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Kerr black hole surrounded by a cloud of strings and its weak
gravitational lensing in Rastall gravity
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In this paper, an exact solution of the Kerr black hole surrounded by a cloud of strings in Rastall gravity
is obtained by the Newman-Janis algorithm without complexification, and the influence of the string
parameter a on black hole thermodynamics is studied. Furthermore, according to this black hole solution,
we investigate the effect of a cloud of strings on the gravitational deflection of massive particles. For a
receiver and a source at infinite distance from the lens object, we use an osculating Riemannian manifold
method. While the distance is finite, we apply the generalized Jacobi metric method. For both of the two
situations, the Jacobi-Maupertuis-Randers-Finsler metric and Gauss-Bonnet theorem are employed. It is
found that the string parameter a, has obvious modification on the gravitational deflection of massive
particles. Our result is reduced to the deflection angle of light by the Kerr black hole surrounded by a cloud

of strings in general relativity.
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I. INTRODUCTION

Einstein’s general relativity (GR) is a beautiful theory of
gravity. It has undergone a series of tests and became the
basis of modern astrophysics and cosmology. For GR, there
is an important assumption about conservation laws due to
the equivalence principle: the covariant divergence of the
energy-momentum tensor is vanishing. Although this
conservation law has been tested specifically in a weak
gravitational field case, it may not hold in a strong
gravitational field. Assuming that the covariant divergence
of the energy-momentum tensor is nonzero, Rastall pro-
posed an extended theory of gravity [1]. This nonconser-
vation gravity theory may provide a model to explain the
problems of dark energy and dark matter. Moreover, Rastall
gravity seems to agree with the observational data of the
universe age, the Hubble parameter and helium nucleo-
synthesis [2,3]. Hence, it is also an important theory of
gravity. Recent interests of various areas within the context
of the Rastall gravity or the generalized Rastall theory can
be found in the literature [4—11].

On the other hand, the black hole (BH) is one of the
most interesting predictions of GR. In 2015, gravita-
tional waves from binary BH mergers were directly
detected by LIGO and Virgo Collaborations [12], which
is crucial proof of the existence of BHs. Furthermore, the
first image of a BH was observed in 2019 by the Event
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Horizon Telescope Collaboration [13,14]. For the
Rastall gravity model, some exact solutions have been
discovered. For example, Heydarzade et al. found a static
charged BH solution [15]. Kumar et al. obtained
the rotating BH solution [16,17]. Moradpour et al.
obtained traversable asymptotically flat wormholes
[18]. Furthermore, the BHs surrounded by different
matter were proposed in Rastall gravity. Heydarzade
and Darabi obtained a class of solutions of Kiselev-like
BHs surrounded by perfect fluid [19], where Kiselev’s
original work can be found in [20]. Xu et al. found the
solution of the Kerr-Newman-AdS BH surrounded by
perfect fluid matter [21].

The string theory shows that the basic unit of nature is
extended one-dimensional strings, instead of the pointlike
particles of particle physics. The gravitational field induced
by a collection of strings is worth studying, because we can
test the basic theory via investigating the gravitational
effect. A cloud of strings as the source of the gravitational
field was first considered by Latelier, within the context
of GR [22-24]. He found an exact solution of the
Schwarzschild BH surrounded by a cloud of strings.
Later, the rotating BHs with a cloud of strings were
investigated [25,26]. Nowadays, the study of a cloud of
strings has been extended to modified theories of gravity
such as Lovelock gravity and f(R) gravity [27-29]. Quite
recently, Cai and Miao found an exact solution of the
Schwarzschild black hole surrounded by a cloud of strings
in Rastall gravity and investigated its quasinormal modes
and spectra [30]. Actually, rotating BH solutions are more
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general and can provide more applications in astrophysics
and cosmology. Thus, in this paper, we try to give an exact
solution of the Kerr BH surrounded by a cloud of strings in
Rastall gravity through the Newman-Janis algorithm (NJA)
without complexification.

Gravitational lensing is one of the most powerful tools
in astrophysics and cosmology, and due to its importance
in testing the fundamental theory of gravity [31,32],
measuring the mass of galaxies and clusters [33-35],
detecting dark matter and dark energy [36—41], and so on,
in the present work, we will mainly investigate gravita-
tional lensing for the Kerr BH surrounded by a cloud of
strings.

Typically, in most studies involving the gravitational
deflection of light, the standard geodesics method was
mainly considered [42-52]. Recently, Gibbons and Werner
introduced an interesting geometric method in Ref. [53].
They applied the Gauss-Bonnet (GB) theorem to study the
weak gravitational deflection of light in static and spheri-
cally symmetric (SSS) spacetime, such as Schwarzschild
spacetime. In their method, the deflection angle of light
can be calculated by integrating the Gaussian curvature
of corresponding optical metric. Later, Bloomer [54]
attempted to extend this geometrical approach to the
stationary and axially symmetric (SAS) spacetime, where
the corresponding optical geometry is defined by a
Randers-Finsler metric. Until 2012, Werner [55] com-
pletely solved this problem by building an osculating
Riemannian manifold of the Randers-Finsler manifold,
with Nazim’s method [56]. Importantly, the Gibbons-
Werner (GW) method shows that the gravitational lensing
can be viewed as a global effect. In addition, this method
only involves spatial geometry (optical geometry), so it is
conducive to the implementation of physical lens models
[55]. Finally, it contributes to the physical applications of
Finsler geometry and geometric dynamics (the Jacobi
metric).

