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We discuss cosmological solutions for a diffeomorphism invariant gauge theory of the noncompact
Lorentz group SOð1; 3Þ. Besides the gauge bosons our model of pregeometry contains a vector field in the
vector representation of SOð1; 3Þ and a scalar singlet. General relativity and variable gravity emerge as
effective theories for large distances and times in Planck units. We propose an approximation to the
effective action with up to two derivatives. For a suitable range of parameters the universe approaches for
large times stable Minkowski space. For late cosmology the model predicts dynamical dark energy and
provides for a candidate for dark matter. Early cosmology is characterized by an inflationary epoch. The
beginning of the universe in the infinite past is great emptiness, corresponding to an ultraviolet fixed point
with the associated quantum scale symmetry. The beginning universe is a vacuum state with vanishing
expectation values and finite nonvanishing correlation functions for the fluctuations of all fields. There is no
physical big bang singularity.
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I. INTRODUCTION

The geometric description of general relativity may
only be an effective low-energy or large distance theory.
The metric could be a composite object or collective
excitation, similar to pions and hadrons in strong inter-
actions. The short distance quantum field theory for the
gravitational interactions is then described by different
degrees of freedom, similar to quarks and gluons for strong
interactions. In this approach the dynamical geometry with
its metric description emerges from more fundamental
pregeometry.
A model for pregeometry based on a SOð4Þ–Yang-Mills

theory has been proposed recently [1] as a candidate for a
consistent Euclidean functional integral for the gravita-
tional interactions. This is a promising starting point for the
formulation of quantum gravity. The present paper inves-
tigates a similar model with SOð1; 3Þ-gauge symmetry,
related to the Euclidean model by analytic continuation. It
is our aim to demonstrate that the solutions of the field
equations of this model lead to a realistic evolution history
of our universe.
The main advantage of formulating a quantum field

theory for pregeometry is the simple possible form of the
action for short distances or high momenta, q2 → ∞. This
action may involve only up to two derivatives of the fields,
admitting a starting point without ghost or tachyonic
instabilities. In comparison, the issue in metric gravity
seems to be more complex. The functional renormalization
group [2,3] allows for an investigation of the flow of the
effective action for metric gravity [4]. There is increasing
evidence that metric gravity may be a nonperturbatively

renormalizable quantum field theory according to the
asymptotic safety paradigm [4–9]; for a recent review
see Ref. [10]. Still, no simple short distance behavior
of gravity is visible in this approach so far. One may
hope that a similar investigation in pregeometry may
reveal a simpler structure, according to the possibility of
a simple action involving no more than two derivatives of
the fields.
The issue is visible in the momentum dependence of

the graviton propagator. For very short distances it is not
likely that the simple Einstein-Hilbert action offers a valid
setting for quantum gravity. In next order in a momentum
or derivative expansion the action involves up to four
derivatives, as encoded for a diffeomorphism invariant
setting in the presence of higher derivative invariants as
RμνρσRμνρσ, with Rμνρσ the curvature tensor constructed
from the metric. In this order the theory is perturbatively
renormalizable [11–15], but plagued by ghost instabilities.
Functional renormalization group investigations of the full
momentum dependence of the graviton propagator in
metric gravity have found encouraging results [16–19],
suggesting that instabilities could be avoided, and showing
that some of the critics formulated in Ref. [20] do not apply.
A simple convincing picture for the short distance behavior
has not emerged so far, however. This contrasts with the
situation in pregeometry. For a simple action for prege-
ometry mixing effects lead indeed to a term ∼q4 for the
momentum expansion of the inverse graviton propagator.
Nevertheless, the full momentum dependence of the
graviton propagator takes in this case an acceptable form
[1,21,22], obeying the criteria of Ref. [23], and avoiding
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any tachyon or ghost instabilities. The high momentum
behavior remains very simple.
Furthermore, the black hole solutions obtained from the

Einstein-Hilbert action show a central singularity. It is
speculated but not established that the asymptotic safety
picture for quantum gravity could remove this singularity.
With the simple short distance action of the proposed
model of pregeometry it will be interesting to investigate
the consequences for the black hole singularity. The simple
short distance behavior of the action and propagators could
be helpful in this respect.
The present paper addresses cosmology. Any realistic

proposal for quantum gravity has to entail an acceptable
evolution history of our universe. The evolution of the
universe cannot be investigated in a Euclidean theory. It
needs the Minkowski signature of the metric. Such a model
is thought to be obtained from a Euclidean theory by
analytic continuation. As a particular feature of pregeom-
etry this analytic continuation also affects the gauge
bosons. The gauge group SOð4Þ in the Euclidean formu-
lation becomes the noncompact Lorentz group SOð1; 3Þ.
Simultaneous analytic continuation of the vierbein and the
gauge fields at fixed coordinates realizes this require-
ment [22,24].
A noncompact gauge group SOð1; 3Þ comes with poten-

tial problems. Because of contractions with the indefinite
SOð1; 3Þ-invariant tensor ηmn it is no longer guaranteed that
the kinetic term for all gauge bosons has the correct sign
needed for stability. In the presence of mass terms this
could lead to tachyonic instabilities for flat space, which
would obstruct any realistic cosmology. For a realistic
cosmology the universe has to become close to flat space at
late times. This would not be possible in the presence of a
tachyonic instability, since neighboring solutions turn away
from flat space. Four our model of pregeometry we find
suitable ranges of parameters for which no such instabilities
occur and cosmology indeed approaches flat space at late
times. For the same parameters one also finds generically
an approach of the early universe to an approximate de
Sitter solution, realizing an inflationary epoch. Our finding
of rather consistent overall cosmologies demonstrates that
from this side there seems to be no obstruction to formulate
quantum gravity as a model of pregeometry.
The ingredients of our model of pregeometry are the

gauge bosons of the group SOð1; 3Þ, a vector field in the
vector representation of SOð1; 3Þ, which can be associated
with a generalized vierbein, and a scalar singlet field. The
formulation of a model for gravity involving a generalized
vierbein brings several aspects close to Cartan’s geometry
[25–39]. Nevertheless, in our approach the covariant
derivative of the generalized vierbein does not vanish.
The gauge fields are independent dynamical fields which
are not fixed as functionals of the vierbein. In this respect
our model is similar to Refs. [40–43] (see Ref. [1] for more
detailed relations).

Our model involves as a geometric connection the Levi-
Civita connection constructed from the vierbein, together
with the associated spin connection. This part is related to
the bundle structure of tangent space and reflects the same
geometric structure as for Cartan’s geometry. In addition, it
also involves the gauge fields as an independent connection
related to the bundle structure of a Yang-Mills gauge
theory. An important ingredient is the covariant derivative
of the vierbein which involves both connections [21,44];
see also Refs. [40–49]. In the limit of a vanishing covariant
derivative one recovers many features of Cartan’s geo-
metric approach. The only independent geometric degree of
freedom is then given by the metric, and the cosmology is
the same as for Einstein gravity. In contrast, for our
approach the vierbein and the gauge fields contain propa-
gating degrees of freedom that are not related to the metric.
These degrees of freedom guarantee the simple short
distance behavior.
On the other hand, the additional degrees of freedom are

the potential source of instabilities. For an appropriate
range of parameters we will find that instabilities are
avoided. In this case the additional degrees of freedom
become effectively frozen for late cosmology. For late
cosmology the metric and a scalar field related to dynami-
cal dark energy are the central ingredients for the overall
evolution of the universe. They can be accompanied by
rapidly oscillating massive gauge fields with zero mean
value, which could constitute dark matter. In this limit one
recovers general relativity or, more generally, variable
gravity [50]. This limit guarantees compatibility with the
many precise local measurements of gravity.
Beyond the gauge fields and the generalized vierbein

discussed in Ref. [1] we include here a scalar singlet field χ.
This is motivated by the possibility of a simple realization
of quantum scale symmetry [51]. Quantum scale symmetry
is a key ingredient for any complete quantum field theory.
The possibility to extrapolate consistently to arbitrarily
short distances requires the presence of an ultraviolet fixed
point, in the form of either asymptotic freedom or asymp-
totic safety. At the fixed point, quantum scale symmetry is
an exact symmetry. A complete candidate for a simple form
of the microscopic action should therefore also permit a
simple realization of quantum scale symmetry.
In the presence of a scalar field running dimensionless

couplings become functions of χ=k, with k some renorm-
alization scale, typically given by some effective infrared
cutoff. As a consequence, key properties of the renormal-
ization flow with k are mapped to a field dependence on χ.
For cosmological solutions with a time variation of χ this
typically induces “crossover cosmologies.” Because of an
increase of χ the universe can evolve away from the vicinity
of an ultraviolet fixed point, which only characterizes the
infinite past. For a simple ansatz for the χ-dependent
couplings our model of pregeometry is indeed character-
ized by a crossover cosmology. This leads rather genuinely
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to an early inflationary epoch, which ends due to the
crossover.
As the main outcome of this investigation we find that

realistic cosmology is possible for this type of models of
pregeometry. This is demonstrated in Fig. 1, which shows
the evolution of the Hubble parameterH and the scalar field
s ¼ ln χ with cosmic time t. An early inflationary epoch
with almost constant H and slow evolution of s is followed
by a transition to “late cosmology” for which H decreases
toward zero while s continues growing. More details for
this figure and a discussion of the properties of late
cosmology will be provided later. Late cosmology is
essentially general relativity with dynamical dark energy
and dark matter.
We do not discuss in the main text the fermion fields that

can be added in a standard way [1]. We also omit the
additional gauge bosons and scalars needed for the standard
model of particle physics or beyond. These fields have to be
added for a fully realistic cosmology. In Appendix A we
present a short description of the effective action for these
additional fields, describing, in particular, their couplings to
the fields of pregeometry. The additional fields are central
for a realistic radiation dominated epoch and for the
galaxies and stars in our present epoch. Nevertheless, for
very early cosmology including the inflationary epoch
these additional fields presumably play no important role.
For the early epochs the fields included in the present paper
may be sufficient for a realistic description.
For the present cosmological epoch and length or time

scales much smaller than the present horizon or age of the
universe all predictions of our model turn out to be identical
to general relativity, up to tiny corrections. These correc-
tions involve either processes mediated by very heavy

fields, as the massive gauge bosons. Those are typically
suppressed by factors p2=m2, with p the momentum,
energy, or inverse length or time of the considered process,
and m2 typically larger than the effective Planck mass. For
the physics of stars or galaxies these effects are unobserv-
ably small. A second source of new effects could arise from
the time evolution of the scalar singlet field χ. Neglecting
the effects ∼m−2 exact general relativity is recovered for
constant values of the scalar singlet field χ. Since the
relative change of χ for late cosmology turns out to be
proportional to the Hubble parameter all possible correc-
tions for gravity on stars or galaxies are tiny. Furthermore,
in the limit of quantum scale symmetry a time variation of
couplings or apparent violations of the equivalence prin-
ciple are absent. We discuss the emergence of general
relativity for late cosmology in detail in Sec. V.
First proposals for pregeometry have been based on

fermionic constituents [52–54]. These models did not yet
implement local Lorentz symmetry. In spinor gravity both
diffeomorphism and local Lorentz symmetry can be real-
ized [55–57]; see also Refs. [58,59] for models with global
Lorentz symmetry. It is conceivable that the present model
of pregeometry can be obtained as an effective theory from
such an even more fundamental fermionic theory. This
question remains beyond the present investigation.
The present paper is organized as follows: We introduce

our model of pregeometry in Sec. II. In Sec. III we derive
the field equations that are relevant for homogeneous
isotropic cosmological solutions. We establish the sta-
bility of flat space, which is discussed in more detail in
Appendix B. Numerical solutions approach rather fast a
constant Hubble parameter and a vanishing of the covariant
derivative of the vierbein for a wide range of initial
conditions. This early attractor solution dominates the
inflationary epoch. In Sec. IV we discuss two types of
de Sitter solutions. The first is the stable attractor solution
toward which rather arbitrary initial conditions converge as
long as the value of the scalar field χ remains small enough.
The early attractor ends once the slowly evolving scalar
field reaches a critical value. The second type of de Sitter
solutions is unstable. It corresponds to the limit of the basin
of attraction of the de Sitter solution of the first type. Both
types of de Sitter solutions become exact in the limit of a
vanishing scalar field.
In Sec. V we turn to the emergence of an effective low-

energy theory. This is variable gravity, an extension of
general relativity which includes a scalar field, with a field
dependent Planck mass, effective scalar potential, and
kinetic term. Also the masses of particles in the standard
model will depend on this scalar field. The embedding of
variable gravity in our model of pregeometry is not trivial
since the covariant derivative of the vierbein does not
vanish for a changing scalar field. Variable gravity becomes
a very good approximation rather early in the cosmological
evolution. Many results for rather realistic cosmologies in
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FIG. 1. Hubble parameter and scalar field. We show the
Hubble parameter H and the scalar field χ as functions of cosmic
time t. More precisely, we plot lnðHÞ þ 10 (red curve) for better
visibility and s ¼ lnðχÞ (blue curve). Units are set by the Planck
mass. Parameters are Z ¼ −Z̃ ¼ 1, m2 ¼ −m̃2 ¼ 5, Y ¼ 0,
K ¼ 8, and V̄ ¼ 10−4. We observe an early inflationary epoch
that can be continued to the infinite past. Once s becomes positive
inflation ends and the Hubble parameter decreases toward zero.
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this context [50,60–63] can be taken over to our model.
This simplifies the overall cosmological picture for our
model of pregeometry. The additional degrees of freedom
play a role in very early cosmology, which may be
associated with the early stages of the inflationary epoch.
Their average value is damped very rapidly to tiny values.
Already for the epoch of inflation relevant for the observ-
able primordial fluctuation spectrum, and for all later times,
they only appear possibly in the form of rapidly oscillating
fields that behave as nonrelativistic fluids. If stable, these
fluctuating fields could constitute dark matter.
Sections VI–VIII expand the formal and conceptual

setting. We first derive in Sec. VI the general field
equations. In Sec. VII we discuss field dependent con-
formal transformations of the metric or Weyl scalings.
These transformations relate different choices of the metric
or different “metric frames.” The corresponding geometries
are different, but all are equivalent from the point of view of
observation. We cast the effective action and the field
equations into a frame invariant form. In Sec. VIII we
discuss quantum scale symmetry [51]. This symmetry plays
a crucial role in the infinite past and infinite future of the
universe, which are described by an ultraviolet and infrared
fixed point, respectively. Quantum scale symmetry explains
the almost scale invariant primordial fluctuation spectrum
by the close vicinity to the ultraviolet fixed point. For late
cosmology the vicinity of the infrared fixed point, where
quantum scale symmetry is broken spontaneously, leads to
a very light scalar field playing the role of a pseudo-
Goldstone boson. This “cosmon” field is the key ingredient
for dynamical dark energy or quintessence [64].
In Sec. IX we formulate the effective action for a family

of models that are motivated by the functional renormal-
ization flow from the ultraviolet to the infrared fixed point.
We discuss in the following very simple representatives
with frame- and scale-invariant couplings. While being an
oversimplification for a quantitatively realistic universe,
these simple models account for all main ingredients of a
realistic cosmology. Section X turns to the consequences of
our model of pregeometry for the late universe. We discuss
rapidly oscillating gauge fields as dark matter candidates,
show the natural emergence of dynamical dark energy
associated with a very light scalar field with decreasing
mass, and investigate the coupling between dark energy
and dark matter [65–67]. In Sec. XI we turn to inflationary
cosmology. We establish that the epochs relevant for the
observable properties of the primordial fluctuation spec-
trum are well approximated by variable gravity. We depict
scenarios for which the small fluctuation amplitude as well
as realistic spectral properties emerge in a natural way.
In Sec. XII we turn to the fate of inhomogeneous

fluctuations in the vicinity of the homogeneous cosmic
background solution. We concentrate on the graviton
fluctuations. Our model contains two fields with the
transformation properties of the graviton, one arising from

the vierbein, the other from the gauge fields. The propa-
gators of the two fields mix, resulting in flat space in a
massless and a massive graviton. This mixing also leads to
two different components for the primordial tensor fluctu-
ations. For the early attractor solution the leading compo-
nent behaves precisely as the graviton fluctuation in
Einstein gravity.
Section XIII addresses the beginning of the universe in

the infinite past in physical time. For our model of
pregeometry this turns out to be surprisingly simple. It
is a vacuum state for which the expectation values of all
fields vanish. The inhomogeneous fluctuations of the fields
do not vanish, however. They are characterized by time-
independent correlation functions. This vacuum state is
unstable toward the growth of small vacuum expectation
values of fields. Once the expectation values dominate, the
universe becomes homogeneous. Relative inhomogeneities
are strongly damped during the subsequent inflationary
epoch. Finally, in Sec. XIV we summarize our conclusions.

II. FIELDS AND EFFECTIVE ACTION

Our formulation of pregeometry is based on a Yang-
Mills gauge theory with noncompact gauge group SOð1; 3Þ
and gauge fields Aμmn ¼ −Aμnm;m; n ¼ 0, 1, 2, 3. In
addition to the six gauge fields, we consider four vector
fields eμm in the vector representation of SOð1; 3Þ. We
define the covariant field strength

Fμνmn ¼ ∂μAνmn − ∂νAμmn þ Aμm
pAνpn − Aνm

pAμpn ð1Þ

and the covariant derivative

Uμν
m ¼ Dμeνm ¼ ∂μeνm − Γμν

σeσm þ Aμ
m
neν

n: ð2Þ

The vectors eμm play the role of a generalized vierbein for
which the covariant derivative does not vanish, in contrast to
most approaches based onCartan’s geometry. Thevierbein is
used to convert latin (gauge) indices to greek (world) indices,

Fμνρσ ¼ eρmeσnFμνmn; Uμνρ ¼ eρmUμν
m: ð3Þ

The covariant vierbein derivative can be related to the torsion
tensor

Uμνρ ¼
1

2
ðTμνρ − Tνρμ þ TρνμÞ: ð4Þ

We assume a positive determinant of the matrix eμm such
that the inverse vierbein emμ exists and can be used for the
opposite index conversion

e ¼ detðeμmÞ > 0; emμeμn ¼ δm
n; eμmemν ¼ δμ

ν: ð5Þ

We define a composite metric gμν as a bilinear of the
vierbein and its inverse
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gμν ¼ eμmeνnηmn; gμν ¼ emμenνηmn: ð6Þ

It can be employed for raising and lowering greek indices in
the usual way. Latin indices are raised and lowered with
ηmn and ηmn, η ¼ diagð−1; 1; 1; 1Þ. The connection Γμν

ρ is
the Levi-Civita connection constructed from the composite
metric. It is therefore a function of the vierbein and its first
derivatives. At the present stage gμν is only a shorthand
notation for a vierbein bilinear. For the effective low-energy
theory this composite field will become the dominant
degree of freedom, together with the scalar field χ. It
can then be used to define a useful, albeit not unique,
geometry.
In addition to the “pregeometric fields” Aμmn and eμm,

we introduce a scalar field χ. It will play the role of the
inflaton or the cosmon for dynamical dark energy. The
evolution of this scalar field will be the crucial ingredient
that drives the transition between different cosmological
epochs. It realizes the crossover from the ultraviolet fixed
point at χ ¼ 0 in the infinite past to the infrared fixed point
for χ → ∞ in the infinite future.

A. Effective action

A quantum effective action that is invariant under
SOð1; 3Þ-gauge transformations and diffeomorphisms
takes in second order of a derivative expansion the form

Γ ¼
Z
x
e

�
Z
8
FμνρσFμνρσ þ B

2
FμνFμν þ C

2
F2

−
M2

2
F þm2

4
UμνρUμνρ þ n2

2
Uμ

μ
ρUν

νρ

þ K
2
∂μχ∂μχ þ V þ YUμ

μνχ∂νχ

�
; ð7Þ

where

Fμρ ¼ Fμνρσgνσ; F ¼ Fμνρσgμρgνσ ¼ Fμρgμρ: ð8Þ

The coupling functions Z; B; C;m2; n2;M2; K; Y, and V are
functions of the scalar field χ.
The effective action includes all effects of quantum

fluctuations. The field equations derived by variation of
Γ are exact. These are the field equations relevant for
cosmology. We have not computed Γ but rather made
the ansatz of the validity of a derivative expansion. The
action (7) contains invariants in second order in the
derivative expansion that do not involve contractions with
the totally antisymmetric tensor εμνρσ or εmnpq. The omis-
sion of such terms can be justified by imposing discrete
symmetries as parity and time reversal and by noting that
FμνmnFρσpqε

μνρσεmnpq is a total derivative. There exist
also other index contractions not involving the ε tensor.
Since these invariants do not seem to induce qualitative
changes, we have omitted them for the sake of simplicity.

The effective action is therefore not in the most general
form in second order in a derivative expansion. We also
often omit the term ∼B. Again, this makes no qualitative
difference. Our discussion of the invariant ∼B can be
considered as a proxy for other omitted invariants. The
remaining invariants are all needed for an understanding of
the structural properties of our model.
For V ¼ 0Minkowski space with vanishing gauge fields

and constant scalar field is a solution of the field equations
derived from the effective action (7). The coupling func-
tions should be chosen such that Minkowski space is stable.
A detailed stability analysis is presented in Appendix B. We
define the combinations

Z̃ ¼ Z þ 4Bþ 12C; m̃2 ¼ m2 þ 3n2: ð9Þ

For constant coupling functions the stability of Minkowski
space can be realized for

Z > 0; Zþ 2B > 0; Z̃ < 0; m2 > 0; M2 > 0; ð10Þ

and either

m̃2 > 0; K > 3Y2χ20=m̃
2; ð11Þ

or for negative m̃2 obeying

m̃2 < −2M2 þ 3Y2χ20
K

: ð12Þ

The negative sign of Z̃ is connected to the noncompact
character of the gauge group SOð1; 3Þ. The conditions
(10)–(12) are extended later to χ-dependent couplings.

B. Simple models

For a first step beyond constant coupling functions we
make an ansatz for the χ dependence, which is motivated by
quantum scale symmetry, fundamental scale invariance,
and asymptotic safety for gravity. Typical scaling solutions
for functional flow equations for quantum gravity yield an
approximate behavior [51,68–72]

V ¼ u0k4; M2 ¼ 2w0k2 þ ξχ2: ð13Þ

We will assume that this extends to pregeometry, with a
similar behavior for m2 and m̃2,

m2 ¼ m2
0k

2 þ ζχ2; m̃2 ¼ m̃2
0k

2 þ ζ̃χ2: ð14Þ

We take constant values of Z and Z̃. Furthermore, the
dimensionless functions K and Y are assumed to depend
only on χ2=k2, in a form that will be discussed later. With
dimensionless parameters u0, w0, ξ, m2

0, m̃2
0, ζ, ζ̃ the

renormalization scale k is the only mass scale present.
Quantum scale symmetry is realized in the limits χ2 → ∞
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and χ → 0, as we will discuss in detail in Sec. VIII. The χ
dependence of the functions Z, Z̃, m2, m̃2, M2, and V
according to the ansatz (13) and (14) is not exact; we only
suppose here that it is a reasonable approximation.
We will assume the presence of a discrete symmetry

χ → −χ. For analytic Z this implies for χ → 0 that the
derivative vanishes, ∂Z=∂χ ∼ χ. We assume that analyticity
holds for Z, Z̃, m2, m̃2, M2, and V. For χ ¼ 0 all terms in
the field equations that are proportional to χ derivatives of
these functions vanish. For K and Y we assume that they do
not increase too fast for χ → 0, such that the scalar field
equation is obeyed for χ ¼ 0. We will discuss these
functions more extensively in Sec. IX, where we embed
our ansatz in a more complete crossover model.

III. FIELD EQUATIONS FOR HOMOGENEOUS
ISOTROPIC COSMOLOGY

In this section we derive the evolution equations for
homogeneous isotropic cosmologies. We discuss the
approach to flat space and the deviations of our model
of pregeometry from general relativity. We also present
numerical solutions for the early universe that show the
natural emergence of an inflationary epoch.

A. Homogeneous isotropic cosmology

We are first interested in homogeneous, isotropic, and
spatially flat cosmological solutions of the field equations
derived from the effective action (7). The general ansatz is
given for eμm and Aμmn by

eμm ¼ aðηÞδμm; χ ¼ χðηÞ;
Akl0 ¼ −Ak0l ¼ bðηÞδkl; Aklj ¼ cðηÞεklj; ð15Þ

with k; l; j ¼ 1…3. It involves four functions of conformal
time η. We stress that the ansatz concerns the gauge fields
Aμmn. For Aμνρ an additional factor a2 or −a2 arises from
the multiplication with vierbeins.
With this ansatz one finds for the nonvanishing compo-

nents of Uμνρ

Ukl0 ¼−Uk0l¼−a2ðb−HÞδkl; Uklj¼−a2cεklj; ð16Þ

involving the conformal Hubble parameter

H ¼ ∂η ln a ¼ a−1
da
dη

: ð17Þ

Similarly, the field strength Fμνmn for the gauge bosons has
the nonvanishing components

Fklij ¼ ðb2 − c2Þðδkiδlj − δkjδliÞ; F0klj ¼ ∂ηcεklj;

Fklj0 ¼ −2cbεklj; Fk0l0 ¼ −∂ηbδkl; ð18Þ

plus additional components obtained by the asymmetry in
the first and the last index pairs,

Fμνmn ¼ −Fμνnm ¼ −Fνμmn: ð19Þ
This yields for the contracted scalar

F ¼ 6

a2
ð∂ηbþ b2 − c2Þ: ð20Þ

B. Field equations

In order to derive the field equations for the functions
aðηÞ, bðηÞ, cðηÞ, and χðηÞ we insert the ansatz (15) into the
effective action (7)

Γ ¼ Ω3

Z
η

�
3

2
½Z̃ð∂ηbÞ2 − Zð∂ηcÞ2

þ 2ðZ̃ − Z − 2BÞðb2 − c2Þ∂ηb

þ Z̃ðb4 þ c4Þ − 2ðZ̃ þ 2ZÞb2c2�

þ 3a2

2
½m2c2 − m̃2ðb −HÞ2� − 3M2a2ð∂ηbþ b2 − c2Þ

−
Ka2

2
ð∂ηχÞ2 þ a4V þ 3Ya2ðb −HÞχ∂ηχ

�
: ð21Þ

Only even powers of c appear. This is due to parity that
changes the signs of all fields with an odd number of
indices μ or m taking the values 1, 2, 3 and therefore
transforms c → −c.
The field equation for the “cosmic scale factor” aðηÞ

obtains by functional variation of the effective action (21)
with respect to the function aðηÞ,

∂ηHþH2 ¼
�
1þ 2M2

m̃2

�
ð∂ηbþb2Þ−

�
m2þ 2M2

m̃2

�
c2

−
4a2

3m̃2
Vþ K

3m̃2
ð∂ηχÞ2þ

∂ lnðm̃2Þ
∂χ ∂ηχðb−HÞ

−
Y
m̃2

�
χ∂2

ηχþ
�
1þ ∂ lnY

∂ lnχ
�
ð∂ηχÞ2þ 2bχ∂ηχ

�
:

ð22Þ
Similarly, the field equation for the scalar field χðηÞ reads

K

�
∂2
ηχ þ 2H∂ηχ þ

1

2

∂ lnK
∂χ ð∂ηχÞ2

�
¼ −a2

∂V
∂χ

−
3

2a2

�∂Z̃
∂χ ð∂ηbþ b2 − c2Þ2 − 4

∂B
∂χ ðb

2 − c2Þ∂ηb

−
∂Z
∂χ ½ð∂ηcÞ2 þ 2ðb2 − c2Þ∂ηbþ 4b2c2�

�
−
3

2

∂m2

∂χ c2 þ 3

2

∂m̃2

∂χ ðb −HÞ2 þ 3
∂M2

∂χ ð∂ηbþ b2 − c2Þ

þ 3Yð∂ηb − ∂ηHþ 2Hðb −HÞÞχ: ð23Þ
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Finally, we obtain the field equations for the two
independent functions characterizing the gauge fields,

∂2
ηbþ ∂ ln Z̃

∂χ ∂ηχ∂ηb

¼ −
m̃2 þ 2M2

Z̃
a2ðb −HÞ

þ 2bðb2 − c2Þ − 4
Z

Z̃
bc2 þ 2

Z̃
ðZ̃ − Z − 2BÞc∂ηc

þ a2

Z̃

�∂M2

∂χ þ Yχ

�
∂ηχ

−
1

Z̃
∂χðZ̃ − Z − 2BÞ∂ηχðb2 − c2Þ; ð24Þ

and

∂2
ηcþ

∂ lnZ
∂χ ∂ηχ∂ηc

¼ −
m2 þ 2M2

Z
a2c

þ 2c
Z
½Z̃ðb2 − c2 þ ∂ηbÞ þ Zð2b2 − ∂ηbÞ − 2B∂ηb�:

ð25Þ

Equations (22)–(25) constitute a system of four nonlinear
second order differential equations for a, b, c, and χ. In
Sec. VI we will obtain the same equations from the more
general field equations for arbitrary fields.

C. Stability of flat space

In the limit of a vanishing potential V ¼ 0, and for
constant coupling functions as well as Y ¼ 0, the field
equations (22)–(25) have solutions with Minkowski geom-
etry, vanishing gauge fields, and constant scalar field

H ¼ b ¼ c ¼ 0; χ ¼ χ0: ð26Þ

In the vicinity of this solution we can expand the field
equations inH, b, c, and δχ ¼ χ − χ0. Using cosmic time t
with dt=dη ¼ a, H ¼ H=a, b̃ ¼ b=a, c̃ ¼ c=a, the linear-
ized field equations read

∂tH¼
�
1þ 2M2

m̃2

�
∂tb̃; ∂2

t δχ ¼ 0;

∂2
t b̃¼−

m̃2þ 2M2

Z̃
ðb̃−HÞ; ∂2

t c̃¼−
m2þ 2M2

Z
c: ð27Þ

Inserting the linearized solution,

H ¼
�
1þ 2M2

m̃2

�
b̃; ð28Þ

into the evolution equation for b̃ yields

∂2
t b̃ ¼ 2M2

Z̃

�
1þ 2M2

m̃2

�
b̃: ð29Þ

ForM2 > 0, 1þ 2M2=m̃2 > 0 one finds oscillations with a
positive mass term μ2, ð∂2

t þ μ2Þb̃ ¼ 0, provided that
Z̃ < 0. In contrast, for Z̃ > 0 Minkowski space is unstable
due to b̃ behaving as a tachyon. A second possibility for
stable behavior is M2 > 0, 1þ 2M2=m̃2 < 0, Z̃ > 0. This
agrees with the general stability discussion in Appendix B.
For c̃ we obtain a stable behavior for m2 þ 2M2 > 0,
Z > 0. The scalar fluctuation δχ behaves in this approxi-
mation as a massless field.
The stability properties can be understood in a simple

way by replacing H by a shifted variable d̃,

H ¼ d̃þ ð1þ 2ỹÞb̃; ỹ ¼ M2

m̃2
: ð30Þ

The field equations for b̃ and d̃ become

∂2
t b̃ −

2ỹð1þ 2ỹÞm̃2

Z̃
b̃ ¼ m̃2

Z̃
ð1þ 2ỹÞd̃; ∂td̃ ¼ 0: ð31Þ

For d̃ ¼ 0 we recover the stable oscillations of b̃ in the
appropriate range of parameters.
Similar results will be found for χ-dependent coupling

functions. For the crossover model in Sec. IX the constant
coupling functions will be replaced by constant scale
invariant coupling functions. Only the frame invariant
scalar potential will depend on χ in a way that vanishes
for χ → ∞. Late cosmology will correspond to large χ,
such that the approximation V ¼ 0 applies. The stability
discussion for flat space above therefore applies directly to
late cosmology.

D. Evolution equations in cosmic time

The use of cosmic time t eliminates the explicit depend-
ence on the scale factor a. We also replace m̃2 andm2 by the
mass terms

μ2b ¼ −
2M2

Z̃

�
1þ 2M2

m̃2

�
; μ2c ¼

m2 þ 2M2

Z
: ð32Þ

For early cosmology with χ → 0 the coupling functions can
be taken constant, leading to constant mass terms μ2b and μ

2
c.

The same holds for late cosmology with χ → ∞ according
to our ansatz (13) and (14) if we use frame invariant
coupling functions. Thus the ansatz of constant coupling
functions approximates well a wide range of models. In the
following we only include a χ dependence of the scalar
potential V.
For constant coupling functions [except VðχÞ] the field

equations for the gauge fields (24) and (25) read
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ð∂2
t þ 3H∂t þ ∂tH þ 2H2Þb̃ ¼ μ2b

2ỹ
ðb̃ −HÞ

þ 2b̃ðb̃2 − c̃2Þ − 4Z

Z̃
c̃2b̃

þ 2c̃

Z̃
ðZ̃ − Z − 2BÞð∂tc̃þHc̃Þ þ Y

Z̃
χ∂tχ; ð33Þ

and

ð∂2
t þ 3H∂t þ ∂tH þ 2H2 þ μ2cÞc̃

¼ 2c̃
Z
½Z̃ðb̃2 − c̃2Þ þ 2Zb̃2 þ ðZ̃ − Z − 2BÞð∂tb̃þHb̃Þ�:

ð34Þ

Equation (22) becomes

∂tH þ 2H2 − ð1þ 2ỹÞð∂tb̃þHb̃þ b̃2Þ ¼ −
FH

m̃2
; ð35Þ

with

FH ¼ Zμ2cc̃2 þ
4V
3

−
K
3
ð∂tχÞ2

þ Y½χ∂2
t χ þ ð2b̃þHÞχ∂tχ þ ð∂tχÞ2�; ð36Þ

and the scalar field equation (23) reads

Kð∂2
t χþ 3H∂tχÞ ¼−

∂V
∂χ þ 3Yð∂tb̃− ∂tHþ 3b̃H− 3H2Þχ:

ð37Þ

For the potential we assume the form

V ¼ V0

�
1þ χ2

μ20

�
−2
: ð38Þ

This form will be motivated in Secs. VII and IX by the
frame invariant potential or the potential in the Einstein
frame. For χ2 ≪ μ20 the potential is almost constant. The
decrease for χ2 ≫ μ20 allows for an exit of an inflationary
epoch. For otherwise constant coupling functions the
solution of the system of flow equations (33)–(37) already
reveals several key aspects of the cosmology for our model
of pregeometry. According to the ansatz (13) and (14)
constant coupling functions are a valid approximation only
for early cosmology when χ is small enough. We will see in
Sec. IX that the region of validity of this approximation can
be extended if one uses frame invariant coupling functions.

