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It has recently been revealed that spinning black holes of the photon-fluid model can support acoustic
‘clouds’—stationary density fluctuations whose spatially regular radial eigenfunctions are determined by
the (2þ 1)-dimensional Klein-Gordon equation of an effective massive scalar field. Motivated by this
intriguing observation, we use analytical techniques in order to prove a no-short hair theorem for the
composed acoustic black hole scalar-clouds configurations. In particular, it is proved that the effective
lengths of the stationary bound-state corotating acoustic scalar clouds are bounded from below by the series

of inequalities rhair >
1þ ffiffi

5
p
2

· rH > rnull, where rH and rnull are respectively the horizon radius of the
supporting black hole and the radius of the corotating null circular geodesic that characterizes the acoustic
spinning black hole spacetime.

DOI: 10.1103/PhysRevD.104.104041

I. INTRODUCTION

Early mathematical studies of the Einstein-scalar field
equations [1–4], which were motivated by the influential
no-hair conjecture [5,6], have revealed the interesting fact
that asymptotically flat black holes with regular horizons
cannot support, in their exterior regions, static matter
configurations which are made of minimally coupled scalar
fields.
However, subsequent analyses (see [7–18] and referen-

ces therein) of the Einstein-matter field equations have
explicitly demonstrated that black hole spacetimes may not
be as simple as suggested by the original no-hair conjecture
[5,6]. In particular, it is by now well established in the
physics literature [7–18] that spherically symmetric asymp-
totically flat black holes can support various types of hairy
matter configurations; static fields which are well behaved
on and outside the black hole horizon.
In addition, it has been proven analytically [19] that the

superradiant scattering phenomenon of bosonic fields in
spinning black hole spacetimes [20,21] allows nonstatic
Kerr black holes to support stationary bound-state matter
configurations which are made of minimally coupled
linearized massive scalar fields. These externally supported
scalar field configurations, which corotate with the central
spinning black hole, have received the nickname ‘scalar
clouds’ in the linearized regime [19,22]. Using sophisti-
cated numerical techniques, the existence of genuine hairy
(scalarized) spinning black hole solutions of the non-
linearly coupled Einstein-scalar field equations has been
explicitly demonstrated in [22].

Interestingly, the stationary corotating externally sup-
ported bosonic field configurations are characterized by
proper frequencies which are in resonance with the horizon
angular velocity of the central supporting black hole
[19,22–24],

ω ¼ mΩH: ð1Þ

In addition, the proper frequencies of the supported bound-
state field configurations are bounded from above by the
proper mass of the supported scalar field [25]

ω2 < μ2: ð2Þ

Given the intriguing fact that hairy black hole solutions
of the Einstein-matter field equations do exist, one may
raise the following interesting question: How short can a
black hole hair be?
For static spherically-symmetric hairy black hole

spacetimes, the answer to this question has been provided
in [26], where it was proven that the effective lengths of
spatially regular hairy matter configurations whose energy-
momentum trace is nonpositive must extend beyond
the innermost null circular geodesics of the corresponding
curved black-hole spacetimes:

rhair > rnull: ð3Þ

As explicitly proven in [27], the effective lengths
of the corotating nonspherically-symmetric scalar cloudy
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configurations of the spinning Kerr spacetime [19,22] also
conform to the lower bound (3).
Interestingly, it is well established that fluid systems

share many features with curved black hole spacetimes
(see [28–43] and references therein). In particular, it has
recently been proven in the important work [28] that
acoustic black holes of the (2þ 1)-dimensional rotating
photon-fluid system can support stationary bound-state
density fluctuations (acoustic scalar ‘clouds’) whose
spatiotemporal behavior in the black hole spacetime is
governed by the linearized Klein-Gordon equation of an
effective massive scalar field.
As nicely emphasized in [28], the corotating acoustic

scalar clouds of the photon-fluid model, like the more
familiar scalar hairy configurations of the Kerr black hole
spacetime [19,22], owe their existence to the intriguing
phenomenon of superradiant scattering of corotating
bosonic field modes in the spinning physical system. In
particular, the (2þ 1)-dimensional stationary acoustic
clouds revealed in [28] are characterized by the same
resonance condition [see Eq. (1)] as the Kerr scalar
clouds [44].
The main goal of the present paper is to analyze the

spatial functional behavior of the stationary bound-state
acoustic scalar field configurations (linearized scalar
clouds) that are supported by the effective spinning
black-hole spacetime of the photon-fluid model [28]. In
particular, motivated by the existence of the lower bound
(3) on the effective lengths of hairy matter configurations in
the black-hole spacetime solutions of the Einstein field
equations, we shall use analytical techniques in order to
derive an analogous generic lower bound on the effective
lengths of the composed acoustic black hole scalar field
cloudy configurations of the interesting photon-fluid
model.

