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In this paper, an exact solution of the Kerr black hole surrounded by a cloud of strings in Rastall gravity
is obtained by the Newman-Janis algorithm without complexification, and the influence of the string
parameter a0 on black hole thermodynamics is studied. Furthermore, according to this black hole solution,
we investigate the effect of a cloud of strings on the gravitational deflection of massive particles. For a
receiver and a source at infinite distance from the lens object, we use an osculating Riemannian manifold
method. While the distance is finite, we apply the generalized Jacobi metric method. For both of the two
situations, the Jacobi-Maupertuis-Randers-Finsler metric and Gauss-Bonnet theorem are employed. It is
found that the string parameter a0 has obvious modification on the gravitational deflection of massive
particles. Our result is reduced to the deflection angle of light by the Kerr black hole surrounded by a cloud
of strings in general relativity.
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I. INTRODUCTION

Einstein’s general relativity (GR) is a beautiful theory of
gravity. It has undergone a series of tests and became the
basis of modern astrophysics and cosmology. For GR, there
is an important assumption about conservation laws due to
the equivalence principle: the covariant divergence of the
energy-momentum tensor is vanishing. Although this
conservation law has been tested specifically in a weak
gravitational field case, it may not hold in a strong
gravitational field. Assuming that the covariant divergence
of the energy-momentum tensor is nonzero, Rastall pro-
posed an extended theory of gravity [1]. This nonconser-
vation gravity theory may provide a model to explain the
problems of dark energy and dark matter. Moreover, Rastall
gravity seems to agree with the observational data of the
universe age, the Hubble parameter and helium nucleo-
synthesis [2,3]. Hence, it is also an important theory of
gravity. Recent interests of various areas within the context
of the Rastall gravity or the generalized Rastall theory can
be found in the literature [4–11].
On the other hand, the black hole (BH) is one of the

most interesting predictions of GR. In 2015, gravita-
tional waves from binary BH mergers were directly
detected by LIGO and Virgo Collaborations [12], which
is crucial proof of the existence of BHs. Furthermore, the
first image of a BH was observed in 2019 by the Event

Horizon Telescope Collaboration [13,14]. For the
Rastall gravity model, some exact solutions have been
discovered. For example, Heydarzade et al. found a static
charged BH solution [15]. Kumar et al. obtained
the rotating BH solution [16,17]. Moradpour et al.
obtained traversable asymptotically flat wormholes
[18]. Furthermore, the BHs surrounded by different
matter were proposed in Rastall gravity. Heydarzade
and Darabi obtained a class of solutions of Kiselev-like
BHs surrounded by perfect fluid [19], where Kiselev’s
original work can be found in [20]. Xu et al. found the
solution of the Kerr-Newman-AdS BH surrounded by
perfect fluid matter [21].
The string theory shows that the basic unit of nature is

extended one-dimensional strings, instead of the pointlike
particles of particle physics. The gravitational field induced
by a collection of strings is worth studying, because we can
test the basic theory via investigating the gravitational
effect. A cloud of strings as the source of the gravitational
field was first considered by Latelier, within the context
of GR [22–24]. He found an exact solution of the
Schwarzschild BH surrounded by a cloud of strings.
Later, the rotating BHs with a cloud of strings were
investigated [25,26]. Nowadays, the study of a cloud of
strings has been extended to modified theories of gravity
such as Lovelock gravity and fðRÞ gravity [27–29]. Quite
recently, Cai and Miao found an exact solution of the
Schwarzschild black hole surrounded by a cloud of strings
in Rastall gravity and investigated its quasinormal modes
and spectra [30]. Actually, rotating BH solutions are more
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general and can provide more applications in astrophysics
and cosmology. Thus, in this paper, we try to give an exact
solution of the Kerr BH surrounded by a cloud of strings in
Rastall gravity through the Newman-Janis algorithm (NJA)
without complexification.
Gravitational lensing is one of the most powerful tools

in astrophysics and cosmology, and due to its importance
in testing the fundamental theory of gravity [31,32],
measuring the mass of galaxies and clusters [33–35],
detecting dark matter and dark energy [36–41], and so on,
in the present work, we will mainly investigate gravita-
tional lensing for the Kerr BH surrounded by a cloud of
strings.
Typically, in most studies involving the gravitational

deflection of light, the standard geodesics method was
mainly considered [42–52]. Recently, Gibbons and Werner
introduced an interesting geometric method in Ref. [53].
They applied the Gauss-Bonnet (GB) theorem to study the
weak gravitational deflection of light in static and spheri-
cally symmetric (SSS) spacetime, such as Schwarzschild
spacetime. In their method, the deflection angle of light
can be calculated by integrating the Gaussian curvature
of corresponding optical metric. Later, Bloomer [54]
attempted to extend this geometrical approach to the
stationary and axially symmetric (SAS) spacetime, where
the corresponding optical geometry is defined by a
Randers-Finsler metric. Until 2012, Werner [55] com-
pletely solved this problem by building an osculating
Riemannian manifold of the Randers-Finsler manifold,
with Nazım’s method [56]. Importantly, the Gibbons-
Werner (GW) method shows that the gravitational lensing
can be viewed as a global effect. In addition, this method
only involves spatial geometry (optical geometry), so it is
conducive to the implementation of physical lens models
[55]. Finally, it contributes to the physical applications of
Finsler geometry and geometric dynamics (the Jacobi
metric).
With the GW method, the light deflection in different

spacetimes has been widely studied by some authors.
For example, Jusufi et al. studied the deflection of light by
BHs, wormholes, and other lens objects [57–62]. Övgün
et al. studied light deflection in asymptotically nonflat
spacetime such as the Schwarzschild-like spacetime in
the bumblebee gravity model [63–65]. Javed et al. studied
the effect of different matter fields on the weak gravita-
tional deflection of light [66–69]. More works can also
be found in Refs. [70–73]. In addition, the massive
particle is an important class of element particles in the
universe, and the analysis of the signatures of gravita-
tional lensing will be useful to understand the properties
of these particles. Due to the importance of this problem,
various works [74–83] have been carried out to study
gravitational deflection of massive particles by different

lens objects in differential gravity models. With the
GW method, Crisnejo et al. studied not only the weak
gravitational deflection of light in a plasma medium,
but also the deflection of massive particles in SSS/SAS
spacetimes [84–86]. Jusufi studied the deflection angle
of massive particles in the Kerr and Teo spacetimes,
as well as the deflection angle of charged massive
particles in Kerr-Newman spacetime [87,88]. Moreover,
with the Jacobi metric method, Li et al. studied the
gravitational deflection of massive particles in wormhole
spacetimes [89].
Inspired by the GWmethod, on the other hand, the finite-