E. Initial approach to de Sitter solution

We show in Fig. 2 a typical numerical solution of the
system of flow equations (33)–(37). Parameters are chosen
as M2 ¼ 1, m2 ¼ −m̃2 ¼ 5, Z ¼ −Z̃ ¼ 1, B ¼ 0, K ¼ 4,

Y ¼ 0, V0 ¼ 0.3, and μ20 ¼ 1. For the initial conditions at
t ¼ 0 we have taken χð0Þ ¼ 0.005, ∂tχð0Þ ¼ 0,
b̃ð0Þ ¼ 0.3, ∂tb̃ð0Þ ¼ −0.4, Hð0Þ ¼ 0.5, c̃ð0Þ ¼ 0.4, and
∂tc̃ð0Þ ¼ 0. As a function of t the figure displays HðtÞ,
b̃ðtÞ, f̃ðtÞ ¼ b̃ðtÞ −HðtÞ, c̃ðtÞ, and χðtÞ=4. An initial
oscillatory behavior is damped. For the parameters chosen
the solution approaches first a de Sitter solution with
constant H. The difference f̃ ¼ b̃ −H and the gauge field
c̃ approach zero rapidly already in an early stage and stay
there. During the de Sitter solution the scalar field χ
increases only slowly. Starting with a smaller initial value
of χ the initial approach to the de Sitter solution is almost
identical. Since the evolution of χ is even slower, the de
Sitter solution extends to a much longer period. In the limit
of the initial value of χ going to zero the de Sitter solution
lasts for infinite time.

F. Exit from de Sitter solution

Even if we start with a tiny initial χ > 0 the value of χ
will grow until it reaches a value of the order 0.5.
Subsequently, the derivative of the potential will become
important in the scalar field equation (37) and the de Sitter
solution ends. We have depicted this in Fig. 3, which uses
the same parameters, initial conditions, and color coding as
in Fig. 2. This figure only extends the range of t. After the
end of the de Sitter epoch, which can be associated with
inflationary cosmology, the functions H̃ ≈ b̃ approach zero
in a powerlike behavior. Small oscillations of H̃, b̃, c̃, f̃ are
not visible with the resolution of this plot.
The three stages—damped initial oscillations, de Sitter

solution, approach to flat space—are similar for a large

0 2 4 6 8
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,f
,c
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FIG. 2. Initial approach to de Sitter solution. We plot H (red
curve), b̃ (blue curve), f̃ (yellow curve), c̃ (magenta curve), and
χ=4 (green curve) as a function of cosmic time t. The different
curves can also be identified by the initial values H ¼ 0.5,
b̃ ¼ 0.3, f̃ ¼ −0.2, c̃ ¼ 0.4, and χ ¼ 0.005. Initial derivatives are
set to zero, except for ∂tb̃ ¼ −0.4 chosen for better visibility.
Parameters are M2 ¼ 1, m2 ¼ −m̃2 ¼ 5, Z ¼ −Z̃ ¼ 1, B ¼ 0,
K ¼ 4, V0 ¼ 0.3, μ20 ¼ 1, and Y ¼ 0.
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range or parameters as long as some stability conditions are
met, e.g., Z > 0, Z̃ < 0, and m2 > 0. We have chosen
initial conditions such that all three stages are easily visible
in Fig. 3.
The duration of the different stages depends on the

parameters. For V0 → 0 one observes many damped
oscillations, with an oscillatory approach to flat space in
the limit V0 ¼ 0. The de Sitter solution can last for many
e-foldings if the evolution of the scalar field χ is slow, e.g.,
for very small initial values of χ. A larger K slows down the
evolution of the scalar field.

G. Approach to flat space

For V ¼ 0, Y ¼ 0 one has a solution with a constant
scalar field χ ¼ χ0. The scalar field no longer influences the
evolution of H, b̃, and c̃, and we obtain an effective model
without a scalar field. Eliminating H in favor of d̃ by
Eq. (30), and concentrating on c̃ ¼ 0, the field equation for
b̃ becomes in this case

∂2
t b̃þ ½4ð1þ 2ỹÞb̃þ 3d̃�∂tb̃þ μ2b

�
b̃þ d̃

2ỹ

�
þ b̃∂td̃

¼ −8ỹð1þ ỹÞb̃3 − ½4ð1þ 2ỹÞb̃ d̃þ2d̃2�b̃: ð39Þ

For the approach to flat space we can neglect the right-hand
side (RHS) of Eq. (39) in next to leading order of an
expansion in small b̃, d̃. We observe the appearance of a
damping term ∼∂tb̃. For the evolution of d̃ one finds

∂td̃þ 2d̃þ 3ð1þ 2ỹÞb̃ d̃þ2ỹð1þ 2ỹÞb̃2 ¼ 0: ð40Þ

Equations (39) and (40) are a closed system of two coupled
nonlinear differential equations.

The late time behavior can be understood by setting in
Eq. (39)

f̃ ¼ 0; b̃ ¼ H;
d̃
2ỹ

¼ −b̃; ð41Þ

such that the quadratic approximation becomes

∂2
t b̃þ 4b̃∂tb̃ ¼ 0: ð42Þ

From Eq. (40) one infers

∂tb̃ ¼ −2b̃2: ð43Þ

One possible solution of Eqs. (41) and (42) is a powerlike
approach to flat space

H ¼ b̃ ¼ 1

2t
; ð44Þ

as characteristic for radiation, and the other one is b̃ ¼
H ¼ 0 corresponding to flat space. We will see later that for
the full system of equations only the flat space solution is
possible in the range H2 ≪ M2 if c ¼ f ¼ 0, Y ¼ 0,
and χ ¼ χ0.
Beyond the approximation (41) there are small oscil-

lations of the gauge field with the frequency given by μb.
They influence the evolution of the Hubble parameter as a
form of cold dark matter. This will be discussed in Sec. X.
Furthermore, the scalar potential for large χ gets very small,
but does not vanish. This will result in a dynamical dark
energy component that also influences the evolution of the
Hubble parameter. This will also be discussed in Sec. X.
The overall picture of Fig. 3 remains valid, however.
After the end of the inflationary epoch the universe
makes a transition to a cosmology approaching flat space
asymptotically.
The approximation of constant coupling functions leads

to an instability for late times if Y ≠ 0. This becomes
visible if we insert the scalar field equation in Eq. (35),�
1 −

3Y2χ2

Km̃2

�
ð∂tH − ∂tb̃Þ ¼ 2ỹ½∂tb̃þ b̃ðb̃þHÞ�

þ ðb̃þ 2HÞðb̃ −HÞ

−
1

m̃2

�
4V
3

−
Yχ
K

∂V
∂χ þ

�
Y −

K
3

�
ð∂tχÞ2 þ Zμ2cc̃2

þ Yðb̃ −HÞ
�
2χ∂tχ þ

9HYχ2

K

��
: ð45Þ

As χ increases, the differential equations become unstable
as the prefactor of ∂tH approaches zero. For m̃2 increasing
for large χ proportional to χ2 this instability can be avoided.
Since this instability is absent in the concrete models
discussed in Sec. IX, we will not discuss this issue further.
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FIG. 3. Early cosmology. The functions H (red curve), b̃ (blue
curve), f̃ (yellow curve), c̃ (magenta curve), and χ=4 (green
curve) are shown in dependence on t. Parameters, initial values,
and color coding are the same as for Fig. 2. The de Sitter solution
with almost constant H and b ends once χ is around 0.5.
Subsequently H and b show a powerlike decay.
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H. Evolution of covariant vierbein derivative

The covariant derivative Uμνρ involves c and the combi-
nation

f ¼ b −H: ð46Þ

We observe in Figs. 2 and 3 that both quantities approach
zero already in early stages of the evolution. Since a
vanishing covariant derivative of the vierbein leads to
variable gravity, we conclude that the variable gravity
approximation becomes valid already for very early cos-
mology. It is instructive to understand the dynamical
vanishing of the covariant vierbein derivative for Y ¼ 0
dynamically. This investigation also reveals that for Y ≠ 0
the covariant vierbein derivative Uμνρ does not vanish but
rather approaches a fixed value proportional to the time
derivative of the scalar field χ. For the purpose of this
discussion we take B ¼ 0 and consider constant Z and Z̃.
We observe that c ¼ 0 solves Eq. (25), and we will in the
following concentrate on this solution.
In terms of f the evolution of the scale factor follows

from Eq. (22),

6M2ð∂ηHþH2Þ ¼ 4a2V − Kð∂ηχÞ2

− 3m̃2

�
1þ 2M2

m̃2

�
ð∂ηf þ 2Hf þ f2Þ − 3

∂m̃2

∂χ ∂ηχf

þ 3Y

�
χ∂2

ηχ þ
�
1þ ∂ lnY

∂ ln χ
�
ð∂ηχÞ2 þ 2ðHþ fÞχ∂ηχ

�
:

ð47Þ

We observe that the curvature scalar formed from the
composite metric (6) is given by

R ¼ 6

a2
ðH2 þ ∂ηHÞ: ð48Þ

For f ¼ 0, Y ¼ 0 Eq. (47) corresponds to the contraction of
the Einstein equation in general relativity coupled to a
scalar field. The scalar field equation simplifies for constant
Z, Z̃, and B ¼ 0, as well as c ¼ 0 to

K

�
∂2
ηχ þ 2H∂ηχ þ

1

2

∂ lnK
∂χ ð∂ηχÞ2

�
¼ −a2

∂V
∂χ þ 3

2

∂m̃2

∂χ f2

þ 3
∂M2

∂χ ½∂ηHþH2 þ ∂ηf þ 2Hf þ f2�

þ 3Yð∂ηf þ 2HfÞχ: ð49Þ

For f ¼ 0 this is the scalar field equation for variable
gravity [50].
The field equation for f follows from the field equa-

tion (24) for b. It can be written in the form

∂2
ηf ¼ 2H3 − ∂2

ηHþ a2

Z̃

�∂M2

∂χ þ Yχ

�
∂ηχ

−
m̃2 þ 2M2

Z̃
a2f þ 6H2f þ 6Hf2 þ 2f3: ð50Þ

We observe a driving term that does not vanish for f ¼ 0.
A solution with f ¼ 0 is possible only if the driving
term vanishes. This happens for a de Sitter space where
∂2
ηH ¼ 2H3 if ∂ηχ ¼ 0. These conditions are obeyed for

the plateaus in Figs. 2 and 3. This is the reason why f can
relax rapidly to zero. For Y ≠ 0 and constantM2 the driving
term is of the order H3 once the de Sitter solution with
constantH ends. The driving term, and therefore the size of
f, is small and the deviation from zero is not visible with
the resolution of Figs. 2 and 3. We will discuss the
evolution of f in more detail in Secs. V and X.

IV. COSMOLOGICAL SOLUTIONS WITH DE
SITTER GEOMETRY

In this section we discuss a few solutions of the field
equations with a de Sitter geometry. With rather mild
conditions on the coupling functions they are realized in the
limit of a vanishing scalar field χ ¼ 0. We will associate
this type of solution with a possible beginning of the
universe in the infinite past in conformal time, η → −∞. As
time increases, cosmology moves away from the exact de
Sitter solutions. The approximate de Sitter solutions real-
ized for large finite negative η can be associated with
inflation. Once the curvature becomes small as compared to
m2 and m̃2 cosmology can be described by an effective
theory. This is the “variable gravity” [50] extension of
general relativity. We will establish this in the next section.
The stages of the cosmic evolution that are relevant for
observation are well described by this effective theory. In
Sec. XI we will discuss in more detail the connection
between the de Sitter solutions presented in this section and
realistic scenarios for inflation. This can be done by
showing how variable gravity emerges dynamically from
our model of pregeometry. In the following we take for
simplicity B ¼ 0.

A. de Sitter solutions for constant coupling functions

The behavior of the solutions of the field equations (25),
(47), (49), and (50) depends on the shape of the functions
V,M2,m2, m̃2,K, Y, Z, and Z̃. Let us first consider the case
of constant Z, Z̃, V, and M2. One finds a simple solution
with de Sitter geometry and constant scalar field

H ¼ −
1

η
; ∂ηH ¼ H2; ∂2

ηH ¼ 2H3; ð51Þ

with
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c ¼ f ¼ 0; b ¼ H; χ ¼ χ0: ð52Þ

Equation (47) yields

6M2

a2
ð∂ηHþH2Þ ¼ 6M2ð _H þ 2H2Þ ¼ 4V; ð53Þ

where cosmic time t is related to conformal time η by
adη ¼ dt, H ¼ ∂t ln a ¼ H=a, and _H ¼ ∂tH. For de Sitter
space H is constant, _H ¼ 0, and it obeys

H2 ¼ V
3M2

: ð54Þ

This is the same result as for Einstein gravity.
We observe that for this solution the gauge field only

vanishes in the infinite past in conformal time η → −∞,

Akl0 ¼ Hδkl ¼ −
1

η
δkl: ð55Þ

In this limit also the vierbein vanishes

eμm ¼ −

ffiffiffiffiffiffiffiffiffi
3M2

V

r
1

η
: ð56Þ

For this solution the universe starts from vanishing fields.
We will discuss the beginning of the universe in more detail
in Sec. XIII. In Sec. XIII we also discuss that the same
physics can be discussed in a different metric frame for
which geometry approaches flat space for η → −∞.
The exact de Sitter solution no longer remains valid if V,

M2, Z, or Z̃ vary with χ. If this variation is weak, we expect
the existence of solutions that are close to de Sitter
solutions. We will encounter in Sec. XI models for inflation
that are described by such approximate de Sitter solutions.
We will assume for this χ dependence the simple models
(13) and (14). In the present section we consider only a few
simple cosmological solutions for our ansatz.
For χ → 0 we recover the de Sitter solution (51)–(56)

with χ0 ¼ 0. This remains an exact solution since the field
dependence of the coupling functions vanishes for χ ¼ 0
due to the discrete symmetry χ → −χ. The de Sitter solution
is unstable, however, for small scalar fluctuations χ. This is
most easily seen from the ratio

V̂ ¼ V
M4

¼ u0
4w2

0

�
1þ ξχ2

2w0k2

�
−2
; ð57Þ

which is proportional to the scalar potential in the Einstein
frame as wewill see in Sec. VII. For positive u0 the quantity
V̂ðχÞ has a maximum at χ ¼ 0 and vanishes for χ → ∞.

B. Beginning with gauge fields in Minkowski space?

The de Sitter solution χ ¼ 0, c ¼ 0, b ¼ H ¼ −η−1 is
not the only possible solution for a beginning of the
universe for η → −∞. As an alternative we discuss next
the possibility for a beginning with flat Minkowski space,
a ¼ a0,H ¼ 0, as well as χ ¼ 0, c ¼ 0. Equations (23) and
(25) are obeyed for this ansatz. Equation (22) becomes

∂ηbþ b2 ¼ 4a2V
3ðm̃2 þ 2M2Þ ; ð58Þ

while Eq. (24) reads

∂2
ηb ¼ 2b3 −

ðm̃2 þ 2M2Þa2
Z̃

b; ð59Þ

where a2, m̃2, M2, V, and Z̃ are constants. A solution with
constant b requires

b2 ¼ 4a2V
3ðm̃2 þ 2M2Þ ¼

ðm̃2 þ 2M2Þa2
2Z̃

: ð60Þ

As a consequence, the couplings have to obey the
particular relation

VZ̃ ¼ 3

8
ðm̃2 þ 2M2Þ2: ð61Þ

For given values of m̃2,M2, and Z̃ there is a particular value
for V, given by Eq. (61), for which a very simple beginning
of the universe can be realized by a flat space geometry,
vanishing scalar field, and a constant gauge field with b=a0
determined by Eq. (60). The relation (61) requires VZ̃ > 0,
such that it exists only if Vðχ ¼ 0Þ and Z̃ðχ ¼ 0Þ have the
same sign. We will concentrate in this paper on V > 0,
Z̃ < 0, such that no flat space solution of this type exists.

C. General de Sitter solutions
with vanishing scalar field

More generally, we may investigate the subspace of
solutions with χ ¼ 0, c ¼ 0. We assume here that Y does
not increase too fast for χ → 0 such that χ ¼ 0 is a solution
of the scalar field equation. An alternative case with Y ∼
χ−2 will be discussed in Secs. VIII and IX. With this
assumption only the field equations (22) and (24) remain to
be satisfied. We can use cosmic time t in order to eliminate
the scale factor a in Eq. (22),

∂tH þ 2H2 ¼ ð1þ 2ỹÞð∂tb̃þHb̃þ b̃2Þ − 4V
3m̃2

; ð62Þ

where we define
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b̃ ¼ b
a
; ỹ ¼ M2

m̃2
: ð63Þ

Similarly Eq. (24) becomes

∂2
t b̃þ 3H∂tb̃ ¼ −

ð1þ 2ỹÞm̃2

Z̃
ðb̃ −HÞ

þ 2b̃3 − ð∂tH þ 2H2Þb̃: ð64Þ

Solutions with time independent b̃ and H correspond to
solutions of two algebraic equations for b̃ and H. They are
understood best in terms of

f̃ ¼ b̃ −H; ð65Þ

for which they take the form

4ỹb̃2 þ ð3 − 2ỹÞb̃ f̃−2f̃2 ¼ 4V
3m̃2

; ð66Þ

and

f̃
�ð1þ 2ỹÞm̃2

Z̃
− 4b̃2 þ 2b̃ f̃

�
¼ 0: ð67Þ

One finds two types of solutions. The first one,

f̃ ¼ 0; b̃2 ¼ V
3ỹm̃2

¼ V
3M2

; ð68Þ

corresponds to the de Sitter solution discussed previously
according to Eqs. (52) and (54).
The second family of de Sitter solutions,

f̃¼ 2b̃−
ð1þ 2ỹÞm̃2

2Z̃ b̃
;

b̃2 ¼ 1

2

(
ð5þ 2ỹÞð1þ 2ỹÞm̃2

4Z̃
−

2V
3m̃2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ 2ỹÞð1þ 2ỹÞ3m̃4

16Z̃2
−
ð5þ 2ỹÞð1þ 2ỹÞV

3Z̃
þ 4V2

9m̃4

s )
;

ð69Þ

generalizes the solution (60). Indeed, for the special case
(61), V ¼ Vc,

Vc ¼
3ð1þ 2ỹÞ2m̃4

8Z̃
; ð70Þ

one obtains b̃2 ¼ ð1þ 2ỹÞm̃2=ð2Z̃Þ, and therefore f̃ ¼ b̃,
H ¼ 0. As mentioned above, this condition cannot be
obeyed for VZ̃ < 0, but the de Sitter solutions of type 2
exist for arbitrary VZ̃. If the condition (70) is not met, the

square root in Eq. (69) no longer vanishes. In this case one
obtains two solutions according to the two signs of the root.
As long as the expression under the root remains positive,
we are left with three different solutions with a de Sitter
geometry, with type 1 given by Eq. (68) and type 2 for the
two possibilities for Eq. (69). The corresponding Hubble
parameter is extracted as H ¼ b̃ − f̃.

D. De Sitter solutions with nonvanishing covariant
derivative of vierbein

For the de Sitter solutions (69) of the second type with
f̃ ≠ 0 the covariant derivative of the vierbein Uμν

m ¼
Dμeνm does not vanish. For these solutions pregeometry
can differ strongly from metric gravity. We will see that in
contrast to the de Sitter solutions (68) of the first type the
Hubble parameter is not small for small V.
The existence of the two de Sitter solutions (69) requires

the expression under the root to be positive. For a given y
this corresponds to a condition for the combination

x ¼ VZ̃
3m̃4

; ð71Þ

namely x < xc or x > xþ. Here xc corresponds to Vc in
Eq. (70),

xc ¼
1

8
ð1þ 2ỹÞ2; xþ ¼ 1

8
ð9þ 2ỹÞð1þ 2ỹÞ: ð72Þ

For 1þ 2ỹ > 0 one has xþ > xc. One finds at the boundary
the values

b̃2 ¼ m̃2

Z̃

�
1

8
ð5þ 2ỹÞð1þ 2ỹÞ − x

�
; ð73Þ

or

b̃2ðxcÞ ¼
m̃2ð1þ 2ỹÞ

2Z̃
; b̃2ðxþÞ ¼ −

m̃2ð1þ 2ỹÞ
2Z̃

: ð74Þ

For positive m̃2Z̃, which is the case we often consider in
this paper, the negative value of b̃2ðxþÞ indicates that no
solution is possible for x ¼ xþ. This extends to the whole
range x > xþ. We infer the existence condition for the
solution (69) for positive V

x < xc; Z̃ <
3m̃4ð1þ 2ỹÞ2

8V
: ð75Þ

This is obeyed automatically for V > 0, Z̃ < 0.
For the limit V ¼ 0 one has

b̃2 ¼ ð1þ 2ỹÞm̃2

8Z̃

�
5þ 2ỹ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ 2ỹÞð1þ 2ỹÞ

p �
: ð76Þ
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This is of the order m̃2=Z̃. The squared Hubble parameter is
of the same order of magnitude. This demonstrates that the
second type of de Sitter solutions is far away from general
relativity. The Hubble parameter is no longer determined by
the scalar potential. It is rather induced by nonvanishing
values of the gauge fields and an associated covariant
derivative of the vierbein different from zero.
We finally observe that no solution with vanishing gauge

field b̃ ¼ 0 is possible for V ≠ 0. For b̃ ¼ 0 Eq. (62)
requires H ≠ 0, such that Eq. (64) cannot be obeyed.

E. Early attractor solution

The de Sitter solutions of type 1 with f̃ ¼ 0 are attractor
solutions, while the de Sitter solutions of type 2 with f̃ ≠ 0

are unstable. This can be seen in Fig. 4 where we plotH, b̃,
and f̃ as a function of t for three different initial conditions.
The two upper curves starting horizontally correspond to
the values of b̃2 and H2 given by the de Sitter solution of
type 2 according to Eq. (69), with a minus sign of the root.
A slight shift in the initial value for b̃, namely b̃ ¼ b̃2 þ
10−7 for the two curves growing for large t, and b̃ ¼
b̃2 − 10−4 for the two curves decreasing for large t̂,
demonstrates that the de Sitter solution of type 2 is
unstable. The two corresponding curves for f̃ are the ones
with a constant behavior for small t. The unstable behavior
of H, b̃ (top curve) and f̃ is manifest, with initial values

only slightly different from the exact solution leading for
large t to a very different behavior.
The curves with initial value b̃ ¼ b̃2 − 10−4 approach for

large t the de Sitter solution of type 1. This solution is
approached already for smaller t by our third set of initial
conditions with b̃ð0Þ ¼ 0.7, Hð0Þ ¼ 0.5. The de Sitter
solution of type 1 is a stable attractor. It is approached
by neighboring solutions within its range of attraction, as
visible by f̃ going to zero. The range of attraction is
bounded by the de Sitter solution of type 2. The initial
condition b̃ ¼ b̃2 þ 10−7 is no longer attracted by the de
Sitter solution of type 1. It leads to unstable behavior.
These considerations hold as long as χ is small enough

such that the potential can be taken as constant. Once the
gradient of the potential becomes important the evolution
of the scalar field destabilizes the de Sitter solution of type
1. [For Fig. 4 we have employed a potential V ¼ V0ð1þ
expð2χ=MÞÞ−2 that will be motivated in Sec. IX. For the
small initial value of χ=M ¼ −4 the potential is constant to
a very good approximation for the range shown.]
We discuss in Appendix C more details of the conditions

of existence and the stability of the de Sitter solutions with
a vanishing scalar field. For the time being we are satisfied
with the observation that simple solutions exist that are
candidates for a beginning of the universe and a following
inflationary epoch. We will later turn back to this issue.

F. Hubble parameter

For ∂ηχ ¼ 0, c ¼ 0 an integral of the field equations (22)
and (24) determines the Hubble parameter by

H2 ¼ ð1þ 2ỹÞb̃2 − 2V
3m̃2

þ Z̃
m̃2

�
ð∂tb̃Þ2 þ 2Hb̃∂tb̃þH2b̃2 − b̃4

�
: ð77Þ

Indeed, the t derivative of Eq. (77) yields a linear
combination of Eqs. (22), (24), and (77). One can verify
that the de Sitter solutions with ∂tb̃ ¼ 0, as given by the
two types of solutions of Eq. (67), indeed, obey Eq. (77). It
is also straightforward to see that the explicit de Sitter
solutions (68) and (69) are consistent with Eq. (77). Wewill
discuss in Sec. VI the origin of this relation in more detail.
We can use Eq. (77) for establishing the general solutions

with c̃ ¼ 0, f̃ ¼ 0, χ ¼ χ0 for constant V, M2, m̃2 Z̃, and
Y ¼ 0. Inserting b̃ ¼ H in Eq. (77) yields

H2 ¼ V
3M2

−
Z̃

2M2
∂tHð2H2 þ ∂tHÞ: ð78Þ

In particular, for V ¼ 0 this yields

ð∂tHÞ2þ2H2∂tH−μ2HH
2¼ 0; μ2H ¼−

2M2

Z̃
: ð79Þ
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FIG. 4. Attractor solution. The evolution of H, b̃, and f̃ is
shown as a function of t. We employ three different initial
conditions (with c̃ ¼ 0) explained in the text. The two pairs of
upper curves show the instability of b̃ (upper pair) and H (lower
pair) for initial conditions very close to the de Sitter solution of
type 2. The two middle curves on the left correspond to b̃ and H
with initial conditions b̃ ¼ 0.7, H̃ ¼ 0.5. Finally the pair of
curves that is almost horizontal for small t displays f̃ for initial
conditions given almost by the de Sitter solution of type 2, while
the lowest curve shows f̃ for the third set of initial conditions.
Parameters are Z ¼ −Z̃ ¼ 1, M2 ¼ 1, m2 ¼ −m̃2 ¼ 5, B ¼ 0,
Y ¼ 0, K ¼ 4. We take an almost constant potential V ¼ 0.1.
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Combined with Eq. (35),

∂tH þ 2H2 ¼ 0; ð80Þ

the only solution is H ¼ 0. The candidate solution (44)
solves Eq. (80) but not Eq. (78).

G. Instability of nongeometric state

For the de Sitter solutions the scale factor aðηÞ reaches
zero for η → −∞. The limit a → 0 is actually well defined
despite the vanishing determinant e of the vierbein. This is
visible in the effective action (21) for which only the terms
∼Z, Z̃, and B remain for a ¼ 0. The limiting state a → 0
may be called the “nongeometric state” since the metric
vanishes in this limit.
The homogeneous isotropic field equations precisely on

the nongeometric state involve the gauge fields. For
constant Z, Z̃, B they read

−Z̃∂2
ηb ¼ −

∂W
∂b − 2ðZ̃ − Z − 2BÞc∂ηc;

Z∂2
ηc ¼ −

∂W
∂c þ 2ðZ̃ − Z − 2BÞc∂ηb; ð81Þ

with effective gauge field potential

Wðb; cÞ ¼ Z̃
2
ðb̃2 − c2Þ2 − 2Zb2c2: ð82Þ

For Z > 0, Z̃ < 0 the potential is not bounded from below,
with both terms in Eq. (82) being negative. Changing the
sign of the Z or Z̃ factors induces the “wrong” sign of the
derivative term. For all choices of parameters we find a
solution with vanishing gauge fields, b ¼ c ¼ 0. This
nongeometric solution is unstable due to the unbounded
potential.
The instability is a characteristic feature of the non-

compact character or the gauge group. For small gauge
fields this instability is rather weak since the gauge field
potential is quartic in the gauge fields. As we have seen,
also fluctuations with small nonzero a are unstable. They
are leading for the de Sitter solutions discussed in this
section. The dynamics of a can stabilize the evolution of the
gauge field fluctuations in the sense that they get correlated
with the increasing a.

V. EMERGENCE OF VARIABLE GRAVITY

Because of the instability toward nonzero values of the
scalar fields the de Sitter solutions may be considered as
candidates for the beginning of the universe and an early
inflationary epoch. In later stages the cosmological evolu-
tion departs from these solutions. We will next see how for
late times the solutions approach the solutions for general
relativity coupled to a scalar field. For late times an
effective low-energy theory becomes valid. It is based

on a derivative expansion for the metric and a scalar field.
This effective theory is variable gravity [50], for which
interesting cosmological solutions have been discussed
previously [50,60–63]. Even earlier, variable gravity pro-
vides for an accurate description of the early attractor
solution and the associated inflationary epoch. For a
description of the evolution of the universe during inflation
and after the end of inflation it is crucial to understand how
variable gravity is embedded in, and dynamically emerges
from, our model of pregeometry.

A. Variable gravity

Variable gravity couples a scalar field χ to the metric. In
second order in a derivative expansion the effective action
is given by

ΓVG ¼
Z
x

ffiffiffi
g

p �
−
M2

2
Rþ K̃

2
∂μχ∂μχ þ V

�
: ð83Þ

Here R is the curvature scalar formed from the metric gμν
and

ffiffiffi
g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p ¼ e. This effective action involves
three functions of χ, i.e., the field dependent squared
effective Planck mass M2ðχÞ, the kinetial K̃ðχÞ, and the
potential VðχÞ. Furthermore, also particle masses depend
on χ. This is crucial for the implementation of quantum
scale symmetry [51] and the associated absence of apparent
violations of the equivalence principle and time-varying
fundamental constants. It is also a key ingredient for an
acceptable matter dominated cosmological epoch despite
the variation of the effective Planck massMðχÞ [64,65]. For
example, a field dependent Planck mass M2 ¼ χ2 realizes
quantum scale symmetry provided that all particle masses
are proportional to χ. For cosmologies with a continuous
increase of χðηÞ both the Planck mass and particle masses
change without conflict with observation. The χ depend-
ence of the particle masses distinguishes variable gravity
from many other generalizations of Brans-Dicke theories.
This version of quantum scale symmetry also requires
constant K̃ and V=χ4. For our ansatz (13) and (14) this
behavior is reached for k2=χ2 → 0. A different version of
quantum scale symmetry with constant V and M2 and K̃ ∼
χ−2 will be discussed in Sec. VIII. This will become
relevant for k2=χ2 → ∞.
Variable gravity can describe interesting cosmologies for

which the same scalar field accounts for inflation and
dynamical dark energy [50,60–63]. In this section we
establish how variable gravity arises from our formulation
of pregeometry as an “effective low-energy theory,” once
squared (covariant) momenta q2 or geometric invariants as
R are sufficiently small as compared to m2 and m̃2. In turn,
Einstein’s general relativity emerges from variable gravity
in the limit where the effects of a time evolution or space
dependence of χ become negligible. This is realized for the
physics on earth or on galactic scales.
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For our model of pregeometry most observable features
in cosmology can be described within the effective low-
energy model of variable gravity. This concerns the late
stages of the inflationary epoch which are relevant for the
observable properties of the primordial cosmic fluctuations.
It also applies to the appearance of dynamical dark energy,
typically both in the form of early dark energy (EDE)
during the radiation and matter dominated epochs, as well
as the present epoch of dark energy domination. Since
variable gravity reduces to general relativity in the limit of a
constant scalar field, the understanding of the emergence of
variable gravity is also crucial for an understanding of how
our model of pregeometry predicts all properties of general
relativity for the effects of gravity on the scales of galaxies,
stars, or planets—in other words how geometry emerges
from pregeometry.
The differences between pregeometry and variable

gravity concern mainly the “beginning epoch” of our
universe. In these very early stages the dynamics of the
gauge fields is not yet tightly coupled to the dynamics of
the vierbein. For the later epochs we mainly have to
understand how the “parameters” of variable gravity,
namely the coupling functions M2ðχÞ, K̃ðχÞ, and VðχÞ,
are connected to the parameters of our model of pregeom-
etry. We will find that M2ðχÞ and VðχÞ are identical for
pregeometry and variable gravity. For the coefficient of the
scalar kinetic term the kinetial K̃ of variable gravity will be
connected to the kinetial K of pregeometry by a shift

K̃ðχÞ ¼ KðχÞ − 3

m̃2 þ 2M2

�∂M2

∂χ þ Yχ

�
2

: ð84Þ

The two kinetials are identical only in the limit where the χ
dependence of the effective Planck massMðχÞ and Y can be
neglected.