With the GW method, the light deflection in different
spacetimes has been widely studied by some authors.
For example, Jusufi ez al. studied the deflection of light by
BHs, wormholes, and other lens objects [57-62]. ngﬁn
et al. studied light deflection in asymptotically nonflat
spacetime such as the Schwarzschild-like spacetime in
the bumblebee gravity model [63-65]. Javed et al. studied
the effect of different matter fields on the weak gravita-
tional deflection of light [66—69]. More works can also
be found in Refs. [70-73]. In addition, the massive
particle is an important class of element particles in the
universe, and the analysis of the signatures of gravita-
tional lensing will be useful to understand the properties
of these particles. Due to the importance of this problem,
various works [74-83] have been carried out to study
gravitational deflection of massive particles by different

lens objects in differential gravity models. With the
GW method, Crisnejo et al. studied not only the weak
gravitational deflection of light in a plasma medium,
but also the deflection of massive particles in SSS/SAS
spacetimes [84—86]. Jusufi studied the deflection angle
of massive particles in the Kerr and Teo spacetimes,
as well as the deflection angle of charged massive
particles in Kerr-Newman spacetime [87,88]. Moreover,
with the Jacobi metric method, Li et al. studied the
gravitational deflection of massive particles in wormhole
spacetimes [89].

Inspired by the GW method, on the other hand, the finite-
distance gravitational deflection of light has been studied
by some authors, where the receiver and the source are
assumed to be at finite distance from a lens. In 2016,
Ishihara et al. [90,91] used the GB theorem to study the
finite-distance deflection of light in SSS spacetime. Later,
Ono et al. [92-94] proposed a generalized optical metric
method to extend the work to the SAS spacetime.
It is worthwhile to mention that the generalized optical
metric method can also be used to calculate the infinite-
distance deflection angle [95-98]. A review on finite-
distance deflection of light can be found in Ref. [99].
Furthermore, Arakida [100] studied the finite-distance
deflection of light in Schwarzschild-de Sitter spacetime.
In addition, Crisnej et al. investigated the finite-distance
deflection of light in an SSS gravitational field with a
plasma medium [101]. Haroon et al. studied the finite-
distance deflection of light by a rotating BH in perfect fluid
dark matter with a cosmological constant [102]. Quite
recently, by using the Jacobi-Maupertuis-Randers-Finsler
(JMRF) metric and the GB theorem, Li ef al. studied the
finite-distance gravitational deflection of massive particles,
both in asymptotically flat spacetime [103] and asymptoti-
cally nonflat spacetime [104].

In the test of basic gravitational theory or other
cosmological applications, the lens effect of a cloud
string clouds is very interesting and worth studying.
Jusufi et al. [105] has studied the effect of a cloud of
strings on a deflection angle of light by Kerr BH in GR,
using the GB theorem. In this paper, we will extend this
result via studying the deflection of a massive particle by
the Kerr BH surrounded by a cloud of strings in Rastall
gravity, using the GB theorem. The aim of the present
work is twofold. On the one hand, we will extend the
static BH solution to the rotating case solution by the NJA
without complexification. On the other hand, we will
study the effects of a cloud of strings on both thermo-
dynamic properties and the weak gravitational deflection
of massive particles. In particular, we study the deflec-
tions for the infinite-distance case with Werner’s method,
and for the finite-distance case with the generalized
Jacobi metric method.
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This paper is organized as follows. In Sec. II, we first
review the Schwarzschild BH surrounded by a cloud of
strings in Rastall gravity theory. Then, by using the NJA
without complexification, we derive an exact solution
which represents a rotating Kerr BH surrounded by a
cloud of strings in Rastall gravity. Thereafter, the thermo-
dynamic properties of this rotating BH are discussed.
Furthermore, according to this solution, in Sec. III the
GB theorem and osculating Riemannian manifold method
are used to study the effects of a cloud of strings on the
gravitational deflection angle of massive particles for a
receiver and a source at infinite distance from the lens. In
Sec. IV, we use GB theorem and the generalized Jacobi
metric method to study the case for a receiver and a source
at a finite distance from the lens. Finally, we end our paper
with a short conclusion in Sec. V. For simplicity, we set
G =c=nh=kg =1 in this paper.

II. KERR BH SURROUNDED BY A CLOUD OF
STRINGS IN RASTALL GRAVITY

A. Schwarzschild BH surrounded by a cloud of strings

Let us begin with the field equation of the Rastall gravity
model [1],

H/w = G/w + ﬂg/u/R = KTML/’
T"”;ﬂ = IR"*, (1)

where f =«A with the constant 1 being the Rastall
parameter and x being the Rastall gravitational coupling
constant. It is required that § # 1/6 and g # 1/4 [106].
Obviously, Eq. (1) is reduced to the field equation and
the conservation of the energy-momentum tensor within
the context of the general relativity when A =0 and
k = 8zG.

The two-dimensional world sheet Il of a string is
described by x* = x*(X“), where X° is the timelike
parameter and X' is the spacelike parameter. The action
of a string evolving in the spacetime is [22]

1
Is=u [1 J=7dXdXx' =y A \[ 3Tl T17adx0ax!.  (2)

where y is a positive dimensionless constant related to the
tension of the string, y is the determinant of the induced
metric

Ox® OxP
Xab = YGap ﬁw (3)

and Il is the string bivector defined as

Ix* OxP
Ha/)’ — pab -, 4
< oxaox? “)
with €® being the Levi-Civita symbol satisfying

€' = —¢'" = 1. The energy-momentum tensor of the
string can be obtained from the action in Eq. (2), as follows:

1t
s

For a collection of strings, the energy-momentum tensor
is Tgf)ud =p, 7%, where p, is the number density.
Considering the spherically symmetric distributions of a
string cloud, Cai and Miao recently obtained a BH solution

to the field equation (1), as follows [30]:

T =u

(5)

ds® = —f(r)di* + ar | h(r)(d6? + sin? 0dg?),  (6)

g(r)
where
_1y
) =g =1 -2y Sl
T8+ 28— 1)
h(r) =r%.

