
casesAandBand for caseCwith a localmaximum.For these
cases, a full quantum treatmentmay therefore be problematic
as the path integral will probe degrees of freedom that
correspond to a potential taking arbitrarily negative values.
In this sense, even the existence of an absolutely stable
extremum may be insufficient to guarantee stability at the
quantum level for these cases. However, the parameter
choices β̄4 ¼ β̄3 ¼ 0, β̄2 > 0 for case C avoid this diver-
gence and hence may be of particular interest in quantum
theory. At the classical level, in contrast, it suffices to restrict
the theory via appropriate parameter choices to an individual
sheet on which the potential is bounded from below, so the
range of viable cases is correspondingly greater.

IV. LINEARIZED MASSIVE GRAVITY

Varying the action (1) with respect to the metric gμν
yields an equation of motion that can be written as [7]

Gμν þ
m2

2

X3
n¼0

ð−1ÞnβnðgμαYα
ðnÞν þ gναYα

ðnÞμÞ ¼ κTμν; ð66Þ

where Tμν is the energy-momentum tensor and the tensors
Yα
ðnÞν are given in matrix form by

FIG. 6. Single-sheeted hyperboloid for case B with six Lorentz-
violating saddle points.

FIG. 7. Single-sheeted plane for case C with a single Lorentz-
invariant extremum.
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YðnÞðXÞ ¼
Xn
k¼0

ð−1ÞkXn−kekðXÞ: ð67Þ

We are interested in linearizing this equation around
Minkowski spacetime with metric ημν, while allowing
for deviations δfμν of the fiducial metric fμν from ημν.
We therefore define

gμν ¼ ημν þ hμν; fμν ¼ ημν þ δfμν; ð68Þ

and work at first order in both hμν and δfμν. To ensure the
dynamical fluctuations hμν remain perturbative, we take
jhμνj ≪ jδfμνj ≪ 1 where needed. The deviations δfμν are
assumed to be constants. Note that the presence of the
background Minkowski spacetime implies that δfμν can
nonetheless produce physical effects, as a general coor-
dinate transformation chosen to remove δfμν also changes
the background metric to non-Minkowski form.
The square root Xμ

ν ¼ ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν can be expressed in

terms of hμν and fμν. The expansion

X2 ¼ ðηþ hÞ−1ðηþ δfÞ
≈ 1þ η−1δf − η−1h − η−1hη−1δf; ð69Þ

implies

X ≈ 1þ 1

2
η−1δf −

1

2
η−1hþ 1

8
η−1δfη−1h

−
3

8
η−1hη−1δf: ð70Þ

The nth product of X then takes the form

Xn≈1þn
2
ðη−1δf−η−1hÞ

−
1

8
½ðn2−2nÞη−1δfη−1hþðn2þ2nÞη−1hη−1δf�: ð71Þ

The definition (67) contains the polynomial functions
enðXÞ, which involve traces ½Xn� of powers of X. Taking
the trace of Eq. (71) yields

½Xn� ≈ 4þ n
2
ð½η−1δf� − ½η−1h�Þ − n2

4
½η−1δfη−1h�; ð72Þ

where the cyclic property of the trace has been used. Using
this expression, we find the polynomial functions enðXÞ
take the form

enðXÞ ¼
�
4

n

�
þ 1

2

�
3

n − 1

�
ð½η−1δf� − ½η−1h�Þ

−
1

4

�
2

n − 1

�
½η−1δfη−1n − 1h�

−
1

4

�
2

n − 2

�
½η−1δf�½η−1h�: ð73Þ

Substituting the results (71) and (73) in the definition
(67) yields the form of YðnÞðXÞ at first order in the metric
and the fiducial metric. The modified Einstein equation (66)
becomes

GL
μν þ

m2

2

X3
n¼0

βn

�
2

�
3

n

�
ðημν þ hμνÞ þ

�
2

n − 1

�
ðhμν − δfμν − ημν½η−1ðh − δfÞ�Þ

þ
�
1

2

�
1

n − 2

�
þ
�

2

n − 1

��
½η−1δf�hμν þ

1

2

�
1

n − 2

�
½η−1h�δfμν

−
1

2

�
1

n − 1

�
½η−1δfη−1h�ημν −

1

2

�
1

n − 2

�
½η−1δf�½η−1h�ημν

−
�
3

4

�
2

n − 1

�
−
1

2

�
1

n − 1

��
ðhη−1δf þ δfη−1hÞμν

	
¼ κTμν; ð74Þ

where GL
μν is the linearized Einstein tensor. This result is a

special case of linearized gravitational dynamics with
Lorentz and diffeomorphism violation [35].
It is reasonable and usual to require that the linearized

equation (74) is satisfied by the choice hμν ¼ δfμν ¼
Tμν ¼ 0. This requirement constrains the parameters βn
according to [23]

X3
n¼0

�
3

n

�
βn ¼ β0 þ 3β1 þ 3β2 þ β3 ¼ 0: ð75Þ

Introducing now a nontrivial fluctuation hμν ≠ 0 while
maintaining δfμν ¼ Tμν ¼ 0, the modified Einstein
equation (74) becomes
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GL
μν þ

m2

2

X3
n¼0

�
2

n − 1

�
βnðhμν − ½η−1h�Þ ¼ 0: ð76Þ

If
P

3
n¼0ð2−1n Þβn < 0, this equation describes tachyonic

propagation and corresponds to an unstable system. If
instead

P
3
n¼0ð 2

n−1Þβn ¼ 0, the mass term vanishes. We are
thus interested in the case

P
3
n¼0ð 2

n−1Þβn > 0. For this case,
we can rescale the parameters βn → aβn and the mass m →
m=

ffiffiffi
a

p
so that

P
3
n¼0ð 2

n−1Þβn → 1, thereby reducing the
modified Einstein equation to the Fierz-Pauli equation. In
what follows, we can therefore take

X3
n¼0

�
2

n − 1

�
βn ¼ β1 þ 2β2 þ β3 ¼ 1 ð77Þ

without loss of generality. Note that the conditions (75) and
(77) imply that only two combinations of the four param-
eters βn govern the physics of the system.
Suppose next that δfμν ≠ 0. Now Minkowski spacetime

no longer solves the modified Einstein equation (74) when
Tμν ¼ 0 because contributions from δf to the mass term
remain in the limit hμν → 0. This means that even in the
absence of matter, Tμν ¼ 0, spacetime has nonzero curva-
ture whenever δfμν is nonzero. The presence of this
curvature complicates the form of solutions to the modified
Einstein equation. To minimize the calculational complex-
ities while still permitting study of relevant physical
features, we can introduce a special constant background
energy-momentum tensor chosen to cancel the hμν-inde-
pendent terms on the left-hand side of the modified Einstein
equation,