II. DESCRIPTION OF THE SYSTEM

The spinning (2þ 1)-dimensional acoustic black hole
spacetime of the photon-fluid model is characterized by the
curved line element [28]

ds2 ¼ −
�
1 −

rH
r
−
Ω2

Hr
4
H

r2

�
dt2 þ

�
1 −

rH
r

�
−1
dr2

− 2ΩHr2Hdθdtþ r2dθ2; ð4Þ

where fr; θg are the familiar polar coordinates in a two-
dimensional plane and the physical parameters frH;ΩHg
are respectively the horizon radius [45] and the angular
velocity of the spinning acoustic horizon. The acoustic
black hole spacetime (4), like the spinning Kerr black hole
spacetime, possesses an ergoregion whose outer radial
location [28]

rE ¼ 1

2
rHð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω2

Hr
2
H

q
Þ; ð5Þ

is determined by the root of the metric function gtt.
As explicitly shown in [28,32], long-wavelength exci-

tations (phonons) of the photon-fluid system behave as
effective massive scalar fields that propagate in the acoustic
curved spacetime (4). In particular, given a linearized
acoustic density fluctuation [46]

ρðt; r; θÞ ¼ ψðrÞffiffiffi
r

p eimθ−iΩt ð6Þ

of the photon-fluid model, it has been proven that its
spatiotemporal behavior is determined by the (2þ 1)-
dimensional Klein-Gordon differential equation [28,32]

�
Δ

d
dr

�
Δ

d
dr

�
−Vðr;ΩÞ

�
ψðrÞ¼ 0; Δ≡1−

rH
r
: ð7Þ

The radial potential [28]

Vðr;ΩÞ ¼−
�
Ω−

mΩHr2H
r2

�
2

þΔ
�
Ω2

0þ
m2

r2
þ rH
2r3

−
Δ
4r2

�
;

ð8Þ

which determines the spatial behavior of the density
fluctuations (6) in the acoustic curved spacetime (4),
corresponds to an effective scalar field ψ of mass Ω0

[47,48].
In the present paper we shall use analytical techniques in

order to analyze the spatial behavior of the composed
acoustic black hole stationary linearized massive scalar
field configurations of the photon-fluid system. The
stationary bound-state scalar clouds of the spinning aco-
ustic spacetime (4) are characterized by the resonant
frequency [49]

Ω ¼ mΩH: ð9Þ

In addition, the scalar eigenfunctions of the supported
acoustic clouds are assumed to be regular at the acoustic
black-hole horizon [28]

ψðr ¼ rHÞ < ∞: ð10Þ

The bound-state acoustic scalar eigenfunctions are also
assumed to be normalizable (decay exponentially) at spatial
infinity [28]

ψðr → ∞Þ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
Ω2

0
−Ω2

p
r; ð11Þ

for [50]
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Ω2 < Ω2
0: ð12Þ

As demonstrated numerically in [28] and proved ana-
lytically in [43], the stationary bound-state acoustic black
hole massive scalar field cloudy configurations of the
photon-fluid model, which respect the boundary conditions
(10) and (11), are characterized by the dimensionless
regime of existence

Ω0

mΩH
∈
�
1;

ffiffiffiffiffi
32

27

r �
: ð13Þ

In the next section we shall reveal, using analytical
techniques, the existence of a generic lower bound on the
effective radial lengths of the supported corotating acoustic
scalar clouds of the photon-fluid model.

III. LOWER BOUND ON THE EFFECTIVE
RADIAL LENGTHS OF THE STATIONARY

BOUND-STATE ACOUSTIC SCALAR CLOUDS
OF THE PHOTON-FLUID MODEL

In the present section we shall explore the spatial
functional behavior of the scalar eigenfunctions ψðr; rH;
ΩH;Ω0; mÞwhich characterize the linearized massive scalar
field configurations (stationary scalar clouds) that are
supported by the (2þ 1)-dimensional acoustic black hole
spacetime (4) of the photon-fluid model [28]. In particular,
we shall explicitly prove that the stationary bound-state
acoustic scalar clouds cannot be arbitrarily compact.
To this end, we shall first prove that the bound-state

scalar clouds of the photon-fluid model are characterized
by a nonmonotonic radial eigenfunction ψðrÞ. We shall
then derive, using the explicit functional behavior of
the effective radial potential (8), a generic (parameter-
independent) lower bound [see Eq. (24) below] on the peak
location rmax of the radial scalar eigenfunctions that
characterize the supported corotating acoustic scalar clouds
of the photon-fluid model.
Before proceeding, we would like to emphasize that the