distance gravitational deflection of light has been studied
by some authors, where the receiver and the source are
assumed to be at finite distance from a lens. In 2016,
Ishihara et al. [90,91] used the GB theorem to study the
finite-distance deflection of light in SSS spacetime. Later,
Ono et al. [92–94] proposed a generalized optical metric
method to extend the work to the SAS spacetime.
It is worthwhile to mention that the generalized optical
metric method can also be used to calculate the infinite-
distance deflection angle [95–98]. A review on finite-
distance deflection of light can be found in Ref. [99].
Furthermore, Arakida [100] studied the finite-distance
deflection of light in Schwarzschild-de Sitter spacetime.
In addition, Crisnej et al. investigated the finite-distance
deflection of light in an SSS gravitational field with a
plasma medium [101]. Haroon et al. studied the finite-
distance deflection of light by a rotating BH in perfect fluid
dark matter with a cosmological constant [102]. Quite
recently, by using the Jacobi-Maupertuis-Randers-Finsler
(JMRF) metric and the GB theorem, Li et al. studied the
finite-distance gravitational deflection of massive particles,
both in asymptotically flat spacetime [103] and asymptoti-
cally nonflat spacetime [104].
In the test of basic gravitational theory or other

cosmological applications, the lens effect of a cloud
string clouds is very interesting and worth studying.
Jusufi et al. [105] has studied the effect of a cloud of
strings on a deflection angle of light by Kerr BH in GR,
using the GB theorem. In this paper, we will extend this
result via studying the deflection of a massive particle by
the Kerr BH surrounded by a cloud of strings in Rastall
gravity, using the GB theorem. The aim of the present
work is twofold. On the one hand, we will extend the
static BH solution to the rotating case solution by the NJA
without complexification. On the other hand, we will
study the effects of a cloud of strings on both thermo-
dynamic properties and the weak gravitational deflection
of massive particles. In particular, we study the deflec-
tions for the infinite-distance case with Werner’s method,
and for the finite-distance case with the generalized
Jacobi metric method.
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This paper is organized as follows. In Sec. II, we first
review the Schwarzschild BH surrounded by a cloud of
strings in Rastall gravity theory. Then, by using the NJA
without complexification, we derive an exact solution
which represents a rotating Kerr BH surrounded by a
cloud of strings in Rastall gravity. Thereafter, the thermo-
dynamic properties of this rotating BH are discussed.
Furthermore, according to this solution, in Sec. III the
GB theorem and osculating Riemannian manifold method
are used to study the effects of a cloud of strings on the
gravitational deflection angle of massive particles for a
receiver and a source at infinite distance from the lens. In
Sec. IV, we use GB theorem and the generalized Jacobi
metric method to study the case for a receiver and a source
at a finite distance from the lens. Finally, we end our paper
with a short conclusion in Sec. V. For simplicity, we set
G ¼ c ¼ ℏ ¼ kB ¼ 1 in this paper.

II. KERR BH SURROUNDED BY A CLOUD OF
STRINGS IN RASTALL GRAVITY

A. Schwarzschild BH surrounded by a cloud of strings

Let us begin with the field equation of the Rastall gravity
model [1],

Hμν ¼ Gμν þ βgμνR ¼ κT μν;

T μν
;μ ¼ λR;ν; ð1Þ

where β≡ κλ with the constant λ being the Rastall
parameter and κ being the Rastall gravitational coupling
constant. It is required that β ≠ 1=6 and β ≠ 1=4 [106].
Obviously, Eq. (1) is reduced to the field equation and
the conservation of the energy-momentum tensor within
the context of the general relativity when λ ¼ 0 and
κ ¼ 8πG.
The two-dimensional world sheet Π of a string is

described by xα ¼ xαðXaÞ, where X0 is the timelike
parameter and X1 is the spacelike parameter. The action
of a string evolving in the spacetime is [22]

IS¼μ

Z
Π

ffiffiffiffiffiffi
−χ

p
dX0dX1¼μ

Z
Π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ΠαβΠαβ

r
dX0dX1; ð2Þ

where μ is a positive dimensionless constant related to the
tension of the string, χ is the determinant of the induced
metric

χab ¼ gαβ
∂xα
∂Xa

∂xβ
∂Xb ; ð3Þ

and Παβ is the string bivector defined as

Παβ ¼ ϵab
∂xα
∂Xa

∂xβ
∂Xb ; ð4Þ

with ϵab being the Levi-Civita symbol satisfying
ϵ01 ¼ −ϵ10 ¼ 1. The energy-momentum tensor of the
string can be obtained from the action in Eq. (2), as follows:

Tαβ ¼ μ
ΠαγΠβ

γffiffiffiffiffiffi−χp : ð5Þ

For a collection of strings, the energy-momentum tensor
is Tαβ

cloud ¼ ρsTαβ, where ρs is the number density.
Considering the spherically symmetric distributions of a
string cloud, Cai and Miao recently obtained a BH solution
to the field equation (1), as follows [30]:

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ hðrÞðdθ2 þ sin2 θdϕ2Þ; ð6Þ

where

fðrÞ ¼ gðrÞ ¼ 1 −
2M
r

þ 4a0ðβ − 1
2
Þ2

ð8β2 þ 2β − 1Þr 4β
2β−1

;

hðrÞ ¼ r2:

Here,M is the mass of the BH and a0 is the string parameter
linked to the energy density of the cloud of strings. It is
obvious that β ≠ �1=2; 1=4. It is worthwhile to mention
that the solution of the Schwarzschild BH surrounded by a
cloud of strings in Rastall gravity in Eq. (6) can be
transformed into the solution of the Schwarzschild BH
surrounded by quintessence in GR [20] by the following
transformation [30]:

β ¼ 3ωq þ 1

6ωq − 2
;

a0 ¼ −
9c̃
2
ðωq þ ω2

qÞ; ð7Þ

where ωq is the quintessential state parameter, and c̃ is an
integral constant associated with the energy density of
quintessence.