κTμν ¼ −
m2

2
ðδfμν − ημν½η−1δf�Þ: ð78Þ

Note that this is conserved in Minkowski spacetime for the
spacetime-independent δfμν of interest here, and hence all
its partial derivatives vanish. In the presence of this back-
ground, a zero metric fluctuation hμν ¼ 0 solves the
modified Einstein equation (74), and so spacetime is
Minkowski. Nonzero solutions for hμν can then be inter-
preted in analogy with standard weak-field gravitational
physics in GR, including gravitational waves in flat
spacetime and the Newton gravitational potential.
To analyze the physics of this system, it is convenient to

work in momentum space. We can write the linearized
Einstein equation in the form

Oμν
αβhαβ ¼ 0 ð79Þ

and introduce the Fourier transform

hμνðxÞ ¼
Z

d4p
ð2πÞ4 e

−ip·xh̃μνðpÞ: ð80Þ

This yields the momentum-space equation of motion

Õμν
αβh̃αβ ¼ 0; ð81Þ

where

Õμν
αβ ¼ ðδαðμδβνÞ − ημνη

αβÞðp2 þ c1m2Þ − 2pðμpðαδβÞνÞ
þ pμpνη

αβ þ ημνpαpβ

þm2ðc2δðαðμδfβÞνÞ þ c3½η−1δf�δαðμδβνÞ
þ c4ðδfμν − ημν½η−1δf�Þηαβ þ c5ημνδfαβÞ; ð82Þ

with

c1 ¼
X
n

βn

�
2

n−1

�
; c2 ¼−

3

2
c1þ

X
n

βn

�
1

n−1

�
;

c3 ¼
3

4
c1−

1

2
c2; c4 ¼−

1

4
c1−

1

2
c2; c5 ¼−

3

4
c1−

1

2
c2:

ð83Þ

It is convenient to scale m so that c1 ¼ 1. The only
remaining independent parameter is then c2. The first four
terms in expression (82) reproduce the usual Fierz-Pauli
result [1], as expected. The tensor Õμν

αβ satisfies the
symmetry properties

Õμν
αβ ¼ Õνμ

αβ ¼ Õμν
βα: ð84Þ

Note, however, that Õμναβ ≠ Õαβμν whenever δfμν is
nonzero.

A. Gravitational waves

In this section we consider the application of the
linearized theory of massive gravity to the propagation
of gravitational waves. We first summarize the situation for
δfμν ¼ 0, which corresponds to the Fierz-Pauli limit in
Minkowski spacetime, and then turn to the scenario with
δfμν ≠ 0.
For δfμν ¼ 0, contracting the expression (81) with pν

and ημν in turn shows that it is equivalent to the conditions

h̃μαpα ¼ 0; h̃μ
μ ¼ 0; ðp2 þm2Þh̃μν ¼ 0: ð85Þ

This set of equations represents five constraints on the 10
components of h̃μν together with the usual dispersion
relation p2 ¼ −m2 for the five independent combinations.
The conditions and the dispersion relation are both particle
and observer Lorentz covariant, and the five independent
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combinations correspond to the five physical helicities of a
massive spin-2 field.
The five constraint equations can be solved explicitly by

taking advantage of observer Lorentz invariance to choose
an observer frame in which the four-momentum takes the
form

pμ ¼ ðE; 0; 0; p3Þ; ð86Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3

p
. The particle Lorentz invariance of

the system guarantees that the physical behavior is
unchanged for other momentum choices in this chosen
observer frame. The five constraint equations in Eq. (85)
can then be satisfied by choosing the five independent
variables as h̃11, h̃22, h̃12, h̃13, and h̃23 and expressing the
remaining five components of h̃μν in terms of them,

h̃01 ¼
p3

E
h̃13; h̃02 ¼

p3

E
h̃23;

h̃03 ¼ −
E
p3

h̃00 ¼ −
p3

E
h̃33 ¼

Ep3

m2
ðh̃11 þ h̃22Þ: ð87Þ

To obtain the helicity eigenstates, we consider a rotation
about the three momentum p⃗ given by the Lorentz
transformation

h0μν ¼ Rμ
αRν

βh̃αβ; ð88Þ

with

Rμ
α ¼

0
BBB@

1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

1
CCCA: ð89Þ

By definition, a state ψn of helicity n then transforms
according to

ψ 0
n ¼ einθψn: ð90Þ

Calculation with these expressions reveals that the hel-
icity eigenstates of h̃μν satisfying the conditions (87) are
given by

h̃ð�2Þ
μν ¼ m2

2

0
BBB@

0 0 0 0

0 1 �i 0

0 �i −1 0

0 0 0 0

1
CCCA;

h̃ð�1Þ
μν ¼

0
BBB@

0 p3 ∓ ip3 0

p3 0 0 −E
∓ip3 0 0 �iE

0 −E �iE 0

1
CCCA;

h̃ð0Þμν ¼

0
BBB@

p2
3 0 0 −p3E

0 −m2=2 0 0

0 0 −m2=2 0

−p3E 0 0 E2

1
CCCA: ð91Þ

As expected, the five physical degrees of freedom of the
massive spin-2 field include two helicity-2 components

h̃ð�2Þ
μν , two helicity-1 components h̃ð�1Þ

μν , and a helicity-0

component h̃ð0Þμν . Each component obeys the Lorentz-
invariant dispersion relation appropriate for a particle of
mass m.

1. Analysis in special observer frame

Next, we consider effects of the terms proportional to
δfμν in the equation of motion (81). Selecting a special
observer frame in which the four-momentum takes the form
(86) and contracting the equation of motion with pν and ημν

in turn, five constraints again emerge. Working at first order
in δfμν, calculation reveals they can be cast in the form

h̃μαpα ¼ 1

3
pμ½η−1δfη−1h̃�

�
c2 þ c4

�
1 − 2

p2

m2

��

−
1

2
c2pαδfαβh̃βμ;

h̃α
α ¼ 1

3
½η−1δfη−1h̃�

�
c2 þ c4

�
4 − 2

p2

m2

��
; ð92Þ

which generalizes the five constraints in Eq. (85).
Combining these results with the equation of motion
(81) permits the latter to be expressed in the simplified form

ðp2 þm2ð1þ c3½η−1δf�ÞÞh̃μν
¼ m2

2
c2ðh̃μαδfαν þ δfμαh̃

α
νÞ þ c2pαδfαβh̃βðμpνÞ

−
c2
3
½η−1δfη−1h̃�ðpμpν þm2ημνÞ; ð93Þ

generalizing the dispersion relation in Eq. (85).
Inspection reveals that the parameter c3 governs an

overall mass shift set by the ημν trace of the fluctuation
δfμν of the fiducial metric. The role of the terms on the
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right-hand side of the modified dispersion relation (93)
involves a nontrivial action on the components of h̃μν, so
their physical content appears more challenging to under-
stand. However, the structure of the modified dispersion
relation implies that it can be interpreted as an eigenvalue
equation, as the combined action of the c2 terms must be
proportional to h̃μν. The physical content of the system is
therefore determined by the eigenvalues and eigenfunctions
of Eq. (93), with h̃μν constrained to satisfy the conditions
(92). Note that E can be taken approximately equal to its
unperturbed value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3

p
in evaluating the action of

the c2 terms at first order in δfμν.