B. Variable gravity from pregeometry

For an understanding of this shift we write the effective
action (7) of pregeometry as a sum

Γ ¼ Γ1 þ Γ2; ð85Þ

with

Γ1 ¼
Z
x
e

�
−
M2

2
Rþ K

2
∂μχ∂μχ þ V

�
ð86Þ

a first form of variable gravity. The “completion” of the
effective action in pregeometry reads

Γ2 ¼
Z
x
e

�
M2

2
ΔþZ

8
FμνρσFμνρσ þB

2
FμνFμνþC

2
F2

þm2

4
UμνρUμνρþn2

2
Uμ

μ
ρUν

νρþYχ∂νχUμ
μν

�
; ð87Þ

with

Δ ¼ R − F: ð88Þ
One possibility for the emergence of variable gravity is a
situation where Γ2 can be neglected. We will see that this is
indeed realized for ∂M2=∂χ ¼ 0, Y ¼ 0. More generally,
Γ2 will also contribute to the effective action of variable
gravity. This is the origin of the difference between K̃ and
K in Eq. (84).
We can relate the field strength Fμνρσ to the Riemann

curvature tensor Rμνρσ. This is done [44] by the use of the
commutator of two covariant derivatives of the vierbein

½Dμ; Dν�eρm ¼ Fμν
m
neρ

n − Rμν
σ
ρeσ

m

¼ DμUνρ
m −DνUμρ

m ¼ Vμν
m
ρ: ð89Þ

We employ the relation

Fμνρσ ¼ Rμνρσ − Vμνρσ ð90Þ

in order to write the effective action (7) in terms of the
Riemann tensor Rμνρσ and the tensor Uμν

m,

Γ ¼
Z
x
e

�
−
M2

2
Rþ K

2
∂μχ∂μχ þ V þ Z

8
RμνρσRμνρσ

þ B
2
RμνRμν þ C

2
R2

�
þ ΔΓ1 þ ΔΓ2: ð91Þ

The first terms involve only the metric and the scalar field.
They extend the two-derivative approximation (83) by
inclusion of terms with four derivatives. These terms repro-
duce Stelle’s gravity in the limit where Z, B, and C are
independent of χ. The additional termsΔΓ1 þ ΔΓ2 vanish for
Uμνρ ¼ 0. The leading “correction term” is given by

ΔΓ1 ¼
Z
x
e

�
m2

4
UμνρUμνρ þ

n2

2
Uμ

μ
ρUν

νρ

−
M2

2
ðUνμρUμνρ −Uν

νρUμ
μ
ρÞ

þ
�∂M2

∂χ þ Yχ

�
∂μχUν

νμ

þ Z
2
ðDμRμνρσUνρσ þ RμνρσUν ρ

τUμστÞ
− B½DμRμνUρ

ρ
ν þDρRμνUμν

ρ

þ RμνðUμνσUρ
ρσ − Uμ

ρσUρνσÞ�

− 2C∂μRUν
ν μ þ CRðUρμνUμρν −Uμ

μ
ρUν

νρÞ
�
:

ð92Þ

Further corrections arise from covariant derivatives of Uμν
m

and from a χ dependence of the coupling functions,
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ΔΓ2 ¼
Z
x
e

�
1

2

∂Z
∂χ ∂μχRμνρσUνρσ

−
∂B
∂χ ∂μχðRμνUρ

ρ
νþRρνUρν

μÞ− 2
∂C
∂χ ∂μχRUν

νμ

þZ
4
ðDμUνρ

mDμUνρ
m−DνUμρ

mDμUνρ
mÞ

þB
2
ðDμUρν

m−DρUμν
mÞemρðDμUσ

νn −DσUμνnÞenσ

þC
2
½ðDμUρ

μm −DρUμ
μmÞemρ�2

�
: ð93Þ

An effective theory for the vierbein or the associated
metric is obtained by “integrating out” the gauge fields
Aμmn. For this purpose one has to solve the field equations
for Aμmn as a functional of eμm. Subsequently, one reinserts
the solution into the effective action (91). The reduced
effective action obtained in this way only depends on the
vierbein and its derivatives. The field equations for the
reduced effective action remain exact. They are, however,
rather complicated and useful only in the presence of
suitable approximations.

C. Field equations for Uμνρ

Instead of solving the field equations for Aμmn at fixed
eμm and reinserting the result, we can also solve the field
equations for Uμνρ at fixed vierbein eμm and reinsert the
result. Taking into account the antisymmetryUμνρ ¼ −Uμρν

the field equation for Uμνρ reads

m2Uμνρ þ n2ðUσ
σρgμν −Uσ

σνgμρÞ
−M2ðUνμρ −Uρμν − gμνUτ

τρ þ gμρUτ
τνÞ

¼ −
��∂M2

∂χ þ Yχ

�
ðgμν∂ρχ − gμρ∂νχÞ þ ZDσRσμνρ

− BðDσRσρgμν −DσRσνgμρ þDρRμν −DνRμρÞ

− 2Cð∂ρRgμν − ∂νRgμρÞ þ ∂Z
∂χ ∂σχRσμνρ

−
∂B
∂χ ½ðR

σρgμν − RσνgμρÞ∂σχ þ Rμν∂ρχ − Rμρ∂νχ�

− 2
∂C
∂χ Rð∂ρχgμν − ∂νχgμρÞ

�
þ � � � : ð94Þ

The dots denote contributions from Eq. (93) which involve
covariant derivatives of Uμν

m, and from terms∼
RμνρσUνρ

τUμστ, RUμ
μ
ρUν

νρ, etc., which are of the order

RU2. These contributions can be neglected for (squared
covariant) momenta or curvature tensor sufficiently small
as compared to m̃2.

We decompose

Uμνρ ¼ 1

3
ðgμνUτ

τ ρ − gμρUτ
τ νÞ þ Ũμνρ;

gμνŨμνρ ¼ 0; gμρŨμνρ ¼ 0: ð95Þ

Contracting Eq. (94) with gμν yields

Uτ
τ ρ ¼ −

1

m̃2 þ 2M2

�
3

�∂M2

∂χ þ Yχ

�
∂ρχ − ZDνRνρ

− Bð2DμRμρ þ ∂ρRÞ − 6C∂ρR −
∂Z
∂χ ∂νχRνρ

−
∂B
∂χ ð2R

μρ∂μχ þ R∂ρχÞ − 6
∂C
∂χ R∂ρχ

�
; ð96Þ

while Ũμνρ obeys

m2Ũμνρ þM2

2
ðŨρμν − Ũνμρ þ Ũρνμ − ŨνρμÞ

¼ −Z
�
DσRσμνρ þ 1

3
ðDσRσ ρgμν −DσRσνgμρÞ

�
−
∂Z
∂χ ∂σχ

�
Rσμνρ þ 1

3
ðRσρgμν − RσνgμρÞ

�
þ � � � ; ð97Þ

with dots involving similar terms ∼B, C or ∂B=∂χ, ∂C=∂χ.
The two equations can be solved separately and the terms
quadratic in U in the effective action (91) do not mix Uτ

τ ρ

and Ũμνρ. One could further decompose Ũ, but we will not
need this here in practice.

D. Pregeometry corrections in variable gravity

The leading term in the low-energy effective theory
arises from the term ∼ð∂M2=∂χ þ YχÞ∂μχ in Eq. (96).
Insertion into the effective action contributes to the scalar
kinetic term, resulting in a shift (84) between K̃ andK. This
explains in a simple way why for ∂M2=∂χ þ Yχ ≠ 0 the
kinetial K in pregeometry and the kinetial K̃ in the effective
variable gravity model differ.
In addition to the shift between K̃ and K the insertion of

(96) into the effective action leads to a series of “non-
renormalizable operators,” corresponding to invariants with
higher dimension, involving couplings or prefactors sup-
pressed by increasing powers of m̃−1,

ΔΓ1 ¼ −
3

2

Z
x
e

1

m̃2 þ 2M2

�∂M2

∂χ þ Yχ

�
2∂μχ∂μχ þ ΔΓ3;

ð98Þ

where
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ΔΓ3 ¼
Z
x
e

�
Z

�∂M2

∂χ þ Yχ

��
Z∂μχDνRνμ

þ ∂Z
∂χ ∂μχ∂νχRμν

�
−
Z2

6
DμRμνDρRρ

ν −
Z
3

∂Z
∂χ DμRμνRρ

ν∂ρχ

−
1

6

�∂Z
∂χ
�

2∂μχ∂νχRμρRρ
ν þ � � �

�
; ð99Þ

with dots denoting again similar contributions from B and
C. For the counting we recall that by dimensional analysis
∂Z=∂χ ∼ χ=m2, ∂M2=∂χ þ Yχ ∼ χ. The insertion of the
solution for Ũμνρ yields additional terms of the same
structure as the last three terms in Eq. (99). In leading
order for an effective low-energy theory only the first term
in Eq. (98) matters. We observe that the dimensionally next
to leading term vanishes for all geometries withDμRμν ¼ 0.
The variable gravity approximation becomes valid ifΔΓ2

can be neglected. For the homogeneous field equations this
holds if both f and c are small. We will discuss this in detail
in Appendix D. If furthermore the higher powers and
derivatives of the curvature tensor in ΔΓ3 become small,
one can effectively work with a derivative expansion of
variable gravity to fourth order. For a curvature tensor much
smaller thanM2 the second order derivative expansion (83)
of variable gravity becomes valid. The variable gravity
approximation is an important simplification since only the
metric degree of freedom and the scalar remain.

E. Homogeneous field equations for variable gravity

We can compare the homogeneous field equations of
pregeometry with the homogeneous field equations for
variable gravity with effective action (83). For a Robertson-
Walker metric, with cosmic time t related to conformal time
η by adη ¼ dt, ∂η ¼ a∂t, H ¼ ∂t ln a ¼ H=a, _χ ¼ ∂tχ ¼
∂ηχ=a, the field equations for the scale factor derived from
Eq. (83) for homogeneous cosmology can be written in the
form [50]

M2R ¼ 4V − K̃ _χ2 − CR; ð100Þ

with

CR ¼ 6
∂M2

∂χ2 ð_χ2 þ ðχ̈ þ 3H _χÞχÞ þ 12
∂2M2

ð∂χ2Þ2 _χ
2χ2

¼ 3

a3
∂t

�∂M2

∂χ _χa3
�

¼ 3ð∂t þ 3HÞ∂tM2: ð101Þ

The scalar field equation is given by

K̃ðχ̈ þ 3H _χÞ þ 1

2

∂K̃
∂χ _χ2 ¼ −

∂V
∂χ þ 1

2

∂M2

∂χ R: ð102Þ

Here the curvature scalar obeys

R ¼ 12H2 þ 6 _H ¼ 6

a2
ðH2 þ ∂ηHÞ: ð103Þ

These equations are indeed much simpler than the full field
equations of pregeometry. In Appendix D we discuss in
detail how the field equations of variable gravity follow
from the field equations of pregeometry. This gives a more
precise intuition about the neglected terms for the case of
homogeneous cosmologies.
In the presence of additional radiation or matter the field

equations of variable gravity will involve an additional
energy momentum tensor, as well as a possible source term
for the evolution of the scalar field. Fluctuations of the
fields of pregeometry beyond the metric can contribute to
this energy momentum tensor. We will discuss this
in Sec. X.

F. Overall cosmology in pregeometry

At this stage the main features for any realistic cosmol-
ogy in pregeometry have already become clear. For cosmic
epochs for which the characteristic length or time scale is
much larger than m−1 and m̃−1 the effective theory of
variable gravity becomes valid. With the inverse character-
istic length scale given by the Hubble parameter H, and
in view of the stability conditions M2 < m2, M2 < jm̃2j=2,
this applies to all epochs for which H2 ≪ M2. The
homogeneous isotropic solutions of variable gravity are
known to be stable attractors for the inflationary epoch,
provided the coupling functions M2, K̃, and V obey some
stability conditions as the positivity of M2, the bounded-
ness from below for V, and an inequality for K̃. For realistic
cosmological models variable gravity can be used for the
epoch of inflation, the end of inflation, and the radiation
dominated epoch which is expected after inclusion of the
particles of the standard model. In a later matter dominated
epoch small fluctuations in the energy density of (addi-
tional) matter increase. This rather mild instability is the
origin of the emergence of the structures in the universe
from the small primordial fluctuations.
Even in the context of our restricted model without the

standard model particles a semirealistic “late” cosmology
can be obtained provided that small fluctuations of the
gauge fields beyond variable gravity, as f or c, are stable,
and the functions VðχÞ, K̃ðχÞ, M2ðχÞ take a form compat-
ible with observation. This will be discussed in Secs. X and
XI. The residual effects of small fluctuations of f or c
typically contribute to the energy momentum tensor in
variable gravity.
It is possible that the validity of variable gravity actually

extends to the beginning phase of the universe. For
example, this can be the case for the de Sitter solution
(51)–(53) for χ0 ¼ 0, corresponding to Eq. (68). For V ≪
M4 the conditions for an approximation by variable gravity
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are met. If this de Sitter solution for χ → 0 is realized for
η → −∞, and connected smoothly to late cosmology,
variable gravity can describe the whole history of the
universe.
It is also possible that variable gravity with only a few

derivatives in the effective action is not a good approxi-
mation for the beginning phase. In this case one has to
understand the transition from the beginning solution to
the later epoch of validity of variable gravity. We have
discussed this in the two preceding sections.

VI. GENERAL FIELD EQUATIONS

Before a further investigation of cosmology we proceed
in the next two sections to a more detailed discussion of the
field equations. In the present section we derive the general
field equations for the quantum effective action (7). They
will be needed for the discussion of inhomogeneous
cosmologies, or for the consequences of pregeometry for
black holes. The general field equations also define key
objects as the energy momentum tensor. Specializing
to homogeneous isotropic configurations we will identify
the energy density as a useful partial integral of these
equations.

A. Field equations for gauge fields

The field equations obtain by variation of the effective
action (7). For the gauge fields they read

ZDνFμνmn þ 2C∂νFðemμenν − emνenμÞ
þ B½DνFμmenν −DνFμnemν −DνFνmenμ þDνFνnemμ�

¼ Jμmn; ð104Þ

where the current is given by

Jμmn ¼ m2Uμmn þ ð2CF −M2Þ½Umμn − Unμm

þ Uρ
ρmenμ −Uρ

ρnemμ� − n2ðUρ
ρmenμ − Uρ

ρnemμÞ
þ BðFνmUν

μn − FνnUν
μm − FμmUν

νn þ FμnUν
νmÞ

−
∂Z
∂χ ∂νχFμνmn

−
∂B
∂χ ∂νχðFμmenν − Fμnemν − Fνmenμ þ FνnemμÞ

þ
�∂M2

∂χ þ Yχ − 2
∂C
∂χ F

�
∂νχðemμenν − enμemνÞ:

ð105Þ

The covariant derivative of the field strength

DνFμνmn ¼ ∂νFμνmn þ Γνρ
νFμρmn

þ Aν
m
pFμνpn þ Aν

n
pFμνmp ð106Þ

involves the contracted Levi-Civita connection

Γνρ
ν ¼ 1

e
∂ρe: ð107Þ

B. Field equations for vierbein and energy
momentum tensor

For the vierbein one obtains two equations, one from the
symmetric and the other from the antisymmetric fluctua-
tions. The symmetric part is composed of terms that can be
identified with contributions to the energy momentum
tensor,

TðUÞ
μν ¼ −ðTðFÞ

μν þ TðχÞ
μν þ TðRÞ

μν þ TðYÞ
μν Þ: ð108Þ

Indeed, we can write Eq. (108) in the form of the Einstein
equation

M2

�
Rμν −

1

2
Rgμν

�
¼ Tμν; ð109Þ

with energy momentum tensor

Tμν ¼ TðUÞ
μν þ TðFÞ

μν þ TðχÞ
μν þ TðYÞ

μν þ TðΔÞ
μν ; ð110Þ

where

TðΔÞ
μν ¼ M2

2
½2Rμν − Fμν − Fνμ − ðR − FÞgμν�: ð111Þ

The tensor TðΔÞ
μν vanishes in the limit for which the

symmetric part of Fμν agrees with Rμν.
The left-hand side of Eq. (108) involves covariant

derivatives of the vierbein,

TðUÞ
μν ¼ m2

2

�
DρUμν

ρ þDρUνμ
ρ

þUμ
τρUντρ −

1

2
UστρUστρgμν

�
þ n2

2

�
2DρUτ

τ ρgμν −DμUρ
ρ
ν −DνUρ

ρ
μ

þ ðUμνρ þUνμρÞUτ
τ ρ − Uρ

ρ
σUτ

τ σgμν

�
: ð112Þ

With up to second derivatives of the vierbein this renders
the symmetric fluctuations of the vierbein dynamical. The

term TðUÞ
μν vanishes for a vanishing covariant derivative of

the vierbein, Uμν
m ¼ 0.

On the RHS of Eq. (108) one finds various “source
terms” that can drive the evolution of Uμνρ. The contribu-
tion to the energy momentum tensor involving the gauge
fields is given by
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TðFÞ
μν ¼ Z

2

�
Fμ

ρmnFνρmn −
1

4
FσρmnFσρmngμν

�
þ B

�
FμρFν

ρ þ 1

2
FρσðFρμσν þ FρνσμÞ −

1

2
FστFστgμν

�
þ C

�
FðFμν þ FνμÞ −

1

2
F2gμν

�
: ð113Þ

It is traceless,

gμνTðFÞ
μν ¼ 0: ð114Þ

For B ¼ C ¼ 0 this is the standard energy momentum
tensor for Yang-Mills theories. We observe, however, that
the contractions with ηmn, corresponding to the noncom-
pact character of the gauge group SOð1; 3Þ, render some

contributions to TðFÞ
00 negative. This is another aspect of the

need of negative C for a stable theory.
One further has the scalar contribution to the energy

momentum tensor,

TðχÞ
μν ¼ K

�
∂μχ∂νχ −

1

2
∂ρχ∂ρχgμν

�
− Vgμν

þ 1

2

∂m2

∂χ ∂ρχðUμν
ρ þ Uνμ

ρÞ

þ 1

2

∂n2
∂χ ½2∂ρχUτ

τ ρgμν − ∂μχUτ
τ
ν − ∂νχUτ

τ
μ�:

ð115Þ

The first terms are the standard energy momentum tensor in
general relativity. We have added here mixed terms from
the χ derivatives of m2 and n2. They vanish for Uμνρ ¼ 0.
Another type of mixed terms arises from the invariant ∼Y,

TðYÞ
μν ¼ 1

2
Yχ½∂μχUρ

ρ
ν þ ∂νχUρ

ρ
μ þ ∂ρχðUμν

ρ þ Uνμ
ρÞ

− 2∂ρχUτ
τ ρgμν�

þ gμνDρðYχ∂ρχÞ −
1

2
DμðYχ∂νχÞ −

1

2
DνðYχ∂μχÞ:

ð116Þ

Finally, we have a term linear in the field strength for the
gauge bosons

TðRÞ
μν ¼ −

M2

2
ðFμν þ Fνμ − FgμνÞ: ð117Þ

For Fμν ¼ Rμν this term involves second derivatives of the
metric. This limit yields exactly the expression appearing in
Einstein’s field equation.
The field equations for the vierbein also have an

antisymmetric part. This antisymmetric part is given by

m2DρUρ
μν þ ðM2 − 2CFÞðFμν − FνμÞ

− BFρσðFρμσν − FρνσμÞ þ
∂m2

∂χ ∂ρχUρ
μν

− n2½ðUμνρ − UνμρÞUτ
τ ρ −DμUρ

ρ
ν þDνUρ

ρ
μ�

þ ∂n2
∂χ ½∂μχUρ

ρ
ν − ∂νχUρ

ρ
μ�

þ Yχ½∂ρχðUμν
ρ − Uνμ

ρÞ − ∂μχUρ
ρ
ν þ ∂νχUρ

ρ
μ� ¼ 0:

ð118Þ

This equation is obeyed identically for homogeneous
isotropic solutions. In this case it does not yield additional
information.

C. Scalar field equation

The scalar field equation reads

−DμðK∂μχÞ þ 1

2

∂K
∂χ ∂μχ∂μχ

¼ −
∂V
∂χ −

1

8

∂Z
∂χ FμνρσFμνρσ

−
1

2

∂B
∂χ FμνFμν −

1

2

∂C
∂χ F2

−
1

4

∂m2

∂χ UμνρUμνρ −
1

2

∂n2
∂χ Uμ

μ
ρUν

νρ

þ 1

2

∂M2

∂χ F þ YχDνUμ
μν: ð119Þ

The χ dependence of coupling functions generates various
sources beyond the usual potential gradient ∂V=∂χ. In
particular, the term ∼∂M2=∂χ becomes important for large
χ if M2 ∼ χ2. With F approximated by R this additional
driving force explains why the relevant potential for the
evolution of χ is the frame invariant potential which we will
discuss in the next section, rather than VðχÞ. Furthermore,
the term ∼Y is connected to the difference (84) between the
kinetial K̃ of variable gravity and K.

D. Homogeneous field equations

We may first recover the homogeneous field equations
by inserting the ansatz (15). For the nonvanishing compo-
nents of DνFμνmn one finds

DνFkνl0 ¼ −a−4½∂2
ηb − 2bðb2 − 3c2Þ�δkl;

DνFkνlj ¼ a−4½∂2
ηcþ 2cðc2 − 3b2Þ�εklj; ð120Þ

and the nonvanishing components of Jμmn obtain as
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Jkl0 ¼ 1

a2
δkl
�
ðm̃2 þ 2M2Þðb −HÞ −

�∂M2

∂χ þ Yχ

�
∂ηχ

−
6

a2
ðb −HÞ½ðBþ 4CÞ∂ηbþ ð2Bþ 4CÞðb2 − c2Þ�

þ 1

a2
∂Z̃
∂χ ∂ηχ∂ηbþ 2

a2

�∂B
∂χ þ 6

∂C
∂χ
�
∂ηχðb2 − c2Þ

�
;

Jklj ¼ −
1

a2
εklj
�
ðm2 þ 2M2Þcþ 1

a2
∂Z
∂χ ∂ηχ∂ηc

þ 2c
a2

½ðB − 12CÞ∂ηbþ ð2B − 12CÞðb2 − c2Þ�
�
:

ð121Þ
The two independent parts of the field equations (120)

and (121) are identical to Eqs. (24) and (25). For the ansatz
(15), Eq. (118) is obeyed identically. The scalar field
equation (119) coincides with Eq. (23). For the remaining
field equations we need the energy momentum tensor for
homogeneous isotropic field configurations.

E. Homogeneous energy momentum tensor

With the ansatz (15) the nonzero components of TðUÞ
μν are

TðUÞ
00 ¼ 3m2

2
½c2 − ðbþHÞðb −HÞ� − 9n2

2
ðbþHÞðb −HÞ

¼ −
3m̃2

2
ðbþHÞðb −HÞ þ 3m2

2
c2 ð122Þ

and

TðUÞ
kl ¼ m̃2

2
½2∂ηðb −HÞ þ ðbþHÞðb −HÞ�δkl −

m2

2
c2δkl:

ð123Þ
The trace,

gμνTðUÞ
μν ¼ 3m̃2

a2
½∂ηðb −HÞ þ ðbþHÞðb −HÞ� − 3m2

a2
c2;

ð124Þ
vanishes for f ¼ 0, c ¼ 0. We observe a positive contribu-

tion to the energy densityTðUÞ
00 from c ifm2 > 0. On the other

hand, the contribution from b and H has no definitive sign.
Similarly, we obtain for the gauge field contributions

TðFÞ
00 ¼ 3Z

2a2
½ð∂ηcÞ2 − ð∂ηbÞ2 þ b4 þ c4 − 6b2c2�

−
6

a2
ðBþ 3CÞ½ð∂ηbÞ2 − ðb2 − c2Þ2�

¼ −
3Z̃
2a2

½ð∂ηbÞ2 − ðb2 − c2Þ2� þ 3Z
2a2

½ð∂ηcÞ2 − 4b2c2�
ð125Þ

and

TðFÞ
kl ¼ Z

2a2
½ð∂ηcÞ2 − ð∂ηbÞ2 þ b4 þ c4 − 6b2c2�δkl

−
2

a2
ðBþ 3CÞ½ð∂ηbÞ2 − ðb2 − c2Þ2�δkl; ð126Þ

with

gμνTðFÞ
μν ¼ 0: ð127Þ

For Z > 0 the kinetic contribution to the energy density

TðFÞ
00 from ð∂ηcÞ2 is positive, while the one ∼ð∂ηbÞ2 would

be negative for B ¼ C ¼ 0. For Z̃ < 0 the kinetic energy
density ∼ð∂ηbÞ2 is positive as well. This demonstrates the
need of a parameter choice in an appropriate range.
For positive kinetic energy densities of the gauge fields

the quartic terms in TðFÞ
00 are negative. Stability needs a

domination of the quadratic terms ∼b2 and c2 from TðUÞ
00 .

Nevertheless, the negative quartic terms suggest that
stability does not hold for very large values of b2 or c2.

The discussion of TðUÞ
00 þ TðFÞ

00 underlines that stability is
not a trivial issue.
The scalar contribution is given by

TðχÞ
00 ¼ K

2
ð∂ηχÞ2 þ a2V;

TðχÞ
kl ¼

�
K
2
ð∂ηχÞ2 − a2V þ ðb −HÞ ∂m̃

2

∂χ ∂ηχ

�
δkl: ð128Þ

The scalar energy density TðχÞ
00 is positive for positive K and

V. Further, one finds

TðYÞ
00 ¼ 3YHχ∂ηχ;

TðYÞ
kl ¼ −Y

��
1þ ∂ lnY

∂ ln χ
�
ð∂ηχÞ2

þ χ∂2
ηχ þ ð2b −HÞχ∂ηχ

�
δkl: ð129Þ

Finally, for the homogeneous isotropic ansatz (15) the

nonvanishing components of TðΔÞ
μν are given by

TðΔÞ
00 ¼ 3M2½c2− ðbþHÞðb−HÞ�;

TðΔÞ
kl ¼M2½2∂ηðb−HÞþ ðbþHÞðb−HÞ− c2�δkl: ð130Þ

For M2 > 0 the contribution TðΔÞ
00 to the energy density is

positive for c and H and negative for b. Opposite signs for
H and b obtain from Eq. (124) if m̃2 is negative. This
results in a positive energy density ∼b2 if −m̃2 > 2M2. We
note, however, that the part involving b andH vanishes for
b ¼ H. At this stage both signs of m̃2 seem possible.
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F. Homogeneous vierbein field equations

We can write the nonvanishing components of the field
equation (108) in the form

M2

�
F00 −

1

2
Fg00

�
¼ 3M2ðb2 − c2Þ

¼ TðUÞ
00 þ TðFÞ

00 þ TðχÞ
00 þ TðYÞ

00 ; ð131Þ

and

M2

2
ðFkl þ Flk − FgklÞ ¼ −M2ð2∂ηbþ b2 − c2Þδkl

¼ TðUÞ
kl þ TðFÞ

kl þ TðχÞ
kl þ TðYÞ

kl :

ð132Þ

Combining Eqs. (131) and (132) one finds

− 6M2ð∂ηbþ b2 − c2Þ
¼ a2gμνðTðUÞ

μν þ TðFÞ
μν þ TðχÞ

μν þ TðYÞ
μν Þ

¼ 3m̃2½∂ηðb −HÞ þ b2 −H2� − 3m2c2

þ Kð∂ηχÞ2 − 4a2V þ 3ðb −HÞ ∂m̃
2

∂χ ∂ηχ

− 3Y

��
1þ ∂ lnY

∂ ln χ
�
ð∂ηχÞ2 þ χ∂2

ηχ þ 2bχ∂ηχ

�
: ð133Þ

This reproduces Eq. (22). Besides the four Eqs. (22)–(25)
we have an additional equation that we may take as
Eq. (131). This equation is not independent, however, as
we will show next.

G. Energy-momentum conservation

Because of the Bianchi identity the effective energy
momentum tensor Tμν obeys the relation

Dμ

�
1

M2
Tμν

�
¼ 0: ð134Þ

Similar to general relativity the energy momentum tensor is
covariantly conserved if M2 does not depend on χ. For M2

depending on χ one can define a modified energy momen-
tum tensor by multiplication withM−2. This corresponds to
the covariant conservation of the frame invariant energy
momentum tensor.
With the relation (134) the derivative of Eq. (131) can be

expressed as a linear combination of the other field
equations. In more detail, Tμν obeys the relation

gμρ∂ρTμν − Γμ
μρTρν − Γν

μρTμρ ¼
∂ lnðM2Þ

∂χ ∂ρχTρ
ν: ð135Þ

For homogeneous isotropic configurations this reads

ð∂η þ 2HÞT00 þ a2HTμ
μ ¼ ∂lnðM2Þ

∂χ ∂ηχT00: ð136Þ

We can write the two field equations involving T00 and
Tkl as

Tμ
μ þM2R ¼ 0 ð137Þ

and

T00 − 3M2H2 ¼ 0: ð138Þ

Equation (136) can be written in the form

ð∂η þ 2HÞðT00 − 3M2H2Þ þ a2HðTμ
μ þM2RÞ ¼ 0;

ð139Þ

demonstrating that the two Eqs. (137) and (138) are not
independent.
One may evaluate the different terms in Eq. (139)

explicitly. From Eqs. (131) and (130) one infers

a2Tμ
μ ¼ 3m̃2ð1þ 2ỹÞ½∂ηðb −HÞ þ b2 −H2�

− 3m2ð1þ 2yÞc2

þ 3
∂m̃2

∂χ ∂ηχðb −HÞ þ Kð∂ηχÞ2 − 4a2V

− 3Y

��
1þ ∂ lnY

∂ ln χ
�
ð∂ηχÞ2 þ χ∂2

ηχ þ 2bχ∂ηχ

�
:

ð140Þ

On the other hand, one has

T00− 3M2H2 ¼−
3m̃2

2
ðb2 −H2Þþ 3m2

2
c2− 3M2ðb2− c2Þ

þK
2
ð∂ηχÞ2þa2Vþ 3YHχ∂ηχ

−
3Z̃
2a2

½ð∂ηbÞ2− ðb2 − c2Þ2�

þ 3Z
2a2

½ð∂ηcÞ2 − 4b2c2�: ð141Þ

It is straightforward to verify that Eq. (136) holds identi-
cally by virtue of the scalar field equation (23) and the
gauge boson field equations (24) and (25). We conclude
that the field equation (138) does not impose additional
constraints. We may equivalently use Eq. (138) or Eq. (137)
as an independent geometric field equation.
It is instructive to evaluate the energy density for Y ¼ 0,

f ¼ 0,
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T00 ¼
3

2
ðm2 þ 2M2Þc2 þ 3Z

2a2
½ð∂ηcÞ2 − 4H2c2�

−
3Z̃
2a2

½ð∂ηHÞ2 −H4 − c4 þ 2H2c2�

þ K
2
ð∂ηχÞ2 þ a2V: ð142Þ

Even for flat space, H ¼ 0, the energy density can become
negative for Z̃ < 0 and large values of c. Only for small
values of H and c, for which we can neglect the term ∼Z̃
and the term ∼ZH2c2, is the energy density positive. This
tells us that stability of flat space cannot simply be based on
a positive energy theorem as for general relativity. A more
detailed discussion is necessary. This restricts the range of
stability in field space.

H. Hubble parameter

Equation (138) expresses the Hubble parameter as a
function of the other fields,

H2 ¼ ð1þ 2ỹÞb2 −
�
m2

m̃2
þ 2ỹ

�
c2 −

K
3m̃2

ð∂ηχÞ2 −
2a2V
3m̃2

−
2YHχ∂ηχ

m̃2
þ 1

a2m̃2
fZ̃½ð∂ηbÞ2 − ðb2 − c2Þ2�

− Z½ð∂ηcÞ2 − 4b2c2�g: ð143Þ

We can consider this relation as a partial solution or partial
integral of the differential equations (22)–(25). If we
interpret Tμν as a generalized version of the energy
momentum tensor, Eq. (138) is the same relation as for
general relativity. In the low-energy limit only the “light”
fields contribute to T00, which will take a familiar form.
The limit c ¼ 0, ∂ηχ ¼ 0 of Eq. (143) yields Eq. (77).
Despite the formal analogies there are also important

differences as compared to general relativity. The energy
density T00, as given by Eq. (141), depends on H. For
Y ≠ 0 Eq. (143) is a quadratic equation of H whose
solution will be somewhat lengthy. We note the negative
signs of the scalar potential and kinetic term on the RHS of
Eq. (143). For configurations with b ¼ H and f ¼ 0 the
insertion of bðHÞ switches this sign effectively.

VII. WEYL SCALING AND FRAME INVARIANT
FIELD EQUATIONS

In this section we discuss scalar-field-dependent con-
formal transformations of the vierbein and associated
metric. Such Weyl transformations [73,74] are changes
of field variables. For all quantities that can be derived from
the quantum effective action the choice of field variables
has no influence on observables provided they are trans-
formed accordingly. Field relativity [60,75] states that all
models related by Weyl transformations describe the same
physical content—they are equivalent. We can therefore

discuss a whole class of seemingly different models at
once. This is done by the use of frame invariant field
equations [76]. The frame invariant field equations offer an
important technical simplification since the number of
coupling functions gets reduced. The equivalence of cos-
mological models related by Weyl scaling for the quantum
effective action has been advocated in Ref. [65]. Detailed
work has mapped explicitly many quantities relevant for
cosmology between different metric frames [77–87].

A. Weyl scaling

A conformal transformation or Weyl scaling multiplies
the vierbein by a scalar function w, while the gauge fields
Aμmn are left invariant

eμm ¼ we0μm; Aμmn ¼ A0
μmn: ð144Þ

In our case w is a function of the scalar field χ. Accordingly,
one has

e ¼ w4e0; gμν ¼ w2g0μν; gμν ¼ w−2g0μν: ð145Þ

With invariant Fμνmn the gauge boson kinetic term ∼Z is
invariant under Weyl scaling. On the other hand, one has

Fμν ¼ F0
μν; F ¼ w−2F0; eF ¼ w2e0F0; ð146Þ

such that also the terms ∼B and C are invariant.
Observing for the Levi-Civita connection

Γμν
ρ ¼ Γ0

μν
ρ þ ∂μ lnwδ

ρ
ν þ ∂ν lnwδ

ρ
μ − g0ρλg0μν∂λ lnw;

ð147Þ

one obtains for the covariant derivative of the vierbein

Uμν
m ¼ wfU0

μν
m − ∂ν lnwe0μm þ e0mρ∂ρ lnwg0μνg: ð148Þ

For the transformed quantities covariant derivatives involve
Γ0

μν
ρ and indices are transformed or contracted with e0μm or

g0μν, such that

Uμνρ ¼ w2fU0
μνρ − ∂ν lnwg0μρ þ ∂ρ lnwg0μνg: ð149Þ

Using ∂μ lnw ¼ ð∂ lnw=∂χÞ∂μχ one finds

eUμνρUμνρ ¼ w2e0
�
U0μνρU0

μνρ þ 4
∂ lnw
∂χ U0

μ
μν∂νχ

þ 6

�∂ lnw
∂χ

�
2∂μχ∂μχ

�
: ð150Þ

For the scalar field we observe
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e

�
K
2
∂μχ∂μχ þ V

�
¼ e0

�
w2K
2

∂μχ∂μχ þ w4V

�
: ð151Þ

Let us consider the effective action (7). After Weyl
scaling this keeps the same form in terms of e0μm, with
coefficient functions changed according to

m02 ¼ w2m2; n02 ¼ w2n2; m̃02 ¼ w2m̃2;

M02 ¼ w2M2; V 0 ¼ w4V;

K0 ¼ w2

�
K þ 3m̃2

�∂ lnw
∂χ

�
2

þ 6Yχ
∂ lnw
∂χ

�
;

Y 0 ¼ w2

�
Y þ m̃2

χ

∂ lnw
∂χ

�
; ð152Þ

and invariant Z, B, C. The coupling Y needs to be kept for a
closed set of invariants.