B. Newman-Janis algorithm without complexification
and the Kerr BH surrounded by a cloud of strings

TheNJA is a useful technique to obtain rotating spacetime
from nonrotating spacetime [107–110]. For example, one
can apply it to construct the Kerr (Kerr-Newman) solution
from the Schwarzschild (Reissner-Nordström) solution.
However, due to the complexification of the radial coor-
dinate r in the original NJA, the solution obtained by the
method may be invalid in the Boyer-Lindquist coordinate
system [111]. Azreg-Aïnou introduced a modified NJA that
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can drop the complexification [112,113]. Azreg-Aïnou’s
method of the NJAwithout complexification has now been
widely used in different gravitational theories, including the
Rastall model [21,114–116]. In particular, it is shown that
the rotating black hole surrounded by a cloud of strings in
GR can be obtained using the modified NJA [26]. In this
subsection, the NJA without complexification will be
employed to build the rotating BH solution from the static
one given in Eq. (6).
Via the coordinate transformation

du ¼ dt −
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞgðrÞp ; ð8Þ

the metric in Eq. (6) becomes

ds2 ¼ −fðrÞdu2 − 2

ffiffiffiffiffiffiffiffiffi
fðrÞ
gðrÞ

s
dudrþ hðrÞðdθ2 þ sin2 θdϕ2Þ:

ð9Þ

Using the null tetrad, the inverse components of the metric
can be written as

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; ð10Þ

or in the matrix form as

gμν ¼

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA;

with m̄μ being the complex conjugate ofmμ. One can chose
the tetrad vectors as follows:

lμ ¼ ð0; 1; 0; 0Þ;

nμ ¼
 ffiffiffiffiffiffiffiffiffi

gðrÞ
fðrÞ

s
;−

gðrÞ
2

; 0; 0

!
;

mμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2hðrÞp �

0; 0; 1;
i

sin θ

�
: ð11Þ

Now a complex coordinate transformation can be per-
formed on the ðu; rÞ plane,

u → u − ia cos θ;

r → rþ ia cos θ; ð12Þ

where a is the spin parameter. The new coordinates
ðu; r; θ;ϕÞ are called Eddington-Finkelstein coordinates.

The transformation leads to fðrÞ → Fðr; θ; aÞ, gðrÞ →
Gðr; θ; aÞ, and hðrÞ → Σðr; θ; aÞ. In Eddington-Finkelstein
coordinates, the null tetrad becomes

lμ ¼ ð0; 1; 0; 0Þ;

nμ ¼
 ffiffiffiffi

G
F

r
;−

G
2
; 0; 0

!
;

mμ ¼ 1ffiffiffiffiffiffi
2Σ

p
�
ia sin θ;−ia sin θ; 1;

i
sin θ

�
: ð13Þ

Then, according to Eq. (10), the metric can be obtained and
the result reads

ds2 ¼ −Fdu2 − 2

ffiffiffiffi
F
G

r
dudrþ 2a

 
F −

ffiffiffiffi
F
G

r !
sin2θdudϕ

þ Σdθ2 þ 2asin2θ

ffiffiffiffi
F
G

r
drdϕ

þ sin2θ

"
Σþ a2

 
2

ffiffiffiffi
F
G

r
− F

!
sin2θ

#
dϕ2: ð14Þ

Next, one can change the Eddington-Finkelstein coordi-
nates ðu; r; θ;ϕÞ to Boyer-Lindquist coordinates ðt; r; θ;ϕÞ
via [112]

du → dtþ ξðrÞdr;
dϕ → dϕþ ζðrÞdr; ð15Þ

where

ξðrÞ ¼ −
ςðrÞ þ a2

gðrÞhðrÞ þ a2
;

ζðrÞ ¼ −
a

gðrÞhðrÞ þ a2
;

ςðrÞ ¼
ffiffiffiffiffiffiffiffiffi
gðrÞ
fðrÞ

s
hðrÞ: ð16Þ

Moreover, one can choose

Fðr; θÞ ¼ ðgðrÞhðrÞ þ a2 cos2 θÞΣ
ðςðrÞ þ a2 cos2 θÞ2 ;

Gðr; θÞ ¼ gðrÞhðrÞ þ a2 cos2 θ
Σ

: ð17Þ

For our case, fðrÞ ¼ gðrÞ and hðrÞ ¼ r2, one can choose
Σ ¼ r2 þ a2 cos2 θ [112]. Thus, one has
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Fðr; θÞ ¼ Gðr; θÞ ¼ r2gðrÞ þ a2 cos2 θ
Σ

: ð18Þ

Finally, the metric of the Kerr BH surrounded by a cloud
of strings in the Boyer-Lindquist coordinates reads

ds2 ¼ −
�
1 −

A
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2 −

2aA sin2 θ
Σ

dtdϕ

þ sin2 θ

�
r2 þ a2 þ a2A sin2 θ

Σ

�
dϕ2; ð19Þ

where

A ¼ 2Mr − 4a0λ1r2−λ2 ;

Δ ¼ r2 − 2Mrþ a2 þ 4a0λ1r2−λ2 ;

λ1 ¼
ðβ − 1

2
Þ2

8β2 þ 2β − 1
;

λ2 ¼
4β

2β − 1
:

One can obtain the nonvanishing components of the
Rastall tensor Hμν associated with the metric in Eq. (19) by
using the Mathematica package RGTC, as follows:

H00 ¼
2ða2r2 þ r4 − 2r3ρ − a4 cos2 θ sin2 θÞρ0

Σ3
−
rða2 þ r2 − 2rρÞρ00

Σ2
;

H11 ¼ −
2r2

Σ
ρ0

Δ
þ rρ00

Δ
;

H22 ¼ −
2a2 cos2 θ

Σ
ρ0;

H33 ¼ −
2a2 sin2 θ½ða2 þ r2Þ2 cos2 θ − r2ða2 þ r2 − 2rρÞ sin2 θ�ρ0

Σ3
−
ra2ða2 þ r2 − 2rρÞ sin4 θρ00

Σ2
;

H03 ¼
2a½ða2 þ r2Þða2 cos2 θ − r2Þ þ 2r3p� sin2 θρ0

Σ3
þ arða2 þ r2 − 2rρÞ sin2 θρ00

Σ2
;

where ρ ¼ M − 2a0λ1r2−λ2 and “ 0” denotes the derivative
with respect to r. To calculate the energy-momentum
tensor, we use the following tetrad:

eμ0 ¼
1ffiffiffiffiffiffiffi
ΣΔ

p ðr2 þ a2; 0; 0; aÞ;

eμ1 ¼
ffiffiffiffi
Δ
Σ

r
ð0; 1; 0; 0Þ;

eμ2 ¼
1ffiffiffi
Σ

p ð0; 0; 1; 0Þ;

eμ3 ¼ −
1ffiffiffi

Σ
p

sin θ
ða sin2 θ; 0; 0; 1Þ: ð20Þ

With this tetrad, the energy-momentum tensor can be
written as T μν ¼ ðE;P1;P2;P3Þ, where

E ¼ 1

κ
eμ0e

ν
0Hμν; P1 ¼

1

κ
eμ1e

ν
1Hμν;

P2 ¼
1

κ
eμ2e

ν
2Hμν; P3 ¼

1

κ
eμ3e

ν
3Hμν:

Then, the results read

E ¼ −P1 ¼
rð2rρ0 − Σρ00Þ

κΣ2
;