To gain insight into the physics and for simplicity, we
suppose first that δfμν has the diagonal form

δfμν ¼

0
BBB@

a 0 0 0

0 b1 0 0

0 0 b2 0

0 0 0 b3

1
CCCA: ð94Þ

Calculation then reveals five distinct eigenvalues for the c2
terms on the right-hand side of Eq. (93),

λ12 ¼ −
c2
2
m2ðb1 þ b2Þ; λ13 ¼ −

c2
2
ðm2ðb1 þ b3Þ þ p2

3ðaþ b3ÞÞ; λ23 ¼ −
c2
2
ðm2ðb2 þ b3Þ þ p2

3ðaþ b3ÞÞ;

λ� ¼ −
c2
3

�
ðb1 þ b2 þ b3Þm2 þ ðaþ b3Þp2

3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

�
b3 −

b1 þ b2
2

�
þ p2

3ðaþ b3Þ
�

2

þ 3

4
ðb1 − b2Þ2m4

s �
: ð95Þ

For the energy eigenvalue p0, the modified dispersion
relation yields

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2ð1 − c3½η−1δf�Þ þ λ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

q �
1 −

m2c3½η−1δf� þ λ

2ðp2
3 þm2Þ

�
; ð96Þ

where λ takes the values (95). We thus see that the energy
degeneracy between the five helicities in the Fierz-Pauli
limit becomes broken when δfμν ≠ 0.
At leading order in δfμν, the eigenstates corresponding to

the eigenvalues λ12, λ13, λ23 are the components h̃12, h̃13, h̃23,
respectively. The eigenstates corresponding to λ� are linear
combinations of h̃11 and h̃22, with parameters depending on
m, fμν, and p3. These eigenstates differ from the helicity
eigenstates (91) of the Fierz-Pauli spin-2 theory, instead
being nontrivial linear combinations of the latter. The
remaining components of h̃μν are defined by Eqs. (87).
The situation simplifies in the ultra-relativistic limit

p3 ≫ m. The energy shifts corresponding to the eigenval-
ues λ13 and λ23 then become equal. The same holds for the
shifts corresponding to λ12 and λ−. As a result, the five
distinct energy eigenvalues merge into only three.
Moreover, the corresponding eigenstates reduce to the
helicity eigenstates (91). Explicitly, we find

p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3þm2

p →

8>><
>>:
1 for helicities� 2;

1− 1
4
c2ðaþb3Þ for helicities� 1;

1− 1
3
c2ðaþb3Þ for helicity0

ð97Þ

in the ultrarelativistic limit.

Overall, the above treatment provides intriguing physical
insight into the behavior of the gravitational waves when
δfμν ≠ 0. In general, the energies of the five modes of the
massive graviton undergo splitting. This corresponds to a
lifting of the degeneracy of the graviton spectrum, and it
generates ‘pentarefringence’ or ‘quinquerefringence’ in
propagating gravitational waves. The pentarefringence
reduces to ‘trirefringence’ in the ultrarelativistic limit.
The pentarefringent behavior of massive gravitational

waves is analogous to the birefringence of electromagnetic
waves known to occur in Minkowski spacetime in the
presence of background coefficients for Lorentz violation
[36]. The latter effects are detectable in suitable electro-
magnetic experiments. Although outside the scope of the
present work, it would be of definite interest to investigate
the prospects of experimentally measuring the pentarefrin-
gence of gravitational waves with existing and future
detectors.

2. Analysis in a general helicity frame

The treatment in the previous subsection is limited by the
fixed value (86) of the momentum in the chosen frame and
by the special form (94) adopted for the fluctuation δfμν of
the fiducial metric. Next, we extend the analysis and study
the persistence of the pentarefringence effect in the gen-
eral case.
Consider first an arbitrary momentum pμ ¼ ðE; p⃗Þ in a

generic observer frame, where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jp⃗j2

p
. To

describe the corresponding helicity eigenstates, it is con-
venient to define the quantity

pμ ¼
�
jp⃗j;E p⃗

jp⃗j
�
: ð98Þ
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Provided p⃗ ≠ 0, which we assume to hold in what follows,
this quantity is well defined and transforms as the four-
momentum of a particle with mass squared −m2. We also
define two other purely spacelike four-vectors,

eμ1 ¼ ð0; e⃗1Þ; eμ2 ¼ ð0; e⃗2Þ; ð99Þ

where e⃗1 and e⃗2 are taken to have norm m, to be mutually
orthogonal, and to be orthogonal to p⃗ such that the triple
fe⃗1; e⃗2; p⃗g represents a right-handed set of orthogonal basis
vectors. The four four-vectors pμ, p̄μ, eμ1, e

μ
2 then form a

nondegenerate basis satisfying the relations

p · p̄ ¼ p · e1 ¼ p · e2 ¼ 0;

p̄ · e1 ¼ p̄ · e2 ¼ e1 · e2 ¼ 0;

p̄ · p̄ ¼ e1 · e1 ¼ e2 · e2 ¼ −p2 ¼ m2: ð100Þ

Using this basis, the helicity eigenstates (91) for general
momentum can be expressed as

h̃ð�2Þ
μν ¼ 1

2
ðe1 μe1 ν − e2 μe2 νÞ ∓ ie1ðμe2 νÞ;

h̃ð�1Þ
μν ¼ ðeðμ ∓ ie2ðμÞp̄νÞ;

h̃ð0Þμν ¼ p̄μp̄ν −
1

2
e1 μe1 ν −

1

2
e2 μe2 ν: ð101Þ

With these eigenstates in hand, we can revisit the
determination of the eigenvalues and eigenvectors of the
dispersion relation (93), allowing now for an arbitrary
momentum pμ and a general form for the fluctuation δfμν.
Excluding the common factor c2m2=2, the terms on the
right-hand side of the dispersion relation can be written as
an operator Sμναβ acting on h̃αβ,

Sμναβh̃αβ ¼ h̃μαδfαν þ δfμαh̃
α
ν þ

2

m2
pαδfαβh̃βðμpνÞ

−
2

3m2
½η−1δfη−1h̃�ðpμpν þm2ημνÞ: ð102Þ

Some algebra then reveals explicit expressions for the
action of Sμναβ on the helicity eigenstates (101),

Sμναβh̃
ð�2Þ
αβ ¼ Ah̃ð�2Þ

μν þD∓h̃ð�1Þ
μν −

1

3
h̃ð0Þμν ;

