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Recently, we obtained the simple metrics of a spherically symmetric black hole in a dark matter halo, and
extended to the case of rotation. As the characteristic sound of black holes, quasinormal modes (QNMs) are
one of the important means to understand black holes currently. Based on these two metrics of a spherically
symmetric black hole, we study the QNMs of cold dark matter (CDM) and scalar field dark matter (SFDM)
models using the methods of the material field perturbations and the gravitational perturbation, and make
comparisons with the Schwarzschild black hole. Our results show that black hole QNMs of CDM and
SFDM in a dark matter halo are different from the Schwarzschild black hole, unlike a Schwarzschild black
hole with a prominent power-law tail. The different kinds of models of dark matter can be distinguished by
their QNMs. The time of QNMs ringing and frequencies increase with increasing parameter l. The overall
QNMs of CDM are stronger than that of SFDM in the same condition, which is easier to be detected.
In addition, QNM frequencies using the sixth-order WKB method and the Prony method are in good
agreement.

DOI: 10.1103/PhysRevD.104.104042

I. INTRODUCTION

Astronomical observations show that our Universe
mainly consists of three kinds of essential matters: 4.9%
baryonic matter, 26.8% dark matter, and 68.3% dark energy
[1]. For heavenly bodies in the Universe, dark matter’s
effects are extremely important. The most mainstream dark
matter model presently is the cold dark matter model [2,3],
but it has a series of observation difficulties in the small-
scale structure of the Universe [4,5]. So various dark matter
models for studying dark matter have been proposed to
study dark matter, such as a warm dark matter (WDM)
model [6,7], a Bose-Einstein condensation (BEC) model
[8,9], and a self-interacting dark matter (SIDM) model
[10,11]. Among these models, astronomers are most
interested in the distribution of dark matter corresponding
to the dark matter model. The distribution of dark matter in
the large-scale structure of the galaxy is clear presently [1],
but it is often unclear near the nucleus of the galaxy and in
the supermassive black holes or intermediate massive black
holes. Therefore, researching the distribution of dark matter
near black holes will be an interesting and important
question. Generally speaking, for a supermassive black
hole in the Universe, its strong gravitation can cause the

density of dark matter near the black hole to increase
sharply, creating a “spike” phenomenon [12–14].
On the other hand, a black hole (BH) is a celestial body

predicted by general relativity. Wheeler announced that an
isolated black hole can be described by its mass, angular
momentum, and charge [15]. However, there are almost no
isolated black holes in the real Universe. There may be
various complicated matter fields in the black hole. This
indicates that the black hole always interacts with the
external source field, causing the real black hole to be in a
perturbed state. Here, we introduce quasinormal modes
(QNMs) of black holes. QNMs are produced when black
holes are perturbed [16]. It is well known that there are
three stages of black hole perturbations. The first stage is
the initial stage, and the second is the QNMs ringing, which
hides the QNM frequencies. The third is the power-law tail.
QNMs can be obtained by solving black hole perturbation
equations. The solution of the equation is represented by
the pure outgoing wave at infinity and the pure ingoing
wave at the event horizon [17–21]. As the characteristic
sound of black holes, QNMs are one of the important
means to understand black holes currently [22]. For
research on QNMs, papers [23–27] can be referenced.
From black hole QNMs, we can extract frequencies of
QNMs [28–31]. QNM frequencies are not only related to
the hairs of the black hole (mass, charge and angular
momentum) but also may identify the existence of the black
hole [32]. QNMs can provide a method to identify black
holes in the Universe because they carry characteristic
information of black holes [33,34]. The QNMs of black
holes change with parameters changed. Therefore, we can
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use QNMs as a tool to explore and analyze some inherent
properties of a black hole. Now, the detections of gravi-
tational waves [35–39] have opened up new doors of
opportunity for physics research. In the future plan of a
gravitational wave, QNMs may be detected, and the effects
of dark matter on a black hole will also be reflected as
QNMs are discovered. It can be seen that using QNMs to
study the distribution of dark matter near black holes is a
very important topic, which may help us better solve the
distribution problem of dark matter near a black hole.
In this paper, the emphasis of our work is on studying the