Here, M is the mass of the BH and q,, is the string parameter
linked to the energy density of the cloud of strings. It is
obvious that g # +1/2,1/4. It is worthwhile to mention
that the solution of the Schwarzschild BH surrounded by a
cloud of strings in Rastall gravity in Eq. (6) can be
transformed into the solution of the Schwarzschild BH
surrounded by quintessence in GR [20] by the following
transformation [30]:

ﬁ:3wq+1
6w, —2
9¢
ay = = (0, + 0}), )

where w, is the quintessential state parameter, and ¢ is an
integral constant associated with the energy density of
quintessence.

B. Newman-Janis algorithm without complexification
and the Kerr BH surrounded by a cloud of strings

The NJA is a useful technique to obtain rotating spacetime
from nonrotating spacetime [107-110]. For example, one
can apply it to construct the Kerr (Kerr-Newman) solution
from the Schwarzschild (Reissner-Nordstrom) solution.
However, due to the complexification of the radial coor-
dinate r in the original NJA, the solution obtained by the
method may be invalid in the Boyer-Lindquist coordinate
system [111]. Azreg-Ainou introduced a modified NJA that
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can drop the complexification [112,113]. Azreg-Ainou’s
method of the NJA without complexification has now been
widely used in different gravitational theories, including the
Rastall model [21,114-116]. In particular, it is shown that
the rotating black hole surrounded by a cloud of strings in
GR can be obtained using the modified NJA [26]. In this
subsection, the NJA without complexification will be
employed to build the rotating BH solution from the static
one given in Eq. (6).
Via the coordinate transformation

duzdl—m, (8)

the metric in Eq. (6) becomes

ds? = —f(r)du = 2, /70

g(r)
9)

Using the null tetrad, the inverse components of the metric
can be written as

g = =lFn" = I'n" + m*m” + m"m*, (10)

or in the matrix form as

0 -1 0 0
-1 0 00

=10 o0 01|
0 0 10

with m* being the complex conjugate of m*. One can chose
the tetrad vectors as follows:

" =(0,1,0,0),
o ( [ _stn
1 i
i (OO g) O

Now a complex coordinate transformation can be per-
formed on the (u, r) plane,

u— u—iacosb,

r— r+iacos, (12)

where a is the spin parameter. The new coordinates
(u,r,0,¢) are called Eddington-Finkelstein coordinates.

2 dudr + h(r)(d6? + sin® 0dg?).

The transformation leads to f(r) — F(r.0,a), g(r) —
G(r,0,a), and h(r) — X(r, 0, a). In Eddington-Finkelstein
coordinates, the null tetrad becomes

" =(0,1,0,0),

nﬂ: \/g?_g7070 b
F 2

| .
- <ia sin @, —ia sin 6, 1,@). (13)

Then, according to Eq. (10), the metric can be obtained and
the result reads

F F
ds® = —Fdu® — 2\/;dudr +2a <F - \/2) sin’0dudgp

F
+ Xd0* + 2asin29\/gdrd¢

+a? (2\/—2 - F) sinQH] dg?. (14)

Next, one can change the Eddington-Finkelstein coordi-
nates (u, r, 0, ¢) to Boyer-Lindquist coordinates (z, r, @, ¢)
via [112]

mt =

+ sin%0

du — dt + &(r)dr,

dep — dop + {(r)dr, (15)
where
L c(r) +a?
N ETE R
O e
_ [a0),,
Moreover, one can choose
~ (g(r)h(r) + a® cos? 6)
Fr0) ==t oo’
G(r.0) g(r)h(r) 42— a? 00529. (17)

For our case, f(r) = g(r) and h(r) = r?, one can choose
¥ = r> 4 a?cos?> @ [112]. Thus, one has
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r?g(r) + a*cos* @

F(r,0) =G(r,0) = 3

(18)

Finally, the metric of the Kerr BH surrounded by a cloud
of strings in the Boyer-Lindquist coordinates reads

A » 2aA sin 0
ds? = —(1-2)ar + Zar + 240> - 2227 Giag
> A
2A : 29
+sin29<r2+a2+%>d¢2, (19)

A = 2Mr — dagdyr* -,
A =72 =2Mr + a* + 4agh r* ",
gy
87 +2p—1°
4
T
261

1

One can obtain the nonvanishing components of the
Rastall tensor H,, associated with the metric in Eq. (19) by

where using the Mathematica package RGTC, as follows:
J
2(a’r? +r* =2r%p — a* cos? Osin? 0)p'  r(a* + r* = 2rp)p”
Hyy = 3 - 2 ’
z pY
21’2 ,0/ rp"
Hi=—-——+—
11 s ATA
2a? cos* 0
Hy=—-—"—")p,
22 > P
2a’sin? 0[(a® + r*)? cos? @ — r*(a® + r* = 2rp)sin® Qlp’  ra*(a® + r* — 2rp) sin* Op”
Hyy = — 3 - 2 ’
z z
2a[(a® + r*)(a*cos? @ — r?) + 2r3p]sin? Op'  ar(a® + r* —2rp) sin® Op”
pX pX
where p = M — 2ayA,r>~ and “"” denotes the derivative e _p _ r(2rp = Zp")
with respect to r. To calculate the energy-momentum -1 X2 ’
tensor, we use the following tetrad: 2 — rp"
P2:P3:—P1——. (21)

1
el = 2 +4d%0,0,a),
f= )

A
= _051’0’07
¢ = [20.1.0.0

1
=—=(0,0,1,0),
75(0.0.1.0
1

K= _ sin26,0,0, 1). 20
“ \/fsiHH(a ) (20)

With this tetrad, the energy-momentum tensor can be
written as 7, = (£, Py, P,, P3), where

1
L
&= ;eoegHW,

1
_ L ou
P, = Eele'fHﬂy,

1 1
_ H _ H
;’:2 —;eze’iHW, ;’:3 —;e:;engw.