Sμναβh̃
ð�1Þ
αβ ¼ D∓h̃ð�2Þ

μν þ 2Bþ A
2

h̃ð�1Þ
μν

þ 1

3
D∓h̃ð0Þμν þ 1

2
C∓h̃ð∓1Þ

μν ;

Sμναβh̃
ð0Þ
αβ ¼ −

1

2
Cþh̃ð2Þμν þ 1

2
Dþh̃ð1Þμν þ 4Bþ A

3
h̃ð0Þμν

þ 1

2
D−h̃ð−1Þμν −

1

2
C−h̃ð−2Þμν : ð103Þ

In these results, the momentum-dependent dimensionless
quantities A, B, C�, D� represent linear combinations of
the matrix elements of the tensor δf expressed in the basis
spanned by pμ, p̄μ, eμ1, e

μ
2,

A ¼ −
1

m2
ðe1 · δf · e1 þ e2 · δf · e2Þ;

B ¼ −
1

m2
p̄ · δf · p̄;

C� ¼ −
1

m2
ðe1 · δf · e1 − e2 · δf · e2 � 2ie1 · δf · e2Þ;

D� ¼ −
1

m2
ðe1 · δf · p̄� ie2 · δf · p̄Þ: ð104Þ

Note that C− ¼ ðCþÞ� and D− ¼ ðDþÞ�.
Using Eq. (103), we find that the operator Sμναβ=2m2 has

five eigenvalues that generically are distinct. Two of them
can be written as

λ� ¼ 2

3
ðAþ BÞ � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − 2BÞ2 þ 3CþC− þ 12DþD−

q
;

ð105Þ

while the other three are the roots of the cubic polynomial

4λ3 − 8ðAþ BÞλ2
þ ð5A2 þ 12ABþ 4B2 − CþC− −DþD−Þλ
− A3 − 4A2B − 4AB2 þ ACþC− þ 2ðAþ 2BÞDþD−

þ CþðD−Þ2 þ C−ðDþÞ2 ¼ 0: ð106Þ

These results establish the splitting of the energies of the
five modes for the general case and hence confirm that
gravitational waves in the theory undergo pentarefringence
during propagation.
The eigenfunctions for the five modes can also be found

by explicit calculation. Their expressions are lengthy, so we
provide here for reference only the results for two special
cases for which the results are substantially simplified. The
first case is the scenario with C� ¼ 0, while the second is
the case with D� ¼ 0. Table I displays the corresponding
eigenvalues and eigenfunctions for these two cases.
To gain further physical insight, consider an explicit

example for which the fluctuation δfμν takes a compara-
tively simple form in the chosen observer frame,

δf00 ¼ a; δfii ¼ b; i ¼ 1; 2; 3; ð107Þ

with other components of δfμν being zero. Writing the four-
momentum components as pμ ¼ ðE;p1; p2; p3Þ and
assuming p2

2 þ p2
3 ≠ 0, we can choose the basis vectors

(99) to be
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e⃗1 ¼ ð0; p3;−p2Þ
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
2 þ p2

3

p ;

e⃗2 ¼ ð−p2
2 − p2

3; p1p2; p1p3Þ
m

jp⃗j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3

p : ð108Þ

Ifp2
2 þ p2

3 ¼ 0, then an alternative choice is possible instead,
with the physical conclusions below being unaffected.
In this example, the linear combinations (104) are found

to have the explicit forms

A¼−2b; B¼−b−ðaþbÞjp⃗j
2

m2
; C�¼D�¼0: ð109Þ

Using the results displayed in Table I for the cases C� ¼ 0

and D� ¼ 0, we can identify the eigenvalues of the
operator Sμναβ. The limit C� → 0,D� → 0 can be obtained
with some care from either case, along with the corre-
sponding eigenfunctions of Sμναβ. The results are listed in
the last three rows of Table I. The eigenfunctions turn out to
coincide exactly with the helicity eigenstates. The eigen-
values for the helicities �1 are degenerate, as are those for
helicities �2.
The dispersion relation (93) yields the corresponding

energies as

E ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2ð1þ c3ða − 3bÞ − c2bÞ

p
for helicity� 2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jp⃗j2ð1 − 1
2
c2ðaþ bÞÞ þm2ð1þ c3ða − 3bÞ − c2bÞ

q
for helicity� 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jp⃗j2ð1 − 2
3
c2ðaþ bÞÞ þm2ð1þ c3ða − 3bÞ − c2bÞ

q
for helicity 0;

ð110Þ

revealing triplet splitting. Gravitational waves therefore experience trirefringence in this example. As expected, all helicities
experience a mass shift δm obeying δm2 ¼ m2ðc3ða − 3bÞ − c2bÞ. The helicities �1 and 0 also undergo a shift in
momentum dependence, which modifies their group velocities. Introducing the notation p̂ ¼ p⃗=jp⃗j, we find the explicit
group velocities are given by

v⃗g ¼
∂E
∂p⃗ ¼

8>>>>>><
>>>>>>:

p⃗
E ⟶
jp⃗j→∞

p̂ for helicity� 2;

ð1 − 1
2
c2ðaþ bÞÞ p⃗E ⟶

jp⃗j→∞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
c2ðaþ bÞ

q
p̂ for helicity� 1;

ð1 − 2
3
c2ðaþ bÞÞ p⃗E ⟶

jp⃗j→∞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

3
c2ðaþ bÞ

q
p̂ for helicity 0;

ð111Þ

where the expression for E in each case is given by the
corresponding result in Eq. (110).
The results (111) offer additional physical insight

into the nature of the wave propagation. For the fluc-
tuation δfμν of the fiducial metric to be small relative
to ημν as required in the definition (68), it follows

that jaj and jbj must satisfy jaj; jbj ≪ 1. When the
three-momentum is also small, jp⃗j ≲m, the group veloc-
ities (111) are then always below unity and the four-
momenta are always timelike, so both microcausality
and energy positivity hold. In the ultrarelativistic limit,
however, inspection of the group velocities (111)

TABLE I. Eigenvalues and eigenfunctions for special cases.