P2 ¼ P3 ¼ −P1 −
2ρ0 − rρ00

κΣ
: ð21Þ

Thus, the solution given by Eq. (19) indeed describes a
rotating BH surrounded by a cloud of strings with an
energy-momentum tensor in Eq. (21), within the context of
the Rastall gravity. The solution in Eq. (19) can return to the
various known BH solutions in suitable limits. The Kerr
BH surrounded by a cloud of strings in GR can be derived
when the Rastall parameter λ ¼ 0 [26]. When a0 ¼ 0, the
energy-momentum tensor (21) vanishes, and the Kerr
solution in GR can be found [117]. Meanwhile, it returns
to the static solution in Eq. (6) if a ¼ 0. Also, using the
transformation in Eq. (7), the solution of the Kerr BH
surrounded by a cloud of strings in Rastall gravity in
Eq. (19) can be transformed into the solution of the Kerr
BH surrounded by quintessence in GR [118].
In the following, we will study the thermodynamics and

weak gravitational deflection of the massive particle.
Throughout the paper, we mainly consider the case of
λ2 ≥ 0, i.e., β ≤ 0 or β ≥ 1=2.

C. Thermodynamic properties

In this subsection, we briefly discuss the thermodynamic
properties of the BH in Eq. (19). First, the BH horizons are
determined by
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ΔðrÞ ¼ r2 − 2Mrþ a2 þ 4a0λ1r2−λ2 ¼ 0: ð22Þ

Obviously, when β → �∞, the horizons become

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −

a0
2

r
; ð23Þ

and other situations for −∞ < β < þ∞ are complicated.
Figure 1 shows the relationship between the BH horizon
and the parameters a, a0 and β in some special cases. Now,
it is assumed that the BH has the outer horizon and one can
write the mass in terms of outer horizon rþ from Eq. (22),
as follows:

M ¼ 1

2rþ
ðr2þ þ a2 þ 4a0λ1r

2−λ2þ Þ: ð24Þ

Then, the tunneling method [119–121] can be used to
calculate the Hawking temperature. In the tunneling
method, setting dθ ¼ dϕ ¼ 0 and θ ¼ 0, the metric and
Hawking temperature can be written as

ds2 ¼ −f̂ðrÞdt2 þ 1

f̂ðrÞ dr
2; ð25Þ

TH ¼ ∂rf̂ðrÞ
4π

����
r¼rþ

: ð26Þ

With this approach, our metric becomes

ds2 ¼ −
Δ

r2 þ a2
dt2 þ r2 þ a2

Δ
dr2; ð27Þ

and the Hawking temperature reads

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. The BH horizons, where the vertical axis is denoted byΔðrÞ and the horizontal axis by r. We setM ¼ 1 and take a, a0, and β as
variables. For the pictures in first line, a ¼ 1 and a0 takes values 1, 0.5, and 0.1 corresponding to (a), (b), and (c), respectively. For the
pictures in the second line, a ¼ 0.5 and a0 takes values 1, 0.5, and 0.1 corresponding to (d), (e), and (f), respectively. For the pictures in
the last line, a ¼ 0.1, and a0 takes values 1, 0.5, and 0.1 corresponding to (g), (h), and (i), respectively. In all the nine figures, the thin
black line, thick blue line, purple dashed line, green dotted line, and orange dash-dotted line correspond to β → �∞, β ¼ −1, β ¼ −0.1,
β ¼ 0.6, and β ¼ 1, respectively. Note that we have added the Kerr BH (a0 ¼ 0) in each picture, plotted by red solid lines.
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TH ¼ ðrþ −MÞ þ 2a0r1−λ2λ1ð2 − λ2Þ
2πðr2þ þ a2Þ ; ð28Þ

which can lead to the Hawking temperature of the Kerr BH
when a0 ¼ 0 [120]. The angular velocity of the metric in
Eq. (19) is

Ω ¼ −
g03
g33

����
r¼rþ

¼ a
r2þ þ a2

: ð29Þ

The area of the BH is

ABH ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffi

g22g33
p

dθdϕ ¼ 4πðr2þ þ a2Þ; ð30Þ

and the Bekenstein-Hawking entropy of the BH can be
calculated by the area of the BH as follows:

SBH ¼ ABH

4
¼ πðr2þ þ a2Þ: ð31Þ

One can see that the string parameter a0 has the effects to
the angular velocity and the Bekenstein-Hawking entropy
by affecting rþ. However, the expression of the angular
velocity and Bekenstein-Hawking entropy is the same with
the Kerr BH, which is different from the Kerr-Newman-
NUT-Quintessence BH [121].

III. INFINITE-DISTANCE GRAVITATIONAL
DEFLECTION OF MASSIVE PARTICLES

A. JMRF metric

The Jacobi (or Jacobi-Maupertuis) metric is a powerful
tool in geometrodynamics. In 2016, Gibbons [122] derived
the Jacobi metric of a static spacetime, which is an energy-
dependent positive Riemannian metric. In 2019, Chanda
et al. [123] discovered the Jacobi metric of stationary
spacetime, which is an energy-dependent Randers-Finsler
metric. A more general discussion about the Jacobi metric
can be found in Ref. [124]. The spatial part of the timelike
geodesic in spacetime is the spatial geodesic in the
corresponding Jacobi metric space and thus the Jacobi
metric method has been widely used in the study of particle
motion in curved spacetime. For example, it was used to
study Kepler orbit [125,126], the gravitational deflection of
massive particles [89,103,104], the motion of charged
particles [127], and Hawking radiation [128]. As men-
tioned above, the Jacobi-Maupertuis metric of a stationary
spacetime is a Randers-Finsler metric described by ðᾱ; β̄Þ,
say

F ðxi; dxiÞ ¼ dsJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱijdxidxj

q
þ β̄idxi;

where ᾱij is a Riemannian metric and β̄i is a one-form,
satisfying ᾱijβ̄iβ̄j < 1. The Jacobi metric of a stationary
spacetime, the JMRF metric, reads [123]

ᾱij ¼
E2 þm2g00

−g00
γij; ð32Þ

β̄i ¼ −E
g0i
g00

; ð33Þ

where m and E are the mass and energy of the particle,
respectively, and the spatial metric, γij, is defined by

γij ≡ gij −
g0ig0j
g00

:

It should be noted that Crisnejo et al. recently derived
JMRF metrics with the optical media method [86]. For the
metric in Eq. (19), one can obtain the corresponding JMRF
metric as follows:

ᾱijdxidxj ¼
�

E2

1 − A
Σ
−m2

��
Σ
Δ
dr2 þ Σdθ2 þ sin2θ

×

�
a2 þ r2 þ a2Asin2θðΣ − 4AÞ

Σ2

�
dϕ2

�
;

β̄idxi ¼ −
aEAsin2θ
Σ − A

dϕ: ð34Þ

On the equatorial plane (θ ¼ π=2), the Randers-Finsler
metric can be reduced to

ᾱijdxidxj ¼
�

E2

1 − A
r2
−m2

��
r2

Δ
dr2

þ
�
a2 þ r2 þ a2Aðr2 − 4AÞ

r4

�
dϕ2

�
;

β̄idxi ¼ −
aEA
r2 − A

dϕ: ð35Þ

The energy of the particle E can be expressed by the
velocity v of the particle

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð36Þ

and this expression will be used in the following.