B. Frame invariant coupling functions

We can construct frame invariant combinations of
coupling functions that have the same functional depend-
ence on χ in all frames related by Weyl scaling. For this
purpose we choose (besides Z, B, C)

V̂ ¼ V
M4

; y ¼ M2

m2
; ỹ ¼ M2

m̃2
;

K̂ ¼ 1

M2

�
K þ 3m̃2

4

�∂ lnM2

∂χ
�

2

− 3Yχ
∂ lnM2

∂χ
�
;

Ŷ ¼ 1

M2

�
Y −

m̃2

2χ

∂ lnM2

∂χ
�
: ð153Þ

They are the equivalent of similar frame invariant combi-
nations in variable gravity [76]. In particular, V̂M̄4 corre-
sponds to the scalar potential in the Einstein frame with
fixed Planck mass M̄.
We can also define a frame invariant vierbein variable,

ẽμm ¼ MðχÞeμm: ð154Þ

In terms of this variable the effective action reads

Γ ¼
Z
x
ẽ

�
Z
8
F̃μνρσF̃μνρσ þ B

2
F̃μνF̃μν þ C

2
F̃2

þ 1

4y
ŨμνρŨμνρ þ 1

6

�
1

ỹ
−
1

y

�
Ũμ

μ
ρŨν

νρ −
1

2
F̃

þ K̂
2
∂μχ∂μχ þ V̂ þ Ŷχ∂νχŨμ

μν

�
: ð155Þ

Here Ũμν
m ¼ D̃μẽνm and indices are transformed and

contracted with ẽμm and g̃μν ¼ M2ðχÞgμν, which are also
used for the Levi-Civita connection in the covariant
derivative D̃μ. The effective action (155) involves only

the frame invariant coupling functions. It is manifestly
invariant under the Weyl scaling (144) and (152) since it
involves only invariant quantities. The identity of the
effective actions (155) and (7) can be verified by explicit
computation. The field equations derived by a variation of
Γwith respect to ẽμm and Aμmn are valid in all metric frames
related by a conformal transformation. They follow from
the field equations (104), (108), (118), and (119) by the
replacement eμm → ẽμm, m2 → 1=y, m̃2 → 1=ỹ, M2 → 1,
K → K̂, V → V̂, and Y → Ŷ. Besides the advantage of
validity in all frames they offer also a substantial technical
simplification. The function M2ðχÞ no longer appears, and
all terms involving ∂M2=∂χ are omitted.

C. Frame invariant homogeneous field equations

In the following we take again the simplified setting with
B ¼ 0. For the homogeneous isotropic field equations one
replaces the scale factor a by the frame invariant scale
factor

A ¼ MðχÞa; ð156Þ

while b, c, and χ remain unchanged. With the correspond-
ing shift to frame invariant coupling functions Eq. (21)
becomes

Γ¼Ω3

Z
η

�
3

2

�
Z̃ð∂ηbÞ2 −Zð∂ηcÞ2þ 2ðZ̃−ZÞðb2 − c2Þ∂ηb

þ Z̃ðb4þ c4Þ− 2ðZ̃þ 2ZÞb2c2
�

þ 3A2

2y
c2−

3A2

2ỹ
ðb−HÞ2− 3A2½∂ηbþb2− c2�

−
K̂A2

2
ð∂ηχÞ2þA4V̂þ 3ŶA2ðb− ĤÞχ∂ηχ

�
: ð157Þ

The Hubble parameter is replaced by the frame-invariant
combination [83]

Ĥ ¼ ∂ lnA
∂η ¼ Hþ 1

2

∂ lnM2

∂χ ∂ηχ: ð158Þ

It obeys according to Eq. (143)

Ĥ2 ¼ ð1þ 2ỹÞb2−
�
ỹ
y
þ 2ỹ

�
c2−

1

3
ỹ K̂ð∂ηχÞ2 −

2

3
ỹA2V̂

þ ỹ
A2

�
Z̃

�
ð∂ηbÞ2− ðb2− c2Þ2

�
−Z

�
ð∂ηcÞ2− 4b2c2

��
− 2ỹ Ŷ Ĥχ∂ηχ: ð159Þ

We will often directly use the frame invariant field
equations derived from the effective action (155) or
(157). Occasionally, we will also employ field equations
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in a given frame, say the Einstein frame. Replacing all
quantities subsequently by frame invariant quantities such
results are easily translated to other frames. For the Einstein
frame one takes in Eq. (144) w2 ¼ M̄2=M2ðχÞ, such that in
Eq. (152) one has M02 ¼ M̄2, with M̄ ¼ 2.44 × 1018 GeV
the fixed observed Planck mass.

D. Frame invariant variable gravity

Starting from the effective action (157) we can compute
the coupling functions of the effective low-energy theory
similar to Sec. V. For the corresponding frame invariant
formulation of the variable gravity model one obtains the
frame invariant kinetial

˜̂K ¼ K̂ −
3ỹ

1þ 2ỹ
Ŷ2χ2: ð160Þ

Equivalently, we could start with the effective action (83) for
the variable gravity model and define the frame invariant
couplings according to Ref. [76], with V̂ ¼ V=M4 and

ˆ̃K ¼ K̃
M2

þ 3

2

�∂ lnM2

∂χ
�

2

: ð161Þ

Inserting the relation (84) the two procedures are equivalent,

˜̂K ¼ ˆ̃K: ð162Þ

Not surprisingly, a frame invariant formulation of pregeom-
etry leads to a frame invariant effective theory of variable
gravity.

VIII. QUANTUM SCALE SYMMETRY

In this section we introduce quantum scale symmetry
[51] as a central ingredient for the understanding of the
beginning of the universe in the infinite past and its ending
in the infinite future. We describe two different versions of
scale transformations, relevant for an ultraviolet and an
infrared fixed point, respectively. We will later understand
the evolution of the universe as a crossover between the two
fixed points.
Quantum scale symmetry will be one of the guides for

specifying a concrete family of models by restricting the
properties of the coupling functions. Indeed, for a more
detailed cosmological model we need to specify the func-
tions ZðχÞ; Z̃ðχÞ; m2ðχÞ; m̃2ðχÞ;M2ðχÞ; VðχÞ; KðχÞ; YðχÞ,
or the corresponding frame invariant combinations
Z; Z̃; y; ỹ; V̂; K̂; Ŷ. We take the dimensionless functions
Z; Z̃;m2=k2; m̃2=k2;M2=k2; V=k4 to depend only on the
ratio χ2=k2. In case of fundamental scale invariance [21] the
scale k is a “renormalization scale” rather than an intrinsic
mass scale. In this case the coupling functions correspond
to scaling solutions of functional flow equations for a scale

dependent effective action Γk. This point is not crucial here,
we also can consider the case where k is an intrinsic mass
scale. The frame invariant combinations Z; Z̃; y; ỹ; V̂ are
dimensionless and therefore only depend on the dimen-
sionless ratio χ2=k2. The same holds for χ2K̂ and χ2Ŷ.

A. Quantum scale symmetry at UV- and IR-fixed points

Quantum scale symmetry [51] becomes exact for points
or regions in field space for which the effective action does
not involve any mass scale. In our formulation, Γk has to
become independent of k [21]. This statement needs to
specify a choice of fields since some k dependence may be
absorbed by a suitable choice of fields. As a consequence,
there exist different versions of quantum scale symmetry,
with different transformation properties of the fields.
Running couplings correspond to a dependence of dimen-
sionless functions on the ratio χ2=k2. Such a running
violates quantum scale symmetry. At a fixed point the
running stops and quantum scale symmetry is realized.
We will consider two fixed points—the ultraviolet (UV)-

fixed point for k2=χ2 → ∞, and the infrared (IR)-fixed
point for k2=χ2 → 0. For a fixed k they are realized by the
limits χ → 0 (UV) and χ → ∞ (IR). We will see that the
quantum scale symmetry for the UV-fixed point differs
from the one for the IR-fixed point. Interesting “crossover
cosmologies” will be characterized by an evolution of the
scalar field from χ → 0 for the infinite past to χ → ∞ for
the infinite future. Such cosmologies describe a crossover
from the UV-fixed point in the past to the IR-fixed point in
the future. The approximate scale invariance of the pri-
mordial fluctuation spectrum will originate from the
vicinity of the UV-fixed point, reflecting directly the
approximate quantum scale symmetry.
The quantum scale symmetry relevant for the IR-fixed

point is a global symmetry corresponding to a multiplica-
tive scaling of fields

eμm → α−1eμm; χ → αχ; Aμmn → Aμmn: ð163Þ

Coordinates remain fixed. The effective action (7) is
invariant under this transformation provided Z; Z̃; Y, and
K are constant, while

M2 ¼ 1

2
ξχ2; m2 ¼ 1

2
ζχ2; m̃2 ¼ 1

2
ζ̃χ2; V ¼ λχ4; ð164Þ

with constant dimensionless couplings λ, ξ, ζ, and ζ̃. Cor-
respondingly, the frame invariant combinations behave as

V̂ ¼ λ

ξ2
; y ¼ ξ

ζ
; ỹ ¼ ξ

ζ̃
;

K̂ ¼ 1

ξχ2
ðK þ 3ζ̃ − 6YÞ; Ŷ ¼ 1

ξχ2
ðY − ζ̃Þ: ð165Þ
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With our ansatz (13) and (14) quantum scale symmetry is
indeed realized in the IR limit χ → ∞, provided K and Y
approach constants. With

V̂ ¼ u0k4

ξ2χ4
→ 0 ð166Þ

the effective coupling λ ¼ u0k4=χ4 goes to zero.
The quantum scale symmetry for the UV-fixed point

χ → 0 is different. Now only the scalar field is transformed

χ → αχ; eμm → eμm; Aμmn → Aμmn: ð167Þ

This symmetry requires a divergence of K and Y for χ → 0,

lim
χ→0

KðχÞ ¼ κk2

χ2
; lim

χ→0
YðχÞ ¼ Y0k2

χ2
; ð168Þ

with constant κ and Y0. The functions Z, Z̃, m2, m̃2, M2, V
have to approach constants for χ → 0. This is, indeed,
realized for our ansatz (13) and (14). The limiting behavior
of the frame invariant quantities obeys for χ → 0

V̂ ¼ u0
4w2

0

; y ¼ 2w0

m2
0

; ỹ ¼ 2w0

m̃2
0

;

K̂ ¼ κ

2w0χ
2
; Ŷ ¼ Y0

2w0χ
2
: ð169Þ

We observe that in terms of frame invariant quantities the
consequences of quantum scale symmetry are very similar
for the UV- and IR-fixed points. In both cases Z; Z̃; V̂, y,
and ỹ approach constants, while K̂ and Ŷ scale ∼χ−2.
Indeed, in the frame invariant formulation (155) quantum
scale symmetry is realized for fixed ẽμm and Aμmn by the
scaling (167) of χ. The different versions of quantum scale
symmetry at the UV- and IR-fixed points are only con-
nected to a different choice of fields. At the UV-fixed point
we can choose a scaling frame with M02ðχ → 0Þ ¼ χ2.
From the ansatz (13) and (14) this obtains by aWeyl scaling
(144) with w ¼ χ=MðχÞ. For χ → 0 one has constant
M2ðχÞ ¼ 2w0k2 such that w scales ∼α. In consequence,
the scale transformation reads in this frame

e0mμ → α−1e0mμ ; χ → αχ; ð170Þ

which is the same as for the IR scaling (163). In this scaling
frame the dilatation transformation takes its usual form, and
quantum scale symmetry can be defined by the absence of
any mass scale once the fields e0mμ or g0μν are used for the
geometry.

IX. CROSSOVER MODELS

In this section we propose a family of more concrete
models of pregeometry. They are based on the relations

(13) and (14), motivated by asymptotic safety for quantum
gravity, fundamental scale invariance, and quantum scale
symmetry. For simplicity we approximate M2ðχÞ, m2ðχÞ,
and m̃2ðχÞ by Eqs. (13) and (14) for the whole range of χ.
These functions entail a crossover between a qualitatively
different behavior for χ → 0, where they are approximately
constant, and for χ → ∞where they scale ∼χ2. This change
may be associated with a crossover from the vicinity of the
UV-fixed point to the vicinity of the IR-fixed point. The
characteristic field for the crossover in M2 is given by
χ2 ≈ 2w0k2=ξ, while for m2 it occurs for χ2 ≈m2

0k
2=ζ. A

crossover can occur in different steps if the two crossover
scales are of different magnitudes. This extends to the
crossover in m̃2ðχÞ.
For simplicity we consider here constant Z and Z̃. More

generally, one expects that these quantities assume different
values at the UV- and IR-fixed points. This would induce an
additional scale of crossover that we neglect here. For the
kinetial we assume for χ → 0 the form (168) required by
quantum scale symmetry. For χ → ∞ quantum scale
symmetry requires that K approaches a constant, and we
assume here

KðχÞ ¼ κk2

χ2
þ K∞: ð171Þ

If the IR-fixed point exhibits conformal symmetry, the
value of K∞ is fixed. It is typically approached logarithmi-
cally [60]. This will play an important role for the detailed
evolution of dynamical dark energy in the late universe. We
will not focus on this issue here and work with the simple
form (171). Again, the effective scale of crossover in the
kinetial may be different from the crossover in M2 or m2.
Finally, for Y we may take

YðχÞ ¼ Y0k2

χ2
þ Y∞: ð172Þ

We could actually consider Y0 ¼ 0. The frame invariant
function Ŷ would then be given by

Ŷ ¼ −
ξðm̃2

0 þ ζ̃χ2Þ
ð2w0 þ ξχ2Þ2 : ð173Þ

We conclude that the frame invariant function Ŷ differs
from zero rather generically if ξ ≠ 0.
In the frame with variables eμm the divergence of K for

χ → 0 can be associated with an “anomalous dimension.”
Models of this type have been discussed in Ref. [60], where
the behavior (168) corresponds to σ ¼ 2. This type of
models leads to a successful implementation of inflation.
The increase of the kinetial K can ensure the “slow roll”
behavior for the evolution of the scalar field. We will come
back to this issue in Sec. XI. It is, of course, possible to
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choose a different definition of the scalar field which
changes the power of K ∼ χ−σ . We will stick here to a
normalization for which σ ¼ 2.

A. Frame invariant formulation

For a first investigation we will simplify further by
assuming a single crossover, as given by the crossover in
M2. This is an oversimplification, but many characteristic
features of this family of models can be understood already
at this level. We define our simple model directly in the
frame invariant formulation by parametrizing

V̂ ¼ V̄

�
1þ χ2

μ2

�
−2
; K̂ ¼ K̄

χ2
; Ŷ ¼ Ȳ

χ2
; ð174Þ

and take constant Z, Z̃, y, and ỹ. In this case the only
violation of quantum scale symmetry arises from the scale
μ. In terms of our parameters it is given by the crossover
scale,

μ2 ¼ 2w0k2

ξ
; V̄ ¼ u0

4w2
0

: ð175Þ

The effective action of this rather simple model takes the
frame invariant form

Γ ¼
Z
x
ẽ

�
Z
8
F̃μνρσF̃μνρσ þ Z̃ − Z

24
F̃2 −

1

2
F̃

þ 1

4y
ŨμνρŨμνρ þ 1

6

�
1

ỹ
−
1

y

�
Ũμ

μ
ρŨν

νρ

þ K̄
2
∂μs∂μsþ V̂ þ ȲŨμ

μν∂νs
�
; ð176Þ

with

V̂ ¼ V̄ð1þ e2sÞ−2; 2s ¼ ln

�
χ2

μ2

�
: ð177Þ

Up to the different variable for the scalar field and the
different form of the potential this action has almost the
same form as the effective action with constant coupling
functions and χ → s. The only difference concerns the
factor χ in the term ∼Y which has no corresponding factor s
in Eq. (177).
Besides μ the model has seven dimensionless parameters

Z; Z̃; y; ỹ; V̄; K̄; Ȳ. We will in the following concentrate on
the effective action (176) with constant frame invariant
couplings except for V̂. In this formulation the crossover is
completely encoded in the function V̂ðχÞ. As we have
argued before, the true crossover in a model of quantum
gravity may provide for a substantial richer picture of the
crossover with possibly several rather distinct crossover
scales. Exploiting this richness can give rise to a rather rich

and realistic picture of the cosmological evolution. In the
present paper we want to concentrate on the most character-
istic features of cosmology and therefore concentrate on a
single crossover scale as encoded in the simple effective
action (176). A few remarks beyond this oversimplified
picture, in particular concerning an additional crossover
scale in the kinetial K̄, will be presented in the discussion of
realistic inflationary scenarios in Sec. XI.
For Y ¼ 0 we can directly take over all our results of

Secs. III and IV if we replace χ → s and use frame invariant
couplings. The only difference concerns the potential VðsÞ
in Eq. (177). This does not matter for small χ or large
negative s for which V̂ is almost constant. For Fig. 4 we
have already employed the potential for the frame invariant
formulation with χ → s. Figures 1, 2, and 4 are valid for the
frame invariant formulation of the crossover model. In
particular, for Fig. 1 we have set initial conditions already
by the early attractor solution. The corresponding frame
invariant couplings are y ¼ −ỹ ¼ 0.2, Ȳ ¼ 0.2, and K̄ ¼ 8.
Figure 1 covers a much larger time interval than Figs. 2–4
which concentrate more on the approach to the early
scaling solution. We can extend Fig. 1 to t → −∞ by
starting with more and more negative s. We also can extend
this figure to much larger values of t.
The homogeneous isotropic field equations take for

c ¼ 0 the form

∂ηĤþ Ĥ2 ¼ ð1þ 2ỹÞð∂ηbþ b2Þ − 4A2V̄ ỹ
3ð1þ χ2=μ2Þ2

þ K̄ ỹ
3

ð∂η ln χÞ2 − Ȳ ỹð∂2
η ln χ þ 2b∂η ln χÞ;

ð178Þ

K̄ð∂2
η ln χ þ 2Ĥ∂η ln χÞ ¼ 4V̄A2

χ2

μ2

�
1þ χ2

μ2

�
−3

þ 3Ȳð∂η þ 2ĤÞðb − ĤÞ; ð179Þ

∂2
ηb ¼ −

A2

Z̃

�
1þ 2ỹ

ỹ
ðb − ĤÞ − Ȳ∂η ln χ

�
þ 2b3: ð180Þ

Up to replacements of time derivatives ∂ηχ by suitable
time derivatives of ln χ the field equations (178)–(180) are
identical to Eqs. (22)–(24) for constant couplings. This
holds provided we replace these constant couplings by the
corresponding constant frame-invariant coupling functions.

B. Scale-free formulation

The scale μ is the only mass scale appearing in the
homogeneous field equations (178) and (179). It can be
absorbed into the definition of a dimensionless scalar field,

s ¼ ln

�
χ

μ

�
;

χ2

μ2
¼ e2s: ð181Þ
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Quantum scale transformations act as a constant additive
shift in s. Quantum scale symmetry is realized for s → −∞
(χ → 0) where V̂ becomes a constant V̄, and for s → ∞
(χ → ∞) where V̂ vanishes identically. By use of s any
explicit dependence on μ is eliminated, as visible in
Eq. (176). For s → ∞ the potential is flat and s corresponds
to the massless Goldstone boson of spontaneously broken
quantum scale symmetry.
For a theory with fundamental scale invariance [21] the

fields χ̃ ¼ χ=μ and ẽμm ¼ Meμm are scale invariant fields.
If the effective action is given by a scaling solution of
functional renormalization equations (flow equations) the
dimensionless coupling functions depend only on χ̃ or s.
Couplings with dimension are multiplied by appropriate
powers of the renormalization scale k, asM2 ¼ 2wðχ̃Þk2. In
consequence, μ2 is proportional to k2, as seen for our
explicit model. The use of the scale invariant variables χ̃,
ẽμm, Aμmn completely eliminates from the effective action
any dependence on the renormalization scale k. This would
be different in the presence of relevant parameters in the
renormalization flow. In this case coupling functions do not
only depend on χ̃, but in addition on k=μ̄ with μ̄ some
intrinsic scale generated by the running of relevant param-
eters away from the scaling solution.

C. Scale free and frame invariant homogeneous
field equations

For the homogeneous field equations we can make a
further step by eliminating the dependence on the frame
invariant scale factor A. Indeed, the explicit dependence of
the field equations (178)–(180) on A can be absorbed by the
definition of a new time coordinate t̂,

dt̂ ¼ Adη; Ĥ ¼ ∂ t̂ lnA ¼ Ĥ
A
; ð182Þ

and use of the variables

b̂ ¼ b
A
; ĉ ¼ c

A
: ð183Þ

The new time variable is a type of frame invariant
dimensionless cosmic time,

dt̂ ¼ Madη ¼ Mdt: ð184Þ

In terms of these variables the evolution equations for the
gauge fields read for B ¼ 0

b̂00 þ 3Ĥb̂0 ¼ −ðĤ0 þ 2Ĥ2Þb̂þ μ̂2b
2ỹ

ðb̂ − ĤÞ þ 2ðb̂2 − ĉ2Þb̂

−
4Z

Z̃
ĉ2b̂þ 2ĉ

�
1 −

Z

Z̃

�
ðĉ0 þ Ĥ ĉÞ þ Ȳ

Z̃
s0

ð185Þ

and

ĉ00 þ 3Ĥĉ0 ¼ −ðμ̂2c þ 2Ĥ2 þ Ĥ0Þĉþ 2ĉ
Z

�
Z̃ðb̂2 − ĉ2Þ

þ 2Zb̂2 þ ðZ̃ − ZÞðb̂0 þ Ĥ b̂Þ
�
: ð186Þ

Here primes denote derivatives with respect to t̂. The mass
terms are given by

μ̂2b ¼ −
2ð1þ 2ỹÞ

Z̃
; μ̂2c ¼

1þ 2y
Zy

: ð187Þ

The geometric field equation reads

Ĥ0 þ 2Ĥ2 ¼ ð1þ 2ỹÞðb̂0 þ Ĥ b̂þb̂2Þ − ỹ

�
4V̄
3

−
K̄
3
s02

þ Zμ̂2cĉ2 þ Ȳ½s00 þ ð2b̂þ ĤÞs0�
�
; ð188Þ

and for the scalar field equation one obtains

K̄ðs00 þ 3Ĥs0Þ ¼−
∂V̂
∂s þ 3Ȳðb̂0 − Ĥ0 þ 3b̂ Ĥ−3Ĥ2Þ: ð189Þ

Comparison with Eqs. (33)–(37) reveals a very similar
structure if one replaces χ → s, Yχ → Ȳ. Only the term
∼Yð∂tχÞ2 in Eq. (36) is now absent. Equations (185)–(189)
can be considered as the central homogeneous field
equations for our crossover model of pregeometry. They
are used for the numerical solutions.
For the crossover model the late time instability for

Y ≠ 0 is no longer present. We show a numerical solution
of the system of differential equations (185)–(189) in
Fig. 5. Parameters are y ¼ 0.2, ỹ ¼ −0.2, Z ¼ 0.1,
Z̃ ¼ −0.1, V̄ ¼ 0.3, K̄ ¼ 4, and Ȳ ¼ 0.1. This plot shows
the frame invariant functions Ĥ, b̂, f̂, ĉ, and s as functions
of t̂. The result is very similar to Figs. 2 and 3 if we take the
replacements given above. In contrast to Figs. 2 and 3 we
take here Ȳ ¼ 0.1 since there is no longer a late-time
instability for nonvanishing Ȳ. Another difference as
compared to Fig. 3 concerns the smaller values of the
couplings Z and Z̃. According to Eq. (187) this leads to
larger mass terms μ̂2b and μ̂2c, and therefore to shorter
oscillation periods.
For more negative initial s the solution approaches the de

Sitter solution (51)–(54) after a short initial oscillatory
evolution. Because of the slow increase of s it remains for
many e-foldings very close to a de Sitter solution. Only
once s increases to positive values does the de Sitter
solutions end, and the solution makes a transition toward
flat space. This demonstrates the natural occurrence of an
inflationary epoch.
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D. Evolution of the covariant vierbein derivative

For the parameters used in Figs. 1, 2, 3, and 5 variable
gravity becomes a valid approximation already in very
early stages of cosmology. For Ȳ ¼ 0 the covariant deriva-
tive of the vierbein vanishes rather rapidly, while for Ȳ ≠ 0
it approaches rapidly a fixed function. Indeed, in Fig. 5 we
also show the combination

f̂ ¼ b − Ĥ
A

: ð190Þ

It approaches rapidly a very small value. Also ĉ goes
rapidly to zero. As a result, the cosmological evolution
leads rather rapidly to a very small value of the covariant
derivative of the vierbein and the variable gravity approxi-
mation becomes valid. The frequencies of the initial
oscillations of f̂ and ĉ are actually different (barely visible
in Fig. 5), but the main message is that for t̂≳ 10 the
difference of both fields from zero becomes too small to
remain visible.
It is instructive to understand the evolution of f̂ ana-

lytically. For this purpose we consider solutions with ĉ ¼ 0.
The field equation for f̂ follows from Eq. (180),

f̂00 þ 3Ĥf̂0 ¼ −4ĤĤ0 − Ĥ00 þ Ȳ

Z̃
s0 −

1þ 2ỹ

ỹ Z̃
f̂

þ ð4Ĥ2 − Ĥ0Þf̂ þ 6Ĥf̂2 þ 2f̂3: ð191Þ

We observe a “source term” for f̂ which does not vanish for
f̂ ¼ 0. For a nonvanishing source term the field f̂ does not
vanish even for late time. As a consequence, the covariant
derivative of the vierbein does not vanish. Cartan’s geom-
etry does not become exact for asymptotically large times.
We also express the other field equations in terms of f̂ by

eliminating b̂ in favor of Ĥ and f̂. In terms of f̂, Eq. (178)
becomes

6ðĤ0 þ 2Ĥ2Þ ¼ −
3ð1þ 2ỹÞ

ỹ
ðf̂0 þ 3Ĥ f̂þf̂2Þ

þ 4V̄ð1þ e2sÞ−2 − K̄s02

þ 3Ȳðs00 þ 3Ĥs0 þ 2f̂s0Þ: ð192Þ

An equivalent relation obtains from Eq. (159),

Ĥ2 ¼ V̄
3
ð1þ e2sÞ−2 þ K̄

6
s02 þ Ȳ Ĥ s0

− Z̃

�
Ĥ2Ĥ0 þ 1

2
Ĥ02
�
þ Δ1 þ Δ2; ð193Þ

with

Δ1 ¼ −
1þ 2ỹ
2ỹ

ð2Ĥ f̂þf̂2Þ þ Z̃ðĤ3 − ĤĤ0Þf̂ ð194Þ

and

Δ2 ¼
Z̃
2

�
5Ĥ2f̂2 þ 4Ĥf̂3 þ f̂4

− 2ðĤ2 þ Ĥ0 þ Ĥ f̂Þf̂0 − f̂02
�
: ð195Þ

The scalar field equation (179) reads

K̄ðs00 þ 3Ĥs0Þ ¼ 4V̄e2sð1þ e2sÞ−3 þ 3Ȳðf̂0 þ 3Ĥ f̂Þ:
ð196Þ

For Y ≠ 0, which is generic, we observe an additional
source term for f̂ ≠ 0, which is of the type discussed in
Ref. [65]. As a consequence, the frame invariant version of
the energy momentum tensor for the scalar field is not
conserved separately. We will interpret this term in the
context of an interaction between dark energy and dark
matter in Sec. X.
For our ansatz (174) we may directly express the

effective action (157) in terms of the variables (181)–
(183), (190), which reads for c ¼ 0

0 10 20 30 40 50 60

–0.2

0.0

0.2

0.4

0.6

t

H
,

b,
f,

c,
s

/4

FIG. 5. Evolution in the crossover model. We show the frame
invariant fields Ĥ (red curve), b̂ (blue curve), f̂ (yellow curve), ĉ
(magenta curve), and s=4 (green curve) as a function of t̂. The
functions H and b are almost indistinguishable on this scale, and
the same holds for the pair c and f. The parameters Z ¼ 0.1,
Z̃ ¼ −0.1, y ¼ 0.2, ỹ ¼ −0.2, K̄ ¼ 4, V̄ ¼ 0.3, and Ȳ ¼ 0.1
correspond to the ones of Figs. 2 and 3 except for Z, Z̃, Ȳ.
We employ here constant frame invariant coupling functions
instead of constant coupling functions. The resulting sequence of
initial damping, de Sitter solution, and transition to flat space is
very similar to Figs. 2 and 3.
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Γ¼Ω3

Z
t̂
A3

�
3Z̃
2

�
2Ĥ4þ 2Ĥ2Ĥ0 þ Ĥ02 − 2ðĤ00 þ 4ĤĤ0Þf̂

þð4Ĥ2− Ĥ0Þf̂2þ f̂02þ 4Ĥf̂3þ f̂4
�

−
3

2ỹ
f̂2− 3ð2Ĥ2þ Ĥ0 þ f̂2Þ− K̄

2
s02

þ 3Ȳ f̂ s0 þ V̄ð1þ e2sÞ−2
�
: ð197Þ

We have employed here partial integration in order to
eliminate terms linear in f̂0. The field equations (196) and
(191) follow directly from the variation of Γ with respect to
s and f̂. The derivation of the field equations for A is more
cumbersome in this formulation due to the appearance of
up to three derivatives of A in Γ.
For Ȳ ¼ 0 and Ĥ0 ¼ f̂0 ¼ s0 ¼ 0, s → −∞we recover the

algebraic equations (67) for the de Sitter solutions in Sec. IV.
In this case one hasA ¼ Ma, t̂ ¼ Mt, Ĥ ¼ H=M, f̂ ¼ f̃=M,
with constant M ¼ Mðχ ¼ 0Þ. For Ȳ ≠ 0 the de Sitter
solutions of the second family are no longer consistent with
the scalar field equation if Hf̃ ≠ 0. Only the first family of
solutions with f̃ ¼ 0 persists in this case for χ ¼ 0 or
s → −∞. For Ȳ Ĥ f̂ ≠ 0 one can still have solutions with
constant Ĥ, f̂, and s, now for finite s as given by

4V̄e2sð1þ e2sÞ−3 þ 9Ȳ Ĥ f̂ ¼ 0: ð198Þ

The general solution for f̂ is characterized by two
different regimes. For the early regime one can neglect
the evolution of s, such that one approximates the deriva-
tive of Eq. (192) by

Ĥ00 þ 4ĤĤ0 ¼ −
1þ 2ỹ
2ỹ

ðf̂00 þ 3Ĥf̂0 þ 3Ĥ0f̂ þ 2f̂f̂0Þ:

ð199Þ

Insertion into Eq. (191) yields

f̂00 þ 3Ĥf̂0 þ ½μ̂2b þ 8ỹĤ2 þ ð3þ 4ỹÞĤ0�f̂ þ 2ð1þ ỹÞf̂f̂0

þ 12ỹ Ĥ f̂2 þ 4ỹf̂3 ¼ 0: ð200Þ

This describes damped oscillations, for which the Hubble
damping drives f̂ rapidly toward zero. For the late regime
we can linearize in f̂. The evolution of f̂ is typically slow
and given in leading order by

f̂ ¼
�
μ̂2b
2ỹ

þ 4Ĥ2 − Ĥ0
�

−1
�
4ĤĤ0 þ Ĥ00 −

Ȳ

Z̃
s0
�
: ð201Þ

The first stage is visible in Figs. 2, 3, and 5 while a better
resolution would be needed in order to see the small

deviation from zero in the late stage. On top of this slow
evolution there may be very small damped oscillations that
we discuss in Sec. X.

E. Variable gravity

For small f̂ and small curvature one finds for the
effective model of variable gravity an effective action

Γ ¼
Z
x
ẽ

�
−
1

2
R̃þ 1

2
k̂2∂μs∂μsþ V̂

�
; ð202Þ

with

V̂ ¼ V̄ð1þ e2sÞ−2; ð203Þ

and

k̂2 ¼ K̄ −
3ỹ

1þ 2ỹ
Ȳ2 ¼ ˆ̃Kχ2: ð204Þ

Here R̃ is the curvature scalar formed from g̃μν. In this
version it is obvious that the criterion for stability is a
positive scalar kinetic term k̂2 > 0, together with some
boundedness properties of V̂ which are obeyed.
For constant k̂2 the scalar field equation reads

k̂2DμDμs ¼
∂V̂
∂s : ð205Þ

For the independent geometrical field equation we can take

R̃00 −
1

2
R̃g̃00 ¼ k̂2

�
∂0s∂0s −

1

2
∂ρs∂ρsg00

�
− V̂g̃00:

ð206Þ

The homogeneous isotropic equations read in this frame
invariant form

k̂2ðs00 þ 3Ĥs0Þ ¼ −
∂V̂
∂s ; ð207Þ

with frame invariant Hubble parameter given by

Ĥ2 ¼ 1

3

�
V̂ þ 1

2
k̂2s02

�
: ð208Þ

The two Eqs. (207) and (208) are closed. They constitute an
enormous simplification as compared to the system of field
equations (185)–(189). In the case of additional fields for
matter and radiation there will be additional contributions
to Ĥ2 in the usual way. This includes small fluctuations of ĉ
or f̂ acting as cold dark matter. In the case of masses
depending on s also the RHS of Eq. (205) contains an
additional source term.
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F. Einstein frame

The frame invariant formulation allows for a very simple
transition to the familiar Einstein frame, which is charac-
terized by a constant Planck mass, M2 ¼ M̄2. The tran-
sition simply provides for canonical mass dimensions by
inserting appropriate powers of M̄ ¼ 2.44 × 1018 GeV
according to

ẽμm ¼ M̄eμm; g̃μν ¼ M̄2gμν; A ¼ M̄a;

Ĥ ¼ H
M̄

; t̂ ¼ M̄t; s ¼ φ̃

M̄
; ð209Þ

where t is cosmic time. All solutions of the frame invariant
field equations can be translated directly to the Einstein
frame. We observe that conformal time is frame invariant,
while t̂ is related to cosmic time by Eq. (209).
For the limit of variable gravity the field equations take

the familiar form for a scalar field coupled to gravity, with
dots denoting derivatives with respect to t, namely

k̂2ð ̈φ̃þ 3H _̃φÞ ¼ −
∂V
∂φ̃ ; V ¼ M̄4V̂; ð210Þ

and

H2 ¼ 1

3M̄2

�
V þ 1

2
k̂2 _̃φ2

�
: ð211Þ

The Einstein frame is particularly useful after the end of
inflation. For late cosmology the approximate quantum
scale symmetry near the IR-fixed point results in constant
ratios between particle masses and the Planck mass [51].
Keeping a fixed value of M2 one therefore also has fixed
particle masses. This facilitates many practical computa-
tions since varying masses need not be taken into account.
The corresponding picture is the hot big bang. We recall,
nevertheless, that the hot big bang is a particular picture,
not physical reality. The frame invariant decrease of the
ratio between temperature and particle masses can be
described as well in a frame with increasing particle
masses.