Condition Eigenvalue Eigenfunction

C� ¼ 0 1
2
Aþ B D−

Dþ hð2Þ − A−2B
2Dþ hð1Þ − 3hð0Þ − A−2B

2D− hð−1Þ þ Dþ
D− hð2Þ

λ� ≡ 1
3
ð2ðAþ BÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − 2BÞ2 þ 12DþD−

p
Þ D−

Dþ hð2Þ þ λ�−A
Dþ hð1Þ − ððB−1

2
AÞðλ�−AÞ
DþD− þ 1Þhð0Þ

þ λ�−A
D− hð−1Þ þ Dþ

D− hð2Þ

χ� ≡ 1
4
ð3Aþ 2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − 2BÞ2 þ 12DþD−

p
Þ D−

Dþ hð2Þ − χ�−A−B
Dþ hð1Þ þ χ�−A−B

D− hð−1Þ − Dþ
D− hð2Þ

D� ¼ 0 A C−hð2Þ − Cþhð−2Þ
1
2
Aþ B� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
CþC−

p
C−hð1Þ � Cþhð−1Þ

λ� ≡ 2
3
ðAþ BÞ � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − 2BÞ2 þ 3CþC−

p
C−hð2Þ þ 3ðA − λ�Þhð0Þ þ Cþhð−2Þ

C�; D� → 0 −2b hð�2Þ

−2b − ðaþ bÞ jp⃗j2m2
hð�1Þ

−2b − 4
3
ðaþ bÞ jp⃗j2m2

hð0Þ
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reveals that in all cases the magnitude of the group
velocity obeys

jv⃗gj ⟶
jp⃗j→∞ E

jp⃗j : ð112Þ

This implies that for jp⃗j ≫ m the group velocities tend

from below to the values 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
c2ðaþ bÞ

q
, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2
3
c2ðaþ bÞ

q
for helicities �2, �1, and 0, respec-

tively. Therefore, when c2ðaþ bÞ > 0 the group veloc-
ities will be subluminal for any value of the momentum,
assuring microcausality. However, the unconventional
momentum dependence for the helicities �1 and 0
implies that in this case the corresponding four-momenta
asymptote at high jp⃗j to a spacelike cone in four-
momentum space and hence become spacelike, so
observer frames can be found where the energies are
negative. In constrast, when c2ðaþ bÞ < 0 the group
velocities of the helicities �1 and 0 become superluminal
at sufficiently high jp⃗j and so violate microcausality, but
the four-momenta then asymptote to a timelike cone in
four-momentum space and hence remain timelike in any
observer frame. This complementary behavior of micro-
causality and energy positivity is analogous to that
displayed by the dispersion relation for a Lorentz-
violating Dirac spinor with positive coefficient c00, as
discussed in Sec. IV C of Ref. [18]. The superluminal
features found here may parallel results concerning
superluminal modes in ghost-free gravity obtained via
other approaches [37–39].
We can confirm the generality of the above physical

interpretations by replacing the special fluctuation (107) of
the fiducial metric with the form

δfμν ¼

0
BBB@

a δf01 δf02 δf03
δf01 b1 0 0

δf02 0 b2 0

δf03 0 0 b3

1
CCCA: ð113Þ

This represents an extension of (94) to allow nonzero
values of the components δf0i. An arbitrary δfμν can be
converted to this form by performing a suitable rotation of
the observer frame. Note that the fiducial metric (113) with
generic δf0i violates both boost and rotational invariance
even in the chosen frame, unlike the previous example (94).
Using the expressions (104), the explicit forms of the

parameters A, B, C�, D� can be determined. For A and B,
we find

A ¼ b1p2
1 þ b2p2

2 þ b3p2
3

jp⃗j2 − b1 − b2 − b3;

B ¼ −
1

m2

�
ajp⃗j2 þ 2

f01p1 þ f02p2 þ f03p3

jp⃗j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗j2 þm2

q

þ b1p2
1 þ b2p2

2 þ b3p2
3

jp⃗j2 ðjp⃗j2 þm2Þ
�
: ð114Þ

The expressions for C� and D� are more involved and are
omitted here for simplicity. The same is true for the
eigenvalues and eigenfunctions, as well as for the group
velocities of the individual modes.
In the ultrarelativistic limit, however, the situation

simplifies considerably. We find that the parameters A
and C� are zeroth order in large three-momenta, while D�
is linear and B is quadratic. The dominant contribution to
the dispersion relation (93) therefore arises from the
parameter B. At first order in a and b, the dispersion
relation can be written in the form

E
jp⃗j

����
jp⃗j→∞

≈

8>>>>>>>><
>>>>>>>>:

1 for helicity� 2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

2

�
aþ 2

P
f0ipi

jp⃗j þ
P

bip2
i

jp⃗j2

�s
for helicity� 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c2

3

�
aþ 2

P
f0ipi

jp⃗j þ
P

bip2
i

jp⃗j2

�s
for helicity 0:

ð115Þ

We then find the group velocities

vg;i ¼
∂E
∂pi

����
jp⃗j→∞

≈

8>>><
>>>:

pi
jp⃗j for helicity� 2;

pið1−1
2
c2ðaþbiþf⃗0·p̂ÞÞ−1

2
c2f0i

E for helicity� 1;

pið1−2
3
c2ðaþbiþf⃗0·p̂ÞÞ−2

3
c2f0i

E for helicity 0;

ð116Þ

where p̂ ¼ p⃗=jp⃗j as before and f⃗0 ¼ ðf01; f02; f03Þ.
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Note that the comparatively simple relation (112) for jv⃗gj
still holds in all cases at first order in a and bi in the
ultrarelativistic limit, even though v⃗g is no longer parallel to
p⃗ for the helicities �1 and 0. The latter feature is typical in
the linearized limit of theories exhibiting explicit Lorentz
violation [40]. It can be understood as reflecting the
emergence of an underlying Finsler geometry [41,42],
for which the notion of distance is governed both by the
metric and by other specified quantities. The trajectories of
massive modes in the presence of explicit Lorentz violation
are known to correspond to geodesics in a Finsler geometry
that can vary with helicity [43]. In the present instance, we

expect the relevant Finsler metric to be constructed from the
metric ημν on the approximately Minkowski spacetime
together with the fiducial metric fμν. Pursuing the details of
this correspondence would be of definite interest but lies
beyond our present scope.
The results (112) and (115) suffice to examine the

dependence of microcausality and positivity of the energy
on the generic fluctuation (113) of the fiducial metric.
Consider, for example, the case with c2b1 ≥ c2b2 ≥ c2b3
and c2ðaþ b3Þ ≥ 2jc2jjf⃗0j. For this situation, we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2
c2ðaþ b1Þ − jc2jjf⃗0j

r
≤ jv⃗gj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2
c2ðaþ b3Þ þ jc2jjf⃗0j

r
≤ 1 for helicity� 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2

3
c2ðaþ b1Þ −

4

3
jc2jjf⃗0j

r
≤ jv⃗gj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3
c2ðaþ b3Þ þ

4

3
jc2jjf⃗0j

r
≤ 1 for helicity 0: ð117Þ

An argument paralleling the one given for the rotationally
symmetric case then confirms that the group velocities are
subluminal for any momentum, so microcausality holds.
Also, whenever the group velocities are subluminal in the
ultrarelativistic limit, the four-momentum becomes space-
like, so energies turn negative in certain observer frames.
Excluding both superluminal velocities and spacelike four-
momenta is possible only by imposing the conditions b1 ¼
b2 ¼ b3 ¼ −a and δf0i ¼ 0. This implies that δfμν ∝ ημν,
which is the only scenario in which the manifold Lorentz
invariance remains unbroken.