B. Osculating Riemannian manifold and
Gauss-Bonnet theorem

Denoting a smooth manifold by M, the Finsler metric
F ðx; yÞ is a function on the tangent bundle TM, and its
Hessian reads [129]

gijðx; yÞ ¼
1

2

∂2F 2ðx; yÞ
∂yi∂yj : ð37Þ

To introduce the GB theorem to study the light deflection,
Werner [55] applied Nazım’s method to construct an
osculating Riemannian manifold ðM; g̃Þ of the Finsler
manifold ðM;F Þ. Following this scheme, a smooth non-
zero vector field Y which is tangent to the geodesic ηF , say
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YðηF Þ ¼ y, can be chosen, and a Riemannian metric can be
obtained by the Hessian

g̃ijðxÞ ¼ gijðx; YðxÞÞ: ð38Þ

By this construction, the geodesic in ðM;F Þ is still a
geodesic in ðM; g̃Þ, i.e., ηF ¼ ηg̃, for which the details are
shown in Ref. [55]. On the equatorial plane, our Randers-
Finsler metric in Eq. (35) leads to

F ðr;ϕ;Yr;YϕÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�
1

ð1− A
r2Þð1−v2Þ−1

��
r2

Δ
ðYrÞ2þ

�
a2þr2þa2Aðr2−4AÞ

r4

�
ðYϕÞ2

�s
−

amA

ðr2−AÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p Yϕ: ð39Þ

In the present work, we mainly consider the terms
including M;M2;Ma; a2; a0 in the deflection angle, and
the terms containing Ma0; aa0 are ignored. To simplify
writing, the approximation is denoted as Oðε3Þ≡OðM3;
M2a;Ma2; a3; a20;Ma0; aa0Þ. To this end, the first-order
particle ray will be considered, which is consistent with the
Kerr spacetime [103]

rðϕÞ¼ b
sinϕ

−
�
cot2ϕþcsc2ϕ

v2

�
MþOðM2;a2;Ma;a0Þ:

ð40Þ
But now, we only need the zero-order particle ray
r ¼ b= sinϕ to construct the following vector fields:

Yr ¼ dr
dl

¼ −
cosϕ
mv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
;

Yϕ ¼ dϕ
dl

¼ sin2 ϕ
mbv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
: ð41Þ

Then, by substituting Eq. (39) into Eq. (37), and using
Eq. (41), the osculating Riemannian metric can be obtained
as follows:

g̃rr¼
m2

1−v2

�
v2þ2mð1þv2Þ

r
−

2aMrvsin6ϕ

b3ðcos2ϕþ r2

b2 sin
4ϕÞ3=2

−4a0r−λ2ð1þv2Þλ1þ
4ð2þv2ÞM2

r2
−
a2v2

r2

�
þOðε3Þ;

ð42Þ

g̃rϕ ¼ m2

1 − v2
2Mav cos3 ϕ

rðcos2 ϕþ r2

b2 sin
4 ϕÞ3=2 þOðε3Þ; ð43Þ

g̃ϕϕ ¼ m2

1 − v2

�
v2r2 þ 2Mr −

2Marvsin2ϕð3cos2ϕþ 2 r2

b2 sin
4ϕÞ

bðcos2ϕþ r2

b2 sin
4ϕÞ3=2 − 4a0r2−λ2λ1 þ 4M2 þ a2v2

�
þOðε3Þ: ð44Þ

Now, the particle ray is a geodesic in the osculating-
Riemannian-metric spacetime. In the following, we will use

the GB theorem to study the gravitational deflection, and
we will briefly introduce the GB theorem first. The GB
theorem deeply connects the geometry and topology of a
surface. Let D be a compact, oriented surface with
Gaussian curvature K and the Euler characteristic χðDÞ,
and its boundary ∂D is a piecewise smooth curve with
geodesic curvature k. The GB theorem states that [53,130]

Z Z
D
KdSþ

I
∂D

kdlþ
X
i¼1

φi ¼ 2πχðDÞ; ð45Þ

where dS is the area element, dl is the line element of the
boundary, and φi is the jump angle in the i-th vertex of ∂D
in the positive sense, respectively.
Then, as shown in Fig. 2, one can consider a region

Dr0 ⊂ ðM; g̃ijÞ bounded by a particle ray ηg̃ from the source
S to the receiver R and a curve Cr0 defined by
r ¼ r0 ¼ constant, i.e., ∂Dr0 ¼ ηg̃ ∪ Cr0 . Due to the fact

FIG. 2. A region Dr0 ⊂ ðM; g̃ijÞ, with ∂Dr0 ¼ ηg̃ ∪ Cr0 . The
particle ray ηg̃ is a geodesic inDr0 and the curve Cr0 is defined by
rðϕÞ ¼ r0 ¼ constant. S, R, and L denote the source, the receiver,
and the lens, respectively. α is the deflection angle. Note that
φS þ φR → π as r0 → ∞.
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that ηg̃ is a geodesic inDr0 , one can have kðηg̃Þ ¼ 0. For the
curve Cr0 , when r0 → ∞, we have kðCr0Þdl → dϕ, and

therefore
R
C∞

kðC∞Þdl ¼
R πþαj∞
0 dϕ, with αj∞ being the

infinite-distance deflection angle. In addition, one can see
χðDr0Þ ¼ 1 in the region outside of the lens object L, and
noticing that φR þ φS → π as r0 → ∞, finally one can haveZ Z

Dr0

K̃dSþ
Z

R

S
dϕþ φR þ φS

¼r0→∞
Z Z

D∞

K̃dSþ
Z

πþαj∞

0

dϕþ π ¼ 2π; ð46Þ

where the GB theorem has been applied to the region Dr0 .
From this, the infinite-distance deflection of massive
particles can be calculated by