interesting lower bound

rmin

rH
>

3

2ðΩHrHÞ2
; ð14Þ

on the radial location of the minimum r ¼ rmin of the
effective potential (8) [51] has been derived in the impor-
tant work [28]. The lower bound (14) of [28] nicely
demonstrates the important fact that, in the slow rotation
ΩH → 0 limit of the central supporting acoustic black
holes, the scalar clouds are effectively located far away
from the central black hole. However, it should be realized
that the interesting bound (14), which is based on the
asymptotic large-r expansion of the effective radial poten-
tial (8) [see [28] for details], is unable to describe the
genuine near-horizon radial behavior of the stationary

scalar clouds in the regime ΩHrH ≫ 1 of rapidly-spinning
central supporting acoustic black holes [52]. In particular,
one finds that the right-hand side of (14) is less than 1 for
ΩHrH ≳ 1, thus suggesting that the bound (14) works well
for slowly-rotating black holes (for which rmin ≫ rH) but
breaks down for rapidly-spinning acoustic black holes.
In the present section we shall use the exact functional

form of the composed acoustic black hole massive scalar
field binding potential (8) in order to derive an alternative
lower bound on the peak location rmax of the radial
eigenfunctions ψðr; rH;ΩH;Ω0; mÞ that characterize the
bound-state linearized scalar clouds of the photon-fluid
model. In particular, we shall explicitly prove below that,
for all values of the dimensionless rotation parameterΩHrH
of the central supporting acoustic black hole, the peak
location r ¼ rmax of the acoustic scalar configurations
cannot be located arbitrarily close to the black hole horizon.
The radial functional behavior of the stationary bound-

state cloudy field configurations of the photon-fluid system
is determined by the ordinary differential equation (7) with
the effective binding potential [see Eqs. (8) and (9)]

VðrÞ¼−ðmΩHÞ2 ·
�
1−

r2H
r2

�
2

þΔ
�
Ω2

0þ
m2

r2
þ rH
2r3

−
Δ
4r2

�
:

ð15Þ

We first point out that in the near-horizon region,

x≡ r − rH
rH

≪ 1; ð16Þ

the effective radial potential (15) of the composed acoustic
black hole stationary bound state massive scalar field
configurations is characterized by the functional behavior

Vðx ≪ 1Þ ¼
�
Ω2

0 þ
m2 þ 1

2

r2H

�
· xþOðx2=r2HÞ; ð17Þ

which implies

VðxÞ > 0 for 0 < x ≪ 1: ð18Þ

We shall now consider two mathematically distinct cases
for the possible near-horizon functional behaviors of the
scalar eigenfunction ψðrÞ.
Case (i): If ψðr ¼ rHÞ ¼ 0, then the asymptotic boun-

dary condition (11), which characterizes the radial behavior
of the bound-state cloudy scalar configurations at spatial
infinity, implies that the scalar eigenfunction ψðrÞ must
have an extremum point r ¼ rmax [53] in the exterior region
of the effective black hole spacetime.
Case (ii): If ψðr → rHÞ ≠ 0 and ½dψðrÞ=dr�r¼rH ≠ 0

[54], then one deduces from the radial differential equa-
tion (7) and the near-horizon functional behavior (17) of
the effective radial potential that ψðrÞ · dψðrÞ=dr > 0 for
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r → rH. This observation together with the asymptotic
boundary condition (11) imply again that the scalar
eigenfunction ψðrÞ, which characterizes the spatial behav-
ior of the acoustic scalar clouds, must have an extremum
point r ¼ rmax in the exterior region of the spinning
acoustic black hole spacetime.
We therefore conclude that the stationary bound-state

scalar clouds of the photon-fluid model are characterized
by nonmonotonic radial eigenfunctions. In particular, the
acoustic scalar eigenfunction ψðrÞ is characterized by
the presence of an extremum radial point r ¼ rmax in the
exterior region of the acoustic black hole spacetime with
the properties

�
ψ ≠ 0;

dψ
dr

¼ 0;ψ
d2ψ
dr2

< 0

�
for r ¼ rmax: ð19Þ

Substituting the characteristic functional relations (19)
into the radial differential equation (7), one finds the simple
relation

Vðr ¼ rmaxÞ < 0: ð20Þ

Taking cognizance of Eqs. (15) and (20), one finds the
characteristic series of inequalities [55]

ðmΩHÞ2 ·
�
1 −

r2H
r2

�
2

> Δ
�
Ω2

0 þ
m2

r2
þ rH
2r3

−
Δ
4r2

�

> Δ ·Ω2
0 for r ¼ rmax; ð21Þ

which implies [see Eq. (7)]