B. Propagator

Given an energy-momentum tensor Tμν, the solution for
the corresponding metric fluctuation hμν in massive gravity

can be obtained in integral form if the propagator is known.
In this section we determine the propagator Dμν

αβ asso-
ciated with the operator Õμν

αβ in Eq. (82), and we use it to
explore some physical features of point-mass sources. The
propagator satisfies the defining relation

Dμν
στÕστ

αβ ¼ δαðμδ
β
νÞ; ð118Þ

and it shares the symmetry properties (84) of Õ.
Using the relations (84) and (118), some calculation

reveals that at first order in δf the propagator can be
written as

Dμν
αβ ¼ 1

p2 þm2



δαðμδ

β
νÞ −

1

3
ημνη

αβ þ 2

m2
pðμpðαδβÞνÞ −

1

3m2

�
pμpνη

αβ þ ημνpαpβ −
2

m2
pμpνpαpβ

�

−
m2

p2 þm2
fρ1δfαðμδβνÞ þ ρ2δfμνηαβ þ ρ3ημνδfαβ þ ρ4pμpνδfαβ þ ρ5δfμνpαpβ þ ρ6pðμpðαδfβÞνÞ

þ ρ7ðδf · pÞðμpνÞηαβ þ ρ8ημνðδf · pÞðαpβÞ þ ρ9ðδf · pÞðμpνÞpαpβ þ ρ10pμpνðδf · pÞðαpβÞ

þ ρ11ðδf · pÞðαpðμÞδ
βÞ
νÞ þ ρ11ðδf · pÞðμÞpðαδβÞνÞ

þ ½p · δf · p�ðρ12δαðμδβνÞ þ ρ13ημνη
αβ þ ρ14pðμpðαδβÞνÞ þ ρ15pμpνη

αβ þ ρ15ημνpαpβ þ ρ16pμpνpαpβÞ

þ ½η−1δf�ðσ1δαðμδβνÞ þ σ2ημνη
αβ þ σ3pðμpðαδβÞνÞ þ σ4pμpνη

αβ þ σ5ημνpαpβ þ σ6pμpνpαpβÞg
�
: ð119Þ
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This expression consists of the propagator for Fierz-Pauli
massive gravity corrected by terms linear in δf. The latter
are governed by momentum-dependent parameters ρi and
σi, the forms of which are displayed explicitly in Table II.
Note that all the terms with parameters ρi are Lorentz
violating, while all the ones with σi are Lorentz invariant.
Using the propagator (119), the solution to the metric for

a given energy-momentum tensor TμνðxÞ is

hμνðxÞ ¼ 2κ

Z
d4p
ð2πÞ4 e

−ip·xDμν
αβT̃αβðpÞ; ð120Þ

where T̃μνðpÞ is the Fourier transform of TμνðxÞ,

TμνðxÞ ¼
Z

d4p
ð2πÞ4 e

−ip·xT̃μνðpÞ: ð121Þ

Assuming the energy-momentum tensor is conserved,
∂μTμν ¼ 0, then the solution (120) reduces to

hμνðxÞ ¼ 2κ

Z
d4p
ð2πÞ4

e−ip·x

p2 þm2 þ iϵ

�
T̃μν −

1

3

�
ημν þ

pμpν

m2

�
T̃

−
m2

p2 þm2 þ iϵ
½ρ1δfαðμT̃νÞα þ ρ2δfμνT̃ þ ρ3ημν½δf · T̃� þ ρ4pμpν½δf · T̃� þ ρ7ðδf · pÞðμpνÞT̃

þ ρ11ðδf · pÞαpðμT̃νÞα þ ½p · δf · p�ðρ12T̃μν þ ρ13ημνT̃ þ ρ15pμpνT̃Þ

þ ½η−1δf�ðσ1T̃μν þ σ2ημνT̃ þ σ4pμpνT̃Þ�
	
; ð122Þ

where T̃ðpÞ ¼ T̃μ
μ is the trace of the Fourier transform of

the energy-momentum tensor.
As an application of the above results, we consider the

gravitational field produced by a stationary point mass M1

at the origin. The energy-momentum tensor for this
scenario is

Tμν
1 ðxÞ ¼ M1δ

μ
0δ

ν
0δ

3ðx⃗Þ: ð123Þ

As required, it is conserved. The Fourier transform is

T̃μν
1 ðpÞ ¼ 2πM1δ

μ
0δ

ν
0δðp0Þ: ð124Þ

Substitution into Eq. (122) yields the solution for the metric
fluctuation, which has the structure

h00ðxÞ ¼ −
8GM1

3r
e−mr þOðδfÞ;

h0iðxÞ ¼ OðδfÞ;

hijðxÞ ¼
4GM1e−mr

3m2r5
½xixjðm2r2 þ 3mrþ 3Þ

− δijr2ðmrþ 1Þ� þOðδfÞ: ð125Þ

TABLE II. Parameters for the propagator.

Parameter Value Parameter Value

ρ1 −c2 ρ12 0
ρ2 ð2c2−3Þm2−ð2c2þ3Þp2

12m2
ρ13 −ðc2−1Þm2þp2

9m4

ρ3 ð2c2−1Þm2−ð2c2þ1Þp2

12m2
ρ14 − c2

m4

ρ4 ð4c2þ1Þm2þð2c2þ1Þp2

6m4
ρ15 2

ðc2−1Þm2−p2

9m6

ρ5 ð4c2þ3Þm2þð2c2þ3Þp2

6m4
ρ16 4

−ðc2−1Þm2þp2

9m6

ρ6 − c2ð2m2þp2Þ
m4

σ1 1
4
ð2c2 − 3Þ

ρ7 ð4c2−1Þm2−p2

6m4
σ2 −ð6c2−9Þm4þ4ðc2−1Þp2m2−4p4

36m4

ρ8 ð4c2−3Þm2−3p2

6m4
σ3 ð2c2−3Þð2m2þp2Þ

2m4

ρ9 −ðc2−1Þm2þp2

3m6
σ4 −ð18c2−21Þm4−ð8c2−20Þp2m2þ8p4

36m6

ρ10 −ðc2−3Þm2þ3p2

3m6
σ5 −ð18c2−27Þm4−ð8c2−26Þp2m2þ8p4

36m6

ρ11 − c2
m2 σ6 ð3m2þ2p2Þðð4c2−13Þm2−4p2Þ

18m8
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The appearance of the exponential factor e−mr is the usual
Yukawa suppression arising from the graviton mass.
TheOðδfÞ contributions to the components of hμν can in

principle be obtained by direct calculation. However, for
our present purposes it suffices to deduce the gravitational
potential energy Uðr⃗Þ between the point mass M1 and a
second stationary point mass M2 located at r⃗. The energy-
momentum tensor of the second point mass can be
written as

Tμν
2 ðxÞ ¼ M2δ

μ
0δ

ν
0δ

3ðx⃗ − r⃗Þ: ð126Þ

Since a generic energy-momentum tensor can be defined by
variation of the matter action Sm via