Then, the results read

KX

Thus, the solution given by Eq. (19) indeed describes a
rotating BH surrounded by a cloud of strings with an
energy-momentum tensor in Eq. (21), within the context of
the Rastall gravity. The solution in Eq. (19) can return to the
various known BH solutions in suitable limits. The Kerr
BH surrounded by a cloud of strings in GR can be derived
when the Rastall parameter A = 0 [26]. When a, = 0, the
energy-momentum tensor (21) vanishes, and the Kerr
solution in GR can be found [117]. Meanwhile, it returns
to the static solution in Eq. (6) if @ = 0. Also, using the
transformation in Eq. (7), the solution of the Kerr BH
surrounded by a cloud of strings in Rastall gravity in
Eq. (19) can be transformed into the solution of the Kerr
BH surrounded by quintessence in GR [118].

In the following, we will study the thermodynamics and
weak gravitational deflection of the massive particle.
Throughout the paper, we mainly consider the case of
A >0,ie.,pf<0o0rf>1/2

C. Thermodynamic properties

In this subsection, we briefly discuss the thermodynamic
properties of the BH in Eq. (19). First, the BH horizons are
determined by
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A(r) =r* =2Mr +a* + 4agy 2 = 0. (22)

Obviously, when f§ — +o0o, the horizons become

ri:Mi,/Mz—az—%, (23)

and other situations for —oco < § < 400 are complicated.
Figure 1 shows the relationship between the BH horizon
and the parameters a, a, and £ in some special cases. Now,
it is assumed that the BH has the outer horizon and one can
write the mass in terms of outer horizon r, from Eq. (22),
as follows:

Then, the tunneling method [119-121] can be used to
calculate the Hawking temperature. In the tunneling
method, setting df = d¢p =0 and 6 = 0, the metric and
Hawking temperature can be written as

ds? = —f(r)dr? +}(1r) dr?, (25)
4n r=r

With this approach, our metric becomes

2 2
r+a
ds? = — 2 dr?* + ———dr?, (27)
1 2 r a
M:2—(}ﬁ—I—a2—|—4aO/11rJr 2). (24)
F+ and the Hawking temperature reads
M=1, a=1, ap=1 M=1, a=1, 3005 03 M=1, a=1, 2p=0.1
0.2
0.1
=1 =1 < oo
-2F -0.1
Lt R | e e T
Kerr Brtoo B=-1 —— Kerr Brtoo B=-1 -0.2p Kerr Bteo B==1
-6 Lo B=-0.1 . B=06 - B=15 N B=-0.1 - B=06 - p=15 ) —=ees p-04 - P06 o 15
0 1 2 3 4 5 6 7 0 1 2 3 4 -03 0.6 0.8 1.0 1.2 1.4 1.6 1.8
r r r
(@) (b) (©)
M=1, a=0.5, ap=1 M=1, 2=0.5, 2p=0.5 M=1, a=0.5, ap=0.1
T 0.5 ™ T T T
° AN /
i 0.0 X :
E? 0 é_’—0.5
I 2 T _
Kerr Btoo B=—1 Kerr Bt B=—1 1.0 Kerr Brtoo p=—1
L ‘3:70.1 o ﬁ:q.e . r‘ﬁ:1.5 ) ] " B=-0.1 —‘B=0.6 371.5 wmeo Be-0.1 o f=06 oo Be15
0 1 2 3 4 5 6 7 _30 1 2 3 4 0.0 0.5 1.0 1.5 2.0
r r r
(d) ©) ®
) M=1, a=0.1, ap=1 ) M=1, a=0.1, ao=0.5 M=1, 2=0.1, 2p=0.1
0.5
¢ / 1 /,//
0 kN P 0.0 ,/
0 4
< -2f = < -05
3 < I
-1t
-4 -of T
___________ ot
ol Kerr Bortoo B=-1 — Ker Borteo B=—1 Kerr Borteo B=-1
----- p=-0.1 - B=06 B=15 N — R - B=06 - p=15 -15¢ seomr B0 o B0 oo 15
0 1 2 3 4 5 6 7 o 1 2 3 4 0.0 0.5 1.0 1.5 2.0 25
r r r
(8 (h) (1)
FIG. 1. The BH horizons, where the vertical axis is denoted by A(r) and the horizontal axis by r. We set M = 1 and take a, a, and f§ as

variables. For the pictures in first line, ¢ = 1 and a takes values 1, 0.5, and 0.1 corresponding to (a), (b), and (c), respectively. For the
pictures in the second line, @ = 0.5 and a takes values 1, 0.5, and 0.1 corresponding to (d), (e), and (f), respectively. For the pictures in
the last line, @ = 0.1, and q takes values 1, 0.5, and 0.1 corresponding to (g), (h), and (i), respectively. In all the nine figures, the thin
black line, thick blue line, purple dashed line, green dotted line, and orange dash-dotted line correspond to f — £o0, f = —1, f = —0.1,
p = 0.6, and p = 1, respectively. Note that we have added the Kerr BH (g, = 0) in each picture, plotted by red solid lines.
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(r+ — M) + 2a0r1_’12/11 (2 — ﬂz)

T —
H 27(rk + a?)

. (28)

which can lead to the Hawking temperature of the Kerr BH
when ag = 0 [120]. The angular velocity of the metric in
Eq. (19) is

a

=5 (29)

o=-%  _ Rl
r=ry ry a

933
The area of the BH is

Agn = / V92933d0dp = 4 (r} + a?), (30)

and the Bekenstein-Hawking entropy of the BH can be
calculated by the area of the BH as follows:

Sen :%:Wiﬂﬂ). (31)
One can see that the string parameter a, has the effects to
the angular velocity and the Bekenstein-Hawking entropy
by affecting . However, the expression of the angular
velocity and Bekenstein-Hawking entropy is the same with
the Kerr BH, which is different from the Kerr-Newman-
NUT-Quintessence BH [121].