�
1 −

rH
rmax

��
1þ rH

rmax

�
2

>

�
Ω0

mΩH

�
2

: ð22Þ

From the analytically derived cubic inequality (22) one
obtains the dimensionless lower bound

rmax

rH
> F

�
Ω0

mΩH

�
ð23Þ

on the location r ¼ rmax of the radial peak of the acoustic
scalar eigenfunctions, where the (mathematically cumber-
some) dimensionless function F ¼ Fð Ω0

mΩH
Þ is a monoton-

ically increasing function in the regime of existence
Ω0=mΩH ∈ ð1; ffiffiffiffiffiffiffiffiffiffiffiffiffi

32=27
p Þ [see Eq. (13)] of the composed

acoustic black hole stationary bound state massive scalar
field configurations. In particular, from (22) one directly
finds that the function Fð Ω0

mΩH
Þ in the lower bound (23)

increases from Fð Ω0

mΩH
→ 1þÞ→ ½ð1þ ffiffiffi

5
p Þ=2�þ to Fð Ω0

mΩH
→ffiffiffiffiffiffiffiffiffiffiffiffiffi

32=27
p −Þ → 3−. We therefore find the generic (that is,
rotation-independent) lower bound

rmax

rH
>

1þ ffiffiffi
5

p

2
ð24Þ

on the effective radial lengths of the stationary bound-state
acoustic scalar clouds which are supported by the spinning
black hole spacetime (4).
It is interesting to emphasize the fact that the lower

bound (24) on the effective lengths of the corotating
acoustic scalar clouds is universal in the sense that it does
not depend on the physical parameters (proper massΩ0 and
azimuthal harmonic index m) of the supported acoustic
scalar field.

IV. COROTATING ACOUSTIC SCALAR CLOUDS
AND NULL CIRCULAR GEODESICS

In the present section we shall explicitly prove that the
composed acoustic black hole stationary bound-state lin-
earized massive scalar field configurations of the photon-
fluid model, like the scalarized spinning black hole
solutions of the Einstein field equations, conform to the
no-short hair relation (3). In particular, as we shall now
show, the radial peak location rmax, which characterizes the
nonmonotonic eigenfunctions ψðrÞ of the bound-state
acoustic scalar clouds, is located beyond the corotating
null circular geodesic of the effective spinning black hole
spacetime (4).
A remarkably economic way to determine the radial

location of the corotating null circular geodesic of a curved
black hole spacetime has been revealed in [56]. In par-
ticular, it has been proven in [56,57] that the corotating null
circular geodesic provides the fastest way, as measured by
asymptotic observers, to circle the central black hole.
Substituting ds ¼ dr ¼ 0 and dθ ¼ 2π into the curved
line element (4), one finds the functional expression

TðrÞ
rH

¼ 2πΩHrH ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

Ω2
Hr

4
H
·
	
1 − rH

r − Ω2
Hr

4
H

r2


r
− 1

1 − rH
r − Ω2

Hr
4
H

r2

ð25Þ

for the (radius-dependent) dimensionless orbital period of
light-like test particles around the central black hole [58].
As explicitly shown in [56,57], the corotating null

circular geodesics of curved black hole spacetimes are
characterized by the relation

dTðrÞ
dr

¼ 0 for r ¼ rnull: ð26Þ

Substituting (25) into Eq. (26), one obtains the character-
istic equation
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r2ðr − rHÞð2r − 3rHÞ þ rð5rH − 6rÞΩ2
Hr

4
H þ 2ΩHr3H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − rHÞ

p ðrþ 2Ω2
Hr

3
HÞ	

1 − rH
r − Ω2

Hr
4
H

r2



2

¼ 0 for r ¼ rnull ð27Þ

for the radial location r ¼ rnull of the corotating null
circular geodesic of the acoustic spinning black hole
spacetime (4).
From Eq. (27) one finds that the ΩHrH-dependent radial

location rnull ¼ rnullðΩHrHÞ of the corotating null circular
geodesic is restricted to the interval

rnull
rH

∈
�
1;
3

2

�
: ð28Þ

In particular, from (27) one finds that rnullðΩHrHÞ is a
monotonically decreasing function of the dimensionless
black hole rotation parameter ΩHrH with the simple
asymptotic behaviors

rnull
rH

¼ 3

2
−

2ffiffiffi
3

p ·ΩHrH þO½ðΩHrHÞ2� for ΩHrH ≪ 1;

ð29Þ

and

rnull
rH

¼ 1þ 1

16ðΩHrHÞ2
þO½ðΩHrHÞ−3� for ΩHrH ≫ 1:

ð30Þ

Taking cognizance of Eqs. (24) and (28), one concludes
that the stationary bound-state scalar clouds of the spinning
acoustic black hole spacetime (4) are characterized by the
lower bound

rmax > rnull: ð31Þ

V. SUMMARY

A decade ago it was proven that spinning Kerr black
holes can support corotating scalar clouds, stationary
bound-state linearized configurations of spatially regular
massive scalar fields whose orbital frequencies are in
resonance with the angular velocity ΩH of the black-hole
horizon [19,22]. The bound-state scalar configurations
are known to be characterized by the no-short hair property
[26,27], according to which their effective lengths
extend beyond the null circular geodesics of the supporting
black-hole spacetimes.