Tμν ¼
−2ffiffiffiffiffiffi−gp δSm

δgμν
; ð127Þ

the corresponding matter Lagrange density must take the
form

Lm ≈ −
1

2
hμνTμν ð128Þ

at linear order in hμν. In the present context, this represents
the interaction energy between the two masses. Since both
masses are stationary, we can directly identify U ¼ −Lm.
We thereby obtain

Uðr⃗Þ ¼
Z

d3x
1

2
ðhμν2 ðx⃗ÞT1;μνðx⃗Þ þ hμν1 ðx⃗ÞT2;μνðx⃗ÞÞ

¼
Z

d3xhμν1 ðx⃗ÞT2;μνðx⃗Þ

¼ M2h1;00ðr⃗Þ; ð129Þ

where the second equality follows by the symmetry under
interchange of the two masses. Obtaining an explicit
expression for Uðr⃗Þ therefore requires knowledge only
of the component h1;00. Moreover, the δ function in the
energy-momentum tensor (124) implies that terms in the
solution (122) proportional to pμ can be disregarded. We
thus find that the gravitational interaction energy U can be
written as the momentum-space integral

U¼ 2κM1M2

Z
d3p
ð2πÞ3

e−ip⃗·r⃗

p⃗2þm2

�
2

3
−

m2

p⃗2þm2
½−ðρ1þρ2þρ3Þδf00þ½p ·δf ·p�ðρ12þρ13Þþ ½η−1δf�ðσ1þσ2Þ�

	
; ð130Þ

where the various parameters and their momentum dependences are given in Table II. The combinations appearing in the
integrand are found to be

ρ1 þ ρ2 þ ρ3 ¼ −
c2
3
− ðc2 þ 1Þ p⃗

2 þm2

3m2
; ρ12 þ ρ13 ¼ −

c2
9m2

þ p⃗2 þm2

9m4
;

σ1 þ σ2 ¼
2c2 − 3

6
þ ðc2 − 1Þ p⃗

2 þm2

9m2
−
ðp⃗2 þm2Þ2

9m4
: ð131Þ

All the momentum integrals in the expression (130) can be evaluated explicitly using the formulas in the Appendix.
We find

Uðr⃗Þ ¼ −
GM1M2e−mr

9r



24 − δf00ðð4c2 þ 9Þmrþ 8c2 þ 8Þ

− ðδf11 þ δf22 þ δf33Þ
�
ð4c2 − 9Þmrþ 2c2 þ 4þ 2

mr
þ 4

m2r2

�

−
δfijxixj

r2

�
2c2mrþ 2c2 − 4 −

6

mr
−

12

m2r2

��
þ 2κM1M2

9m2
δ3ðr⃗Þ



δf00 −

2

3
ðδf11 þ δf22 þ δf33Þ

�
: ð132Þ

Note that ρ13 quadratic in momentum and σ2 is quartic, so
the corresponding terms in the integral (130) generate the
ultralocal contributions to h00ðr⃗Þ proportional to δðr⃗Þ that
appear in the last term of Eq. (132).
The result (132) for the gravitational potential energy

between the two masses consists of the anticipated term
proportional to expð−mrÞ=r for a massive particle, together

with correction terms governed by the diagonal compo-
nents of the fluctuation δfμν of the fiducial metric. As
expected, the term independent of δfμν is scaled by 4=3
relative to the gravitational potential in GR [2]. Most
correction terms depend on powers rn with n ¼ −2;−1,
0, 1, a behavior typical of short-range corrections to GR
that involve Lorentz and diffeomorphism violation [27,44].
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The δ-function term is analogous to the standard δ-function
contribution to the field of an electromagnetic dipole [45].
Note that it can be ignored in considering corrections to
Newton’s law between masses at distinct locations.
Some correction terms in the gravitational potential

energy (132) are independent of the parameter c2 and
hence are insensitive to the form of the potential in the
action (1) for massive gravity, while others involve the
product of c2 with diagonal components of δfμν. Moreover,
the dependences on c2 and on δfμν that appear in Uðr⃗Þ
differ from those affecting the propagation of gravitational
waves. For example, when c2 ¼ 0 the dispersion relation
(93) for gravitational waves reduces to the conventional
Lorentz-invariant form with shifted mass parameter,
whereas the expression (132) for the gravitational potential
energy retains unconventional terms breaking Lorentz
invariance. This suggests that observations of gravitational
waves and laboratory tests of gravity at short range can play
a complementary role in experimental searches for a
nonzero graviton mass. In particular, since the corrections
to Uðr⃗Þ proportional to δfμν generically break rotational
invariance as well as boost invariance, laboratory searches
for anisotropic modifications of the Newton inverse-square
law are applicable. Recent incarnations of these experi-
ments have achieved impressive sensitivities to Lorentz
violation [46], so establishing the implications of short-
range tests in the current context would be of definite
interest.
The manifold Lorentz invariance is preserved in the

special scenario with the fiducial metric proportional to the
Minkowski metric,

δfμν ¼ ϵημν; ð133Þ

with ϵ a perturbative constant. The gravitational potential
energy (132) then simplifies to

Uðr⃗Þjδf¼ϵη ¼ −
4GM1M2e−mr

3r
ð2þ ϵð3 − c2ÞmrÞ

þ 2κM1M2

3m2
δ3ðr⃗Þϵ: ð134Þ

At first order in ϵ, the factor correcting the usual expo-
nential term can be absorbed in a mass shift m → mþ δm,

Uðr⃗Þjδf¼ϵη ¼ −
8GM1M2e−ðmþδmÞr

3r

þ 2κM1M2

3m2
δ3ðr⃗Þϵ; ð135Þ

where

δm ¼ ϵ
c2 − 3

2
m: ð136Þ

It is interesting to compare this result with the parallel
analysis for gravitational waves. Substituting the special
fluctuation (133) into the constraints (92) and the general
dispersion relation (93) yields

h̃μα
α ¼ h̃α

α ¼ 0;

ðp2 þm2Þh̃μν ¼ ϵm2ðc2 þ 4c3Þh̃μν
¼ ϵm2ð3 − c2Þh̃μν: ð137Þ

We see that the unperturbed constraints (85) are recovered.
Also, the dispersion relation can be written as

ðp2 þ ðmþ δmÞ2Þh̃μν ¼ 0; ð138Þ

with δm given by Eq. (136). The special choice (133) for
the fiducial metric is thus seen to produce the same mass
shift both in Newton gravity and in gravitational waves.