X. DARK MATTER AND DYNAMICAL
DARK ENERGY

At the end of inflation starts a transition epoch which can
be rather complex. Entropy can be produced effectively
through rapidly oscillating modes. This process can be
associated with a “heating” of the universe after inflation.
In a more complete model additional particles will play a
role, as fermions or the gauge bosons of the standard model
of particle physics or some grand unified extension. For a
realistic cosmology one expects a transition to a radiation
dominated epoch, followed later by matter domination, and
finally the onset of dark energy domination in the present

epoch. We do not aim here for the description of cosmology
with all the additional degrees of freedom from particle
physics. We only show here that the present model of
pregeometry has the ingredients to provide both for dark
matter and dynamical dark energy.
Dynamical dark energy can be associated with the

evolution of the scalar field s. It consists of the potential
energy V̂ and the kinetic energy ∼k̂2s02=2 of a homo-
geneous field. The crossover model leads to a potential that
vanishes for large s exponentially. Together with suitable
properties of the kinetial k̂2 this can induce a dynamical
dark energy that will relax to zero in the infinite future [64].
Dark matter can arise from the oscillations of the gauge
fields ĉ or b̂. For the range of parameters needed for the
stability of flat space the rapid fluctuations can be asso-
ciated with particles with masses of the order of the Planck
mass or larger. If these masses depend on the scalar field s,
one will find versions of “coupled dark energy,” with a
nonzero interaction between dark energy and dark matter.
We will investigate these phenomena by an exploration

of the solutions of the field equations for the present model
of pregeometry without additional particles. The main
effects of these neglected particles are twofold. Once
produced after the end of inflation they are expected to
dominate the energy density in the radiation dominated
epoch. In turn, this will modify the evolution of the Hubble
parameter and of the scalar field s. Second, it is possible
that the dark matter candidates arising from the fluctuations
of the gauge bosons ĉ and b̂, or from other fluctuations of
the gauge bosons and vierbein not considered here, can
decay into the particles of the standard model. In this case
they will play no role for the late epochs of cosmology
and the presently observed dark matter. If one of the
heavy excitations is stable, however, it could constitute the
observed dark matter. In this case the dynamics has to be
such that the energy density stored in the rapid oscillations
is small enough in order not to dominate the universe
too early.
Within the solutions of the field equations for our model

we will investigate the late epochs where Ĥ2 is already a
small quantity. One expects the validity of the variable
gravity approximation. In the presence of the rapidly
oscillating gauge fields this is supplemented, however,
by an effective energy momentum tensor for nonrelativistic
dark matter. Nevertheless, the field equations can be
simplified considerably by neglecting higher powers of
Ĥ, b̂, and ĉ.

A. Dark matter from ĉ oscillations

For sufficiently small ĉ we can linearize the field
equation for this gauge field. Since the effective action
contains no linear terms in ĉ, there will be no source term.
The evolution of ĉ can be considered independently of
other small oscillations for Ĥ and b̂ or f̂. For these fields we
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can use a “background solution” that can be influenced by
other ingredients, including additional degrees of freedom
in a more realistic model of particle physics.
Neglecting terms ∼ĉ3 we can write the field equa-

tion (186) in the form

ĉ00 þ 3Ĥĉ0 þ
�
μ̂2c þ

9Ĥ2

4
þ 3Ĥ0

2

�
ĉ ¼ −δμ̂2cĉ; ð212Þ

with

δμ̂2c ¼ −
�
9

4
þ 4Z̃

Z

�
Ĥ2 þ

�
3

2
− 2

Z̃
Z

�
Ĥ0 − 6

�
1þ Z̃

Z

�
Ĥ f̂

− 2

�
2þ Z̃

Z

�
f̂2 þ 2

�
1 −

Z̃
Z

�
f̂0: ð213Þ

In terms of the variable

C ¼ A
3
2ĉ ð214Þ

this reads

C 00 þ μ̂2cC ¼ −δμ̂2cC : ð215Þ

A late time δμ̂2c is much smaller than μ̂2c, and we may
neglect it in a first approximation. The solution

C ¼ C 0 cosðμ̂2ct̂þ αcÞ ð216Þ

describes oscillations with constant

εc ¼ C 02 þ μ̂2cC
2 ¼ μ̂2cC

2
0: ð217Þ

B. Energy density for nonrelativistic dark matter

The oscillating field contributes to the energy density
T̂00,

ρ̂ðcÞ ¼ 1

A2
ðT̂ðU;cÞ

00 þ T̂ðF;cÞ
00 þ T̂ðΔ;cÞ

00 Þ

¼ 3

2

�
1þ 2y

y
ĉ2 þ Z½ðĉ0 þ Ĥ ĉÞ2 − 4b̂2ĉ2� − 2Z̃b̂2ĉ2

�
¼ 3Z

2A3

�
μ̂2cC

2 þ C 02 − ĤCC 0

þ
�
Ĥ2

4
− 4b̂2 −

2Z̃
Z

b̂2
�
C 2

�
: ð218Þ

Equation (138) or (211) for the Hubble parameter,

Ĥ2 ¼ 1

3A2
T̂00 ¼

ρ2

3
þ � � � ; ð219Þ

receives from the oscillating c-field a contribution

Ĥ2
c ¼

Z
2A3

ðεc þ δcÞ ð220Þ

with

δc ¼
�
Ĥ2

4
− 4b̂2 −

2Z̃
Z

b̂2
�
C 2 − ĤCC 0: ð221Þ

The leading contribution is given by the constant εc.
Neglecting δc the oscillating c field gives a contribution to
cold dark matter. In the Einstein frame one has

H2 ¼ 1

3M̄2
ρ; ð222Þ

where the c oscillations contribute to the energy density ρ,

ρc ¼
3ZεcM̄
2a3

¼ 3ð1þ 2yÞ
2y

�
ac
a

�
3

ĉ2cM̄4: ð223Þ

This contribution decays ∼a−3, as a characteristic for cold
dark matter.
For a given model and given cosmological solution the

amount of dark matter from the c fluctuations is a
computable quantity. In Eq. (223) the constant ac is the
scale factor at some time tc at which ĉ takes the value ĉc.
The time tc should be chosen such that the leading
approximation becomes valid. For a realistic cosmology
one needs at a time somewhat after the end of inflation a
very small value ĉc. Otherwise the dark matter component
of the oscillating c field would dominate the evolution too
early, in contrast to the observed extended radiation
dominated epoch. Very small values of ĉc are expected
due to the Hubble damping in the inflationary epoch.

C. Entropy production

Beyond the leading approximation the behavior is
more complex. This concerns, in particular, the transition
epoch after the end of inflation. The term δc in Eqs. (220)
and (221) is rapidly oscillating on a timescale given by
μ̂−1c . This induces a corresponding oscillatory component
in the Hubble parameter. In turn, the contribution δμ̂2c in
Eqs. (212) and (213) induces an effective oscillation of
the mass term. This can induce effects similar to para-
metric resonance [88–91]. The resulting evolution of the
oscillations is rather irregular, with occasional “excur-
sions” for which the amplitude gets enhanced for certain
time intervals. We show a typical “excursion” of ĉ in
Fig. 6. These excursions have rather small effects on the
overall cosmology. They are not visible in figures
showing also quantities much larger than ĉ. Excursions
of this type typically repeat with irregular shapes. This is
one of the reasons why a numerical solution for very
large intervals in t̂ becomes very hard. Not enough
resolution is available to follow the irregular oscillations
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in detail. For ĉ this problem could be avoided by starting
with ĉ ¼ 0. Similar phenomena occur, however, for the
oscillations of f̂ for which a zero amplitude cannot be
maintained.
Because of the highly irregular behavior induced by the

nonlinear terms the detailed initial information concerning
the fluctuations is practically lost. The only remaining
information is the overall size of the energy density
averaged over a sufficiently large time interval. We may
associate this effective loss of information with an effective
production of entropy. In a more complete picture the
entropy associated with this particular oscillation mode will
only be a small part of the overall entropy. Nevertheless, it
demonstrates the principle of entropy production.
For late stages of the evolution Ĥ gets very small. In this

case one can neglect δμ̂2c such that εc becomes a constant. In
this range the contribution of the ĉ oscillations to the energy
density becomes simple

ρc ¼
3Zεc
2A3

: ð224Þ

This is the standard contribution of cold dark matter. One
may therefore switch from a description which resolves the
oscillations of ĉ to an averaged description which accounts
for the effects of the ĉ oscillations only in a time-averaged
sense. For this purpose one omits the explicit ĉ field and
uses instead for the evolution of the other fields Ĥ and s a
source term according to Eq. (224). This procedure seems
numerically feasible since the resolution of oscillations is
needed only to determine the matching conditions, i.e., to
compute εc from the evolution of ρc at some suitable time
when Eq. (224) is already valid.

D. Dark matter from f̂ oscillations

A second dark matter candidate arises from the oscil-
lations of the gauge field b̂ or f̂. Due to mixing effects the
correct treatment is somewhat more complicated than for ĉ.
For small f̂ and Ĥ, as appropriate for the late universe, we
can approximate the effective action (197) by expanding in
Ĥ, f̂, and Ĥ0 up to quadratic order

Γ ¼ Ω3

Z
t̂
A3

�
3Z̃
2
ðf̂02 þ Ĥ02 − 2Ĥ00f̂Þ −

�
3

2ỹ
þ 3

�
f̂2

− 3ð2Ĥ2 þ Ĥ0Þ − K̄
2
s02 þ 3Ȳ f̂ s0 þ V̂

�
: ð225Þ

Let us first discuss the case Ȳ ¼ 0 for which f̂ and s can be
treated separately. For Z̃ < 0, −1=2 < ỹ < 0, and neglect-
ing Ĥ one would have oscillations of f̂ corresponding to a
massive particle with μ2 ¼ ð1þ 2ỹÞ=ðỹ Z̃Þ. While this
yields a qualitatively correct picture, the quantitative value
of the mass term is modified by the coupling to Ĥ such that
the oscillation frequency is given by μ̂2b.
The reason for this shift in the mass term is the term

linear in f̂0 in the evolution equation (159) for Ĥ. This
differs from the influence of ĉ on Ĥ which occurs only
quadratically in Eq. (188). The coupling of Ĥ to f̂ in linear
order corresponds to the off-diagonal term in the propa-
gator matrix (B31) in Appendix B. We can split Ĥ into a
slowly evolving part H̄ and a part Hf that oscillates
together with f̂, Ĥ ¼ H̄ þHf. Here H̄ obeys Eq. (159)
with f̂ set to zero. For the evolution of Hf we linearize
Eq. (159) in f̂ and Hf,

H0
f þ 4H̄Hf ¼ −

1þ 2ỹ
2ỹ

ðf̃0 þ 3H̄ f̂Þ: ð226Þ

With the ansatz

Hf ¼ −
1þ 2ỹ
2ỹ

f̂ þ δf; ð227Þ

one finds

δ0f ¼ H̄

�
1þ 2ỹ
2ỹ

f̂ − 4δf

�
: ð228Þ

In the limit H̄ ¼ 0 we can identify in Eq. (30) d̃ ¼ −2ỹδf.
Insertion of Hf into Eq. (191) yields in linear order in f̂ an
evolution equation similar to Eq. (212),

f̂00 þ 3H̄f̂0 þ
�
μ̂2b þ

9H̄2

4
þ 3H̄0

2

�
f̂ ¼ −δμ̂2bf̂; ð229Þ

with
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FIG. 6. Excursion of small gauge field fluctuations. We show ĉ
as a function of t̂ for an appropriate time window. The oscillations
on short timescales are not resolved in this figure. Parameters are
Z ¼ −Z̃ ¼ 1, y ¼ −ỹ ¼ 0.2, K̄ ¼ 4, V̄ ¼ 0.3, Ȳ ¼ 0, corre-
sponding to Figs. 2 and 3. Initial values are the same as for
Figs. 2, and 3, except for a smaller value of the initial χ or s. The
very small fluctuation amplitude of ĉ increases for short periods
and decays again.
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δμ̂2b ¼ −
�
9

4
þ 8ỹ

�
H̄2 −

�
9

2
þ 4ỹ

�
H̄0: ð230Þ

The frequency of the fast oscillations of f̂ is governed by μ̂2b
as expected. For H̄ → 0 we recover the results of the
stability analysis in flat space. In summary, the oscillations
of f̂ constitute a second dark matter component, in
complete analogy to the fluctuations of ĉ.
For Ȳ ≠ 0 the evolution of f̂ and s are more closely

coupled. Similar to the treatment of Ĥ above, we decom-
pose f̂ and s into slowly evolving parts f̄ and s̄, and rapidly
oscillating parts Δ and sf,

f̂ ¼ f̄ þ Δ; s ¼ s̄þ sf; Ĥ ¼ H̄ þHf: ð231Þ

For f̄ we take the leading order expression

f̄ ¼ ỹ Ȳ
1þ 2ỹ

s0: ð232Þ

Insertion into the other field equations yields the shift (83)
for the scalar kinetic term in variable gravity. Expressing sf
and Hf in terms of Δ by use of their linearized field
equations and insertion into the field equations for f̂ yields
the linearized field equation forΔ. For V̂ ¼ 0 the oscillation
frequency is now given by a mass term similar to Eq. (B52)
in Appendix B. In the presence of nonvanishing derivatives
of V̂ the mass term for Δ will depend on s. This leads to a
coupling between dark matter and dark energy that we will
discuss below.
An important qualitative difference as compared to the ĉ

oscillation concerns the energy density stored in the
fluctuations after the end of the inflationary epoch. If the
ĉ fluctuations equal zero at the end of inflation, this will
remain so afterwards. The reason is that due to conserved
parity the ĉ field appears at least quadratically in the
effective action, and there is therefore no source term in its
field equation. If inflation lasts long enough, in particular, if
the inflationary epoch extends to the infinite past, the ĉ field
vanishes for all practical purposes due to the strong
damping during inflation. Also the f̂ field may be very
close to zero toward the end of inflation. In contrast to the ĉ
field the field equation for f̂ has a source term. This source
typically differs from zero at the end of inflation. It induces
a nonzero amplitude for the f̂ oscillations even in the case
that f̂ ¼ 0 during inflation. Figure 7 demonstrates that very
small oscillations of f̂ are generated by the crossover
behavior at the end of the inflationary epoch. This figure
shows the result for Ȳ ¼ 0, for which the oscillations are
around f̂ ¼ 0. For Ȳ ≠ 0 the oscillations occur around the
solution (232). These fluctuations are further damped as t̂
progresses. For t̂ ≈ 106 one finds f̂ ≈ 10−18. The irregular
behavior seen in this figure reflects the nonlinearity of the

field equation for f̂ that is similar to the one for ĉ
discussed below.
Once radiation domination sets in the energy density in

the f̂ fluctuations increases relative to the dominant energy
density in radiation. If the f̂ fluctuations do not decay into
other particles, their energy density will equal the radiation
energy density at some time t̂eq and associated Ĥeq ¼
Ĥðt̂eqÞ for “equality.” The value of Ĥeq is fixed by the
observation of the cosmic microwave background. In order
to have Ĥeq sufficiently small the value of the energy

density in the f̂ fluctuations has to be sufficiently small at
the beginning of the radiation dominated era. This may turn
to a restriction for realistic models.

E. Dynamical dark energy

The key ingredient for the prediction of dynamical dark
energy or quintessence in our crossover model is the
flatness of the potential VðχÞ for large values of χ, as
encoded in the ansatz (13), V ¼ u0k4. This flatness seems
to be a generic feature of scaling solutions for functional
flow equations [51,68,69,72]. The precise form of VðχÞ is
not important in this respect. For example, the constant
value of V for χ → ∞ could be different from the value for
χ → 0, e.g.,

Vðχ → ∞Þ ¼ u∞k4: ð233Þ

One only needs a positive value u∞ > 0. Only in order to
keep the number of parameters small we choose here
u∞ ¼ u0. The constant value of the potential combined
with an increase of M2 ∼ χ2 leads to a frame invariant
potential V̂ that vanishes for large χ or s ¼ lnðχ=kÞ,

0 20000 40000 60000
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FIG. 7. Small oscillations of f̂ as dark matter candidate. We
show f̂ as a function of t̂ for initial conditions corresponding to a
de Sitter solution of type 1. For the inflationary epoch the initial
value f̂ ¼ 0 remains stable. The tiny oscillations are triggered by
the end of inflation. They continue to be damped with f̂ ≈ 10−18

for t̂ ≈ 106. Parameters are Z ¼ −Z̃ ¼ 0.1, y ¼ −ỹ ¼ 0.2, K̄ ¼ 8,
Ȳ ¼ 0, and V0 ¼ 10−4.
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V̂ ¼ V̄e−4s; V̄ ¼ u∞
ξ2

: ð234Þ

The results are cosmic runaway solutions for which s
diverges in the infinite future. The dynamical dark energy
stored in V̂ vanishes asymptotically.
The detailed dynamics depends on the kinetial k̂2ðsÞ and

the dynamics at the end of inflation. After the end of
inflation one typically finds a “kination” epoch for which
the energy density is dominated by the scalar kinetic
energy. During this epoch s can grow substantially. At
the end of the kination epoch s is frozen at sf, or it changes
much slower for s > sf. There are two possibilities for
dynamical dark energy. If sf obeys

M̄4V̄e−4sf ¼ ð2 × 10−3 eVÞ4; sf ¼ scr ≈ 70þ 1

4
ln V̄;

ð235Þ

the potential energy in the Einstein frame, M̄4V̂ðsfÞ, can be
identified with the present dark energy density. The value of
s no longer changes until the total energy density reaches a
similar value. This constitutes “thawing quintessence.” If sf
is smaller than the critical value scr the universe may
consecutively follow a scaling solution (“cosmological
attractor solution,” “asymptotic solution,” “tracker solu-
tion”) for which dynamical dark energy is an almost
constant fraction of the dominant radiation or matter
density. Both possibilities are first discussed in Ref. [64].
In the second case some event has to “kick out” the

evolution from the scaling solution around redshift z ¼ 5,
realizing a scenario of “freezing quintessence.” One can
achieve realistic models by a suitable choice of the kinetial
k̂2ðsÞ. A cosmic trigger event ending the scaling solution
could be the growth of the ratio between neutrino and
electron mass, induced by a new step of crossover in the
beyond standard model sector [92,93]. It is not the purpose
of the present paper to develop a detailed scenario for
realistic quintessence. Short summaries of realistic variable
gravity models can be found in Refs. [51,60].
In the absence of matter and radiation the scaling

solution is dominated by the potential and kinetic energy
of the scalar field [64]. Adapting the results of Ref. [64] for
our notation, the field equations in the Einstein frame (210)
and (211) have for large φ̃=M̄ the asymptotic solution

H ¼ k̂2

8t
; φ̃ ¼ M̄

2

�
lnðM̄tÞ − 1

2
ln c20

�
;

_̃φ ¼ M̄
2t

; A ¼ A0

�
t
t0

�
k̂2=8

; ð236Þ

with

c20 ¼
k̂2

8V̄

�
3k̂2

8
− 1

�
: ð237Þ

We illustrate the transition from inflation to a scalar field
dominated scaling solution for dynamical dark energy in
Fig. 8. The quantities

Rs ¼
2_s

Ĥ
; RV ¼ V̂

3Ĥ2
ð238Þ

allow us to follow the crossover at the end of inflation
quantitatively. For the inflationary period one has Rs ≪ 1
and RV ¼ 1, while for the scaling solution both quantities
reach rapidly the corresponding values.
The scaling solution (236) exists for k̂2 > 8=3. For k̂2 <

8=3 the potential becomes negligible as compared to the
scalar kinetic term, with

H ¼ 1

3t
; _̃φ ¼

ffiffiffi
2

3

r
M̄

k̂t
; A ¼ A0

�
t
t0

�1
3

: ð239Þ

In the presence of an additional radiation component the
latter will finally dominate if k̂2 < 4. From there on the
dark energy density follows the dominant radiation or
matter energy density, typically with an almost constant
fraction of “early dark energy.” Rather realistic cosmolo-
gies obtain if k̂2 depends on s or φ̃, decreasing from large
values to small values as s increases [60,61].

F. Coupled quintessence

Dynamical dark energy and matter may interact leading
to coupled quintessence [66,67]. This happens if the mass
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–4

–2

0

2

4

t

Lo
g

(H
) +

10
,

s,
R

s,
R

v

FIG. 8. Transition to scalar dominated dynamical dark energy.
As a function of cosmic time t̂ we plot the Hubble parameter
logarithmically as lnH þ 10 (red curve) and the scalar field s
(blue curve). In addition, we display Rs (orange curve) and RV
(magenta curve). Initial conditions are the de Sitter solution of
type 1, and parameters are the same as for Fig. 7, Z ¼ −Z̃ ¼ 0.1,
y ¼ −ỹ ¼ 0.2, K̄ ¼ 8, Ȳ ¼ 0, and V0 ¼ 10−4.
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of a dark matter particle depends on the value of the cosmon
field. One defines the coupling β by the dependence of the
dark matter particle mass μ on the normalized scalar field in
the Einstein frame

β ¼ −M̄
∂
∂σ ln μ: ð240Þ

Here σ is related to s by

dσ
ds

¼ M̄ k̂ðsÞ: ð241Þ

In the presence of a coupling the scalar field equation
becomes in the Einstein frame, VE ¼ M̄4V̂,

∂2
t σ þ 3H∂tσ ¼ −

∂VE

∂σ þ β

M̄
ρdm; ð242Þ

and the conservation equation for the dark matter energy
density ρdm gets modified

∂tρdm þ 3Hρdm þ β

M̄
ρdm∂tσ ¼ 0: ð243Þ

The energy momentum tensor for dark matter and dark
energy are no longer conserved separately since energy can
be exchanged between the two components.
If dark matter arises from f̂ fluctuations the relevant

mass in the Einstein frame follows from Eq. (B52),

μ2 ¼ −
2M̄2

Z̃

�
1 −

2ỹ K̄

ð1þ 2ỹÞk̂2
�

−1
: ð244Þ

This yields

β¼−
1

2k̂

∂ lnμ2
∂s ¼ 1

2k̂

∂
∂s
�
lnð−Z̃Þþ ln

�
1−

2ỹ K̄

ð1þ 2ỹÞk̂2
��

:

ð245Þ

In the limit of exact quantum scale symmetry the coupling
β vanishes since all couplings are independent of s. On the
other hand, the kinetials k̂2 and K̄ may still vary with s,
reaching fixed point values only for s → ∞. If dark matter
arises from f̂ fluctuations, one expects a nonvanishing
coupling to dark energy.

XI. INFLATIONARY COSMOLOGY

The field equations for the model presented in Sec. IX
lead to inflationary cosmology in a very natural way. For
s → −∞, corresponding to χ → 0, the potential (203)
becomes flat. This flat tail will lead to the “slow roll”
behavior of the scalar field characteristic for inflation,
whenever a “beginning epoch” with very small χ is

realized. We have discussed in Sec. IV possible beginnings
with de Sitter solutions for χ ¼ 0. A slow evolution away
from this exact de Sitter solution results in an early
inflationary epoch.
Since the de Sitter solution is an attractor for small

enough χ or large enough negative s, there is no need
for a beginning with a de Sitter solution. A very large
family of “initial states” with small χ will approach
quickly the de Sitter solution. This solution is depicted in
Fig. 9 where we show the frame invariant functions Ĥ, b̂,
f̂, ĉ, and s for parameters Z ¼ −Z̃ ¼ 1, y ¼ −ỹ ¼ 0.2,
V̄ ¼ 0.3, and Ȳ ¼ 0 corresponding to Figs. 2 and 3. The
frame and scale invariant kinetial with K̄ ¼ 4 corresponds
for constant M2 to K ¼ 4k2=χ2. In the Einstein frame all
quantities are in units of the Planck mass M̄. The time t̂
corresponds in this case to cosmic time in units of the
Planck time M̄−1.
By choosing smaller initial values of χ the end of the

inflationary epoch moves to large t̂ and inflation extends
over a larger time interval. (The position of the zero of t̂ is,
of course, arbitrary.) Smaller values of the Hubble param-
eter during inflation obtain for smaller values of V̄. The end
of inflation and the value of the Hubble parameter at the
end of inflation can also be modified by a χ-dependent
function K̂ as we will discuss below. We observe that f̂
and ĉ reach very small values rapidly. One therefore
expects that variable gravity provides for a rather accurate
approximation.
The potential (203) corresponds precisely to the potential

of our ansatz (13), with
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FIG. 9. Inflationary cosmology. We plot the frame invariant
functions Ĥ, b̂, f̂, ĉ, and s=10 as a function of t̂. Parameters are
Z ¼ −Z̃ ¼ 1, y ¼ −ỹ ¼ 0.2, K̄ ¼ 4, V̄ ¼ 0.3, Ȳ ¼ 0 correspond-
ing to Figs. 2 and 3. Initial values and color coding of the curves
are the same as for Figs. 2 and 3, except a smaller value of the
initial χ or s which extends the epoch of inflation. All parameters
and initial conditions are identical to Fig. 6. Both ĉ and f̂ are
almost zero after a short initial epoch, while b̂ and Ĥ reach the
same plateau characteristic for inflation, and decay toward zero
after the end of inflation.
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μ2 ¼ 2w0k2

ξ
; V̄ ¼ u0

4w2
0

: ð246Þ

This potential has its maximum for χ ¼ 0, φ̃ ¼ 0. Any
small nonzero χ or φ̃ will move slowly away from this
maximum. We employ this potential here without modi-
fication, while we will discuss below also the effect of
kinetials different from Eq. (174).
We will discuss the inflationary epoch first in terms of

the associated variable gravity model. Subsequently, we
start from the full field equations for pregeometry and
investigate the precise circumstances under which variable
gravity becomes a valid approximation. This will be the
case for the cosmological epoch responsible for the proper-
ties of the observable primordial fluctuations.

A. Inflation in variable gravity

We start from the effective action (202) in the Einstein
frame ð ffiffiffi

g
p ¼ eÞ,

Γ ¼
Z ffiffiffi

g
p �

−
M̄2

2
Rþ 1

2
M̄2k̂2∂μs∂μsþ M̄4V̂

�
: ð247Þ

A convenient normalization of the scalar field relates it
directly to the potential [60]

V̂ ¼ V̄ exp

�
−
φ

M̄

�
: ð248Þ

This choice is always possible if the potential is monotonic
for the range of fields of interest, as realized in our case. For
this normalization one has

Γ¼
Z ffiffiffi

g
p �

−
M̄2

2
Rþ 1

2
k2ðφÞ∂μφ∂μφþ M̄4 exp

�
−
φ

M̄

��
;

ð249Þ

with kinetial

k2ðφÞ ¼ k̂2M̄2

�∂s
∂φ
�

2

: ð250Þ

All properties of the spectrum of primordial cosmic
fluctuations can be read off directly from the kinetial
k2ðφÞ [60].
For the potential (203) the identification

ð1þ e2sÞ−2 ¼ e−
φ
M̄ ð251Þ

relates φ and s,

s ¼ 1

2
ln

�
exp

�
φ

2M̄

�
− 1

�
: ð252Þ

The kinetial shows an exponential dependence on φ,

k2ðφÞ ¼ k̂2

16
exp

�
φ

M̄

��
exp

�
φ

2M̄

�
− 1

�
−2
: ð253Þ

For s → −∞, corresponding to χ → 0 and φ → 0 accor-
ding to

χ2 ¼ μ2
�
exp

�
φ

2M̄

�
− 1

�
≈
μ2φ

2M̄
; ð254Þ

the kinetial diverges,

k2ðφ → 0Þ ¼ M2k̂2

4φ2
: ð255Þ

This reflects the flat tail of the potential Vðs → −∞Þ. As φ
increases the kinetial k2ðφÞ decreases. Inflation ends once
k2ðφÞ decays below one.

B. Primordial fluctuation spectrum

For a standard form of the potential the details of the
inflationary model are encoded in the kinetial [50,60,94].
(See also Ref. [95] for a different form of the standard
potential.) The advantage of the form (248) is that the
characteristic properties of inflation can be read off directly
[50,60,94] from the kinetial k2ðφÞ. This is easily seen by
relating φ to a field σ with a canonical kinetic term by

dσ
dφ

¼ kðφÞ: ð256Þ

The slow roll parameters are given by

ε ¼ M̄2

2

�∂ lnV
∂σ

�
2

¼ 1

2k2ðφÞ ;

η ¼ M̄2

V
∂2V
∂σ2 ¼ 2ε − M̄

∂ε
∂φ ¼ 1

k2ðφÞ
�
1þ M̄

2

∂ ln k2ðφÞ
∂φ

�
;

ð257Þ

and can therefore be read off directly from k2ðφÞ. The slow
roll behavior is realized for small ε, corresponding to large
k2ðφÞ as realized for φ → 0. As φ increases due to the
gradient of the potential (248), the kinetial decreases and
εðφÞ increases. The inflationary epoch ends once φ has
reached the value φf defined by

k2ðφfÞ ¼ 1: ð258Þ

The kinetial can also be used for relating the number of
e-foldings before the end of inflation N to the value of φ.
One obtains
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NðφÞ ¼ 1

M̄

Z
φf

φ
dφ0k2ðφ0Þ: ð259Þ

In turn, one can use the inverse function φðNÞ in order to
express the slow roll parameters εðNÞ and ηðNÞ as
functions of N. The properties of the spectrum of primor-
dial fluctuations are directly related to εðNÞ and ηðNÞ,
with N ≈ 50–60 depending on the heating after inflation.
(We do not discuss heating in this paper since it involves
the couplings to other fields in the standard model or
extensions. For a detailed discussion for this type of
inflationary models motivated by quantum scale symmetry
see Ref. [61].) In particular, the spectral index for the
primordial scalar fluctuations is given by

n ¼ 1 − 6εðNÞ þ 2ηðNÞ; ð260Þ

and the ratio of tensor fluctuations over scalar fluctuations
obeys

r ¼ 16εðNÞ ¼ 8

k2ðNÞ : ð261Þ

The amplitude of the primordial scalar fluctuations is
proportional to the value of the potential for φðNÞ. Since we
employ a standard form of the potential our formulation
provides for a direct relation between φðNÞ and the
fluctuation amplitude. More quantitatively the scalar fluc-
tuation amplitude Δ obeys

24π2Δ2 ¼ VðφðNÞÞ
εðNÞM̄4

≈ 5 × 10−7; ð262Þ

where the last relation indicates the observed value.
Compatibility with observation therefore requires

exp
�
−
φðNÞ
M̄

�
¼ 2.5 × 10−7

V̄k2ðφðNÞÞ : ð263Þ

For a given model the function k2ðφÞ is fixed and the value
of φðNÞ required for the observed amplitude can be
computed.

C. Realistic inflationary scenarios

There are two classes of realistic inflationary models. For
the first φðNÞ=M̄ is small as compared to one. In this case
the parameter combination V̄k2ðNÞ is fixed by observation

V̄k2ðNÞ ≈ 2.5 × 10−7: ð264Þ

This is the range where the approximation (255) is valid,
such that the parameter combination V̄k̂2 is determined by

V̄k̂2 ≈ 10−6
φ2ðNÞ
M̄2

: ð265Þ

If the approximation (255) remains roughly valid until the
end of inflation, the relations (258) and (259) yield

φ2
f

M̄2
≈
k̂2

4
ð266Þ

and

N ¼ k̂
2

�
k̂ M̄

2φðNÞ − 1

�
; ð267Þ

or

φðNÞ
M̄

¼ k̂2

4N

�
1þ k̂

2N

�
−1
: ð268Þ

From Eq. (265) we conclude the approximate relation

V̄ ≈
10−6

16N2
k̂2 ≈ 2 × 10−11k̂2: ð269Þ

Unless k̂2 is huge a small fluctuation amplitude requires for
this scenario a rather small value of V̄.
For this type of models we can compute k2ðNÞ as

k2ðNÞ ¼ 4N2

k̂2

�
1þ k̂

2N

�
2

: ð270Þ

This yields

ε ¼ k̂2

8N2

�
1þ k̂

2N

�
−2

¼ 2φ2ðNÞ
k̂2M̄2

ð271Þ

and

η ¼ −
1

N

�
1þ k̂

2N

�
−1

þ 2ε ¼ −
4φðNÞ
k̂2M

þ 2ε: ð272Þ

For k̂2 ≪ N2 the resulting tensor to scalar ratio is very
small,

r ¼ 2k̂2

N2

�
1þ k̂

2N

�
−2
; ð273Þ

and the special index obtains as

n ¼ 1 −
2

N

�
1þ k̂

2N

�
−1

−
k̂2

4N2

�
1þ k̂

2N

�
−2
: ð274Þ

This range of values is compatible with observation.
For the second class of possible realistic inflationary

scenarios the tiny value of the primordial fluctuation
amplitude is explained by the exponential suppression of
VðφÞ for φ=M̄ ≫ 1. This is the type of models investigated
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in Refs. [50,60,61,94]. This scenario can be realized if we
extend the simple ansatz of Sec. IX to a kinetial k̂2ðsÞ that is
no longer constant. For φ=M̄ ≫ 1 the kinetial k2ðφÞ in
Eq. (253) is well approximated by k̂2=16. As long as k̂2

remains larger than 16, inflation cannot end. The end of
inflation is now triggered by a crossover from k̂2ðsÞ > 16

for s smaller than sf to k̂2ðsÞ < 16 for s larger than sf.
A variation of k̂2 with χ or s is well motivated within our

family of crossover models. It extends the setting with a
single crossover due to the χ dependence of M2 to the
possibility of a second crossover scale related to the
kinetial. Indeed, k̂2 is determined by different parameter
combinations for χ → 0 and χ → ∞. For χ → 0 one infers
from Eqs. (204) and (169)

k̂20 ¼ K̄ −
3ỹ

1þ 2ỹ
Ȳ2 ¼ κ

2w0

−
3ỹY2

0

4ð1þ 2ỹÞw2
0

; ð275Þ

with ỹ ¼ 2w0=m̃2
0. On the other hand, for χ2 → ∞

Eqs. (204) and (165) imply, with ỹ ¼ ξ=ζ̃,

k̂2∞ ¼ K∞

ξ
−

3ỹ
1þ 2ỹ

��
Y∞

ξ
þ 2

�
2

− 6

�
; ð276Þ

with K∞ ¼ Kðχ → ∞Þ, Y∞ ¼ Yðχ → ∞Þ. One therefore
expects a crossover between the two limiting values. Values
k̂0 ≫ 16 and k̂∞ ≪ 16 seem not to be unnatural.
In this second scenario the end of inflation occurs in a

range of large φ=M̄ for which

s ≈
φ

4M̄
; k2ðφÞ ≈ k̂2ðφÞ

16
: ð277Þ

The change from large to small k2ðφÞ ending inflation is
then almost entirely due to the dependence of k̂2 on s or φ.
If this behavior is already relevant around 50–60 e-foldings
before the end of inflation, a rather large k̂2ðNÞ is needed
for a small tensor to scalar ratio, r ≈ 128=k̂2ðNÞ. On the
other hand, the parameter V̄ no longer has to be tiny as if
φf=M̄ is sufficiently large.
Realistic inflationary models are also possible in

between the two scenarios depicted above. Only some
calculations of the parameters in our ansatz can decide
between the many possible inflationary models. For the
time being we just impose observational constraints which
limit the allowed parameter ranges. Fixing them in detail is
not the purpose of this paper.