effects of QNMs on the distribution of dark matter near
black holes. It is well worth noting Refs. [40–44]. Through
theoretical derivation, we obtained black hole metrics of the
static spherically symmetric in a dark matter halo. In these
metrics, QNMs will occur in the perturbations of a black
hole space-time. We utilize the QNMs to study the
characteristics of the dark matter halo near the black hole,
and make comparisons with the Schwarzschild black hole
(SCHW). In addition, QNMs can help us distinguish the
geometries of different dark matter models [45].
The paper is organized as follows. In Sec. II, we

introduce the black hole metrics in a dark matter halo,
the equations of motion under the material field perturba-
tions and gravitational perturbation, the WKB method and
the finite difference method we used. In Sec. III, we present
the quasinormal modes under scalar, electromagnetic
fields, gravitational perturbation and QNM frequency
tables. Finally, Sec. IV has discussions and conclusions.
In this paper we use mostly the units (G ¼ c ¼ 1).

II. THE METHODS

A. Material field perturbations of a BH in a
dark matter halo

The static spherically symmetric metric of a black hole is
usually given in the following form:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ

We consider the metric of the static spherically symmetric
black hole under the dark matter halo in Ref. [40]: For cold
dark matter (CDM),

fðrÞ ¼
�
1þ r

Rc

�
−
8πρcR3c

r

−
2M
r

: ð2Þ

For scalar field dark matter (SFDM),

fðrÞ ¼ exp

�
−
8ρsR2

s

π

sinðπr=RsÞ
πr=Rs

�
−
2M
r

; ð3Þ

where M is the mass of a black hole; ρc and ρs are the
density of a cosmic period when the halo collapsed; Rc and
Rs are the characteristic radius.
From these two metrics, the difference between them and

the Schwarzschild black hole is that there is a transcen-
dental item in fðrÞ. When their transcendental items are
equal to 1, they will be Schwarzschild black holes. Besides,
the metrics we used are statically spherically symmetric,
and the components of the metrics are unrelated to time,
which means that all the t are equal to a constant value are
the same [45].
The motion equation of a massless scalar field is

generally a covariant K-G equation [46],

1ffiffiffiffiffiffi−gp ∂μð ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð4Þ

and for the motion equation of an electromagnetic field, it
has generally the form [22]

1ffiffiffiffiffiffi−gp ∂νðFρσgρμgσν
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð5Þ

where Fρσ ¼ ∂ρAσ − ∂σAρ, Aν is an electromagnetic four-
potential.
We introduce the tortoise coordinate; it has the following

form:

dr� ¼
dr
fðrÞ : ð6Þ

After separating the variables of Eqs. (4) and (5), a wave-
like equation usually takes the following Schrdinger-like
form for a stationary background:

−
d2Ψ
dr2�

þ VðrÞΨ ¼ ω2Ψ; ð7Þ

and the effective potentials of CDM, SFDM and SCHWare
as follows respectively:

VðCDMÞ ¼
��

1þ r
Rc

�
−
8πρcR3c

r

−
2M
r

���
2M
r3

þ ΔCDM

r

�
ð1 − s2Þ þ lðlþ 1Þ

r2

�
; ð8Þ
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VðSFDMÞ ¼
�
exp

�
−
8ρsR2

s

π

sinðπr=RsÞ
πr=Rs

�
−
2M
r

���
2M
r3

þ ΔSFDM

r

�
ð1 − s2Þ þ lðlþ 1Þ

r2

�
;

ΔCDM ¼
��

1þ r
Rc

�
−
8πρcR3c

r
�0

¼
�
1þ r

Rc

�−8πρcR3c
r

�
−

8πR2
cρc

rð1þ r
Rc
Þ þ

8πR3
cρc logð1þ r

Rc
Þ

r2

�

ΔSFDM ¼ exp

�
−
8ρsR2

s

π

sinðπr=RsÞ
πr=Rs

�0
¼ exp

�
−
8R3

sρs sinðπrRs
Þ

π2r

��
8R3

sρs sinðπrRs
Þ

π2r2
−
8R2

sρs cosðπrRs
Þ

πr

�
: ð9Þ

VðSCHWÞ ¼
�
1 −

2M
r

��
2M
r3

ð1 − s2Þ þ lðlþ 1Þ
r2

�
: ð10Þ

Here, Δ is the first derivative of the transcendental term
versus r, where s ¼ 0 corresponds to a scalar field and
s ¼ 1 corresponds to an electromagnetic field, and l is
the angular quantum number. The third panel in Figs. 1–3
shows that the effective potentials of a Schwarzschild black
hole increase with the increasing l, and decay at infinity,
eventually disappear, then a black hole will be back in
balance. Different from the Schwarzschild background,
CDM and SFDM tend to a positive value at negative
infinity but tend to 0 at positive infinity. Figures 4–6
describe the effective potentials under the scalar field, the
electromagnetic field and gravitational perturbation respec-
tively. The maximum values of the effective potential
in a dark matter halo are slightly less than that of the