V. SUMMARY

In this work, we investigate the role of Lorentz symmetry
in ghost-free massive gravity. Both Lorentz-invariant and
Lorentz-violating solutions of the potential are determined
and their local and global stability are established. The
propagation of gravitational waves and the Newton limit
of the theory are studied in approximately Minkowski
spacetime.
The main body of the paper begins in Sec. II with the

staging for the subsequent derivations. The action S for
massive gravity is provided in Eq. (1), and the potential is
expressed using a matrix Y μ

ν that is well suited for
calculation. The spacetime symmetries of the action S
and some of their features are described in Sec. II B, using
key transformations including general coordinate trans-
formations, local Lorentz transformations, diffeomor-
phisms, manifold Lorentz transformations, and the CPT
transformation. The decomposition of the matrix Y μ

ν using
convenient lapse and shift variables for calculational
purposes is presented in Sec. II C.
The extrema and saddle points of the potential for ghost-

free massive gravity are the focus of Sec. III. In terms of the
four field variables Ñ, λ1, λ2, λ3 and the four parameters β̄1,
β̄2, β̄3, β̄4, the solutions are governed by the potential UðY Þ
given in Eq. (28). We explicitly determine and classify the
solutions with vanishing curvatures for the dynamical and
fiducial metrics, proving that they are either Lorentz
invariant or break four of the six generators of the
Lorentz group. The technique of the bordered Hessian is
adopted to investigate local stability of solutions in the set
of flat metrics, revealing that the Lorentz-invariant ones are
either local minima or maxima while the Lorentz-violating
ones are saddle points. To explore the issue of global
stability, the branch structure of the potential is studied.
Using a combination of analytical and numerical methods,
we determine the sheet structures of the surfaces defined by
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the Hamiltonian constraint (29) and the corresponding
forms of the potential. This verifies that special values
of the parameters β̄i allow the existence of locally, globally,
and absolutely stable extrema.
The linearized limit of the equations of motion for

massive gravity is studied in Sec. IV. Allowing for small
deviations of the dynamical metric gμν and the flat non-
dynamical fiducial metric fμν from the Minkowski metric
ημν, we obtain the modified Einstein equation (74). The
momentum-space equation of motion is constructed for the
scenario describing excitations of the fluctuation hμν of
the dynamical metric in a Minkowski spacetime. One
application is to the propagation of gravitational waves.
Working first in a special observer frame with a diagonal
form for the fluctuation δfμν of the fiducial metric, we find
the energies of the five propagating modes. This reveals
that for nonzero δfμν the gravitational waves experience
pentarefringence, reducing to trirefringence in the ultra-
relativistic limit. Generalizing the analysis to an arbitrary
helicity frame verifies these results and shows the group
velocities of the gravitational-wave modes can include
superluminal and subluminal components. For the sub-
luminal case, the mode energies become negative in certain
observer frames. These results match typical behaviors in
other Lorentz-violating theories.
Section IV also contains an investigation of the Newton

limit. We determine the propagator (119) for massive
gravity in the linearized limit, demonstrating that it can
be written as the Fierz-Pauli propagator corrected by terms
linear in δfμν. As an explicit example, we construct the
solution for the fluctuation hμν generated by a stationary
point mass and determine the gravitational potential energy
U between two point masses separated by a distance r.
Some integrals useful for this derivation are presented in the
Appendix. The result (132) for U is the usual Fierz-Pauli
potential of the Yukawa form modified by terms linear in
δfμν. The dependence on δfμν differs from the one affecting
gravitational waves, suggesting that experiments in the two

regimes can provide complementary measures of the
physics of massive gravity.
The results in this paper provide a guide to choices of

parameters in the potential for massive gravity that guar-
antee local, global, and absolute stability of extrema of the
action. They also reveal that non-Minkowski fiducial
metrics generate physical effects from Lorentz violation
that could be observable in measurements of gravitational
waves and in searches for short-range modifications of
Newton gravity. The theoretical and phenomenological
results obtained here provide directions for future works
seeking insights into the physics of this remarkable subject.
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APPENDIX: MOMENTUM INTEGRALS

This Appendix presents various euclidean-space
momentum integrals used in the calculation of the gravi-
tational potential energy (132) in Sec. IV B. The two
elementary integrals used in the derivation are

ImðrÞ≡
Z

d3p
e−ip⃗·r⃗

p⃗2 þm2
¼ 2π2

r
e−mr ðA1Þ

and Z
d3pe−ip⃗·r⃗ ¼ ð2πÞ3δ3ðr⃗Þ: ðA2Þ

The other integrals required can be expressed in terms of
these. We find

Z
d3p

e−ip⃗·r⃗

ðp⃗2 þm2Þ2 ¼ ImðrÞ
r
2m

;

Z
d3p

e−ip⃗·r⃗

ðp⃗2 þm2Þ2 pipj ¼
1

2
ImðrÞ

�
δij −

1þmr
r2

xixj

�
;

Z
d3p

e−ip⃗·r⃗

p⃗2 þm2
pipj ¼

ð2πÞ3
3

δ3ðr⃗Þδij þ ImðrÞ
�
2þmr
2r2

−
6þ 3mrþ 2m2r2

2r4
xixj

�
: ðA3Þ

Note that some of these integrals lack absolute
convergence and so require care in evaluation. For
example, naive calculation of the first integral in
Eq. (A3) by applying spherical coordinates, integrating

over angles, and then integrating over the modulus of the
momentum produces an erroneous result. The correct
expression can be derived by adapting the techniques in
Refs. [47,48],
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Z
d3pe−ip⃗·r⃗

pipj

ðp⃗2 þm2Þ2 ¼
1

2
i∂i

Z
d3pe−ip⃗·r⃗

�
−
1

2

∂
∂pj

�
1

p⃗2 þm2

¼ i∂i

Z
d3p

�
1

2

∂
∂pj

e−ip⃗·r⃗
�

1

p⃗2 þm2

¼ 1

2
∂i

�
xj

Z
d3p

e−ip⃗·r⃗

p⃗2 þm2

�

¼ 1

2
∂iðxjImðrÞÞ

¼ 1

2
ImðrÞ

�
δij − ð1þmrÞ xixj

r2

�
; ðA4Þ

whereupon contracting with xixj=r2 yields the quoted result.
To obtain the last integral in Eq. (A3), we apply ∂i∂j to both sides of Eq. (A1). Contracting the result with xixj=r2 yields

the claimed result for r⃗ ≠ 0. The result at the origin of r⃗ is nontrivial because the integrand remains finite at large jp⃗j and
hence generates an extra term involving δ3ðr⃗Þ. To fix this term, it suffices to adopt the ansatz [48]Z

d3pe−ip⃗·r⃗
pipj

p⃗2 þm2
¼ aðrÞδij þ bðrÞxixj þ cδ3ðr⃗Þδij; ðA5Þ

where aðrÞ and bðrÞ are functions of r and c is constant. Both sides of this equation are symmetric two-tensors under the
rotation group. Contracting with δij yields an integral that can be determined via the expressions (A1) and (A2), which fixes
the constant c and the combination 3aðrÞ þ bðrÞr2. Contracting with xixj=r2 yields the combination aðrÞ þ bðrÞr2,
establishing the desired result.
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