D. Validity of the variable gravity approximation

We have seen the possibility of realistic inflationary
models within the variable gravity approximation for
pregeometry. We next want to investigate the conditions
for this approximation to be valid. Variable gravity is valid

for small enough f and c. We take here c ¼ 0 and
concentrate on f. Our aims are quantitative relations for
the inflationary scenarios discussed above.
We start from the frame invariant field equations (191)–

(196) for our model of pregeometry. For a solution of
Eq. (191) we consider the approximations

4ỹ Z̃ Ĥ2

1þ 2ỹ
≪ 1;

f̂2

Ĥ2
≪ 1; ð278Þ

and

3ỹ Z̃ jĤf̂0j
1þ 2ỹ

≪ jf̂j: ð279Þ

We further assume that the order of magnitude of Ĥ0 does
not exceed Ĥ2, and that f̂00 does not exceed by much 3Ĥf̂0.
With these approximations the solution of Eq. (191) reads

f̂ ¼ ỹ Ȳ s0

1þ 2ỹ
−

ỹ Z̃
1þ 2ỹ

ð4ĤĤ0 þ Ĥ00Þ: ð280Þ

Insertion into the scalar field equation (196) yields�
K̄ −

3ỹȲ2

1þ 2ỹ

�
ðs00 þ 3Ĥs0Þ

¼ −
∂V̂
∂s −

3ỹ Ȳ Z̃
1þ 2ỹ

ð12Ĥ2Ĥ0 þ 7ĤĤ00 þ 4Ĥ02 þ Ĥ000Þ:

ð281Þ

We observe the appearance of the combination k̂2 given by
Eq. (204). Omitting the term ∼Z̃ yields the scalar field
equation (207) of variable gravity that we employ in the
first part of this section.
Similarly, inserting Eq. (280) into Eq. (192) one finds

Ĥ2 þ 1

2
Ĥ0 ¼ V̂

3
−
k̂2s02

12
þ Z̃

4

�
12Ĥ2Ĥ0 þ 4Ĥ02 þ 7ĤĤ00

þ Ĥ000 −
ỹ Z̃

1þ 2ỹ
ð4ĤĤ0 þ Ĥ00Þ2

�
; ð282Þ

while Eq. (193) becomes

Ĥ2 ¼ V̂
3
þ k̂2

6
s02þ Z̃

�
3Ĥ2Ĥ0 −

1

2
Ĥ02þ ĤĤ00

þ ỹ Ȳ s0

1þ 2ỹ
ðĤ3þ 3ĤĤ0 þ Ĥ00Þ

�
−

ỹZ̃2

2ð1þ 2ỹÞ ð4ĤĤ0 þ Ĥ00Þð2Ĥ3þ 2ĤĤ0 þ Ĥ00ÞþΔ2;

ð283Þ
where we use in Eq. (194)
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Δ1 ¼ Ȳ Ĥ s0 −
ỹ

2ð1þ 2ỹÞ Ȳ
2s02 þ Z̃ð4Ĥ2Ĥ0 þ ĤĤ00 þ � � �Þ

ð284Þ
and Δ2 contains subleading terms ∼Z̃ as given by
Eq. (195). Omitting the terms ∼Z̃ we find the geometrical
field equations for variable gravity (208) from which we
have started our investigation of inflationary cosmology
above. We conclude that the approximation of variable
gravity becomes valid if the terms ∼Z̃ in Eqs. (281)–(283)
can be neglected. These terms all involve higher powers of
the Hubble parameter and its derivatives. For any model of
realistic inflation the Hubble parameter in units of the
Planck mass, as given by Ĥ, is a very small quantity for the
epoch relevant for the properties of the primordial fluc-
tuation spectrum. In this range the variable gravity approxi-
mation holds with high precision.

E. Slow roll approximation

The corrections beyond the variable gravity approxima-
tion vanish if both Z̃Ĥ0 ¼ 0 and ỹ Ȳ s0 ¼ 0. This is obeyed
for the de Sitter solution (68) where Ĥ0 ¼ 0, s0 ¼ 0. A
beginning within the range of validity of the variable
gravity approximation is therefore possible. Variable grav-
ity remains a good approximation for the evolution away
from the de Sitter solution as long as the “slow roll
approximation” holds, as specified by

k̂2s02 ≪ 6Ĥ2: ð285Þ
In this approximation one has

Ĥ2 ≈
V̂
3
≈
V̄
3
ð1þ e2sÞ−2; ð286Þ

while the scalar field equation yields for js00j ≪ j3Ĥs0j

s0 ≈
4e2sĤ

ð1þ e2sÞk̂2 : ð287Þ

The slow roll approximation (285) remains valid for the
region of large negative s and small χ. It ends once the slow
roll condition,

e2s

1þ e2s
≪

ffiffiffiffiffiffiffi
3k̂2

8

s
; ð288Þ

gets violated. For large k̂2 ≫ 8=3 the condition (288) or
(285) holds for all s.
In the slow roll epoch the Hubble parameter changes

only slowly. With

Ĥ0

Ĥ2
≈

s0

6Ĥ3

∂V̂
∂s ¼ −

2e2sV̂s0

3ð1þ e2sÞĤ3
≈ −

2e2ss0

ð1þ e2sÞĤ ; ð289Þ

the condition (285) implies for the region of large negative
s or small χ a slow relative change of Ĥ,				 Ĥ0

Ĥ2

				≪ 2
ffiffiffi
6

p
e2s

jk̂jð1þ e2sÞ : ð290Þ

For k̂2 ≫ 6 the approximation jĤ0j ≪ 2Ĥ2 extends to all s
and the slow roll epoch does not end. For the two realistic
inflationary scenarios discussed above the slow roll con-
dition is obeyed during the whole inflationary epoch. These
solutions can connect smoothly to a beginning with the de
Sitter solution (51)–(54) or (68).
So far we have discussed the slow roll approximation

within variable gravity. We next establish that this approxi-
mation is self-consistent. From Eq. (283) one infers that the
variable gravity approximation is valid for

3Z̃jĤ0j ≪ 1;
ỹ Z̃ Ȳ Ĥ s0

1þ 2ỹ
≪ 1: ð291Þ

The slow roll conditions (285) and

jĤ0j
2Ĥ2

≪ 1 ð292Þ

guarantee these conditions provided

jZ̃Ĥ2j≲ 1;

				 ỹ Ȳ
1þ 2ỹ

				≲ 1: ð293Þ

With these condition also the terms ∼Z̃ in Eqs. (281) and
(282) remain small.
In the Einstein frame one has Ĥ ¼ H=M̄ and V̂ðsÞ ¼

VðsÞ=M̄4. A small amplitude of the primordial fluctuations
requires according to Eq. (262)

V̂ðsÞ ¼ 3Ĥ2 ¼ 5ε × 10−7:

For any realistic model of inflation the product Z̃Ĥ2 is tiny
unless Z̃ is huge. For Z̃ and Ȳ not exceeding unity by many
orders of magnitude all corrections beyond the variable
gravity approximation are suppressed by the very small
value of Ĥ2 and correspondingly s02.
From the point of view of pregeometry this brings us to

an interesting conclusion. For homogeneous and isotropic
solutions it is well possible that the whole history of our
universe can be described within the variable gravity
approximation. Higher derivative terms are present for
the effective metric theory. They do not play a role for
homogeneous isotropic cosmology, however. In particular,
for the small values of V̄ according to our first family of
realistic inflationary models, the value of Ĥ2 is already tiny
for the de Sitter solution (51)–(54) that may describe the
beginning of the universe.
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XII. GRAVITON FLUCTUATIONS

The homogeneous and isotropic universe is an ideali-
zation. The real universe is inhomogeneous, as manifest by
the observed structures from galaxy clusters to stars.
Homogeneity and isotropy may be a good approximation
for averages over large enough volumes. This property may
hold for the present universe and more generally for the late
universe after inflation. We have no guarantee, however,
that it holds also toward the beginning, and we will argue in
the next section that the beginning is actually highly
inhomogeneous. For this reason we address in this section
the issue of inhomogeneous solutions of the general field
equations derived in Sec. VI.
We will concentrate in this section on small inhomoge-

neities for which a linearization of the field equations is a
good approximation. In linear order the various inhomo-
geneities can be treated by separate field equations for the
different representations of the rotation group. They do not
mix in linear order. We will not perform the most general
discussion here but rather concentrate on one particular
mode—the graviton fluctuations. Many general features
can be found from the evolution of the inhomogeneous
cosmologies that can be described by a superposition of
graviton modes. We can consider the detailed discussion of
the graviton modes as a case study, from which we will
draw more general conclusions in the next section. Since
the graviton fluctuations mix degrees of freedom from the
vierbein and the gauge fields, the new features of prege-
ometry become visible for this investigation. We perform
the computation in the fixed metric frame used in Sec. IV.
The generalization to a frame-invariant formulation [76] is
straightforward and will be employed in the next section.

A. Traceless transverse tensor fluctuations

For the fluctuations in the graviton sector we consider the
traceless transverse symmetric tensor fluctuations tμν and
Eμν. They are encoded in the ansatz

e0μm ¼ eμm þ 1

2
tμνemν;

A0
μmn ¼ Aμmn þ

1

2
emνenρðDνEμρ −DρEμνÞ: ð294Þ

Here eμm and Aμmn are the vierbein and gauge field of the
homogeneous isotropic background solution, and the
covariant derivative Dν is evaluated for these background
fields. For an isotropic background we decompose the
fluctuations into SOð3Þ representations. In the graviton
sector we concentrate on the transversal traceless space
components tij and Eij, i, j ¼ 1, 2, 3. In Fourier space with
comoving momenta ki they obey the constraints

δijtij ¼ 0; kitij ¼ 0; tji ¼ tij;

δijEij ¼ 0; kiEij ¼ 0; Eji ¼ Eij: ð295Þ

The nonvanishing components of DνEμρ are, with i, j,
l ¼ 1, 2, 3,

D0Eij ¼ ð∂η − 2HÞEij; DlEij ¼ ∂lEij ¼ iklEij;

DlEi0 ¼ −HEil; DlE0j ¼ −HElj: ð296Þ

Correspondingly, one finds for the nonzero components of
aμmn ¼ A0

μmn − Aμmn,

ali0 ¼ −al0i ¼ −
1

2a2
ð∂η −HÞEli;

alij ¼
i

2a2
ðkiElj − kjEliÞ: ð297Þ

The fields tij and Eij do not mix with other representations
of the rotation group in the linear approximation. Also
modes with different k⃗ do not mix. For the evolution of an
inhomogeneous universe which can be described by a
superposition of graviton modes tijðη; k⃗Þ and Eijðη; k⃗Þ we
can therefore investigate the linearized field equations for
each k⃗ mode separately.

B. Linear expansion

For the derivation of the linear field equations for the
graviton fluctuations we first compute their contribution to
the field strength Fμνmn and the covariant vierbein deriva-
tive Uμν

m in linear order. We denote the linear term in an

expansion of Fμνmn by Fð1Þ
μνmn,

Fð1Þ
μνmn ¼ ∂μaνmn − ∂νaμmn þ Aμm

paνpn − Aμn
paνpm

− Aνm
paμpn þ Aνn

paμpm: ð298Þ

For the components that differ from zero for graviton
fluctuations one obtains

Fð1Þ
0i0j ¼

1

2a2
ð∂η − 2HÞð∂η −HÞEij;

Fð1Þ
0ilj ¼

i
2a2

½klð∂η − 2HÞEij − kjð∂η − 2HÞEil�;

Fð1Þ
li0j ¼

i
2a2

½klð∂η −H − bÞEij − kið∂η −H − bÞElj�

þ c
2a2

½εljsð∂η −HÞEis − εij
sð∂η −HÞEls�;

Fð1Þ
lisj ¼ −

b
2a2

ð∂η −HÞ½δlsEij þ δijEls − δljEis − δisElj�

−
1

2a2
½klksEij þ kikjEls − klkjEis − kiksElj�

þ ic
2a2

½εlsqðkqEij − kjEiqÞ − εlj
qðkqEis − ksEiqÞ

− εis
qðkqElj − kjElqÞ þ εij

qðkqEls − ksElqÞ�:
ð299Þ
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In addition, we have the components from the antisym-
metry in the first and second pair of indices of Fμνmn.
We next turn to the covariant derivative of the vierbein.

For a general linear expansion

e0μm ¼ eμm þ 1

2
Hμνemν; ð300Þ

the linear expansion of Uμνρ reads

Uð1Þ
μνρ ¼ ωð1Þ

μνρ − aμmneνmeρn

−
1

2
AμmnenσðeνmHρσ − eρmHνσÞ: ð301Þ

Here ωð1Þ
μνρ is given by

ωð1Þ
μνρ ¼ 1

2
½∂ρH

ðSÞ
μν − ∂νH

ðSÞ
μρ þ ∂μH

ðAÞ
νρ

− Bρμ
σHνσ þ Bνμ

σHρσ�; ð302Þ

where

HðSÞ
μν ¼ 1

2
ðHμν þHνμÞ; HðAÞ

μν ¼ 1

2
ðHμν −HνμÞ; ð303Þ

and

Bμρ
σ ¼ emσ∂ρeμm: ð304Þ

Insertion of the homogeneous isotropic background and the

graviton fluctuations yields for Uð1Þ
μνρ ¼ −Uð1Þ

μρν the follow-
ing nonzero components:

Uð1Þ
ij0 ¼ −Uð1Þ

i0j ¼
1

2
ð∂η − bÞtij þ

1

2
ð∂η −HÞEij;

Uð1Þ
ijl ¼

i
2
½klðtij þ EijÞ − kjðtil þ EilÞ�

−
c
2
ðεijstls − εil

stjsÞ: ð305Þ

For the contraction Fμν one obtains in linear order the
nonvanishing components

Fð1Þ
ij ¼ −

1

2a2
½ð∂η − 2Hþ bÞð∂η −HÞ þ k2�Eij

þ ic
2a2

kqð2εjlqEil − εi
lqEjlÞ; ð306Þ

and therefore

Fð1Þ ¼ 0: ð307Þ

We conclude that the invariant CF2 does not contribute to
the linear dynamics in the graviton sector. We take here
B ¼ 0 as often in the main text. Including B ≠ 0 essentially

replaces Z → Z þ B. Furthermore, the contraction Uμ
μ
ρ

does not contribute in linear order

Uð1Þμ
μ ρ ¼ 0: ð308Þ

We can therefore omit the invariant ∼n2Uμ
μ
ρUν

νρ.

C. Linearized field equations

We next compute the field equation (108) in linear order
in the graviton fluctuation. We concentrate on background

solutions with c ¼ 0. For TðUÞ
μν we need the nonzero

components of DρUμν
ρ in linear order,

ðDρUij
ρÞð1Þ ¼ −

1

2a2

�
½∂2

η − 2H∂η þ k2�ðtij þ EijÞ

þ 2ðb −HÞ∂ηtij þ ð2H2 −Hb − ∂ηbÞtij
þ ðH2 − ∂ηHÞEij

�
: ð309Þ

One obtains the nonzero components of TðUÞ,

TðU;1Þ
ij ¼ −

m2

2a2

��
∂2
η − 2H∂η þ k2 þH2

− ∂ηH
�
ðtij þ EijÞ − ð∂η þ 3bÞðb −HÞtij

�
:

ð310Þ

Similarly, the energy momentum tensor of the gauge
bosons receives a contribution

TðF;1Þ
ij ¼ −

Z
2a4

�
2

�
∂ηbð∂η − 2HÞð∂η −HÞ

þ b3ð∂η −HÞ þ b2k2
�
Eij þ ½b4 þ 3ð∂ηbÞ2�tij

�
:

ð311Þ

Finally, we need the scalar contribution

Tðχ;1Þ
ij ¼

�
K
2a2

ð∂ηχÞ2 − V

�
tij

−
1

2a2
∂m2

∂χ ∂ηχ½ð∂η − bÞtij þ ð∂η −HÞEij�; ð312Þ

and

TðR;1Þ
ij ¼ M2

2a2

��
ð∂η − 2Hþ bÞð∂η −HÞ þ k2

�
Eij

þ ð3b2 þ 5∂ηbÞtij
�
: ð313Þ
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Grouping things together the linearized field equation (108),

2a2ðTðU;1Þ
ij þ TðF;1Þ

ij þ TðR;1Þ
ij þ Tðχ;1Þ

ij Þ ¼ 0; ð314Þ

yields a linear differential equation which involves up to
two η derivatives of tij and Eij.
For a second field equation of a similar type we employ

the linear approximation to the pure space components of
the gauge field equation (104)

ZðDνFν
ijlÞð1Þ ¼ −Jð1Þijl ; ð315Þ

where i is a world index and j, l are Lorentz indices. For the
linear expansions one obtains

ðDνFν
ijlÞð1Þ ¼

i
2a4

�
2b2ðkltij − kjtilÞ

þ
�
∂2
η þ ð2b − 4HÞ∂η þ 4H2

− 2∂ηH − 2Hbþ k2
�
ðklEij − kjEilÞ

�
ð316Þ

and

Jð1Þijl ¼
i

2a4

�
a2ðm2 −M2Þ½klðEij þ tijÞ − kjðEil þ tilÞ�

þ ∂Z
∂χ ∂ηχð∂η − 2HÞ½klEij − kjEil�

�
: ð317Þ

The combination of Eqs. (314) and (315) yields a system of
two closed linearized differential equations for the two
functions Eij and tij. It can be solved by standard linear
analysis.

D. Mode mixing

The modes tij and Eij are mixed. As a next task we want
to find the linear combinations (eigenmodes) whose time
evolution can be solved separately. Multiplication of
Eq. (315) with kl=k2 yields the second order differential
equation

AEij þ Btij ¼ 0; ð318Þ

with operators

A ¼ ∂2
η þ ð2b − 4HÞ∂η þ 2ð2H2 − ∂ηH −HbÞ þ k2

þ a2
m2 −M2

Z
þ ∂ lnZ

∂χ ∂ηχð∂η − 2HÞ;

B ¼ 2b2 þ a2
m2 −M2

Z
: ð319Þ

Equation (314) can be written in a similar form,

CEij þDtij ¼ 0; ð320Þ

with

C ¼ m2

�
∂2
η − 2H∂η þH2 − ∂ηHþ k2

þ ∂ lnm2

∂χ ∂ηχð∂η −HÞ
�

−M2½ð∂η − 2Hþ bÞð∂η −HÞ þ k2�

þ 2Z
a2

½∂ηbð∂η − 2HÞð∂η −HÞ þ b3ð∂η −HÞ þ b2k2�
ð321Þ

and

D ¼ m2

�
∂2
η − ðHþ bÞ∂η þH2 − ∂ηb − 3b2 þ 3Hbþ k2

þ ∂ lnm2

∂χ ∂ηχð∂η − bÞ
�

−M2½3b2 þ 5∂ηb� þ
Z
a2

½b4 þ 3ð∂ηbÞ2�
− Kð∂ηχÞ2 þ 2a2V: ð322Þ

We can organize the two Eqs. (318) and (320) as a matrix
equation�

A B

C D

��
Eij

tij

�
¼ P̃

�
Eij

tij

�
¼ P̃ψ ¼ 0: ð323Þ

Nontrivial solutions correspond to vanishing eigenvalues of
the operator P̃. They are the corresponding eigenfunctions.
These eigenfunctions depend on the background configu-
ration χ, eμm, and Aμmn or the functions χðηÞ, bðηÞ, and
HðηÞ. We will discuss separately a few important cases.

E. Fluctuations for Minkowski geometry and
vanishing homogeneous gauge fields

Let us first concentrate for V ¼ 0 on a flat background
geometry with vanishing gauge fields, H ¼ b ¼ 0, and
∂ηχ ¼ 0. We take a ¼ 1 for simplicity and define the
squared four-momentum in Fourier space

q2 ¼ ∂2
η þ k2 ¼ qμqμ ¼ −q20 þ k2: ð324Þ

The matrix P̃ reads

P̃ ¼
 

q2 þ m2−M2

Z
m2−M2

Z

ðm2 −M2Þq2 m2q2

!
; ð325Þ
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and the zero eigenvalues obey det P̃ ¼ 0, or

q2½Zq2 þm2yð1 − yÞ� ¼ 0; ð326Þ

where y ¼ M2=m2.
The eigenvalue q2 ¼ 0 corresponds to the massless

graviton. The corresponding eigenvector is a plane wave,
k ¼ jk⃗j,

ψðk⃗Þ ¼ ψþðk⃗Þeikη þ ψ−e−ikη: ð327Þ

The second eigenvalue,

q2 ¼ −μ2; μ ¼ m2yð1 − yÞ
Z

; ð328Þ

corresponds to the solutions

ψðk⃗Þ ¼ ψ 0þðk⃗Þei
ffiffiffiffiffiffiffiffiffi
k2þμ2

p
η þ ψ 0

−ðk⃗Þe−i
ffiffiffiffiffiffiffiffiffi
k2þμ2

p
η: ð329Þ

This describes a massive spin-two excitation if μ2 > 0. For
μ2 < 0 one obtains a tachyonic behavior with exponentially
growing modes. For stability we require the range

0 < M2 < m2: ð330Þ

As it should be, these results coincide with the general
stability analysis in Appendix B.

F. Fluctuations for de Sitter solutions of type 1

We next turn to the de Sitter solution (51)–(54). This
early attractor solution describes the inflationary epoch. It
is therefore the relevant background configuration for the
investigation of primordial tensor fluctuations. We find for
the transversal traceless fluctuations the same behavior for
the massless graviton as for general relativity. This is
supplemented by tensor fluctuations arising from an addi-
tional massive graviton. The latter shows the same behavior
as for a massive particle in general relativity.
Defining

β ¼ 2ZV
3M2m2

ð331Þ

one finds with 2ZH2=a2 ¼ βm2 the matrix elements

A ¼ ∂2
η − 2H∂η þ k2 þ 2ð1 − yÞ

β
H2;

B ¼ 2

�
1 − y
β

þ 1

�
H2;

C ¼ m2ð1þ β − yÞð∂2
η − 2H∂η þ k2Þ;

D ¼ m2½∂2
η − 2H∂η þ k2 þ 2ðβ − yÞH2�: ð332Þ

The general solution of the system of Eqs. (323) and (332)
depends on the two parameters β and y, while m2 can be
absorbed into the normalization of the eigenmodes.
For the eigenmodes we make the general ansatz

Eij ¼ cEttij;

½∂2
η − 2H∂η þ k2 þ γH2�tij ¼ 0: ð333Þ

Insertion into Eq. (323) yields two algebraic equations,�
2ð1 − yÞ

β
− γ

�
cEt þ

2ð1 − yÞ
β

þ 2 ¼ 0;

− ð1þ β − yÞγcEt þ 2ðβ − yÞ − γ ¼ 0: ð334Þ

The two solutions for γ are given by

γþ ¼ −
2

β
ðβ − yÞð1 − yÞ; cþEt ¼ −

1

1 − y
; ð335Þ

and

γ− ¼ −2; c−Et ¼ −1: ð336Þ

For given constant γ we can solve the evolution equa-
tion (333) and establish the behavior of the corresponding
eigenmodes.
A particularly simple solution occurs for β ¼ y, where

γþ ¼ 0, and Eq. (333) is solved with H ¼ −1=η by

tijðη; k⃗Þ ¼ aðηÞt̃ijðη; k⃗Þ;
t̃ijðη; k⃗Þ ¼ t̃þijðk⃗Þeikη þ t̃−ijðk⃗Þe−ikη: ð337Þ

The corresponding perturbation of the vierbein (294) is a
simple oscillating function

eijðη; k⃗Þ ¼ aðηÞδij þ
1

2
t̃ijðη; k⃗Þ: ð338Þ

The metric fluctuation is given by

gijðη; k⃗Þ ¼ a2ðηÞδij þ aðηÞt̃ijðη; k⃗Þ þ
1

4
t̃ilðη; k⃗Þt̃ljðη; k⃗Þ

≈ a2ðηÞ
�
δij þ

t̃ijðη; k⃗Þ
aðηÞ

�
: ð339Þ

The second line holds for the linear approximation, such
that linear relative metric fluctuations diverge ∼a−1ðηÞ for
η → −∞. We will see that the asymptotic behavior of the
solution for η → −∞ is independent of the precise value of
γ. The asymptotic behavior (337)–(339) is general and does
not require β ¼ y.
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G. Graviton mode

For general γ we may write Eq. (333) in terms of the
relative metric fluctuation

γij ¼ a−2tij: ð340Þ

The relative graviton fluctuations γij are frame-invariant

quantities [76]. The solutions γijðη; k⃗Þ are the same in all
metric frames related by Weyl scalings. Using ∂ηH ¼ H2

one obtains from Eq. (333)

ð∂2
η þ 2H∂η þ ð2þ γÞH2 þ k2Þγij ¼ 0: ð341Þ

For the class of solutions (336) with γ ¼ −2 Eq. (341) is the
standard equation for graviton fluctuations in de Sitter
space for general relativity. We conclude that for the de
Sitter solution (51) and (52) of type 1 the graviton
fluctuations in pregeometry and general relativity obey
the same evolution equation. The solution for γ ¼ −2 takes
the well-known form

γijðη; k⃗Þ ¼ γþijðk⃗Þwþ
k ðηÞ þ γ−ijðk⃗Þw−

k ðηÞ; ð342Þ

with mode functions w�
k given by

w−
k ðηÞ ¼ ðwþ

k ðηÞÞ� ¼
1

aðηÞ ffiffiffiffiffi
2k

p
�
1 −

i
u

�
e−iu; ð343Þ

where

u ¼ kη ¼ −
k

HðηÞ ¼ −
k

aðηÞH : ð344Þ

The asymptotic behavior for kη → −∞ is given by the
solution (337)–(339).
In the limit kη → −∞ we can neglect in Eq. (333) the

term γH2 as compared to k2. The solution becomes
therefore independent of γ or β. For fixed k the asymptotic
behavior in the infinite past η → −∞ is the same for both
modes with γþ or γ−. It is universally given by the plane
waves (337) for t̃ij. This universal property holds for the de
Sitter solutions of type 1. We will see that it is not realized
for the de Sitter solutions of type 2.
We have normalized the mode functions w�

k ðηÞ such that
they are directly related to the graviton propagator
Ggravðk; ηÞ and the primordial tensor spectrum Δ2

Tðk; ηÞ,

Ggravðk; ηÞ ¼
4

M2
jw−

k ðηÞj2;

Δ2
Tðk; ηhcÞ ¼

k3Ggravðk; ηhcðkÞÞ
π2

; ð345Þ

where ηhcðkÞ denotes the time when a given kmode crosses
the horizon. This happens for u ¼ −1, or

−kηhcðkÞ ¼
k

Hhc
¼ k

ahcHhc
¼ 1: ð346Þ

In other words “horizon crossing” occurs once the physical
momentum k=a gets smaller than H. The graviton propa-
gator in Eq. (345) refers directly to the relative graviton
fluctuations.
The graviton propagator is given by the equal time two-

point correlation function for (infinitesimal) graviton fluc-
tuations,

htijðη; k⃗Þt�lmðη0; k⃗0Þi
¼ a2ðηÞa2ðη0ÞGgravðk; η; η0ÞPðγÞ

ijlmðk⃗Þδðk⃗ − k⃗0Þ; ð347Þ

with PðγÞ
ijlmðkÞ a projector on the graviton fluctuations and

Ggravðk; ηÞ ¼ Ggravðk; η; ηÞ. The tensor fluctuations at hori-
zon crossing obey

Δ2
Tðk; ηhcÞ
Δ2ðkÞ ¼ 2r; ð348Þ

where the factor 2 relates Δ2
Tðk; ηhcÞ to the observable

tensor spectrum for kη → 0. Equation (348) expresses
Δ2

Tðk; ηhcÞ in terms of the observed amplitude of the scalar
fluctuation spectrum

Δ2
Tðk; ηhcÞ ≈ 4 × 10−9r: ð349Þ

Inserting u ¼ −1 for jw−
k ðuÞj2 one finds the familiar

relation to the Hubble parameter at horizon crossing

Δ2
Tðk; ηhcÞ ¼

4H2
hc

π2M2
; ð350Þ

determining

H2
hc

M2
≈ 10−8r: ð351Þ

This brief summary reveals that for the early attractor
solution (de Sitter solution of type 1) the behavior of one
of the modes corresponds precisely to the graviton in
general relativity. This finding should not be too surpris-
ing, given the previous observation that variable gravity
is a very good approximation for the de Sitter solutions
of type 1.

H. Massive tensor particle mode

Besides the standard graviton fluctuation our model of
pregeometry has an additional spin-two mode correspond-
ing to the solution (335). For this mode the asymptotic
behavior for kη → −∞ is given by Eqs. (337)–(339),
independently of the precise value of γþ or β. In this limit
the relative influence of the term ∼γH2 in Eq. (333) is
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suppressed by a factor γ=ðkηÞ2. We observe that 2þ γ can
be associated with a mass term m2

p,

2þ γ ¼ m2
p

H2
¼ a2m2

p

H2
¼ m̃2

p: ð352Þ

For our model of pregeometry the primordial tensor
spectrum will receive an additional contribution from a
massive graviton. This corresponds to the stable massive
graviton found in the stability analysis for flat space.
The general solution of Eq. (333) involves again mode

functions w�
k ðηÞ as for Eq. (342). Their asymptotic behav-

ior for u → −∞ is the same as in Eq. (343), while the
behavior for smaller juj depends on γ. Equation (341) for
w� can be rewritten as an equation for v� ¼ aw�,

ð∂2
η þ γH2 þ k2Þv� ¼ 0; v� ¼ aw�;�
∂2
u þ

γ

u2
þ 1

�
v� ¼ 0: ð353Þ

With the ansatz

v−k ¼ 1ffiffiffiffiffi
2k

p bðuÞe−iu; lim
u→−∞

bðuÞ ¼ 1; ð354Þ

the function bðuÞ obeys the differential equation�
∂2
u − 2i∂u þ

γ

u2

�
b ¼ 0: ð355Þ

For u → 0 one finds the approximate solution by neglecting
the term −2i∂u,

b ¼ cbð−uÞdb ; db ¼
1

2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γ

p
Þ: ð356Þ

For γ < 0 one has db < 0 and b diverges for u → 0. The
particular value γ ¼ −2, db ¼ −1 reproduces the mode
function (343), which corresponds to

b ¼ 1 −
i
u
: ð357Þ

Positive β implies γþ > −2. In turn, this corresponds to a
positive mass term m2

p in Eq. (352). In this case one finds
db > −1, such that the leading increase for u → 0 corre-
sponds to the “graviton mode” with γ− ¼ −2. The solution
bðuÞ interpolates smoothly between bðu → −∞Þ ¼ 1 and
the increase (356) for u → 0. Horizon crossing for a given k
mode occurs for u ¼ −1. Solutions for more general geo-
metries close to de Sitter space with ∂ηH ¼ ð1þ νÞH2 can
be found in Ref. [96]. They show a qualitatively similar
behavior as for de Sitter space with ν ¼ 0.
Since we always consider V ≥ 0, the stability conditions

Z > 0, m2 > 0, M2 > 0 imply β > 0. Our model of

pregeometry therefore describes a massless graviton and
an additional massive spin-two particle. For both the
evolution of the primordial fluctuations is the same as
for massless and massive particles in general relativity. This
is one more facet of the validity of variable gravity for the
inflationary epoch. If the amplitude of both modes is of
similar size at early times with −u ≫ 1, the contribution of
the massive excitation is suppressed for −u ≪ 1.

I. Fluctuations for de Sitter solutions of type 2

We have already seen that the de Sitter solutions of type
2 describe the limit of the basin of attraction toward the
early attractor solution in the space of homogeneous fields.
We find that an instability can occur as well in the sector of
transversal traceless tensor modes. This investigation also
reveals that the behavior of fluctuations similar to general
relativity, that we have found for the de Sitter solution of
type 1, is not general. In general, the evolution of fluctua-
tions in pregeometry differs from general relativity or
variable gravity. We will display a detailed discussion in
Appendix E.