Intriguingly, it has recently been revealed in the impor-
tant work [28] that an analogous physical phenomenon
occurs in a rotating photon-fluid model [28]. In particular, it
has been demonstrated [28] that in the presence of vortex
flows, the photon-fluid system may be described by an
effective rotating acoustic black hole spacetime [see
Eq. (4)] which, like the spinning Kerr black hole spacetime,
may support stationary linearized density fluctuations
(acoustic scalar clouds) whose spatial behavior is governed
by the Klein-Gordon equation of a (2þ 1)-dimensional
scalar field with an effective proper mass Ω0.
The main goal of the present paper was to analyze the

spatial behavior of the corotating acoustic scalar clouds that
are supported by the (2þ 1)-dimensional acoustic black
hole (4) of the photon-fluid model. Interestingly, we have
established the fact that the supported acoustic scalar
configurations cannot be made arbitrarily compact. In
particular, using analytical techniques, we have derived a
generic lower bound on the effective lengths of the bound-
state acoustic black hole scalar field cloudy configurations
of the photon-fluid model. This parameter-independent
bound can be expressed in a remarkably compact way
by the dimensionless series of inequalities [see Eqs. (24)
and (31)]

rmax >
1þ ffiffiffi

5
p

2
· rH > rnull; ð32Þ

where frH; rnullg are respectively the horizon radius and the
radius of the corotating null circular geodesic that charac-
terize the supporting acoustic black hole spacetime.
Finally, it is worth emphasizing the interesting fact that

the analytically derived lower bound (32) on the effective
lengths of the bound-state acoustic scalar clouds of the
photon-fluid model is universal in the sense that it is
valid for all possible sets frH;ΩH;Ω0; mg of the physical
parameters that characterize the supporting spinning acous-
tic black hole and the effective massive scalar fields.

ACKNOWLEDGMENTS

This research is supported by the Carmel Science
Foundation. I thank Yael Oren, Arbel M. Ongo, Ayelet
B. Lata, and Alona B. Tea for stimulating discussions.

NO-SHORT SCALAR HAIR THEOREM FOR SPINNING … PHYS. REV. D 104, 104041 (2021)

104041-5



[1] J. E. Chase, Commun. Math. Phys. 19, 276 (1970).
[2] J. D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972).
[3] C. Teitelboim, Lett. Nuovo Cimento 3, 326 (1972).
[4] I. Pena and D. Sudarsky, Classical Quant. Grav. 14, 3131

(1997).
[5] R. Ruffini and J. A. Wheeler, Phys. Today 24, 1, 30 (1971).
[6] B. Carter, Black holes, in Proceedings of 1972 Session of

Ecole d’ete de Physique Theorique, edited by C. De Witt
and B. S. De Witt (Gordon and Breach, New York, 1973).

[7] P. Bizoń, Phys. Rev. Lett. 64, 2844 (1990); M. S. Volkov
and D. V. Gal’tsov, Sov. J. Nucl. Phys. 51, 1171 (1990);
H. P. Kuenzle and A. K. M. Masood- ul- Alam, J. Math.
Phys. (N.Y.) 31, 928 (1990).

[8] G. Lavrelashvili and D. Maison, Nucl. Phys. B410, 407
(1993).

[9] P. Bizoń and T. Chamj, Phys. Lett. B 297, 55 (1992); M.
Heusler, S. Droz, and N. Straumann, Phys. Lett. B 268, 371
(1991); 271, 61 (1991); 285, 21 (1992).

[10] B. R. Greene, S. D. Mathur, and C. O’Neill, Phys. Rev. D
47, 2242 (1993); T. Torii, K. Maeda, and T. Tachizawa,
Phys. Rev. D 51, 1510 (1995).

[11] N. Straumann and Z. H. Zhou, Phys. Lett. B 243, 33 (1990).
[12] P. Bizoń and R. M. Wald, Phys. Lett. B 267, 173 (1991).
[13] N. E. Mavromatos and E. Winstanley, Phys. Rev. D 53,

3190 (1996).
[14] M. S. Volkov and D. V. Gal’sov, Phys. Rep. 319, 1 (1999).
[15] P. Bizoń and T. Chmaj, Phys. Rev. D 61, 067501 (2000).
[16] G. V. Lavrelashvili and D. Maison, Phys. Lett. B 343, 214

(1995).
[17] M. S. Volkov, O. Brodbeck, G. V. Lavrelashvili, and N.