αj∞ ¼ −
Z Z

D∞

K̃dS: ð47Þ

In the expression above, one can see that the deflection
angle is coordinate-invariant, and additionally, the
Gaussian curvature of a surface defined by the Remiannian

metric gij in the equatorial plane ðr;ϕÞ can be calculated as
in Ref. [55],

K ¼ 1ffiffiffiffiffiffiffiffiffi
det g

p

2
64∂
� ffiffiffiffiffiffiffi

det g
p
grr

Γϕ
rr

	
∂ϕ −

∂
� ffiffiffiffiffiffiffi

det g
p
grr

Γϕ
rϕ

	
∂r

3
75: ð48Þ

C. Infinite-distance deflection angle of massive particles

Now, according to Eq. (47), we can investigate the effects
of a cloud of strings on the gravitational deflection angle of
massive particles for a receiver and source at an infinite
distance from the rotating BH in Rastall gravity. First, the
Gaussian curvature of the osculating Riemannian metric g̃ij
can be calculated by Eq. (48), and the result is

K̃¼ −
ð1− v4ÞM
m2r3v4

þ 2a0ð1− v2Þλ1λ2ðv2 þ λ2Þ
m2v4r2þλ2

þ 3ð2− 3v2 þ v4ÞM2

m2r4v6
þ 3Mað1− v2Þ

4m2v3b2r2
Ξðr;ϕÞ þOðε3Þ;

ð49Þ

where

Ξðr;ϕÞ ¼ sin3ϕ

ðcos2φþ r2

b2 sin
4ϕÞ7=2

�
2cos6ϕ

�
−2þ 5r

b
sinϕ

�
þ 2r

b
cos2ϕsin5ϕ

�
2 −

r2

b2
þ r2

b2
cos 2ϕþ 4r

b
sinϕ

�

þ cos4ϕsin2ϕ

�
−2þ 9r

b
sinϕ −

10r3

b3
sin3ϕ

�
þ r2

b2

�
−
r
b
sin9ϕþ 2r3

b3
sin11ϕþ sin42ϕ

��
: ð50Þ

It can be found that there is no a2 term in Gaussian curvature. Then, by Eq. (47), the infinite-distance deflection angle of
massive particles can be obtained in the following:

αj∞ ¼ −
Z

π

0

Z
∞

rðϕÞ
K̃

ffiffiffiffiffiffiffiffiffi
det g̃

p
drdϕ

¼
Z

π

0

Z
∞

rðϕÞ

�ð1þ v2ÞM
r2v2

−
2a0λ1λ2ðv2 þ λ2Þ

v2r1þλ2
þ ð6v2 þ v4 − 4ÞM2

r3v4
−
3Ma
rvb2

Ξðr;ϕÞ
�
drdφþOðε3Þ

¼ αKerrj∞ þ αa0 j∞ þOðε3Þ; ð51Þ
where rðϕÞ is the first-order particle ray in Eq. (40). In the above, αKerrj∞ denotes the infinite-distance angle of massive
particles in Kerr spacetime, and αa0 j∞ is the part of the deflection angle related to a cloud of strings,

αKerrj∞ ≡
Z

π

0

Z
∞

b= sinϕ

�ð1þ v2ÞM
r2v2

þ ð6v2 þ v4 − 4ÞM2

r3v4
−
3Ma
rvb2

Ξðr;ϕÞ
�
drdφ ¼ 2Mð1þ v2Þ

bv2
−
4Ma
b2v

;

αa0 j∞ ≡ −
Z

π

0

Z
∞

b= sinϕ

2a0λ1λ2ðv2 þ λ2Þ
v2r1þλ2

drdϕ: ð52Þ

When a0 ¼ 0, we have αa0 j∞ ¼ 0, and the result agrees with the deflection angle of massive particles in Kerr spacetime
[80]. Notice that we have assumed that λ2 ≥ 0. Therefore, another expression of αa0 j∞ in Eq. (52) can be derived, and the
result is expressed by the gamma function
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αa0 j∞ ¼ −
2a0

ffiffiffi
π

p
λ1ðλ2 þ v2Þ
bλ2v2

Γ½1
2
þ λ2

2
�

Γ½1þ λ2
2
� : ð53Þ

Finally, Eq. (51) can be rewritten as

αj∞ ¼ 2Mð1þ v2Þ
bv2

−
2a0

ffiffiffi
π

p
λ1ðλ2 þ v2Þ
bλ2v2

Γ½1
2
þ λ2

2
�

Γ½1þ λ2
2
�

þ 3πð4þ v2ÞM2

4b2v2
� 4Ma

b2v
þOðε3Þ; ð54Þ

where positive and negative signs correspond to retrograde
and prograde particle orbits, respectively. For the light case
(v ¼ 1), the deflection angle reads

αj∞ðv ¼ 1Þ ¼ 4M
b

−
2a0

ffiffiffi
π

p
λ1ðλ2 þ 1Þ
bλ2

Γ½1
2
þ λ2

2
�

Γ½1þ λ2
2
�

þ 15πM2

4b2
� 4Ma

b2
þOðε3Þ: ð55Þ

One can see that the effect of a cloud of strings on the
infinite-distance deflection angle of light has not been
eliminated.

IV. FINITE-DISTANCE GRAVITATIONAL
DEFLECTION OF MASSIVE PARTICLES

In the previous section, with Werner’s method, we
studied the infinite-distance gravitational deflection of
massive particles in a rotating BH surrounded by a
cloud of strings. In this section, we will consider the
finite-distance deflection, a more general situation where
the receiver and the source at finite distance from the
lens object. In this case, Werner’s method does not
seem feasible, and Ono et al. proposed a generalized
optical method to study the finite-distance deflection of
light [92]. Recently, Li et al. [103,104] extended the
study to the massive particles case based on the JMRF
metric.

A. The generalized Jacobi metric method

Here, it is assumed that the particles move in a three-
dimensional Riemannian space M̄ defined by the general-
ized Jacobi metric ᾱij in Eq. (34),

dl2 ¼ ᾱijdxidxj: ð56Þ

Now, the motion of particles does not follow the geodesic
in M̄, and thus Eq. (47) is not available. However, by
the GB theorem one can add a term related to geodesic
curvature of the particle ray to calculate the gravitational
deflection angle. For the metric in Eq. (34), the
geodesic curvature along the particle ray ηᾱ can be
calculated [92] as

kðηᾱÞ ¼ −
∂β̄φ
∂rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ᾱᾱθθ
p : ð57Þ

To study the finite-distance deflection, we apply the
definition of the deflection angle proposed in Ref. [92],

α≡ΨR −ΨS þ ϕRS; ð58Þ

where ΨR and ΨS are angles between the tangent of the
particle ray and the radial direction from the lens to the
receiver and source, respectively, and the coordinate
angle ϕRS ≡ ϕR − ϕS.
Let us now consider the quadrilateral R0