XIII. THE BEGINNING OF THE UNIVERSE

Our model of pregeometry is a proposal for a completion
of the gravitational interactions at the shortest distances. It
is natural to ask what are the consequences for the
beginning of the universe. We have advocated that this
beginning can be associated with an ultraviolet fixed point
in the flow of couplings, or more generally the effective
action. The quantitative properties will depend on the
behavior of Zðχ2=k2Þ for χ2=k2 → 0, and similar for other
couplings. It is not guaranteed that our approximation of
constant coupling functions for χ2=k2 → 0 is valid.
Nevertheless, several interesting results follow in this
approximation. Important general features may remain
valid beyond the approximation of constant couplings.
The main outcome of our investigation of cosmological

solutions for our simple model of pregeometry is a
beginning with a “nongeometric state.” For this state the
expectation value of the vierbein ẽμm vanishes. Therefore
also the metric g̃μν vanishes and can no longer be used for
the definition of a geometry. The gauge fields Aμmn and the
scalar field χ vanish as well. The beginning is a vacuum
state with zero expectation values of all fields. The two-
point correlation functions for these fields do not vanish,
however. They take constant values in the beginning state.
The beginning is similar to many probabilistic systems in
the disordered phase. Vacuum expectation values of fields
associated with order parameters vanish, while correlations
differ from zero.
The vacuum state characterizing the beginning is unsta-

ble with respect to the increase of small expectation values
of ẽμm, Aμmn, and χ. These expectation values define the
homogeneous isotropic background configuration. As long
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as the correlation functions dominate the universe is highly
inhomogeneous. As ẽμm increases, and the size of the
inhomogeneities reflected by the correlation functions
remains constant, the relative size of the inhomogeneities
decreases. Once the expectation values dominate, the
universe is dominantly homogeneous, with remaining
inhomogeneities reflected by the small primordial density
fluctuations.
Once the effects of quantum fluctuations are included in

the computation or assumption of the quantum effective
action, the evolution of both expectation values and
correlations follow exact “classical” field equations derived
from the first and second functional derivatives of the
effective action. On the level of the quantum effective
action, no further quantum effects should be included—
they would amount to double counting. The solutions of
field equations discussed in the present paper are supposed
to reflect the full quantum field theory already from the
beginning. The universe becoming classical is in this
picture nothing other than the domination of expectation
values of fields over the (connected) correlation functions.
Before turning to the physical properties of the beginning
we will first have to clarify a few conceptual issues about
the meaning of a “beginning state.”

A. Infinite past

The homogeneous solutions discussed in this paper can
be extrapolated backwards to the infinite past in conformal
time, η → −∞. It has been argued that conformal time is a
good proxy for physical time, which may be defined by
counting the number of oscillations of the photon wave
function or the graviton fluctuations [83,97]. Indeed, the
graviton fluctuations discussed in the preceding section
oscillate ∼eikη, such that for any given k the number of
oscillations is infinite for η → −∞. A discussion of the
beginning of the universe therefore concerns its state in the
infinite past for η → −∞. If one wants to avoid strict
infinities one can replace η → −∞ by finite very large
negative η.
For the de Sitter solutions one has in a frame invariant

formulation Ĥ ¼ −1=ðη − η0Þ, and we choose for simplic-
ity the additive constant η0 ¼ 0. From

Ĥ ¼ ∂η lnA ¼ −
1

η
; ð358Þ

one infers that Aðη → −∞Þ vanishes as

A ¼ MðχÞa ¼ −
1

Ĥη
ð359Þ

with constant Ĥ. The vanishing of A can be accounted for
by a → 0 orMðχÞ → 0. This issue depends on the choice of
the metric frame, as we will discuss below. In turn, the time
t̂ obeys

dt̂
dη

¼ A ¼ −
1

Ĥη
; t̂ ¼ t̂0 þ

1

Ĥ
ln

�
−

1

Ĥη

�
: ð360Þ

The infinite past in conformal time, η → −∞, is also the
infinite past in the frame invariant cosmic time, t̂ → −∞.
The constant frame invariant Hubble parameter Ĥ is fixed
for a given de Sitter solution by the parameters of
the model.

B. Cosmic attractors and uncertainty of beginning

We have seen that the de Sitter solution of type 1, with
b ¼ H, or b̂ ¼ Ĥ in a frame invariant formulation, is a
cosmic attractor. This holds if the evolution of the scalar
field χ and the corresponding change of V̂ðχÞ can be
neglected. This situation is realized for the beginning epoch
for all solutions discussed so far, for which the scalar field
vanishes in the infinite past, χðη → −∞Þ ¼ 0. As can be
seen from Figs. 2 and 4, for a large family of initial
conditions the homogeneous solution rapidly approaches
the de Sitter solution of type 1, with typical timescales
given bym−1, m̃−1, orM−1. The de Sitter solutions of type 1
are the “early attractor solutions.”
Relative inhomogeneities have been found to decrease

and the homogeneous early attractor solution is approached
in this sense. We may take the graviton solutions as a proxy
for more general inhomogeneous solutions. The results of
the previous section can be taken over to the frame invariant
formulation by replacing a → A, H → Ĥ, etc. Conformal
time η, the comoving momenta k⃗, and the relative tensor
fluctuations,

γij ¼ A−2tij; ð361Þ

are frame invariant quantities. Let us start at some time η0
far in the past with sufficiently small

γijðη0; k⃗Þ ¼ γ−ijðk⃗Þw−
k ðη0Þ ≈

γ−ijðk⃗Þ
Aðη0Þ

ffiffiffiffiffi
2k

p e−ikη0 ; ð362Þ

such that the linear approximation applies. These fluctua-
tions are damped at some later time η > η0 due to the
increase of A,

γijðη; k⃗Þ ¼
Aðη0Þ
AðηÞ e−ikðη−η0Þγijðη0; k⃗Þ: ð363Þ

For jηj ≪ jη0j the suppression factor is tiny,

Aðη0Þ
AðηÞ ¼ jηj

jη0j
: ð364Þ

The relative inhomogeneity is erased effectively, and
the homogeneous solution becomes a better and better
approximation.
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If we move for a fixed η the time η0, where initial
conditions are set, to the infinite past, η0 → −∞, all such
inhomogeneities are erased completely, if the initial inho-
mogeneity γijðη0; k⃗Þ is not too large such that the linear

approximation is valid. For small enough γijðη0; k⃗Þ in the
infinite past the model predicts at any finite η a homo-
geneous universe, γijðη; k⃗Þ ¼ 0. The situation remains the
same if we generalize the initial conditions to include
γþijðk⃗Þ ≠ 0 or if we consider more general initial conditions
for tij and Eij that include contributions from both modes
according to Eqs. (335) and (336). For a suitable range of
parameters this behavior also holds for the other inhomo-
geneous fluctuations.
Let us define as the “basin of attraction” of the de Sitter

solution of type 1 all initial conditions for which the
solution is attracted to this de Sitter solution. The rate of
attraction is given by Ĥ. Already after the first 20 e-foldings
the memory of the precise initial conditions is erased
(almost) completely if one starts well within the basin of
attraction (not very close to the boundary). There is no way
to distinguish by observation the different initial conditions
if they are set in the infinite past. An attractor solution
necessarily leads to an ambiguity or uncertainty of the
precise beginning since different beginnings well within the
basin of attraction cannot be distinguished. The question of
the precise beginning becomes then a metaphysical rather
than a physical question. On the other hand, all initial
conditions well within the basin of attraction can be
considered as equivalent. They cannot be distinguished
by observation. Within this equivalence class we may
choose the precise attractor solution as a representative.
This is what we will do in the following. We will often call
the de Sitter solution of type 1 the early attractor solution.
Our notion of a “beginning state” should be viewed in this
context. It is representative of a family of states that cannot
be distinguished by observation at finite η.

C. Crossover at boundary of basin of attraction

The situation changes for initial conditions at the
boundary of the basin of attraction. Such boundaries
are often a type of “watershed” between different basins
of attraction, as visible in Fig. 4. The de Sitter solutions of
type 2 are precisely on the boundary of the basin of
attraction for the early attractor solution. Since they are
exact solutions, the universe can stay for infinite time on the
boundary if the initial conditions are chosen precisely on
the boundary. Any small deviation from the exact de Sitter
solution of type 2 will lead to an evolution away from the
watershed into one or the other basin of attraction.
The two types of de Sitter solutions can be considered as

“scaling solutions” for the time evolution since their
properties do not change in time. For initial conditions
very close to the de Sitter solution of type 2 one observes a
“crossover” from this scaling solution to the other scaling

solution, namely the de Sitter solution of type 1. This
crossover in time is very similar to the crossover between
two fixed points in the renormalization flow of couplings.
The evolution from one scaling solution to another defines
a “crossover trajectory.” These crossover trajectories are
displayed in Fig. 4. The crossover trajectories are not
arbitrary. Often they can be characterized by a single
parameter, namely the time at which a given point on
the trajectory is reached. It can also happen that a family of
crossover trajectories exists, characterized by more than
one parameter. The number of parameters corresponds to
the number of unstable directions (the correspondence to
relevant parameters at fixed points of the renormalization
flow) of the first scaling solution (de Sitter solution of
type 2). This is generically a small number.

D. Initial conditions and fine-tuning

For any point on the crossover trajectory one can follow
the time evolution forwards and backwards. For the
forward evolution the solution approaches the stable early
attractor solution, while the backwards evolution leads
toward the unstable de Sitter solution of type 2. Let us now
consider general “initial conditions” for the solution of the
differential field equations at some finite time η. We first
restrict these initial conditions to points on the crossover
trajectory. Extrapolating backwards to the infinite past one
always ends at the unstable de Sitter solution of type 2. The
only exception is an initial condition precisely on the de
Sitter solution of type 1. Moving forwards in time one
always ends in the infinite future on the de Sitter solution of
type 1. This can only be avoided by tuning the initial
conditions such that they correspond precisely to the de
Sitter solution of type 2. Looking at the universe as a whole
for all times one can set initial conditions on the crossover
trajectory for arbitrary η. They only fix the value of η at
which a given point on the crossover trajectory is reached.
While initial conditions can be set, in principle, for arbitrary
η0, one has to accept tuning if one wants to describe a
universe that for a given η is at some particular point on the
crossover trajectory and η − η0 is large. This is manifest for
Fig. 4 where we have employed a high degree of tuning in
order to have a crossover at the value of t̂ shown in the
figure. More and more tuning would be needed in order to
postpone the crossover to later t̂.
One can choose at some given η arbitrary initial con-

ditions on the crossover trajectory and extrapolate both
forwards and backwards. This does not imply that arbitrary
general initial conditions away from the crossover trajec-
tory can be set at η if a given model is valid since the infinite
past. The reason is the predictivity related to the restricted
number of parameters characterizing a crossover trajectory.
A given model for a universe existing since the infinite past
predicts certain properties at η. Any “observer” at η can
only find states that are compatible with these predictions.
Setting his initial conditions at η these “allowed states” can
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be extrapolated backwards to the infinite past and forwards
to the infinite future. In contrast, setting initial conditions
violating the predictions should lead to inconsistencies. If
initial conditions violating the predictions would lead to
consistent solutions up to the infinite past, this would
contradict the existence of a prediction. In summary,
allowed initial conditions at finite η have to be consistent
with the properties of the crossover solutions and the
associated predictions.
There is a simple way to achieve at finite η consistency

with the predictions of a given model. One sets initial
conditions at η0 in the far distant past and considers the
limit η0 → −∞. The predictivity of a model is connected
to the restricted set of “relevant parameters” or “non-
decaying modes.” “Decaying modes,” which are the equiv-
alent to irrelevant parameters for the renormalization flow,
approach fixed values for η − η0 → ∞. They correspond to
partial fixed points that are necessarily reached if the
evolution lasts for infinite time. The predictivity of a model
is precisely related to those partial fixed points. Since for
arbitrary initial conditions at η0 the evolution reaches
precisely the partial fixed point if η − η0 → ∞, the con-
sistency with the prediction at η is guaranteed if initial
conditions are set at η0.
Predictions for some quantities can be extremely precise.

In this case a very high degree of fine-tuning is necessary if
one wants to set initial conditions at finite η and extrapolate
backwards to the infinite past. This fine-tuning is not
needed for an evolution toward the future. Since the
decaying modes anyhow approach their partial fixed points
with increasing η, a small deviation from the partial fixed
point for the initial condition does not matter. By the same
reasoning it is sufficient to set initial conditions in some
finite far distant past. A strict limit η0 → −∞ is not
necessary.

E. Arrow of time and backward singularities

The reason why initial conditions are better chosen in the
distant past and not at arbitrary finite η is the presence of
an arrow of time [50]. While the field equations are time-
reversal invariant, the presence of scaling solutions singles
out an arrow of time. The positive time direction is the one
in which the stable attractor solution is reached. A large
region of initial conditions well within the basin of attrac-
tion leads to solutions of the field equations that can be
continued to arbitrary large η. They all approach the
attractor solution. Only very special initial conditions,
namely those on the crossover trajectory with the sign of
all time derivatives switched, evolve with increasing η
toward the unstable de Sitter solution of type 2. For tiny
deviations from these initial conditions the solution will
only come close to the de Sitter solution of type 2, but
finally deviate from it and approach for large enough η the
stable scaling solution. The situation is similar to the
evolution of correlation functions in the process of

thermalization, where the presence of thermal equilibrium
as a stable attractor solution induces an arrow of
time [98,99].
The backward extrapolation of arbitrary “initial condi-

tions” at finite ηwill typically lead to divergent solutions or
a singularity if one does not start on a point of the cross-
over trajectory. Seen from initial conditions set at η0 the
explanation is simple. The corresponding “initial condi-
tion” at η can simply not be reached by any solution if
η − η0 → ∞. Only a certain range of field values at η is
possible, namely those corresponding to a point on the
crossover trajectory.
Starting in the far distant past with finite relative

inhomogeneities within the range of validity of a linear
expansion this argument predicts a completely homo-
geneous universe. This contrasts with structures observed
in our universe or the observed anisotropies in the cosmic
microwave background. We will resolve this puzzle below.
The solution is related to the fact that the attractive
character of the homogeneous solutions concerns only
the relative size of inhomogeneities. The absolute size of
inhomogeneous fluctuations does not decrease. This will be
discussed in more detail below.

F. Instability of early attractor solution

The early attractor solution attracts the neighboring
homogeneous solutions only as long as χ can be approxi-
mated by zero or a small constant. In a more complete space
of field configurations it has an unstable mode which is
given by a nonzero homogeneous scalar field χðηÞ. More
precisely, for χ ¼ 0 the de Sitter solution of type 1 is an
attractor solution for the gauge fields and vierbein. In the
absence of a scalar field the universe would approach
the early attractor solution and stay there forever. It is the
presence of the scalar field that induces an instability of the
early attractor solution and permits a further crossover to a
different scaling solution for the infinite future. It is this
crossover away from the early scaling solution that leads to
an interesting and realistic cosmology.
For our crossover models the scalar field equation (189)

is given by

K̄ðs00 þ 3Ĥs0Þ ¼ −
∂V̂
∂s þ 3Ȳðf̂0 þ 3Ĥ f̂Þ: ð365Þ

For s0 ≠ 0 and Ȳ ≠ 0 the relation f̂ ¼ 0 for the early scaling
solution holds no longer exactly. Inserting in Eq. (281)
Ĥ0 ¼ 0, as appropriate for a de Sitter solution, the scalar
field equation is given by Eq. (207),

s00 þ 3Ĥs0 ¼ −k̂−2
∂V̂
∂s ¼ 4V̄e2s

k̂2ð1þ e2sÞ3 : ð366Þ

The beginning with χ ¼ 0 corresponds to s → −∞. In this
limit the slow roll approximation becomes very precise,
with
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s0 ¼ 4V̄e2s

3Ĥk̂2ð1þ e2sÞ3 ≈
4V̄e2s

3Ĥk̂2
¼ 4Ĥe2s

k̂2
: ð367Þ

This implies

s00 ¼ 2s02;
s00

3Ĥs0
¼ 2s0

3Ĥ
¼ 8V̄e2s

9Ĥ2k̂2
¼ 8e2s

3k̂2
; ð368Þ

such that the term s00 can indeed be neglected for s → −∞.
The general solution of Eq. (367) is given by (t̂ < t̂s)

s ¼ 1

2
ln

�
−

k̂2

8Ĥðt̂ − t̂sÞ

�
; ð369Þ

with free integration constant t̂s. With Eq. (360) this yields

s ¼ 1

2
ln

�
−

k̂2

8 lnð−cs=ðĤηÞÞ

�
; ð370Þ

or

χ

μ
¼
�
−

k̂2

8 lnð−cs=ðĤηÞÞ

�1
2 ¼

�
−

k̂2

8 lnðcsAÞ
�
: ð371Þ

The integration constant cs reads

cs ¼ exp½Ĥðt̂0 − t̂sÞ�: ð372Þ

This solution is part of the crossover trajectory away from
the early scaling solution. Extrapolating the crossover solu-
tion backwards in time the universe starts for η → −∞
with χ ¼ 0.
For η → −∞ or t̂ → −∞ the change of χ is very slow, as

visible from

s0 ¼ −
1

2ðt̂ − t̂sÞ
: ð373Þ

This very slow motion continues until t̂ comes close to t̂s or
η approaches −cs=Ĥ. During one e-folding in the evolution
of A the ratio μ2=χ2 decreases by

Δ
�
μ2

χ2

�
¼ −

8

k̂2
: ð374Þ

Starting with very large values of μ2=χ2 it takes a huge
number of e-foldings until μ2=χ2 reaches a value close to
one. For a start at χ0 → 0 the number of e-foldings before χ
reaches μ grows to infinity.
During this long period of slow evolution of s the de

Sitter solution of type 1 remains a very good approximate
solution. For the early scaling solution one only has to
replace V̄ by V̂ðsÞ. This solution remains an attractor in the
space of gauge fields and vierbeins. It is also an attractor
with respect to small relative inhomogeneous scalar
fluctuations.

Nevertheless, at some time t̂ close to t̂s the solution
(369)–(373) ceases to be a valid approximation. More
precisely, this end of the early scaling solution occurs for s
near zero. From there on the evolution of the universe
changes qualitatively. The motion away from the early
scaling solution can be viewed as a crossover from the de
Sitter solution to a different scaling solution for the infinite
future η → ∞. This crossover can take place in several
steps. For a given choice of an additive constant in η the
different crossover trajectories are characterized by a single
further free parameter cs. In the early stages these crossover
trajectories are given by Eq. (370), with V̂ðsÞ replacing V̄
and therefore modifying Ĥ for the associated de Sitter
solution. From Eq. (371) we infer that the memory of initial
conditions only concerns observables that depend on the
size of A. Typical observables of interest do not depend on
the absolute size of A.

G. Predictivity

For a given set of model parameters our setting of
pregeometry is very predictive. Up to a multiplicative factor
for A no memory of initial conditions remains if we start in
the infinite past well within the basin of attraction of the
early scaling solution, and with χ very close to zero. All
quantities are, in principle, computable in terms of the
model parameters. In particular, ĉðηÞ is predicted to be
equal to zero for any finite η. Since ĉ follows damped
oscillations for the approach to the early scaling solution,
no memory of any finite initial value ĉðη0Þ is left at finite η
if η0 → −∞. After the end of validity of the early scaling
solution ĉðηÞ ¼ 0 remains a solution. The potential dark
matter contribution due to ĉ fluctuations vanishes if the
inflationary epoch lasts for an infinite duration η − η0.
The situation for the early evolution of f̂ðηÞ is similar.

Memory of initial conditions is lost, and f̂ is given by
Eq. (280) to a good approximation. Even though the
oscillations of f̂ have almost died out at t̂ for a finite
value Ĥðt̂s − t̂Þ sufficiently large, such oscillations can be
generated again by the more rapid evolution when s
approaches zero. One expects a small amount of dark
matter due to the f̂ fluctuations. This amount is calculable
for given model parameters. The quantitative value of the
dark matter contribution depends on the details of the
behavior of the coupling functions. We have not attempted
here to compute it. It is an interesting question if for a
reasonable choice of model parameters the f̂ fluctuations
could constitute the observed dark matter in our universe.
This also requires that the associated particles are stable or
have a large enough lifetime once the couplings to other
particles of the standard model or beyond are included.

H. Homogeneous and inhomogeneous universe

Let us next look closer at the issue of inhomogeneities.
For the homogeneous early attractor solution both the
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frame-invariant vierbein and the gauge fields Aμmn vanish
for η → −∞,

ẽμm ¼ AðηÞδmμ ¼ −
1

Ĥη
δmμ ;

Aij0 ¼ ĤðηÞδij ¼ AðηÞĤδij ¼ −
1

η
δij: ð375Þ

The universe originates from the nongeometric state
ẽμm ¼ 0, Aμmn ¼ 0 in the infinite past. In contrast, if we
add the graviton fluctuations the vierbein no longer
vanishes. Translating Eq. (338) to the frame invariant
formulation yields for our crossover model the asymptotic
behavior for η → −∞

ẽijðη; x⃗Þ ¼ AðηÞδji þ
1

2

Z
k
eik⃗ x⃗

�
t̃þj
i ðk⃗Þeikη þ t̃−ji ðk⃗Þe−ikη

�
:

ð376Þ
For any nonzero amplitude t̃i�j the inhomogeneous part
dominates over the homogeneous part for η → −∞, A → 0.
The beginning of the universe becomes inhomogeneous.
We have derived the evolution equation for the graviton

fluctuations under the assumption that a linear approxima-
tion for small fluctuations is valid. This is obviously no
longer the case far in the past when the inhomogeneous part
dominates. The breakdown of the linear approximation for
a given k mode occurs for some critical frame-invariant
scale factor AnlðkÞ which depends on k, as the associated
critical conformal time ηnlðkÞ.
We may estimate the value of AnlðkÞ for models with a

realistic inflationary epoch. In this case we choose for
t̃�j
i ðk⃗Þ a value which is comparable to the amplitude of the
primordial tensor fluctuations. The tensor fluctuations with
momentum k⃗ are frozen at some scale factor Ahc, which is
related to horizon crossing in the Einstein frame. At this
moment the linear approximation is valid. For graviton
fluctuations with an amplitude corresponding to the grav-
iton propagator (347) one has

jt̃jiðkÞj2 ¼ A2
hcGgravðk; ηhcÞk−3

¼ π2A2
hc

k6
Δ2

Tðk; ηhcÞ ¼
π2

k4Ĥ2
hc

Δ2
Tðk; ηhcÞ ¼

4

k4
:

ð377Þ
The two terms in Eq. (376) are of similar size at AnlðkÞ
given by

AnlðkÞ ¼ k3
jt̃jiðk⃗Þj
2

¼ k;
k
anl

¼ M: ð378Þ

In the Einstein frame the linear approximation breaks down
when the physical momentum k=a reaches the Planck
mass M̄.

As compared to the scale factor AhcðkÞ at “horizon
crossing” one finds

AnlðkÞ
AhcðkÞ

¼ Ĥhc: ð379Þ

We denote the time when fluctuations become nonlinear by
the corresponding number of e-foldings before the end of
inflation. From Eq. (379) one infers

Nnl ¼ N þ lnðĤ−1
hc Þ: ð380Þ

In view of Eq. (351), Ĥ−1
hc ¼ 104=

ffiffiffi
r

p
, one concludes thatNnl

is larger thanN, but not by a huge factor, ðNnl − NÞ=N ≪ 1.
This estimate is not particular to pregeometry—it is the same
for standard inflationary models in general relativity. We
conclude that in its early stages for A < Anl the universe is
inhomogeneous. The linear approximation for small inho-
mogeneities no longer applies.
Let us now make the assumption that the relation (376)

continues to hold in the nonlinear regime. While this cannot
be inferred from the linear computation of the preceding
section, we will argue below in favor of this assumption on
the basis of a discussion of the graviton propagator. We
further assume that for the other components of the
vierbein, in particular, the diagonal components ẽ00 andeeii, a relation similar to Eq. (376) holds. These assumptions
entail a rather simple beginning of the universe. For
η → −∞, A → 0 the universe is characterized by inhomo-
geneous fluctuations. The homogeneous expectation value
of the vierbein vanishes. The same holds for the expectation
value of the scalar field, χ ¼ 0, and of the gauge fields,
Aμmn ¼ 0. The “nongeometric state” discussed above is
actually a state for which the inhomogeneous fluctuations
dominate.
Besides the inhomogeneous vierbein field one also has

inhomogeneous gauge fields. According to Eqs. (294) and
(333) the graviton contribution to Aμmn is given in the linear
approximation by

Aij0 ¼
1

2A2
ðD0tij −Djti0Þ; ¼

1

2A2
ð∂η − ĤÞtij

¼ 1

2A
∂η t̃ij ¼

1

2
t̃0ij: ð381Þ

In close analogy to Eq. (376) the sum of the homogeneous
and inhomogeneous contributions reads

Aij0ðη; x⃗Þ ¼ AĤδij þ
i
2

Z
k

k
A

�
t̃þijðk⃗Þeikη − t̃−ijðk⃗Þe−ikη

�
:

ð382Þ

The characteristic values for gauge fields are typically
derivatives of the vierbein. For the inhomogeneous
contribution this results in multiplication with the
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“dimensionless physical momentum” k=A, while for the
homogeneous part the dimensionless time derivative ∼Ĥ
matters.
While in the very early stages the homogeneous expect-

ation values (375) are tiny as compared to the inhomo-
geneous fluctuations, they grow as A increases, while the
inhomogeneous fluctuations of ẽμm are constant and the
ones for Aμmn decrease. For the vierbein the homogeneous
and inhomogeneous parts are equal at Anl, and sub-
sequently for A > Anl the homogeneous contribution
dominates. The process that the universe becomes more
and more homogeneous is not due to a decrease of the
vierbein fluctuations. It is rather a consequence of the
increase of the homogeneous expectation value. In conse-
quence, the relative size of the inhomogeneities decreases.
In this picture it is natural that the relative size of the
inhomogeneities diverges in the infinite past for A → 0.
This is simply due to the vanishing of the homogeneous
expectation value, which appears for the relative size in the
denominator.

I. The fluctuating beginning

A quantum field theory makes statements about the
probability distribution for field configurations at a given
time. These probability distributions obey quantum con-
straints [100] which ensure the positivity of the quantum
density matrix and the associated uncertainty relations. A
description of the history of the universe in quantum gravity
has to be probabilistic. It is not about the history of a single
field configuration, but rather about the evolution of the
density matrix and the associated probability distribution
for all field configurations. The dominance of a particular
field configuration is only a particular case, often associ-
ated with the “classical limit.” There is, in principle, no
distinction between classical and quantum fluctuations.
The concept of the time evolution of a probability dis-
tribution for field configurations is general, covering all
sorts of fluctuations, classical, quantum, or thermal. The
particularity of quantum systems is only the quantum
constraint that the density matrix and probability distribu-
tion have to obey, and the particular unitary evolution law
for the time dependence of the density matrix.
Instead of following the time evolution of the density

matrix or probability distribution, one can also follow the
time evolution of the associated correlations functions or
n-point functions. This much more economical approach
is the one relevant in practice. Only correlation functions
with low n are observable in practice, and the correlation
functions with high n have typically little influence on the
properties of correlation functions with low n. The dom-
inant correlation functions are the expectation values of
fields (n ¼ 1) and the field correlators or two-point
functions (n ¼ 2). The latter functions are directly related
to the propagator. The evolution of the expectation
values follows the field equations obtained from the first

functional derivative of the effective action. This is what we
have investigated so far. Similarly, the evolution law for the
two-point correlation functions or propagators follows from
inverting the second functional derivative of the effective
action [96,101]. The effective action therefore specifies a
system of evolution equations both for the expectation
values and the propagators.
The homogeneous field equations describe the time

evolution of vacuum expectation values of fields, in our
case ẽμm, Aμmn, and χ. For a given solution of the field
equations for the expectation values one can compute the
evolution equation for the propagators [96]. This constitutes
again a system of differential equations with initial con-
ditions. The solution for the propagator is therefore not
unique. A particular scaling solution or partial fixed point is
given by the propagator which is associated with the Bunch-
Davies vacuum [102]. The graviton propagator (347) cor-
responds precisely to this particular scaling solution.
We conclude that the beginning state is characterized by

a probability distribution for field configurations for which
the correlation functions differ from zero, while the expect-
ation values vanish. Such a situation is rather common in
statistical physics and is not a sign of any singular behavior.
For example, if the expectation value corresponds to the
order parameter for a possible spontaneous breaking of
some symmetry, the state with zero order parameter
corresponds simply to the symmetric phase. In the sym-
metric phase the correlation function does not vanish. The
only thing that is no longer possible in this “nongeometric
state” is the definition of a geometry by use of the metric
(6). This is, a priori, not a problem since for models of
pregeometry the metric and associated geometry can be
considered as emergent quantities.
The beginning of the universe is characterized by “great

emptiness” [97]. It is a vacuum, for which only expectation
values and fluctuations matter. There are essentially no
propagating particles. Any particle excitation propagates
similar to photons, being massless with an ultrarelativistic
dispersion relation. The beginning state can extend to the
infinite past. The evolution near the infinite past is very
slow. The infinite past is a fixed point with associated
quantum scale symmetry. As compared to the more general
setting discussed in Ref. [97], the scaling solution charac-
terizing the beginning in our model of pregeometry has the
additional property that the vacuum expectation values for
ẽμm, Aμmn, and χ all vanish.
We may extend the discussion of the beginning state to

small expectation values for ẽμm, Aμmn, and χ. As long as
they are sufficiently small, they have not much impact on
the properties of the correlation functions. Since the
expectation values increase toward later time, their influ-
ence on the correlation functions also increases. For the
early attractor solution the influence on the vierbein
correlation becomes important only once kη approaches
−1, as we will see below.
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J. Vierbein correlation function

We next establish a close connection between the
correlation function or propagator and the inhomogeneous
solutions in the linear approximation. This will permit us to
extrapolate relations of the type (376) beyond the range of
validity of the linear approximation.
The vierbein correlator is given by the connected two-

point function

G̃μν
mn ¼ he0μme0νnic ¼ he0μme0νni − ẽμmẽνn: ð383Þ

Using the general form (300),

e0μm ¼ ẽμm þ 1

2
H̃0

μνẽmν ¼ ẽμm þ 1

2
H̃0

μ
m; ð384Þ

one has

G̃μν
mnðx; yÞ ¼ 1

4
hH̃0

μ
mðxÞH̃0

ν
nðyÞi; ð385Þ

where we employ hH̃0
μ
mðxÞi ¼ 0.

The vierbein correlator is part of a larger system of
correlation functions which includes all fields in a model.
Let us collectively denote the fields by φ0

iðηÞ, where i is a
multi-index which specifies position x⃗ or momentum k⃗, as
well as the species of fields and indices as μ orm for ẽμm or
μ and ðm; nÞ for Aμmn. The general correlation function,

G̃ijðη; η0Þ ¼ hφ0
iðηÞφ0

jðη0Þic; ð386Þ

can be considered as a symmetric matrix,

G̃jiðη0; ηÞ ¼ G̃ijðη; η0Þ: ð387Þ

The connected two-point functions obey an exact func-
tional identity,Z

η
Γð2Þ
ki ðη00; ηÞG̃ijðη; η0Þ ¼ δkj δðη00 − η0Þ: ð388Þ

Here Γð2Þ is the matrix of second functional derivatives of
the effective action, as defined by the quadratic expansion
in infinitesimal h̃,

Γ½φ̃þ h̃� ¼ Γ0½φ̃� þ
Z
η
Γð1Þ
i ½η; φ̃�h̃iðηÞ

þ 1

2

Z
η00η

h̃kðη00ÞΓð2Þ
ki ½η00; η; φ̃�h̃iðηÞ þ � � � ð389Þ

Relation (388) is an exact identity. In contrast to the
evolution equation for small fluctuations it does not assume
the validity of a linear expansion for a particular solution.

The expansion (389) uses only the definition of the func-
tional derivative, and h̃iðηÞ can be taken infinitesimal.
In the absence of additional sources the exact quantum

field equations are given by the vanishing of the first
functional derivative of Γ,

Γð1Þ
i ½η; φ̃� ¼ 0: ð390Þ

Consider now a homogeneous solution of the field equations

φ̃0, with Γ
ð1Þ
i ½η; φ̃0� ¼ 0. The field equations for neighboring

inhomogeneous fields, φ̃ijηj ¼ φ̃0;iðηÞ þ H̃iðηÞ, can be lin-
earized for small enough H̃iðηÞ. Expanding

Γð1Þ
i ½η; φ̃0 þ H̃� ¼ Γð1Þ

i ½η; φ̃0�

þ
Z
η0
Γð2Þ
ij ½η; η0;φ0�H̃jðη0Þ þ � � � ¼ 0;

ð391Þ

we observe that the same operator Γð2Þ½φ̃0� appears in the
quadratic expansion (389) of Γ around φ̃0 and in the
linearized field equation (391). This will relate solutions
of linearized field equations to the exact propagator which no
longer involves any linearization.
Let us denote by H̃α

i ðηÞ different solutions of the
linearized field equationsZ

η0
Γð2Þ
ij ½η; η0; φ̃0�H̃α

j ðη0Þ ¼ Dij½η; φ̃0�H̃α
j ðηÞ ¼ 0: ð392Þ

Here we have expressed Γð2Þðη; η0Þ ¼ δðη − η0ÞDðηÞ as a
differential operator DðηÞ. Possible solutions of the exact
propagator equation (388) are then given by the ansatz

G̃ijðη; η0Þ ¼ cαβH̃α
i ðηÞH̃β

j ðη0Þ; cβα ¼ cαβ: ð393Þ

This guaranties for Eq. (388)Z
η
Γð2Þ
ki ðη00; ηÞG̃ijðη; η0Þ ¼ 0 for η00 ≠ η0: ð394Þ

The δ distribution for η00 ¼ η0 in Eq. (388) places con-
straints on the coefficients cαβ, partially normalizing the
propagator [96,101].
We concentrate on the vierbein components H̃μ

m corre-
sponding to the graviton fluctuations around the early
scaling solutions

H̃i
j ¼ tikẽkj: ð395Þ

For the scaling solution reflecting the Bunch-Davies
vacuum the propagator in the graviton sector reads in
Fourier space
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G̃ik
jlðη; k⃗; η0; k⃗0Þ

¼ 1

4
AðηÞAðη0ÞG̃gravðk; η; η0ÞPðγÞ

i
j
k
lðk⃗Þδðk⃗ − k⃗0Þ; ð396Þ

in close analogy to Eq. (347). This yields the equal-time
propagator in position space

G̃ik
jlðη; x⃗; η; y⃗Þ ¼

Z
k
A2ðηÞjw̃−

k ðηÞj2eik⃗ðx⃗−y⃗ÞPðγÞ
i
j
k
lðk⃗Þ:

ð397Þ

Omitting indices and the projector insertion, the frame-
invariant version of Eq. (343) yields

G̃ðη; x⃗ − y⃗Þ ¼
Z
k

1

2k

�
1þ 1

k2η2

�
eik⃗ðx⃗−y⃗Þ: ð398Þ

In the limit kη → −∞ this equals the propagator in flat
space for a free massless bosonic particle. It is the same as
for Einstein gravity in flat space. There is no singularity in
the vierbein propagator if we extrapolate to the infinite past
η → −∞. The influence of the nonvanishing expectation
values for the homogeneous solution is reflected in term
∼ðkηÞ−2 in Eq. (398). It becomes important only near
“horizon crossing” at kη ¼ −1.
If the correlators for other field components behave

similarly for η → −∞, the infinite past corresponds, indeed,
to a fixed point in the evolution of the system of correlation
functions. It is unstable, however, with respect to the
evolution of small homogeneous expectation values as
ẽμm or χ. This instability explains why the universe does
not stay forever at this fixed point. In this more general
view very early cosmology is characterized by a crossover
in the extended space of all correlation functions. This
crossover is no longer restricted to a crossover between the
two types of de Sitter solutions. In general, there are two
quantities characterizing the crossover trajectories. They
can be taken as Aðη̄Þ and χðη̄Þ at some particular time η̄.
One can be absorbed in the definition of η. In case of an
additional crossover in the space of homogeneous solu-
tions, as discussed for the two types of de Sitter solutions,
there will be one (or more) additional parameters character-
izing the crossover solution, as we have discussed earlier.