Straumann, Phys. Lett. B 349, 438 (1995).
[18] P. Bizoń, Phys. Lett. B 259, 53 (1991).
[19] S. Hod, Phys. Rev. D 86, 104026 (2012); Eur. Phys. J. C 73,

2378 (2013); Phys. Rev. D 90, 024051 (2014); Phys. Lett. B
739, 196 (2014); Classical Quant. Grav. 32, 134002 (2015);
Phys. Lett. B 751, 177 (2015); 758, 181 (2016); S. Hod and
O. Hod, Phys. Rev. D 81, 061502(R) (2010); S. Hod, Phys.
Lett. B 708, 320 (2012); J. High Energy Phys. 01 (2017)
030.

[20] Ya. B. Zel‘dovich, Pis‘ma Zh. Eksp. Teor. Fiz. 14, 270
(1971) [JETP Lett. 14, 180 (1971)]; Zh. Eksp. Teor. Fiz. 62,
2076 (1972) [Sov. Phys. JETP 35, 1085 (1972)]; A. V.
Vilenkin, Phys. Lett. B 78, 301 (1978).

[21] W. H. Press and S. A. Teukolsky, Nature (London) 238, 211
(1972); Astrophys. J. 185, 649 (1973).

[22] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112,
221101 (2014); C. L. Benone, L. C. B. Crispino, C.
Herdeiro, and E. Radu, Phys. Rev. D 90, 104024 (2014);
C. A. R. Herdeiro and E. Radu, Phys. Rev. D 89, 124018
(2014); Int. J. Mod. Phys. D 23, 1442014 (2014); Y.
Brihaye, C. Herdeiro, and E. Radu, Phys. Lett. B 739, 1
(2014); J. C. Degollado and C. A. R. Herdeiro, Phys. Rev. D
90, 065019 (2014); C. Herdeiro, E. Radu, and H.
Rúnarsson, Phys. Lett. B 739, 302 (2014); C. Herdeiro
and E. Radu, Classical Quant. Grav. 32, 144001 (2015);
C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24,
1542014 (2015); 24, 1544022 (2015); P. V. P. Cunha, C.
A. R. Herdeiro, E. Radu, and H. F. Rúnarsson, Phys. Rev.
Lett. 115, 211102 (2015); B. Kleihaus, J. Kunz, and S.
Yazadjiev, Phys. Lett. B 744, 406 (2015); C. A. R. Herdeiro,

E. Radu, and H. F. Rúnarsson, Phys. Rev. D 92, 084059
(2015); C. Herdeiro, J. Kunz, E. Radu, and B. Subagyo,
Phys. Lett. B 748, 30 (2015); C. A. R. Herdeiro, E. Radu,
and H. F. Rúnarsson, Classical Quant. Grav. 33, 154001
(2016); Int. J. Mod. Phys. D 25, 1641014 (2016); Y.
Brihaye, C. Herdeiro, and E. Radu, Phys. Lett. B 760,
279 (2016); Y. Ni, M. Zhou, A. C. Avendano, C. Bambi,
C. A. R. Herdeiro, and E. Radu, J. Cosmol. Astropart. Phys.
07 (2016) 049; M. Wang, arXiv:1606.00811.

[23] Here the integer m is the azimuthal harmonic index that
characterizes the supported scalar eigenfunction [see Eq. (6)
below].

[24] We use natural units in which G ¼ c ¼ ℏ ¼ 1.
[25] Note that the mass parameter μ, which characterizes the

scalar field, stands for μ=ℏ. Hence, this physical parameter
has the dimensions of ðlengthÞ−1.

[26] S. Hod, Phys. Rev. D 84, 124030 (2011).
[27] S. Hod, Classical Quant. Grav. 33, 114001 (2016).
[28] M. Ciszak and F. Marino, Phys. Rev. D 103, 045004 (2021).
[29] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644

(1992).
[30] Y. Pomeau and S. Rica, Phys. Rev. Lett. 71, 247 (1993).
[31] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[32] F. Marino, Phys. Rev. A 100, 063825 (2019).
[33] I. Fouxon, O. V. Farberovich, S. Bar-Ad, and V. Fleurov,

Europhys. Lett. 92, 14002 (2010).
[34] M. Elazar, V. Fleurov, and S. Bar-Ad, Phys. Rev. A 86,

063821 (2012).
[35] S. Bar-Ad, R. Schilling, and V. Fleurov, Phys. Rev. A 87,

013802 (2013).
[36] F. Marino, C. Maitland, D. Vocke, A. Ortolan, and D.