Schwarzschild black hole. Furthermore, one case (the first
panel in Fig. 4) shows that the effective potentials of
SFDM have a positive and negative oscillation behavior
when r� tends to positive infinity. With the increasing l,
the oscillation behavior of effective potential weakens and
its values tend to 0.

B. Gravitational perturbation of a BH in a
dark matter halo (axial perturbations)

Gravitational perturbation, which means the metric
perturbation, can be used to solve the perturbed problem
of special black hole spacetime. Under this background, its
perturbed components can be written as partial differential

FIG. 1. The effective potentials of the scalar field with the different l. The three panels, from left to right, are CDM, SFDM, SCHW.
The parameters we used are M ¼ 0.5; Rc ¼ 6; ρc ¼ 0.001; Rs ¼ 3; ρs ¼ 0.01.

FIG. 2. The effective potentials of the electromagnetic field with the different l. The three panels, from left to right, are CDM, SFDM,
SCHW. The parameters we used are M ¼ 0.5; Rc ¼ 6; ρc ¼ 0.001; Rs ¼ 3; ρs ¼ 0.01.
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FIG. 4. The effective potentials of scalar field with the different space-times. The three panels, from left to right, are l ¼ 0, 1, 2.

FIG. 5. The effective potentials of electromagnetic field with the different space-times. The two panels, from left to right, are l ¼ 1, 2.

FIG. 6. The effective potentials of gravitational field with the different space-times. The two panels, from left to right, are l ¼ 2, 3.

FIG. 3. The effective potentials of the gravitational field with the different l. The three panels, from left to right, are CDM, SFDM,
SCHW. The parameter we used is M ¼ 0.5.
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equations simply. These equations were originally given by
Regge and Wheeler [47]. As a sample, they calculated the
simplest perturbed case for the Schwarzschild black hole.
Here, we will calculate the axial perturbations of the dark

matter halo. First, we introduce the small perturbed term
hμν to the background metric ḡμν. Then the resulting
perturbed metric gμν can be written as

gμν ¼ ḡμν þ hμν; and hμν ≪ ḡμν: ð11Þ

With the perturbed metric, the perturbed Christoffel sym-
bols also can be rewritten as

Γλ
μν ¼ Γ̄λ

μν þ δΓλ
μν; ð12Þ

where Γ̄α
μν are Christoffel symbols and the δΓα

μν can be
written as

δΓλ
μν ¼

1

2
ḡλβðhμβ;νþhνβ;μþhμν;βÞ: ð13Þ

Then, the perturbed Ricci tensor can be written as

Rμν ¼ R̄μν þ δRμν; ð14Þ

where

δRμν ¼ δΓλ
μλ;ν − δΓλ

μν;λ; ð15Þ

and the symbol of ; ν is the covariant derivative to the
background metric ḡμν.
Due to the perturbed term δRμν of the Ricci tensor Rμν

has no contribution [48]. So, the field equation of the axial
perturbation can be written as

δRμν ¼ 0: ð16Þ

In the dark matter halo, we consider the case of CDM
and SFDM. Because of the spherically symmetric metrics,
we can introduce the odd perturbations to the ḡμν. The
perturbed term hoddμν can be written as [47]

hoddμν ¼

0
BBB@

0 0 0 h0ðt;rÞ
0 0 0 h1ðt;rÞ
0 0 0 0

h0ðt;rÞ h1ðt;rÞ 0 0

1
CCCAsinθ∂θPlðcosθÞ;

ð17Þ

where Plðcos θÞ are the Legendre polynomials of order l.
The component forms of Eq. (16) can be written as

follows:

δRtφ ¼ ð2rf0ðrÞ − lðlþ 1ÞÞh0ðt; rÞ
2r2

þ fðrÞ
2

� ∂2

∂r2 h0ðt; rÞ −
2

r
∂
∂t h1ðt; rÞ −

∂2

∂r∂t h1ðt; rÞ
�

¼ 0; ð18Þ

δRrφ ¼ ð2rf0ðrÞ − lðlþ 1Þ þ 2fðrÞÞh1ðt; rÞ
r2

þ 1

fðrÞ
� ∂2

∂r∂t h0ðt; rÞ −
∂2

∂t2 h1ðt; rÞ −
2

r
∂
∂t h0ðt; rÞ

�
¼ 0; ð19Þ

δRθφ ¼ f0ðrÞh1ðt; rÞ − 1

fðrÞ
∂
∂t h0ðt; rÞ þ fðrÞ ∂

∂r h1ðt; rÞ ¼ 0; ð20Þ

where the f0ðrÞ denote d
dr fðrÞ. Then we can eliminate the term of ∂

∂t h0ðt; rÞ in combination with Eqs. (19) and (20) [49–55].
We should define Ψðt; rÞ ¼ fðrÞ

r h1ðt; rÞ. The resulting equation can be written as

∂2

∂t2Ψ −
f
r
∂
∂r ½f

∂
∂r ðrΨÞ� þ

2f2

r2
∂
∂r ðrΨÞ þ

f½lðlþ 1Þ − 2rf0 − 2f�
r2

Ψ ¼ 0: ð21Þ

Now, we use Eq. (6) to perform coordinate transformation on Eq. (21). The resulting equation can be rewritten as

∂2

∂t2Ψ −
∂2

∂r2� Ψþ VGðrÞΨ ¼ 0: ð22Þ

VGðrÞ is the effective potential of gravitational perturbation. The following equations [(23)–(25)] respectively correspond
to the case of CDM, SFDM and SCHW,

VGðCDMÞ ¼ ððrþRs
Rs Þ−

8πρRs3

r − 2M
r Þðlðlþ 1Þr − 6M þ 24πρRs2ðrþRs

Rs Þ−
8πρRs3

r −1ðr − ðrþ RsÞ logðrþRs
Rs ÞÞÞ

r3
ð23Þ
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VGðSFDMÞ ¼ ðe−
8ρR3 sinðπrR Þ

π2r − 2M
r Þðlðlþ 1Þ − 6M

r þ 24ρR2e
−
8ρR3 sinðπrR Þ

π2r ðπr cosðπrR Þ−R sinðπrR ÞÞ
π2r Þ

r2
ð24Þ

VGðSCHWÞ ¼ ð1 − 2M
r Þðlðlþ 1Þ − 6M=rÞ

r2
: ð25Þ

C. The WKB method

When calculating QNMs frequencies, we use the WKB
method. This method was first proposed by Schutz andWill
[28], and then promoted by Iyer, Will, and Konoplya
[29–31]. In order to obtain the QNM frequencies, here,
we use the sixth-order WKB formula, which has the
following form:

iðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p −
X6
i¼2

Λi ¼ nþ 1

2
; ðn ¼ 0; 1; 2;…Þ; ð26Þ

where V0 is the maximum value of the effective potentials,
Λi is the ith order revision terms depending on the values of
the effective potential, and more details can be found in
Ref. [22]. In this expression, the WKB formula is related to
the effective potential directly, then the effective potentials
of the echo depends on these three parameters:M, R, and ρ.
In addition, we get QNM frequencies when the number of
overtone n ¼ 0. The WKB program is compiled with
Mathematica and can be obtained on the website [56].

D. The finite difference method

Equation (7) is second order differential equation about
space. We rewrite Eq. (7) without implying the stationary
ansatz (Φ ∼ e−iωt) and it has the following form:

−
∂2Ψ
∂t2 þ ∂2Ψ

∂r2� − VðrÞΨ ¼ 0: ð27Þ

Its form is similar to Eq. (22) and there is no analytical
solution to this equation presently. Here, we use the finite
difference method first developed by Gundlach, Price,
and Pullin [57] to analyze the dynamical evolutions of
the equation. We introduce the light-cone coordinates u ¼
t − r� and v ¼ tþ r�; the wavelike equation can be written
in the following form:

−4
∂2ψðμ; νÞ
∂μ∂ν ¼ Vðμ; νÞψðμ; νÞ; ð28Þ

where r� is a tortoise coordinate, and it can be obtained by
first-order approximation from Eq. (6). Equation (22) is
directly related to the effective potential. Therefore, the
integration grid recorded in Ref. [58] can be discretized as

ΨðNÞ ¼ ΨðWÞ þΨðEÞ −ΨðSÞ − h2
VðWÞΨðWÞ þ VðEÞΨðEÞ

8
þOðh4Þ: ð29Þ

Here, h is the grid cell scale. The letters of the integra-
tion grid are N ¼ ðuþ h; vþ hÞ, W ¼ ðuþ h; vÞ, E ¼
ðu; vþ hÞ and S ¼ ðu; vÞ respectively. The initial condition
is the Gaussian wave packet [58–60], ψðμ ¼ μ0; νÞ ¼
A exp½−ðν − ν0Þ2=σ2�, where, A ¼ 1, ν0 ¼ 10 and σ ¼ 3.
In this way, we can obtain the dynamical evolution of
QNMs. Furthermore, we find that the QNMs are not
dependent on Gaussian initial parameters. To extract
QNM frequencies, we use the Prony method to fit a signal
by superposition of damped exponents [61],

ΨðtÞ ≃
Xp
i¼1

Cie−iωit: ð30Þ

Although the contribution of all overtones is reflected in the
values of QNMs, the contribution of higher overtones is
usually neglectable [62], because the signals of QNMs have

been greatly approximated to the fundamental mode. So,
the frequency can be extracted in this way from the values
of QNMs.

III. QUASINORMAL MODES OF A BLACK HOLE
IN A DARK MATTER HALO

The dynamical evolutions of the QNMs are the solution
of Eq. (28). To make our calculations simply, we employ
toy models to calculate the dynamical evolutions of QNMs
for CDM and SFDM. First, we setM ¼ 0.5, and for CDM:
ρc ¼ 0.001; Rc ¼ 6; For SFDM: ρs ¼ 0.01; Rs ¼ 3. Then,
we study the cases of the scalar field, electromagnetic field
and gravitational perturbation respectively, the situations
with different l, and make comparisons with the
Schwarzschild black hole. The QNMs are directly related
to the effective potential. Figures 1–3 show that the
effective potentials increase with the increasing l.
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We know that the QNM frequencies in a dark matter halo
are related to dynamical evolutions and effective potentials.
Generally speaking, the WKB method and the Prony
method can be used to calculate the QNM frequencies.
However, due to the effective potentials of SFDM having
more than one peak value, the WKB method cannot be
applied [62]. So the data of theWKBmethod in Tables I–III
are no corresponding calculating results.
Here, we use the sixth-order WKBmethod and the Prony

method to calculate the values of frequencies under scalar
field, electromagnetic field and gravitational perturbation,
thereby obtaining the values in the Tables.
From the data in Tables I–III, the results we obtained by

the WKB method and the Prony method are in good
agreement. These data indicate that the results we obtained
are reliable. The reason for the error is that we consider that

when using the Prony method to fit the frequency, it needs
to artificially set the values of t for the initial and final state.
This is an accidental error, and averaging multiple mea-
surements may effectively reduce the error. From the
frequencies in Tables I–III, due to the fact that the effective
potentials are positive, the imaginary parts of the frequen-
cies in all Tables are all negative values, which indicates
that there is a stable black hole solution in a dark matter
halo. In addition, we found that the frequencies of SCHW
are greater than SFDM and CDM, that of SFDM are greater
than CDM. The imaginary parts of the frequencies are
related to the attenuation and time of the QNMs, which
correspond to the dynamical evolutions of QNMs. The
QNM frequencies for SFDM attenuated faster than that of
CDM, whereas QNMs of CDM are easier to be detected
(Figs. 13–15).

TABLE II. The frequencies of a quasinormal mode in the electromagnetic field.

WKB method Prony method

l CDM SFDM SCHW CDM SFDM SCHW

1 0.181004 − 0.0250247i � � � 0.496467 − 0.184438i 0.177395 − 0.0248828i 0.432891 − 0.103297i 0.497133 − 0.184453i
2 0.316377 − 0.0256982i � � � 0.915951 − 0.198093i 0.314485 − 0.0253821i 0.776575 − 0.105092i 0.917546 − 0.188421i

TABLE III. The frequencies of a quasinormal mode in the gravitational perturbation.