R□
S0
S ⊂ ðM̄; ᾱijÞ

with the Gaussian curvature K̄, as shown in Fig. 3.
It is bounded by four curves: the particle ray ηᾱ, a curve
Cr0 as defined in the previous section, two spatial geodesics
of outgoing radial lines from R to R0, and S to S0,
respectively. For this region, one can see χðR0

R□
S0
SÞ ¼ 1,

and additionally, we have φS ¼ π −ΨS and φR ¼ ΨR.
Thus, using the GB theorem to the quadrilateral, one
can obtainZ Z

R0
R□

S0
S

K̄dS −
Z

R

S
kdlþ

Z
Cr0

kdl

þ ΨR þ ðπ − ΨSÞ þ φS0 þ φR0 ¼ 2π. ð59Þ

For the curve Cr0 , we have
R
C∞

kðC∞Þdl ¼ ϕRS, and
furthermore, the sum of two jump angles φR0 þ φS0 ¼ π
as r0 → ∞. Therefore, when r0 → ∞, Eq. (59) leads to

Z Z
∞
R□

∞
S

K̄dS −
Z

R

S
kðηᾱÞdlþ ϕRS þ ΨR − ΨS ¼ 0: ð60Þ

Then, according to the definition of deflection angle in
Eq. (58), the above equation can be rewritten as

FIG. 3. The quadrilateral R
0

R□
S0
S ⊂ ðM̄; αijÞ. ηᾱ is the particle ray

from source S to receiver R, deflected by lens object L. R0 and S0
are the intersection points of curve Cr0 and radial directions, from
the L to R and S, respectively. ΨR and ΨS are angles between the
tangent of the particle ray and the radial direction from the lens to
R and S, respectively. φR ¼ ΨR and φS ¼ π − ΨS, and in
addition, φR0 þ φS0 → π as r0 → ∞.
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α ¼ −
Z Z

∞
R□

∞
S

K̄dSþ
Z

R

S
kðηᾱÞdl: ð61Þ

This expression shows that the finite-distance deflec-
tion angle is also coordinate-invariant. In addition, this
expression can be used to calculate the infinite-distance
deflection as long as we let rR → ∞ and rS → ∞, and this
is the reason we say that the finite-distance deflection is
more common than the infinite-distance deflection.

B. Finite-distance deflection angle of
massive particles

Substituting the corresponding metric components
in Eq. (35) into Eq. (48), one can obtain the Gaussian
curvature of the generalized Jacobi metric as follows:

K̄ ¼ 2a0λ1λ2ð1 − v2Þðλ2 þ v2Þ
m2v4r2þλ2

−
ð1 − v4ÞM
m2v4r3

þ 3ð2 − 3v2 þ v4ÞM2

m2r4v6
þOðε3Þ: ð62Þ

On the other hand, the geodesic curvature of a particle ray
in the generalized Jacobi space ðM̄; ᾱijÞ can be calculated
by Eq. (57), and the result is

kðηᾱÞ ¼ −
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Ma

mv2r3
þOðε3Þ: ð63Þ

From Eq. (56), one can have

kðηᾱÞdl ¼ −
2Ma sinϕ

b2v
dϕþOðε3Þ; ð64Þ

where we have used the first-order particle ray in Eq. (40).
Finally, substituting the quantities mentioned above into
Eq. (61), the deflection angle is

α ¼
Z

ϕR

ϕS

Z
∞

rðϕÞ

�
−
2a0λ1λ2ðλ2 þ v2Þ

v2r1þλ2
þ ð1þ v2ÞM

v2r2

þ ð6v2 þ v4 − 4ÞM2

r3v4

�
drdϕ

−
Z

ϕR

ϕS

2Ma sinϕ
b2v

dϕþOðε3Þ: ð65Þ

According to the first-order particle ray in Eq. (40), one can
obtain the first-order coordinate angle at the receiver and
source, respectively, as

ϕS ¼ arcsin

�
b
rS

�
þ b2v2 − r2Sð1þ v2Þ

rS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S − b2

p
v2

M
b
;

ϕR ¼ π − arcsin

�
b
rR

�
−
b2v2 − r2Rð1þ v2Þ
rR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R − b2

p
v2

M
b
: ð66Þ

When α0 ¼ 0, Eq. (65) reduces to the Kerr BH case, and
the result becomes [103]

αKerr¼
ð1þv2ÞM

� ffiffiffiffiffiffiffiffiffiffi
1−b2

r2R

q
þ

ffiffiffiffiffiffiffiffiffiffi
1−b2

r2S

q 	
bv2

3ð4þv2Þ½π−arcsinð brRÞ−arcsinð brSÞ�
4v2

M2

b2
þ

b
rS
½3v2ð4þv2Þþð4−8v2−3v4Þb2r2S�

4v4
ffiffiffiffiffiffiffiffiffiffi
1−b2

r2S

q M2

b2

þ
b
rR
½3v2ð4þv2Þþð4−8v2−3v4Þb2r2R�

4v4
ffiffiffiffiffiffiffiffiffiffi
1−b2

r2R

q M2

b2
�
2Ma

� ffiffiffiffiffiffiffiffiffiffi
1−b2

r2R

q
þ

ffiffiffiffiffiffiffiffiffiffi
1−b2

r2S

q 	
b2v

; ð67Þ

where the positive and negative signs correspond to retrograde and prograde particle orbits, respectively. Accordingly,
the finite-distance deflection angle of massive particles in Eq. (65) can be rewritten as

α ¼ αKerr þ αa0 þOðε3Þ; ð68Þ

where

αa0 ¼ −2a0λ1λ2
�
1þ λ2

v2

�Z
ϕR

ϕS

Z
∞

b
sinϕ

r−1−λ2drdϕ;

¼ −
2a0λ1ðλ2 þ v2Þ

bλ2v2

Z
ϕR

ϕS

sinλ2ϕdϕ

¼ −
2a0λ1ðλ2 þ v2Þ

bλ2v2
×

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2R

s
2F1

�
1

2
;
1 − λ2
2

;
3

2
; 1 −

b2

r2R

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2S

s
2F1

�
1

2
;
1 − λ2
2

;
3

2
; 1 −

b2

r2S

�#
: ð69Þ

KERR BLACK HOLE SURROUNDED BY A CLOUD OF STRINGS … PHYS. REV. D 104, 104044 (2021)

104044-11



Here, 2F1ða; b; c; zÞ is the Hypergeometric function [131].
Let v ¼ 1, as it is shown that the finite-distance deflection
angle of light is also effected by the cloud of strings. In
addition, for rR → ∞ and rS → ∞, the infinite-distance
deflection angle of massive particles in Eq. (54) can be
recovered. Furthermore, the difference between the finite-
and infinite-distance deflection angles can be described by
the finite-distance correlation

δα ¼ αj∞ − α ¼ δαKerr þ δαa0 ; ð70Þ

where δαKerr ¼ αKerrj∞ − αKerr and δαa0 ¼ αa0 j∞ − αa0 .
In the following equations, several specific values of λ2

will be considered to show the effects of a cloud of strings
on the finite-distance gravitational deflection angle of
massive particles.