II1. INFINITE-DISTANCE GRAVITATIONAL
DEFLECTION OF MASSIVE PARTICLES

A. JMRF metric

The Jacobi (or Jacobi-Maupertuis) metric is a powerful
tool in geometrodynamics. In 2016, Gibbons [122] derived
the Jacobi metric of a static spacetime, which is an energy-
dependent positive Riemannian metric. In 2019, Chanda
et al. [123] discovered the Jacobi metric of stationary
spacetime, which is an energy-dependent Randers-Finsler
metric. A more general discussion about the Jacobi metric
can be found in Ref. [124]. The spatial part of the timelike
geodesic in spacetime is the spatial geodesic in the
corresponding Jacobi metric space and thus the Jacobi
metric method has been widely used in the study of particle
motion in curved spacetime. For example, it was used to
study Kepler orbit [125,126], the gravitational deflection of
massive particles [89,103,104], the motion of charged
particles [127], and Hawking radiation [128]. As men-
tioned above, the Jacobi-Maupertuis metric of a stationary
spacetime is a Randers-Finsler metric described by (@, f3),

say
F(xi,dx') = ds; = \/a;dx'dx) + pdx',
where @;; is a Riemannian metric and f; is a one-form,

satisfying a/$,8; < 1. The Jacobi metric of a stationary
spacetime, the JMRF metric, reads [123]

_ E? + m?ggo

Qi = ————Vij» (32)
—900

pi= -9 (33)
oo

where m and E are the mass and energy of the particle,
respectively, and the spatial metric, y;;, is defined by

_ 90i90;
Vii=9ij — .
Joo

It should be noted that Crisnejo et al. recently derived
JMRF metrics with the optical media method [86]. For the
metric in Eq. (19), one can obtain the corresponding JMRF
metric as follows:

2

o E z
a;;dx'dx) = <1 - m2> [Z dr? + 2d6* + sin*0

_A
2Asin?0(T — 4A
x<a2+r2+a s 2(2 >>d¢2}
o aEAsin?0
Ayt = ==Y 4
v — 2EA0 34

On the equatorial plane (6 = z/2), the Randers-Finsler
metric can be reduced to

ij _% A
A2 —4A
+<a2+r2+a (r4 )>d¢2],
r
. aFEA
pidx' = ——5—d¢. (35)

The energy of the particle £ can be expressed by the
velocity » of the particle

m
\/1—112’

and this expression will be used in the following.

E= (36)

B. Osculating Riemannian manifold and
Gauss-Bonnet theorem

Denoting a smooth manifold by M, the Finsler metric
F(x,y) is a function on the tangent bundle TM, and its
Hessian reads [129]

19 F2(x,y)
gij(x,y) = 2 vy (37)
To introduce the GB theorem to study the light deflection,
Werner [55] applied Nazim’s method to construct an
osculating Riemannian manifold (M, §) of the Finsler
manifold (M, F). Following this scheme, a smooth non-
zero vector field Y which is tangent to the geodesic 7, say
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Y(n£) =y, can be chosen, and a Riemannian metric can be
obtained by the Hessian

Gij(x) = gij(x, Y (x)). (38)
|

By this construction, the geodesic in (M,F) is still a
geodesic in (M, 7), i.e., nr = ny, for which the details are
shown in Ref. [55]. On the equatorial plane, our Randers-
Finsler metric in Eq. (35) leads to

In the present work, we mainly consider the terms
including M, M?, Ma, a*, a, in the deflection angle, and
the terms containing May, aay are ignored. To simplify
writing, the approximation is denoted as O(e*) = O(M?,
M?a,Ma?*, @, a}, May, aay). To this end, the first-order
particle ray will be considered, which is consistent with the
Kerr spacetime [103]

oavize P

|
Then, by substituting Eq. (39) into Eq. (37), and using
Eq. (41), the osculating Riemannian metric can be obtained
as follows:

3 m> [, N 2m(1+v?) 2aMrvsin®e

9rr= v - -
To1=0? r b3(cosz¢—|—2—ism4¢)3/2

cs2 » s 42+02)M?  a*0? 3
r(qﬁ):m— (cotzqﬁ—!— 7 >M+O(M2,a2,Ma,a0). —dagr(14+v*)A, + . - +0(€),
(40) (42)
But now, we only need the zero-order particle ray
r = b/ sin¢ to construct the following vector fields:
2 2Mav cos® ¢
_dr  cos¢p Grp = — +O(),  #3
Y =" T 1—2, Irg l—vzr(cosz¢+§sin4¢)3/2 () (43)
d¢p sin’ ¢
Yt =" = V1-12 41
dl ~ mbv ' (1)
|
2 2Marvsin¢(3cosiep + 25 sin
Tpp = 1 ’111,2 v2r? 4+ 2Mr — i $+25sin) dagr* 4, + 4M? + a*v? | + O(e%).  (44)

Now, the particle ray is a geodesic in the osculating-
Riemannian-metric spacetime. In the following, we will use

R

FIG. 2. A region D, C (M,§;), with 0D, =n; U C, . The
particle ray 77 is a geodesic in D, and the curve C, is defined by
r(¢) = ro = constant. S, R, and L denote the source, the receiver,
and the lens, respectively. a is the deflection angle. Note that
@5+ @Qr — T asS 1y > 0.

b(cos’¢ + ;—i sin‘¢p)>/?

|
the GB theorem to study the gravitational deflection, and
we will briefly introduce the GB theorem first. The GB
theorem deeply connects the geometry and topology of a
surface. Let D be a compact, oriented surface with
Gaussian curvature /C and the Euler characteristic y(D),
and its boundary 9D is a piecewise smooth curve with
geodesic curvature k. The GB theorem states that [53,130]

/[)mﬂél} kdl—i—;(pi —2my(D), (45

where dS is the area element, d/ is the line element of the
boundary, and ¢; is the jump angle in the i-th vertex of 0D
in the positive sense, respectively.