Faccio, Sci. Rep. 6, 23282 (2016).
[37] F. Marino, M. Ciszak, and A. Ortolan, Phys. Rev. A 80,

065802 (2009).
[38] M. Ornigotti, S. Bar-Ad, A. Szameit, and V. Fleurov, Phys.

Rev. A 97, 013823 (2018).
[39] A. Prain, C. Maitland, D. Faccio, and F. Marino, Phys. Rev.

D 100, 024037 (2019).
[40] M. C. Braidotti, D. Faccio, and E. M. Wright, Phys. Rev.

Lett. 125, 193902 (2020).
[41] D. Vocke, C. Maitland, A. Prain, K. E. Wilson, F. Bianca-

lana, E. M. Wright, F. Marino, and D. Faccio, Optica 5,
1099 (2018).

[42] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu,
Phys. Rev. D 91, 104038 (2015).

[43] S. Hod, Phys. Rev. D 103, 084003 (2021).
[44] For the co-rotating acoustic scalar clouds discussed in [28],

the physical parameter ΩH in the resonance condition is the
horizon angular velocity of the central supporting (2þ 1)-
dimensional acoustic black hole.

[45] The radius r ¼ rH of the acoustic black-hole horizon is
determined by the physical requirement vr ¼ cs, where
fvr; csg are respectively the inward radial velocity of the
fluid flow and the speed of sound in the fluid [28]. We shall
use natural units in which cs ≡ 1.

[46] Note that the circular periodicity of the azimuthal eigen-
function eimθ implies that the discrete field parameter m is
an integer.

[47] As discussed in [28], the effective scalar mass Ω0 in
the composed acoustic-black-hole-scalar-field curvature

SHAHAR HOD PHYS. REV. D 104, 104041 (2021)

104041-6

https://doi.org/10.1007/BF01646635
https://doi.org/10.1103/PhysRevLett.28.452
https://doi.org/10.1007/BF02756471
https://doi.org/10.1088/0264-9381/14/11/013
https://doi.org/10.1088/0264-9381/14/11/013
https://doi.org/10.1063/1.3022513
https://doi.org/10.1103/PhysRevLett.64.2844
https://doi.org/10.1063/1.528773
https://doi.org/10.1063/1.528773
https://doi.org/10.1016/0550-3213(93)90441-Q
https://doi.org/10.1016/0550-3213(93)90441-Q
https://doi.org/10.1016/0370-2693(92)91069-L
https://doi.org/10.1016/0370-2693(91)91592-J
https://doi.org/10.1016/0370-2693(91)91592-J
https://doi.org/10.1016/0370-2693(91)91278-4
https://doi.org/10.1016/0370-2693(92)91294-J
https://doi.org/10.1103/PhysRevD.47.2242
https://doi.org/10.1103/PhysRevD.47.2242
https://doi.org/10.1103/PhysRevD.51.1510
https://doi.org/10.1016/0370-2693(90)90951-2
https://doi.org/10.1016/0370-2693(91)91243-O
https://doi.org/10.1103/PhysRevD.53.3190
https://doi.org/10.1103/PhysRevD.53.3190
https://doi.org/10.1016/S0370-1573(99)00010-1
https://doi.org/10.1103/PhysRevD.61.067501
https://doi.org/10.1016/0370-2693(94)01479-V
https://doi.org/10.1016/0370-2693(94)01479-V
https://doi.org/10.1016/0370-2693(95)00293-T
https://doi.org/10.1016/0370-2693(91)90132-A
https://doi.org/10.1103/PhysRevD.86.104026
https://doi.org/10.1140/epjc/s10052-013-2378-x
https://doi.org/10.1140/epjc/s10052-013-2378-x
https://doi.org/10.1103/PhysRevD.90.024051
https://doi.org/10.1016/j.physletb.2014.10.062
https://doi.org/10.1016/j.physletb.2014.10.062
https://doi.org/10.1088/0264-9381/32/13/134002
https://doi.org/10.1016/j.physletb.2015.10.039
https://doi.org/10.1016/j.physletb.2016.05.012
https://doi.org/10.1103/PhysRevD.81.061502
https://doi.org/10.1016/j.physletb.2012.01.054
https://doi.org/10.1016/j.physletb.2012.01.054
https://doi.org/10.1007/JHEP01(2017)030
https://doi.org/10.1007/JHEP01(2017)030
https://doi.org/10.1016/0370-2693(78)90027-8
https://doi.org/10.1038/238211a0
https://doi.org/10.1038/238211a0
https://doi.org/10.1086/152445
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevD.90.104024
https://doi.org/10.1103/PhysRevD.89.124018
https://doi.org/10.1103/PhysRevD.89.124018
https://doi.org/10.1142/S0218271814420140
https://doi.org/10.1016/j.physletb.2014.10.019
https://doi.org/10.1016/j.physletb.2014.10.019
https://doi.org/10.1103/PhysRevD.90.065019
https://doi.org/10.1103/PhysRevD.90.065019
https://doi.org/10.1016/j.physletb.2014.11.005
https://doi.org/10.1088/0264-9381/32/14/144001
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815440228
https://doi.org/10.1103/PhysRevLett.115.211102
https://doi.org/10.1103/PhysRevLett.115.211102
https://doi.org/10.1016/j.physletb.2015.04.014
https://doi.org/10.1103/PhysRevD.92.084059
https://doi.org/10.1103/PhysRevD.92.084059
https://doi.org/10.1016/j.physletb.2015.06.059
https://doi.org/10.1088/0264-9381/33/15/154001
https://doi.org/10.1088/0264-9381/33/15/154001
https://doi.org/10.1142/S0218271816410145
https://doi.org/10.1016/j.physletb.2016.06.078
https://doi.org/10.1016/j.physletb.2016.06.078
https://doi.org/10.1088/1475-7516/2016/07/049
https://doi.org/10.1088/1475-7516/2016/07/049
https://arXiv.org/abs/1606.00811
https://doi.org/10.1103/PhysRevD.84.124030
https://doi.org/10.1088/0264-9381/33/11/114001
https://doi.org/10.1103/PhysRevD.103.045004
https://doi.org/10.1103/PhysRevLett.69.1644
https://doi.org/10.1103/PhysRevLett.69.1644
https://doi.org/10.1103/PhysRevLett.71.247
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevA.100.063825
https://doi.org/10.1209/0295-5075/92/14002
https://doi.org/10.1103/PhysRevA.86.063821
https://doi.org/10.1103/PhysRevA.86.063821
https://doi.org/10.1103/PhysRevA.87.013802
https://doi.org/10.1103/PhysRevA.87.013802
https://doi.org/10.1038/srep23282
https://doi.org/10.1103/PhysRevA.80.065802
https://doi.org/10.1103/PhysRevA.80.065802
https://doi.org/10.1103/PhysRevA.97.013823
https://doi.org/10.1103/PhysRevA.97.013823
https://doi.org/10.1103/PhysRevD.100.024037
https://doi.org/10.1103/PhysRevD.100.024037
https://doi.org/10.1103/PhysRevLett.125.193902
https://doi.org/10.1103/PhysRevLett.125.193902
https://doi.org/10.1364/OPTICA.5.001099
https://doi.org/10.1364/OPTICA.5.001099
https://doi.org/10.1103/PhysRevD.91.104038
https://doi.org/10.1103/PhysRevD.103.084003