1. β → �∞; λ1 = 1=8; λ2 = 2

When β → �∞, we have λ1 ¼ 1=8; λ2 ¼ 2, and Eq. (69)
becomes

αa0 ¼ −
a0ð2þ v2Þ
8b2v2

 
b
rR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2R

s
þ b
rS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2S

s

þ π − arcsin
b
rR

− arcsin
b
rS

!
: ð71Þ

Meanwhile, the infinite-distance deflection angle can be
recovered,

αa0 j∞ ¼ −
a0πð2þ v2Þ

8b2v2
: ð72Þ

2. β= 3=2; λ1 = 1=20; λ2 = 3

When β ¼ 3=2, we have λ1 ¼ 1=20, λ2 ¼ 3, and Eq. (69)
leads to

αa0 ¼ −
a0ð3þ v2Þ
30b3v2

2
642

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2S

s
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2R

s

þ
b2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2R

q
r2R

þ
b2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2S

q
r2S

3
75: ð73Þ

When rR → ∞ and rS → ∞, the infinite-distance deflec-
tion angle becomes

αa0 j∞ ¼ −
2a0ð3þ v2Þ
15b3v2

: ð74Þ

3. β= 1;λ1 = 1=36;λ2 = 4

Let β ¼ 1, and we have λ1 ¼ 1=36, λ2 ¼ 4. In this case,
Eq. (69) comes to

αa0 ¼ −
a0ð4þ v2Þ
144b4v2

2
643b

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2R

q
rR

þ
3b

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2S

q
rS

þ
2b3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2R

q
r3R

þ
2b3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r3S

q
r3S

þ 3

�
π − arcsin

b
rR

− arcsin
b
rS

�375: ð75Þ

For the infinite-distance deflection,

αa0 j∞ ¼ −
a0πð4þ v2Þ

48b4v2
: ð76Þ

4. β= 5=6; λ1 = 1=56; λ2 = 5

We consider β ¼ 5=6, which leads to λ1 ¼ 1=56 and
λ2 ¼ 5, and in this case, Eq. (69) becomes

αa0 ¼ −
a0ð5þ v2Þ
420b5v2

2
648

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2R

s
þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2S

s

þ
4b2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2R

q
r2R

þ
4b2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2S

q
r2S

þ
3b4

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2R

q
r4R

þ
3b4

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2S

q
r4S

3
75; ð77Þ

and the infinite-distance deflection is

αa0 j∞ ¼ −
a0πð8þ v2Þ
256b8v2

: ð78Þ

αa0 versus the source distance rS is plotted in Fig. 4,
where the vertical axis takes the value lg jαa0 j, and the
horizontal axis takes lgðrS=MÞ. We have set v ¼ 0.9c,
M ¼ 1, a ¼ 0.6M, a0 ¼ 0.6Mλ2 , b ¼ 102M, and
rR ¼ 104M. The numerical results show that the effect
of a cloud of strings decreases as λ2ð≥ 2Þ increases. In
addition, it is shown that the impact of source distance rS on
αa0 is very small.
In the above, we did not consider the case of λ2 ¼ 0 (i.e.,

β ¼ 0), which describes the solution of rotating BHs
surrounded by a cloud of strings in GR. From Eqs. (49)
or (62), the term containing a0 in Gaussian curvature
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disappears. Thus, it seems that the first-order term of string
parameter a0 does not contribute to the deflection angle.
However, from Eq. (69), one can see that the terms
containing a0 do not disappear when λ2 ¼ 0, and one
can find that the result becomes

αa0 ¼
a0
2

 
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2R

s
þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2R

s !
: ð79Þ

For the infinite-distance case,

αa0 j∞ ¼ a0
2
π; ð80Þ

and it can be seen that this term is independent of the
particle velocity v. In this assumption, the total infinite-
distance deflection angle of the massive particle reads

αj∞¼2Mð1þv2Þ
bv2

þ3πð4þv2ÞM2

4b2v2
�4Ma

b2v
þa0

2
πþOðε3Þ:

ð81Þ

Let v ¼ 1, and one can obtain the deflection angle of light
in the Kerr spacetime surrounded by a cloud of strings in
GR, as follows:

αj∞ ¼ 4M
b

þ a0
2
π � 4Ma

b2
þ 15πM2

4b2
þOðε3Þ: ð82Þ

In this equation, the first three items are consistent with
Eq. (42) in Ref. [105].

V. CONCLUSION

In this paper, the Kerr solution surrounded by a cloud of
strings in the Rastall gravity model has been obtained by
using the NJA without complexification. The influence of
the string parameter a0 on the BH’s thermodynamic proper-
ties has been discussed. As a main result of this work, the
gravitational lensing of massive particles for the Kerr
solution obtained here is further considered by applying a
geometric and topological method. For the case that the
receiver and the source are infinitely far from the lens object,
the GB theorem is applied to an osculating Riemannian
space in which the particle ray is a geodesic, and the result
related to the string parameter a0 is described by the Gamma
function in Eq. (54). For the case in which the receiver and
the source are finitely far from the lens object, the GB
theorem is applied to a generalized Jacobi metric space. The
particle ray is not a geodesic and its geodesic curvature
should be considered to study the gravitational deflection.
The result related to the string parameter a0 is described by
the hypergeometric function in Eq. (69). It should be noted
that the finite-distance deflection angle in Eq. (69) can lead
to the infinite-distance angle (54), which shows that the
same result for the infinite-distance deflection angle of
massive particles can be obtained with the two methods. On
the other hand, we find that the term containing a0 in the
Gaussian curvature vanish when β ¼ 0 (λ2 ¼ 0). However,
β ¼ 0 does not lead to this term vanishing as a result.
Furthermore, considering the light case and setting λ2 ¼ 0,
our result agrees with the result for the rotating BH
surrounded by a cloud of strings in GR.
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FIG. 4. The deviation of the finite-distance deflection angle
from the Kerr spacetime. The vertical axis takes the value lg jαa0 j,
and the horizontal axis takes lgðrS=MÞ, with v ¼ 0.9c, M ¼ 1,
a ¼ 0.6M, a0 ¼ 0.6Mλ2 , b ¼ 102M, and rR ¼ 104M. The red
solid line, purple dashed line, blue dotted line, and green dash-
dotted line correspond to λ2 ¼ 2, λ2 ¼ 3, λ2 ¼ 4, and λ2 ¼ 5,
respectively.
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