Then, as shown in Fig. 2, one can consider a region
D, C (M, ;) bounded by a particle ray #; from the source
S to the receiver R and a curve C, defined by
r = ro = constant, i.e., 9D, =n;U C, . Due to the fact
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that ; is a geodesic in D, , one can have k(17;) = 0. Forthe ~ metric g;; in the equatorial plane (r, ¢) can be calculated as
curve C, , when ry — co, we have k(C, )dl — d¢p, and  in Ref. [55],

Fhere.fore. Je k(C)dl = [§ "l dgp, with al,, being the N \/‘Krtﬁ
infinite-distance deflection angle. In addition, one can see 1 ( O > ( v )
x(D,,) = 1 in the region outside of the lens object L, and K= detg o - or - (48)
noticing that gz + @5 — 7 as ry — oo, finally one can have
- R
/ KdS + A do + g + @s C. Infinite-distance deflection angle of massive particles

il Now, according to Eq. (47), we can investigate the effects
oz / Kds + / “dp+n=2r, (46)  ofacloud of strings on the gravitational deflection angle of
0 massive particles for a receiver and source at an infinite

. . distance from the rotating BH in Rastall gravity. First, the
where thf': GB the'orem' has'been applied tg the region D o Gaussian curvature of the osculating Riemannian metric §;;
From this, the infinite-distance deflection of massive can be calculated by Eq. (48), and the result is

particles can be calculated by
i B (1=vYM  2a6(1 = *) A4 (0> + 4,)
=— // KdsS. (47) m2rivt mytrrth
D 3(2=30> + v )M?>  3Ma(l —1?)
+

E(r,¢) + O(e%),
In the expression above, one can see that the deflection m?r*ys 4m>v3b*r?

angle is coordinate-invariant, and additionally, the (49)
Gaussian curvature of a surface defined by the Remiannian

where
|

. sin’s s\ 2 R o
E(r,¢) = oty 1 Zsmig) {2005647 (—2 +sin ¢> + ?C0S2¢Sln5¢ <2 ~n +— 13 €0 2¢ +— Sln ¢>
b?.
4hsin?d [ — & i — M in3 Lz —_qin? r 11 4
+ cos*gsinp | =2 + ) sin ¢ L3 sin ¢ |+ 2 bsm ¢ + sin’' ¢ + sin*2¢ (50)

It can be found that there is no a® term in Gaussian curvature. Then, by Eq. (47), the infinite-distance deflection angle of
massive particles can be obtained in the following:

—/”/mfc\/thgdrdqs

—I—v M 2a0/1/12(11 ) | (60° + 0t —4)M*  3Ma
// { 2,0 + o b2 E(r.¢)|drdp + O(&)

= Oerrloo + %OL,o +0(&),. (51)

where r(¢) is the first-order particle ray in Eq. (40). In the above, ag..|,, denotes the infinite-distance angle of massive
particles in Kerr spacetime, and a, |, is the part of the deflection angle related to a cloud of strings,

M (607 + 0t —4)M*  3Ma 2M(1 4+ v*) 4Ma
= drdep = — ,
ke o / // singb { r? 2 + Pyt Y E(r.¢)|drdy = bv? b*v
_ 2(10/1 /12 'U + /12)
Ayl = / //qm{/) 2 drdg. (52)

When a, = 0, we have a, |, = 0, and the result agrees with the deflection angle of massive particles in Kerr spacetime
[80]. Notice that we have assumed that 1, > 0. Therefore, another expression of @, |, in Eq. (52) can be derived, and the
result is expressed by the gamma function
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a | — _ 2610\/7_7,%1 (/12 + Uz) r[% + %2] (53)
ol T TR
Finally, Eq. (51) can be rewritten as
ol = 2M(1+ %) 2a9y/mh (h + v*) TE+5]
3n(4 + v )M? | 4Ma
+ O(e), 54
b7 w2y o) (54)

where positive and negative signs correspond to retrograde
and prograde particle orbits, respectively. For the light case
(v = 1), the deflection angle reads

alo(v=1) = AM  2a0\/ah (o + 1) T+ 5]
C) b b/lz F[l +%2]
15zM?*  4Ma
Wi7+0(83). (55)

One can see that the effect of a cloud of strings on the
infinite-distance deflection angle of light has not been
eliminated.

IV. FINITE-DISTANCE GRAVITATIONAL
DEFLECTION OF MASSIVE PARTICLES

In the previous section, with Werner’s method, we
studied the infinite-distance gravitational deflection of
massive particles in a rotating BH surrounded by a
cloud of strings. In this section, we will consider the
finite-distance deflection, a more general situation where
the receiver and the source at finite distance from the
lens object. In this case, Werner’s method does not
seem feasible, and Ono et al. proposed a generalized
optical method to study the finite-distance deflection of
light [92]. Recently, Li er al. [103,104] extended the
study to the massive particles case based on the JMRF
metric.