WKB method Prony method

l CDM SFDM SCHW CDM SFDM SCHW

2 0.284007 − 0.0258836i � � � 0.747107 − 0.178248i 0.284456 − 0.0244245i 0.425210 − 0.099847i 0.748738 − 0.176901i
3 0.425956 − 0.0254432i � � � 1.199220 − 0.189856i 0.426723 − 0.0252413i 0.827319 − 0.160441i 1.203780 − 0.182989i

TABLE I. The frequencies of a quasinormal mode in the scalar field.

WKB method Prony method

l CDM SFDM SCHW CDM SFDM SCHW

0 0.083879 − 0.024010i � � � 0.220928 − 0.201638i 0.068764 − 0.008065i 0.232957 − 0.115914i 0.221031 − 0.210330i
1 0.194343 − 0.025055i � � � 0.586124 − 0.195422i 0.194080 − 0.024921i 0.331336 − 0.077789i 0.586728 − 0.194592i
2 0.324268 − 0.025687i � � � 0.967955 − 0.201120i 0.324206 − 0.025376i 0.823326 − 0.105189i 0.970030 − 0.191738i

(a) CDM (b) SFDM (c) SCHW

FIG. 7. The dynamical evolutions in the scalar perturbation with the different space-time (M ¼ 0.5, l ¼ 1, s ¼ 0).
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On the other hand, when we set ρ and R as constant
values, the dynamical evolutions of CDM, SFDM, and
SCHW are all related to the parameter l. Our research
results also show that in a dark matter halo, both CDM and
SFDM have QNMs ringing (Figs. 7–9). In the case of CDM
(the first panel in Fig. 9), t from 300 to 400, QNMs show
fluctuations different from ringing. It is different from the
case of SFDM.
For a Schwarzschild black hole (Fig. 7), QNMs appear

after the initial phase. The QNMs ringing of CDM are
between 10−1 and 10−3, that of SCHW are between 10−1

and 10−7. Figures 10–12 show that QNMs ringing time
increases with increasing angular quantum number l.
Tables I–III show that the imaginary part of QNM

frequencies, which is related to the attenuation of
QNMs, also increases with increasing angular quantum
number l. With the increasing the angular quantum number
l, the corresponding effective potentials will increase but
QNMs will gradually attenuate. Figures 13–15 show that
the comparisons of the three QNMs signal in the same
condition. On the whole, QNMs of CDM are stronger than
that of SFDM in the same condition, which is easier to be
detected. In addition, black hole QNMs of CDM and
SFDM in a dark matter halo are different from the
Schwarzschild black hole, unlike a Schwarzschild black
hole with a prominent power-law tail. Different kinds of
models of dark matter can be distinguished by theirs
QNMs.

(a) CDM (b) SFDM (c) SCHW

FIG. 9. The dynamical evolutions in the gravitational perturbation with the different space-time (M ¼ 0.5, l ¼ 2).

(a) CDM (b) SFDM (c) SCHW

FIG. 10. Quasinormal modes in the scalar field with the different l. The ringing time of the QNMs increases with increasing parameter
l in each panel. The parameters we used: M ¼ 0.5, ν0 ¼ 10, σ ¼ 3.

(a) CDM (b) SFDM (c) SCHW

FIG. 8. The dynamical evolutions in the electromagnetic field with the different space-time (M ¼ 0.5, l ¼ 1, s ¼ 1).
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(c) l = 2(b) l = 1(a) l = 0

FIG. 13. Comparisons of quasinormal modes in the scalar fields with the different space-times.

(b) l = 2(a) l = 1

FIG. 14. Comparisons of quasinormal modes in the electromagnetic fields with the different space-times.

(a) CDM (b) SFDM (c) SCHW

FIG. 11. Quasinormal modes in the electromagnetic field with the different l. The time of QNMs ringing increases with increasing
parameter l in each panel.