potential (8) is the rest energy of the collective excitations
(phonons) [28].

[48] Note that the flat-space r → ∞ limit of the effective
potential (8) is given by the simple functional expression
Vðr → ∞Þ ¼ −Ω2 þ Ω2

0, and it therefore describes an
effective scalar field of proper frequency Ω and an effective
proper mass Ω0.

[49] See (1) for the analogous resonance relation in spinning
black-hole spacetimes.

[50] See the analogous upper bound (2) for the stationary
supported field configurations in asymptotically flat
black-hole spacetimes.

[51] As emphasized in [28], the radial eigenfunction of the
fundamental scalar mode attains its peak location in corre-
spondence with the minimum of the effective binding
potential (8) of the photon-fluid model.

[52] It is well known that the angular velocity of spinning Kerr
black holes is characterized by the dimensionless upper
boundΩHrH ≤ 1=2. On the other hand, as discussed in [28],
there is no fundamental upper bound on the angular velocity

of the (2þ 1)-dimensional acoustic black hole (4) of the
photon-fluid model.

[53] Note that one can assume ψðr ¼ rHÞ ≥ 0 for the radial
scalar eigenfuntion without loss of generality.

[54] Note that if dψðrÞ=dr → 0 and d2ψðrÞ=dr2 < ∞ for
r → rH, then one finds from Eqs. (7) and (17) the near-
horizon relation ψðr → rHÞ → 0. This observation together
with the asymptotic boundary condition (11) imply again
that the scalar eigenfunction must have an extremum point
r ¼ rmax in the exterior region of the acoustic black-hole
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[55] Note that in the last inequality of (21) we have used the
relations m2 ≥ 1 > 1=4 > Δ=4 for m ≥ 1.
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[58] Our goal here is to identify the unique circular trajectory that

minimizes the orbital period of test particles around the
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the relation v=c → 1− for the tangential velocity of the
orbiting test particle.
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