A. The generalized Jacobi metric method

Here, it is assumed that the p_articles move in a three-
dimensional Riemannian space M defined by the general-
ized Jacobi metric a;; in Eq. (34),

PP = a;jdxidxl. (56)

Now, the motion of particles does not follow the geodesic
in M, and thus Eq. (47) is not available. However, by
the GB theorem one can add a term related to geodesic
curvature of the particle ray to calculate the gravitational
deflection angle. For the metric in Eq. (34), the
geodesic curvature along the particle ray #; can be
calculated [92] as

9,

_ or
k(”ﬁl) - \/m (57)

To study the finite-distance deflection, we apply the
definition of the deflection angle proposed in Ref. [92],

a=¥, =Y+ ¢gs, (58)

where Wy and Wy are angles between the tangent of the
particle ray and the radial direction from the lens to the
receiver and source, respectively, and the coordinate
angle ¢rs = ¢ — ¢s. ’ _

Let us now consider the quadrilateral 513 C (M. @;)
with the Gaussian curvature K, as shown in Fig. 3.
It is bounded by four curves: the particle ray 7;, a curve
C,, as defined in the previous section, two spatial geodesics
of outgoing radial lines from R to R/, and S to &,
respectively. For this region, one can see )((I;/Dg) =1,
and additionally, we have @3 =7 —Ys and @r = ¥;.
Thus, using the GB theorem to the quadrilateral, one
can obtain

_ R
/ ) ICdS—/ de—/ kdl
oy s Cry

+Wr + (7 = ¥s) + g + @ =27 (59)

Cs)dl = ¢pgs, and
furthermore, the sum of two jump angles ¢p + @y =7
as ro — oo. Therefore, when ry, — o0, Eq. (59) leads to

For the curve C,, we have me k(

— R
RIS §

Then, according to the definition of deflection angle in
Eq. (58), the above equation can be rewritten as

Cro

S/

FIG. 3. The quadrilateral 8033 C (M, a;;). n, is the particle ray
from source S to receiver R, deflected by lens object L. R’ and §’
are the intersection points of curve C,, and radial directions, from
the L to R and S, respectively. ¥y and W are angles between the
tangent of the particle ray and the radial direction from the lens to
R and S, respectively. ¢p =W, and @53 =r7—Ws and in
addition, g + @y — 7 as ry — oo.
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_ R
S / Kds + / km)dl.  (61)
s s

This expression shows that the finite-distance deflec-
tion angle is also coordinate-invariant. In addition, this
expression can be used to calculate the infinite-distance
deflection as long as we let rp — oo and rg — oo, and this
is the reason we say that the finite-distance deflection is
more common than the infinite-distance deflection.

B. Finite-distance deflection angle of
massive particles

Substituting the corresponding metric components
in Eq. (35) into Eq. (48), one can obtain the Gaussian
curvature of the generalized Jacobi metric as follows:

}_C _ 2610)41/12(1 — Uz)(ﬂz + U2) _ (1 — 1)4)
m2 1)4 r2+/17 m2 1)4 7’3
3(2 = 3v? + v )M?
)] (62)

On the other hand, the geodesic curvature of a particle ray
in the generalized Jacobi space (M, @;;) can be calculated
by Eq. (§7), and the result is

2V1 = v*Ma

k(ﬂ&) == mvzr3

+ O(&). (63)

From Eq. (56), one can have

(H’”z)M( 1‘%*’\/1—%)3(4—}-11)[7: arcsin () —arcsin (2 )] M2

2Ma sin ¢

k(nz)dl = —
(;70!) bU

dg + O(&%). (64)

where we have used the first-order particle ray in Eq. (40).
Finally, substituting the quantities mentioned above into
Eq. (61), the deflection angle is

AN

2610/1 12 12 + v ) (1 + 1)2>M

21+ 0212

60° -4 M2
(60 “; - ) ]drdqﬁ
dx 2Ma sin ¢
- [ s o) (65)

According to the first-order particle ray in Eq. (40), one can
obtain the first-order coordinate angle at the receiver and
source, respectively, as

rs

rS\/WU2 b’
b b*v? — k(1 +v*)M
¢R=ﬂ—arcsin<—>— v (40
TR

rr\/ 1% — b*? b

When o = 0, Eq. (65) reduces to the Kerr BH case, and
the result becomes [103]

(66)

b 3,2 2 22,4\ B
ZBv*(4+0%) + (4807 =3 )Tg]Mz

AKerr =

bv? 49? b2 10 l_b_j B2
Ts
L[302(4-+07) + (4807 =30%) 2] 2 2Ma( —E hz)
4k : 5 2 I ’ (67)
4oty [1-5 b b*v

where the positive and negative signs correspond to retrograde and prograde particle orbits, respectively. Accordingly,
the finite-distance deflection angle of massive particles in Eq. (65) can be rewritten as

a = OKer + Ay, + 0(83)’

where

L\ [¢
g, :—2aoﬂlﬂz<1+v—§> / ! / rdrdep,
S

sing

2a0i (I + 02) [
_ _2avhild + ) )/ " sin2gpdep
by <

2agAy (A + v7)

B . 2 P (1 1=k
ST bR TN\ 2

(68)

3P (1 1= 3 P
e l=—5Fi (5. —5:5:1=—=|. (69
2 r,%)Jr ry? ‘(2 2 2 r’§‘> (69)
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Here, ,F|(a, b; c; z) is the Hypergeometric function [131].
Let v = 1, as it is shown that the finite-distance deflection
angle of light is also effected by the cloud of strings. In
addition, for rr — oo and rg¢ — oo, the infinite-distance
deflection angle of massive particles in Eq. (54) can be
recovered. Furthermore, the difference between the finite-
and infinite-distance deflection angles can be described by
the finite-distance correlation

da = a|,, — a = Sagey + 0y, (70)

where Sager = aKerr|oo — Okerr and 5aa0 = Qg |oo — g,

In the following equations, several specific values of 1,
will be considered to show the effects of a cloud of strings
on the finite-distance gravitational deflection angle of
massive particles.