FIG. 12. Quasinormal modes in the gravitational perturbation with the different l.
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Comparing these three different space-time back-
grounds, QNMs ringing under the gravitational perturba-
tion are greater than that of scalar field and electromagnetic
field perturbations (Fig. 16). This means that the gravita-
tional radiation excited by gravitational perturbation is
much larger than that excited by the external field. In
the ways of black hole perturbations, gravitational pertur-
bation may be more effective.

IV. CONCLUSIONS AND DISCUSSIONS

As the characteristic sound of black holes, QNMs are
one of the important means to understand black holes
currently. QNM frequencies are not only related to the hairs
of the black hole (mass, charge and angular momentum) but
also may identify the existence of the black hole. So, in this
paper, we study the black hole QNMs in a dark matter halo,
and make comparisons with a Schwarzschild black hole.
First, we consider the motion equation in a dark matter halo
for scalar field, electromagnetic field and gravitational
perturbation, and obtain corresponding effective potentials.
Then we use the WKB method and the finite difference
method for numerical work, and QNM frequencies and the
dynamical evolutions of QNMs are obtained. Finally, based
on the experimental data we obtained, the relevant research
results are as follows:

(1) When the transcendental items are equal to constant
1 in a dark matter halo, they will become a
Schwarzschild black hole. It seems that in a certain
situation, the black hole in a dark matter halo can
degenerate to a Schwarzschild black hole.

(2) It can be seen from the distributions of the effective
potential that the effective potentials of the dark
matter halo increase with the increasing l, and the
maximum values of the effective potentials are less
than a Schwarzschild black hole. In a dark matter
halo, when r� tends to negative infinity, their
effective potentials are a positive value. When the
r� tends to positive infinity, the effective potentials
tend to 0. By that moment, the black hole will no
longer be affected by the dark matter halo and return
to a stable state.

(3) QNMs are the inherent oscillation of a black hole
under certain conditions, and its solution can be
expressed as a purely outgoing wave at infinity and a
purely ingoing wave at the event horizon, which
becomes weaker with time, and finally returns to a
balanced state. From the dynamical evolutions, the
black hole QNMs of CDM and SFDM in a dark
matter halo are different from a Schwarzschild black
hole, unlike a Schwarzschild black hole with promi-
nent power-law tail. So the different kinds of models

(a) CDM (b) SFDM (c) SCHW

FIG. 16. Comparisons of quasinormal modes with the different backgrounds (l ¼ 2).

(b) l =3(a) l = 2

FIG. 15. Comparisons of quasinormal modes in the gravitational perturbation with the different space-times.
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of dark matter can be distinguished by their QNMs.
QNMs of CDM show fluctuations different from
ringing. It is different from the case of SFDM.

(4) The QNM signals of the dark matter halo occur after
the initial phase. Then QNMs ringing dominates
rapidly, and attenuates with the increasing parameter
l. Due to the fact that the parameter l is related to
effective potentials, and QNMs are affected by the
effective potentials. The effective potentials in-
crease, whereas the QNMs become weaker. As
parameter l increases, the time of QNMs ringing
becomes longer.

(5) The QNM ringing of CDM is approximately be-
tween 10−1 and 10−3, that of SFDM is between 10−1

and 10−4. The Schwarzschild black hole is approx-
imately between 10−1 and 10−7. The overall QNMs
of CDM are greater than that of SFDM in the same
condition, which is easier to be detected (Figs. 13–
15). This is consistent with the results we obtained
by the frequencies in Tables I–III.

(6) Comparing these three different space-time back-
grounds, QNMs ringing under the gravitational
perturbation are greater than that of scalar field
and electromagnetic field perturbations. This means
that the gravitational radiation excited by gravita-
tional perturbation is much larger than that excited
by the external field. In the ways of black hole
perturbations, gravitational perturbation also may be
effective.

(7) From these conclusions, the distributions of different
dark matter have different effects on black hole

QNMs. In future studies, it may be possible to
distinguish dark matter models by their special
QNMs.

(8) Besides, QNM frequencies we obtained are in good
agreement after fitting QNM data with the sixth-
order WKB method and the Prony method.

In this paper, we study the case of a dark matter halo. In
fact, there may be a spike phenomenon in dark matter near
the black hole [12–14]. In the case of dark matter spikes, its
density will greatly increase, and its situation may be more
complicated. Next, we will consider the case of dark matter
spikes, and the studies based on QNMs may be checked in
future gravitational wave plans.
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