L f— +c0,A1=1/8,A,=2
When § - +oo0, we have 4, = 1/8,4, = 2, and Eq. (69)

becomes
Clo(2+U2) b b2 b
=g e\ TR Y TR
R R S
b b
+ 7z — arcsin— — arcsin —> . (71)
TR s

Meanwhile, the infinite-distance deflection angle can be
recovered,

aor(2 + v?)

8h%p? (72)

aao|oo ==

2. =3/2,2;=1/20,1,=3
When f = 3/2, wehave 4, = 1/20, 4, = 3, and Eq. (69)

leads to
b? b?
2\/1——2+2\/1 -
s TR

1= p? 1k
r rs

: 73

it (73)

ao(3 + v?)
0 =TT 30p%,2

When rp — oo and rg — oo, the infinite-distance deflec-
tion angle becomes

~2a0(3+ v?)

74
156302 (74)

aa()'oo =

3. p=14;=1/36,4,=4
Let § = 1, and we have A; = 1/36, 4, = 4. In this case,

Eq. (69) comes to
3b,/1-%
2
rs

bZ
o 7_00(4"‘1)2) 3b _7R+
W 144b%0? IR

2% /1 -1 203, /1-5
+ 7+ R
TR s

b b
+3 (7‘[ — arcsin— — arcsin —) . (75)

R rs

For the infinite-distance deflection,

agr(4 + v?)
aa0|oo = _W' (76)
4. =5/6,1,=1/56,1,=5

We consider = 5/6, which leads to 4, = 1/56 and
A, =5, and in this case, Eq. (69) becomes

Clo(s + U2) b2 bz
= P T 8 1= 48y [1—2
%0 = T 20b% 02 2t P
4p2 1 =% 4p? 1L
R S
gt g

3bt, /11— 3pt J1-L
R N (77)

and the infinite-distance deflection is

_apn(8 + v?)

256b8 0?2 (78)

aa0|oo =

a,, versus the source distance rg is plotted in Fig. 4,
where the vertical axis takes the value lg|a, |, and the
horizontal axis takes lg(rg/M). We have set v = 0.9c¢,
M=1, a=06M, ay=06M">, b=10*M, and
rr = 10*M. The numerical results show that the effect
of a cloud of strings decreases as A,(> 2) increases. In
addition, it is shown that the impact of source distance rg on
a,, 1s very small.

In the above, we did not consider the case of 1, = 0 (i.e.,
p =0), which describes the solution of rotating BHs
surrounded by a cloud of strings in GR. From Eqgs. (49)
or (62), the term containing a, in Gaussian curvature
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v=0.9¢c, M=1, a=0.6M, a,=0.6M "2, b=10%M, rg=10*M
2——————————— 777777777

_al

gl

—— Bt Ap=2 —mme- B=3/2,A,=3 ]
0% A B=1Ap=4 - - B=5/6,Ar=5
n 1 n n n n 1 n n n n 1 n n n n 1 n n n n
4.0 4.5 5.0 5.5 6.0
Ig(rs/M)

FIG. 4. The deviation of the finite-distance deflection angle
from the Kerr spacetime. The vertical axis takes the value Ig |a,, |,
and the horizontal axis takes 1g(rg/M), with v = 0.9¢, M = 1,
a=0.6M, ay=0.6M">, b=10*M, and rr = 10*M. The red
solid line, purple dashed line, blue dotted line, and green dash-
dotted line correspond to A, =2, 4, =3, 1, =4, and 4, =5,
respectively.

disappears. Thus, it seems that the first-order term of string
parameter @, does not contribute to the deflection angle.
However, from Eq. (69), one can see that the terms
containing @, do not disappear when 4, =0, and one
can find that the result becomes

b2 b2
A, :@(arcsinwl——z—l—arcsinﬂl—?). (79)
2 TR TR

For the infinite-distance case,

)

ke = 27, (50)

and it can be seen that this term is independent of the
particle velocity ». In this assumption, the total infinite-
distance deflection angle of the massive particle reads

2M(1+v?) 3z(4+0v*)M?*  4Ma a
- D+ 0®).
o b2 4p22 by T 7o)

(81)

Let v = 1, and one can obtain the deflection angle of light
in the Kerr spacetime surrounded by a cloud of strings in
GR, as follows:

al

AM ay,  4Ma 15zM°
=—+=

T R 3. 2

o

In this equation, the first three items are consistent with
Eq. (42) in Ref. [105].

V. CONCLUSION

In this paper, the Kerr solution surrounded by a cloud of
strings in the Rastall gravity model has been obtained by
using the NJA without complexification. The influence of
the string parameter a, on the BH’s thermodynamic proper-
ties has been discussed. As a main result of this work, the
gravitational lensing of massive particles for the Kerr
solution obtained here is further considered by applying a
geometric and topological method. For the case that the
receiver and the source are infinitely far from the lens object,
the GB theorem is applied to an osculating Riemannian
space in which the particle ray is a geodesic, and the result
related to the string parameter a, is described by the Gamma
function in Eq. (54). For the case in which the receiver and
the source are finitely far from the lens object, the GB
theorem is applied to a generalized Jacobi metric space. The
particle ray is not a geodesic and its geodesic curvature
should be considered to study the gravitational deflection.
The result related to the string parameter a is described by
the hypergeometric function in Eq. (69). It should be noted
that the finite-distance deflection angle in Eq. (69) can lead
to the infinite-distance angle (54), which shows that the
same result for the infinite-distance deflection angle of
massive particles can be obtained with the two methods. On
the other hand, we find that the term containing a, in the
Gaussian curvature vanish when = 0 (1, = 0). However,
f =0 does not lead to this term vanishing as a result.
Furthermore, considering the light case and setting 1, = 0,
our result agrees with the result for the rotating BH
surrounded by a cloud of strings in GR.
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