K. Inhomogeneous cosmologies beyond
the linear approximation

We have seen that the computation of the propagator
does not involve a linear approximation. The relation
between the propagator and inhomogeneous cosmological
solutions allow us to draw conclusions for the behavior of
inhomogeneous solutions beyond the validity of the linear
approximation, e.g., for η → −∞. The central conclusion is
that inhomogeneous field configurations at some initial
time η0 arbitrarily far in the past cannot all be damped to

zero at a given finite η, even in the limit η − η0 → ∞. This
follows from the simple observation that the propagator
(398) obtains from a probability distribution over corre-
sponding inhomogeneous vierbein configurations. Since
the propagator at finite η does not vanish, a vanishing of all
corresponding inhomogeneous vierbein configurations at η
is excluded. At least some of these configurations must
remain different from zero for an arbitrary long time
difference η − η0. For these configurations Eq. (376) is
qualitatively correct even for η < ηnl when the linear
approximation breaks down and interactions have to be
taken into account.
This statement does not imply that the backwards extra-

polation of some given inhomogeneous cosmological
solution remains quantitatively correct when extrapolated
backwards beyond ηnl. The propagator only specifies a
probabilistic average over many inhomogeneous solutions.
It also does not imply that arbitrary inhomogeneous con-
figurations can be extrapolated backwards without encoun-
tering a singularity. The predictive power of crossover
trajectories characterized by a few parameters suggests the
contrary. At finite η many properties of inhomogeneous
solutions are fixed as a prediction of the model. Starting
with a configuration not obeying these properties neces-
sarily leads to a singularity when extrapolated backwards.
Otherwise, there would be no prediction, since initial
conditions leading to a violation of this property would
be possible. These simple observations have been demon-
strated explicitly for the crossover between the two types of
de Sitter solutions in the beginning of this section. The same
concepts and general properties are valid for the crossover in
the much larger space of evolving correlation functions.
Our observed universe is described by a particular

inhomogeneous solution. It is useful to discuss how such
a particular “realization” is described in our general
probabilistic framework. The overall probabilistic descrip-
tion specifies only a probability for a given inhomogeneous
solution. What we do in practice, however, is to use
conditional probabilities. Typical questions are as follows:
For a given observed distribution of anisotropies in the
cosmic microwave background at some time after its
emission, what will be the probability for observing some
particular properties at some later time. Conditional prob-
abilities are efficiently described by a “reduction of the
probability distribution,” in complete correspondence to the
reduction of the wave function in quantum mechanics
[100]. This reduced probability distribution may then be
well described by a particular inhomogeneous cosmologi-
cal solution. The properties of the evolution of particular
inhomogeneous solutions have to be compatible with the
evolution of the propagator. For η ≫ ηnl, where the linear
approximation for inhomogeneous solutions can be trusted,
this is manifestly the case.
We finally observe that for η > ηnl the homogeneous

expectation values start to dominate the full two-point
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function hẽ0μmẽ0νni. As time increases, the relative impor-
tance of inhomogeneities becomes less and less important.
The homogeneous early attractor becomes a better and
better approximation for any given particular inhomo-
geneous realization. This reflects the role of the early
attractor solution as an attractive partial fixed point with
respect to relative inhomogeneities.

L. Scaling frame

Our frame-invariant formulation allows us to translate all
results into arbitrary metric frames related by a Weyl
scaling. These frames may be classified by the behavior
of M2ðχÞ. A first “scale invariant frame” is adapted to the
properties of scaling solutions for functional flow equations
and the associated fundamental scale invariance [21]. This
is the frame underlying our discussion of crossover models
in Sec. IX. The Planck mass obeys M2ðχÞ ¼ 2w0k2 þ ξχ2.
For the beginning epoch the term ξχ2 can be neglected,
such thatM2 ¼ 2w0k2 is a constant. Up to a proportionality
factor the scale factor aðηÞ ¼ AðηÞ=ð ffiffiffiffiffiffiffiffi

2w0

p
kÞ shows the

same evolution as AðηÞ. Cosmic time t in this frame obeys
for the beginning epoch

∂t
∂ t̂ ¼

∂t
∂η

∂η
∂ t̂ ¼

aðηÞ
AðηÞ ¼

1ffiffiffiffiffiffiffiffi
2w0

p
k
; ð399Þ

such that

t ¼ 1ffiffiffiffiffiffiffiffi
2w0

p
k
t̂; H ¼

ffiffiffiffiffiffiffiffi
2w0

p
kĤ: ð400Þ

A second metric frame is the Einstein frame with
constant MðχÞ ¼ M̄, and

t ¼ t̂
M̄

; H ¼ M̄ Ĥ; a ¼ A
M̄

: ð401Þ

For the beginning epoch this looks rather similar to the
scale invariant frame. There is a large difference in the
overall scale, however. While M̄ ¼ 2.44 × 1018 GeV, one
has

ffiffiffiffiffiffiffiffi
2w0

p
k in the order of magnitude of 10−3 eV, with

details depending on u0 and w0 according to

k ≈ 2u
−1
4

0 10−3 eV: ð402Þ

The latter estimate equates the value of the effective
potential V ¼ u0k4 with the present dark energy density.
The huge ratio of scales M̄=k arises from the fact that
today’s value M2ðχ0Þ is set equal to the fixed Planck mass

M2ðχðt0ÞÞ ¼ M̄2 ¼ ξχ2ðt0Þ: ð403Þ

Since at present χðt0Þ has grown many orders of magnitude
larger than k this explains the huge factor.

As a third metric frame we take the scaling frame

M2ðχÞ ¼ χ2: ð404Þ
Up to a trivial rescaling of χ this equals the scale invariant
frame for large values of χ. For the beginning epoch it differs
substantially from both the scale invariant and the Einstein
frame. The choice of the scaling frame can be motivated by
the standard realization of quantum scale symmetry at the
UV-fixed point for χ → 0, as discussed in Sec. VIII.
In the scaling frame the geometry for the beginning

epoch is different from the two other frames. With

AðηÞ ¼ χðηÞaðηÞ; ð405Þ

the increase of AðηÞ can be due essentially to the increase of
χðηÞ, rather than being associated with the variation of
geometry encoded in aðηÞ. In this frame the Hubble
parameter obeys

H ¼ Ĥχ −
dχ
dt̂

¼ χ

�
Ĥ þ 1

2ðt̂ − t̂sÞ
�
; ð406Þ

where the second identity uses Eq. (373). With constant Ĥ
toward the infinite past t̂ → −∞, the Hubble parameter in
the scaling frame vanishes due to the vanishing of χ. The
geometry is no longer a de Sitter space.
The scaling frame is not unique. One may use M2 ¼ χ̃2,

with χ̃ a function of χ. For a suitable choice of χ̃ðχÞ one
obtains a “primordial flat frame” [103] for which geo-
metry approaches flat Minkowski space in the infinite past.
This frame is useful in order to understand that there are no
pure geometrical problems. Geodesics are complete for
Minkowski space, and there cannot be any singularities in
the metric. Many features of great emptiness are particu-
larly simple to understand in the primordial flat frame. This
concerns, in particular, the property that all particles are
effectively massless. For masses ∼k in the scale invariant
frame the mass vanishes ∼χ in the scaling frames, including
the primordial flat frame.
A disadvantage of the scaling frame for the infinite past

is the divergence of the inhomogeneous vierbein fluctua-
tions. For aðη → −∞Þ ¼ a0 the frame-invariant property
that the relative fluctuations diverge has to translate into
divergent fluctuations. While the scale invariant frame
provides for a natural description of the beginning without
any singularity, the singular Weyl transformation leads to
singular inhomogeneities. The origin of this singularity is
easy to understand. The vanishing expectation value of ẽμm

for η → −∞ also results in vanishing eμm for the scale
invariant frame. For constant inhomogeneities this is
reflected by divergent relative inhomogeneities. If one
translates this by a Weyl transformation to a constant
vierbein in the primordial flat frame, the frame-invariant
divergence of the relative inhomogeneities is translated to
diverging inhomogeneous fluctuations. The regular frame
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invariant formulation shows that this divergence is an
artifact of the choice of “field coordinates.” The singular
propagator and inhomogeneous fluctuations in the primor-
dial flat frame are a field singularity rather than a physical
singularity.
There exist other potentially useful choices for the metric

frame. For the “standard potential frame” one chooses
M2ðχÞ ¼ VðχÞ=μ2. In this frame the Hubble parameter is
typically a constant during long epochs, with H2 ∼ V=
M2 ¼ μ2. In this version of a scaling frame the Universe
typically shrinks during the matter dominated epoch [75].
Field relativity [60,75] states that all these different

pictures or frames yield the same predictions for observa-
tions. Geometry loses its absolute meaning—it becomes an
issue of the choice of the metric field. While our model of
pregeometry predicts the emergence of geometry, the precise
geometry is a matter of the choice of fields. Only statements
based on the frame invariant metric g̃μν are the same in all
geometric pictures related by Weyl scalings.

M. Fluctuation metric

The choice of a frame invariant metric is not unique
either. So far we have defined it as

g̃μν ¼ ẽμmẽνm: ð407Þ

This does not seem very appropriate for a situation where
the expectation value ẽμm vanishes, as for the infinite past
of the homogeneous solutions. A more natural choice is the
“fluctuation metric,” as defined by the two-point function

Ḡμν ¼ he0μme0νmi: ð408Þ

Such a choice is in line with the observation that distances
can be defined by correlation functions [104].
With Eq. (383) we can express the fluctuation metric in

terms of the contracted vierbein propagator

Ḡμν ¼ ηmnG̃μν
mn þ g̃μν: ð409Þ

Except for very early cosmology the fluctuation metric is
dominated by g̃μν. This typically holds for η > ηnl. For the
beginning, however, the metric is dominated by the
vierbein correlator. In view of the above discussion it
typically approaches a constant for η → −∞. It seems not
unlikely that in this limit the fluctuation metric becomes
Lorentz invariant, Ḡμν ∼ ημν. Geometries defined by the
fluctuation metric have a much smoother beginning as
compared to g̃μν. They reflect well the fixed point behavior.

XIV. CONCLUSIONS

Our model of pregeometry leads to interesting and rather
realistic cosmological solutions. Variable gravity and gen-
eral relativity emerge naturally for late times. The early

epoch describes inflation. For the late epoch it predicts
dynamical dark energy that vanishes in the infinite future.
The model also contains a candidate for dark matter.
These statements are perhaps surprising. The noncom-

pact character of the gauge group could lead to kinetic
terms for some of the gauge bosons with the “wrong” sign,
which could destabilize any solution with vanishing gauge
fields in Minkowski space. This is, indeed, what happens if
one takes into account only the standard gauge invariant
kinetic term for gauge fields, e.g., Z̃ ¼ Z > 0. The presence
of the additional vector field corresponding to the vierbein
permits us to construct further gauge invariant kinetic terms
for the gauge bosons. For an appropriate range of the
couplings, Z̃ < 0, these additional invariants stabilize the
flat space solution, which can now be approached asymp-
totically for increasing time. This property is requested for
any realistic cosmology, since Minkowski space is a very
good approximation for particle physics and gravity at
length scales that are small as compared to the size of the
observable universe and away from objects with very large
gravitational fields.
For large parameter ranges our model contains no

tachyonic instabilities in flat space. We have numerically
verified that for these parameter ranges the cosmological
solutions, indeed, approach Minkowski space for increas-
ing time. As an interesting observation we note that ghost
instabilities do not matter for the solutions we have
investigated, both homogeneous and inhomogeneous in
linear approximation. The spin-two sector fluctuations
around flat space are free of ghosts for Z < Zc, Zc ¼ y=
ð1 − yÞ, and y ¼ M2=m2, while a ghost pole appears for
Z > Zc. For our figures we use y ¼ 0.2, Zc ¼ 0.25, with
Z ¼ 1 for Figs. 1–4, 6, and 9, while Z ¼ 0.1 for Figs. 5, 7,
and 8. The results are very similar with and without a ghost
pole. In contrast to tachyonic instabilities that appear in
linear order and have to be avoided, potential instabilities
due to ghosts are nonlinear and have to be established
explicitly for a given model and class of solutions. We also
have seen that the energy density is not at the absolute
minimum for flat space, while stability of flat space with
respect to neighboring cosmological solutions is found
nevertheless.
A geometric description becomes possible in terms of a

composite metric which is a bilinear in the vierbein. In this
sense geometry emerges from pregeometry. We observe
that rather arbitrary field configurations evolve fast toward
a situation where only the composite metric and the scalar
field are needed for a description of the evolution of the
universe and local gravitational physics. General relativity,
and more generally variable gravity, which is a rather
moderate and conservative version of modified gravity,
emerge as effective theories at late times. For homogeneous
solutions the deviations from variable gravity are encoded
in the functions f and c. They vanish rapidly, as seen in
Figs. 2, 3, or 9.
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We have formulated our model and the corresponding
field equations in terms of frame invariant fields. For
example, the frame invariant vierbein ẽμm is related to
the vierbein by a function involving the scalar field χ,
ẽμm ¼ MðχÞeμm. Frame invariant fields and coupling
functions are the same in all metric frames related by a
field-dependent conformal transformation or Weyl scaling.
This approach allows for a rather simple formulation and
understanding of models with fundamental scale invari-
ance. We have investigated a simple family of models of
this type. They exhibit an ultraviolet fixed point for χ → 0
and an infrared fixed point for χ → ∞. As for all fixed
points, quantum scale symmetry becomes an exact sym-
metry precisely at these fixed points. In the vicinity of the
fixed points, for small nonzero χ or for large finite
χ, quantum scale symmetry is an approximate symmetry.
The overall cosmology of this model is characterized by

a crossover between the two fixed points. The solution of
the field equations leads to an evolution of the scalar field
from the ultraviolet fixed point for χ → 0 to the infrared
fixed point for χ → ∞. The UV fixed point characterizes
the infinite past, and the IR fixed point will be reached in
the infinite future. This crossover permits a nontrivial
evolution of the universe. The (approximately) stationary
state at (near) a fixed point only characterizes the infinite
past and future.
In early cosmology rather arbitrary initial conditions are

attracted toward an early attractor solution. This is given by
an approximate de Sitter solution for which variable gravity
is valid. Because of the very slow evolution of the scalar
field an exact de Sitter solution is a very good approxi-
mation. The approximate de Sitter solution can be identi-
fied with the inflationary epoch in cosmology. Inflation
arises very naturally in our model of pregeometry, without
any tuning of parameters. Realistic inflation requires an
amplitude and spectrum of the primordial fluctuations
consistent with observation. This can be achieved for a
suitable choice of coupling functions.
Late cosmology is characterized by a late attractor

solution that differs from the early attractor solution. It
describes the approach toward flat space in the infinite
future. Our model of pregeometry predicts for the present
cosmological epoch the presence of some form of dynami-
cal dark energy, related to the potential and kinetic energy
of the slowly evolving scalar field. This very light scalar
field arises naturally as the pseudo-Goldstone boson of
spontaneously broken scale symmetry. In the infinite future
scale symmetry becomes exact at the infrared fixed point,
and the scalar field becomes massless. A typical present
value of the varying mass is of the order of the Hubble
parameter. The same scalar field is responsible for inflation
and dynamical dark energy or quintessence, such that our
model realizes “quintessential inflation” [105,106] or
“cosmon inflation” [60–63,94]. Our model also leads to
a candidate for dark matter. This is constituted by the

potential and kinetic energy of very rapidly oscillating
gauge fields. They behave as cold dark matter, similar to the
axion. The mass of the associated particle is, however, of
the order of the Planck mass.
The crossover from the early attractor solution to the late

attractor solution can be associated with the end of
inflation. The precise timing of the end of inflation depends
on the properties of the coupling functions. In turn, this
determines the amplitude and spectral properties of the
observed primordial fluctuations.
Our model of pregeometry contains important ingre-

dients for a realistic cosmology: general relativity, inflation,
dark energy, and dark matter. This is quite remarkable for
such a simple model. While this model may be a valid
approximation for early cosmology including inflation, it
needs to be extended for late cosmology after inflation. One
has to add particle physics, which will influence the heating
of the universe after inflation and provide for the main
ingredients of the following radiation dominated epoch.
The addition of the fields for particle physics is straightfor-
ward. This can again be implemented in a form respecting
fundamental scale invariance. We give a short account in
Appendix A and leave a more detailed investigation of this
issue for further work.
As long as the coupling functions in the quantum

effective action can be chosen freely it seems rather likely
that a realistic cosmology can be found. This situation will
change once a quantum field theory computation restricts
the properties of the effective action. Our model of
pregeometry can then become highly predictive. For a
given particle content realistic cosmology will no longer be
guaranteed.
Finally, our model of pregeometry also entails a picture

for the beginning of the universe. The universe emerges in
the infinite past from a scaling solution characterizing an
ultraviolet fixed point. For this fixed point scaling solution
the expectation values of all fields vanish. This vacuum
state is characterized by nonvanishing static correlation
functions for the fluctuations of all fields. These correlation
functions are finite and no singularity occurs. The fixed
point scaling solution is unstable with respect to the slow
increase of small expectation values of fields. This insta-
bility triggers first a crossover to the early scaling solution
and later further crossovers toward the scaling solution for
the infinite future.
In summary, the evolution of the universe undergoes

several crossovers between different approximate scaling
solutions that are each valid for long cosmological epochs.
The driving agents for these crossovers are slowly evolving
expectation values of fields, in particular, the scalar field.
This evolution is dictated by the properties of solutions of
the field equations which are derived from a rather simple
quantum effective action for our model of pregeometry.
Many ingredients for realistic cosmology that are often “put
in by hand” arise naturally from pregeometry.
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APPENDIX A: PREGEOMETRIC STANDARD
MODEL

In this appendix we extend our model of pregeometry by
the inclusion of additional fields for the standard model of
particle physics or extensions thereof. The three gener-
ations of fermions can all be taken as left-handed Weyl
spinors. These include left-handed positrons or antiquarks,
as familiar from representations of GUT (Grand Unified
Theory) symmetries as SOð10Þ. The corresponding
Grassmann fields ψαaðxÞ carry a Lorentz index α ¼ 1, 2
and a species index a which accounts for the different
charges and generations of fermions. Denoting the gen-
erators of the SOð1; 3Þ-gauge group by Hermitian
2 × 2 matrices ðσmnÞαβ, and the generators of the
SUð3Þ × SUð2Þ ×Uð1Þ-gauge symmetry (or grand unified
extensions thereof) by ðTzÞab, the covariant derivative reads

Dμψ ¼ ∂μψ −
i
2
σmnAμmnψ − iTzBz

μψ ; ðA1Þ

with Bz
μ the gauge bosons of the standard model or

beyond. Fermions are singlets with respect to diffeomor-
phisms such that the geometric connection does not appear
in the covariant derivative. They only couple to the
SOð1; 3Þ-gauge bosons Aμmn and the additional gauge
bosons Bz

μ. The generators Tz are block diagonal for the
different irreducible representations of the gauge group,
and they are unit matrices in generation space.
The gauge invariant kinetic term for the fermions is

given by

Γψ ¼
Z
x
ieemμψ̄γmDμψ ; ðA2Þ

where eemμ ∼ εμνρσεmnpqeνneρpeσq. For the low-energy
effective theory the gauge fields Aμmn equal the spin
connection ωμmn. In this limit the fermions have the
standard couplings to gravity as for Cartan’s geometry.
Possible modifications of the gravitational couplings of the
fermions can only arise beyond the effective low-energy
theory by the coupling to Uμν

m according to

Aμmn ¼ ωμmn −Uμmn: ðA3Þ

The invariant kinetic term for the gauge bosons takes the
standard form

ΓB ¼ 1

4

Z
x
eZðBÞ

yz ByμνBz
μν; ðA4Þ

with Bz
μν the (non-Abelian) field strength. The diagonal

matrix ZðBÞ ¼ diagðZð1Þ; Zð2Þ; Zð3ÞÞ, ZðiÞÞ ¼ g−2i , involves
the gauge couplings gi for Uð1Þ, SUð2Þ, and SUð3Þ of
the standard model. (Here Zð2Þ and Zð3Þ correspond to

three- and eight-dimensional unit matrices. The structure
can easily be extended to other gauge groups.) For the low-
energy effective theory we can replace e by

ffiffiffi
g

p
such that no

anomalous gravitational couplings are present.
The standard model contains further the Higgs doublet.

Extensions thereof, as grand unified theories, involve
additional scalar fields. The interactions of these scalars
with the fermions are of the standard form, involving
the dimensionless Yukawa couplings. Also the interactions
with the gauge bosons Bz

μ are given by the standard
covariant derivative. These additional scalars are singlets
with respect to SOð1; 3Þ, such that the covariant derivative
involves neither Aμmn nor the geometric connection.
Possible mass scales can appear in the effective potential

for the Higgs-doublet or further scalars. For large values of
the singlet field, χ2 ≫ k2, we assume scale symmetry as
required by the infrared fixed point. In this limit all
quadratic mass terms μ2i are proportional to χ2, involving
dimensionless couplings εi according to μ2i ¼ εiχ

2. In
particular, the Fermi scale, given by the expectation value
of the Higgs doublet, is proportional to χ. As a conse-
quence, all fermion masses induced by the electroweak
symmetry breaking are proportional to χ, and mass ratios as
electron mass over effective Planck mass become indepen-
dent of χ.
Furthermore, for the scale invariant standard model

[64,107] the confinement scale ΛQCD is proportional to
χ, such that the ratio of electron mass over proton mass
becomes χ independent. Scale symmetry also requires the χ
independence of the dimensionless couplings, as gauge
couplings, Yukawa couplings, or quartic scalar couplings.
As a result, there will be no observation of a time variation
of couplings or apparent violations of the equivalence
principle in the limit of exact quantum scale symmetry [51].
This holds despite the fact that χ depends on time for the
cosmologies discussed in this work. Possible very small
observable effects can only arise by small deviations from
quantum scale symmetry since χ → ∞ is not yet reached
for the present cosmological epoch. The quantum scale
invariant setting can easily be extended beyond the standard
model, with possible cubic scalar couplings proportional
to χ.

APPENDIX B: STABILITY OF MINKOWSKI
SPACE

Lorentz symmetry is extremely well tested in funda-
mental particle physics. The small violations of Lorentz
symmetry due to local gravitational or electromagnetic
fields on Earth or in galaxies are well understood. For any
realistic cosmology the (averaged) homogeneous isotropic
metric should therefore approach the metric of flat
Minkowski space during its evolution to the present time,
with very small deviations due to the small size of the
present Hubble parameter H0. A prerequisite for realistic

COSMOLOGY FROM PREGEOMETRY PHYS. REV. D 104, 104040 (2021)

104040-57



cosmologies is the stability of Minkowski space, or
neighboring evolving cosmologies with small H0. More
precisely, tachyonic fluctuation modes with mass terms jμj
much larger than H0 should be absent. Otherwise fluctua-
tions would grow ∼ expðjμjtÞ and obstruct any approach to
flat space.
In Einstein gravity with a vanishing cosmological con-

stant Minkowski space is stable. This extends to the
Friedman universe in the presence of matter and radiation,
and to the inclusion of a small cosmological constant. For
our model of pregeometry Minkowski space with vanishing
gauge fields is a solution of the field equations for V ¼ 0.
The stability of this flat space solution is not guaranteed,
however, for arbitrary values of the couplings or coupling
functions. We deal with a noncompact gauge symmetry
SOð1; 3Þ such that negative signs of the kinetic terms for
some of the gauge fields may lead to tachyonic instabilities.
Also the mode mixing due to a generalized Higgs mecha-
nism [1,22] can induce tachyonic instabilities.
Before a detailed analysis of possible homogeneous

isotropic solutions of the field equations we should there-
fore clarify the stability properties of the flat space solution.
This will restrict the range of allowed parameters for which
realistic late cosmology is possible. In this appendix we
concentrate on constant couplings, i.e., χ-independent
coupling functions. It will become clear in Sec. IX that
this analysis extends to χ-dependent coupling functions of a
crossover model. We find that stability of Minkowski space
can be realized for a negative value of the coefficient of the
term ∼F2, i.e.,

C < −
1

12
ðZ þ 4BÞ: ðB1Þ

1. Field expansion around flat space

For the stability analysis we take V ¼ 0 and consider
constant coupling functions. We first omit the scalar field
χ which will be included at the end. We expand around
the flat space solution with vanishing gauge fields,
eμm ¼ δmμ , gμν ¼ ημν. The fluctuations of the vierbein are
parametrized by

eμm ¼ δmμ þ 1

2
Hμνη

νm: ðB2Þ

For a decomposition in terms of irreducible representations
of the Lorentz group we employ for the vierbein the analog
of Ref. [101]

Hμν ¼ tμν þ
1

3
Pμνσ þ bμν þ ∂μγν − ∂νγμ; ðB3Þ

with

Pμν ¼ ημν −
∂μ∂ν

∂2
: ðB4Þ

The fluctuations obey the conditions

tνμ ¼ tμν; ημνtμν ¼ 0; ∂μtμν ¼ 0;

bνμ ¼ −bμν; ∂μbμν ¼ 0; ∂μγμ ¼ 0: ðB5Þ
For the gauge fields we expand [1,22]

Aμνρ ¼
1

2
ð∂νEμρ − ∂ρEμνÞ þ Cμνρ þ

1

3
ðPμνwρ − PμρwνÞ

þ 1

4
ενρ

στðPμσvτ − PμτvσÞ; ðB6Þ

where the fluctuations obey

Eνμ ¼ Eμν; ημνEμν ¼ 0; ∂μEμν ¼ 0;

Cμνρ ¼ −Cμρν; ∂μCμνρ ¼ 0; ∂ρCμνρ ¼ 0;

εσμνρCμνρ ¼ 0; ημνCμνρ ¼ ημρCμνρ ¼ 0;

P̃στ
νρCμνρ ¼ 0; ðB7Þ

with projector

P̃στ
νρ ¼ 1

2∂2
ð∂σ∂νδρτ − ∂τ∂νδρσ − ∂σ∂ρδντ þ ∂τ∂ρδνσÞ: ðB8Þ

The four-vectors vμ and wμ decompose into transversal and
scalar parts

vμ ¼ vðtÞμ þ ∂μṽ; wμ ¼ wðtÞ
μ þ ∂μw̃;

∂μvðtÞμ ¼ 0; ∂μwðtÞ
μ ¼ 0: ðB9Þ

We have left out the gauge modes, which may be removed
by gauge fixing [1].
In linear order in the gauge field fluctuations one has

Fαμνρ¼
1

2
ð∂α∂νEμρ−∂α∂ρEμν−∂μ∂νEαρþ∂μ∂ρEανÞ

þ∂αCμνρ−∂μCανρ

þ1

3
ðPμν∂αwρ−Pμρ∂αwν−Pαν∂μwρþPαρ∂μwνÞ

þ1

4
ενρ

στðPμσ∂αvτ−Pμτ∂αvσ −Pασ∂μvτþPατ∂μvσÞ:
ðB10Þ

For the contractions one obtains

Fμρ ¼ ηανFαμνρ ¼
1

2
∂2Eμρ

−
2

3
∂μw

ðtÞ
ρ −

1

3
ðημρ∂2 þ 2∂μ∂ρÞw̃ ðB11Þ

and

F ¼ ημρFμρ ¼ −2∂2w̃: ðB12Þ
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2. Quadratic expansion of effective action

Expanding in quadratic order in the fluctuations one
finds in momentum space, with q2 ¼ qμqμ ¼ −q20 þ q⃗2,

1

8

Z
x
eZFμνρσFμνρσ

¼ Z
4

Z
q

�
q4

2
E�
μνEμν þ q2C�

μνρCμνρ þ q2vðtÞ�μ vðtÞμ

þ 3q4

2
v�vþ 4q2

9
wðtÞ�
μ wðtÞμ þ 2q4

3
w̃�w̃

�
: ðB13Þ

Here w̃�w̃ stands for w̃�ðqÞw̃ðqÞ ¼ wð−qÞwðqÞ, etc., and
q2w̃�w̃ corresponds in position space to ∂μw̃�∂μw.
Similarly, one obtains

1

2

Z
x
efBFμνFμν þ CF2g

¼
Z
q

�
Bq4

8
E�
μνEμν þ 2Bq2

9
wðtÞ�
μ wðtÞμ

þ
�
2B
3

þ 2C

�
q4w̃�w̃

�
: ðB14Þ

The linear expansion for Uμνρ reads

Uμνρ ¼
1

2

�
∂ρðtμν þ EμνÞ − ∂νðtμρ þ EμρÞ

þ 1

3

�
Pμν∂ρðσ − 2w̃Þ − Pμρ∂νðσ − 2w̃Þ

�
þ ∂μbνρ þ ∂μð∂νγρ − ∂ργνÞ − 2Cμνρ

−
2

3
ðPμνw

ðtÞ
ρ − Pμρw

ðtÞ
ν Þ − 1

2
ενρ

στðPμσντ − PμτνσÞ
�
;

ðB15Þ
and the contracted part is given by

Uμ
μ
ρ ¼ ημνUμνρ ¼

1

2
∂ρðσ− 2w̃Þþ 1

2
∂2γρ−

2

3
wðtÞ
ρ : ðB16Þ

This yields in quadratic orderZ
x
e

�
m2

4
UμνρUμνρþn2

2
Uμ

μρUν
ν
ρ

�
¼
Z
q

�
m2

4

�
q2

2
ðt�μνþE�

μνÞðtμνþEμνÞþq2

4
b�μνbμν

þC�
μνρCμνρþ vðtÞ�μ vðtÞμþ 3

2
q2ṽ�ṽ

�
þ q2

24
ðm2þ 3n2Þðσ�− 2w̃�Þðσ− 2w̃Þþq4

8
ðm2þn2Þγ�μγμ

þ 2

9
ð2m2þn2ÞwðtÞ�

μ wðtÞμþq2n2

6
ðwðtÞ�

μ γμþ γ�μwðtÞμÞ
�
:

ðB17Þ

The quadratic approximation to the term linear in F yields

−
1

2

Z
x
eM2F ¼ −

Z
q

M2

4

�
q2

2
ðE�

μνEμν þ E�
μνtμν þ t�μνEμνÞ

þ 2q2

3
ðw̃�σ þ σ�w̃ − 2w̃�w̃Þ

− i
qν
2
εμνρσðvðtÞ�μ bρσ − b�ρσv

ðtÞ
μ Þ

− vðtÞ�μ vðtÞμ −
2q2

3
ðwðtÞ�

μ γμ þ γ�μwðtÞμÞ

−
4

9
wðtÞ�

μ wðtÞμ − 2C�
μνρCμνρ − 3q2ṽ�ṽ

�
:

ðB18Þ

3. Absence of tachyons

The stability of Minkowski space depends on the poles
of the propagators. Let us start with the fluctuations ṽ and
Cμνρ that do not mix with other fluctuations. The relevant
quadratic part of the effective action reads

ΓvC ¼ 1

2

Z
q

�
ṽ�ðqÞPṽðq2ÞvðqÞ þ C�

μνρðqÞPCðq2ÞCμνρðqÞ
�
:

ðB19Þ

The propagators for these fluctuations are given by P−1
ṽ and

P−1
C , multiplied by appropriate projection operators and

normalization factors that do not play a role for this
discussion. The inverse propagators are given in our case by

Pṽ ¼
3Zq2

4
ðq2 þ μ2ṽÞ;

PC ¼ Z
2
ðq2 þ μ2CÞ; ðB20Þ

with

μ2ṽ ¼ μ2C ¼ m2 þ 2M2

Z
: ðB21Þ

For positive μ̃2 these formulations can be associated with
stable particles.
Indeed, the field equations ðq2 þ μ2Þψ ¼ 0 read, with

−q20 ¼ ∂2
η, q⃗2 ¼ k2,

ð∂2
η þ k2 þ μ2Þψ ¼ 0: ðB22Þ

The general solution for the Fourier modes,

ψðq⃗; ηÞ ¼ ψþðq⃗Þeiλkη þ ψ−ðq⃗Þe−iλkη; ðB23Þ

with
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λ2k ¼ k2 þ μ2; ðB24Þ

results in a stable oscillatory behavior for μ2 > 0. (For an
expanding universe Hubble damping induces a decreasing
fluctuation amplitude.) In contrast, for μ2 < 0 the momen-
tum modes with k2 < −μ2 lead to imaginary λk. In this case
one has solutions whose amplitude grows exponentially,
ψ ∼ expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðμ2 þ k2

p
ÞηÞ. The presence of tachyonic modes

with μ2 < 0 leads to an instability of Minkowski space.
Parameter ranges leading to tachyons cannot result in
realistic cosmologies and have to be excluded. We consider

Z > 0; m2 > 0; M2 > 0; ðB25Þ

such that the modes w̃ and C are stable. (The prefactor ∼q2
for Pṽ is due to normalization and is not associated with
a pole.)

4. Traceless transversal tensors and scalars

The traceless transverse tensor modes tμν and Eμν mix.
The inverse propagator is now given by a 2 × 2 matrix
PEtðq2Þ,

PEt ¼
q2

4

�
Ztq2 þm2 −M2 m2 −M2

m2 −M2 m2

�
; ðB26Þ

with

Zt ¼ Z þ B: ðB27Þ
Poles of the propagators correspond to zero eigenvalues of
PEt. The pole at q2 ¼ 0 corresponds to the massless
graviton. The other zero of PEt is found by a vanishing
determinant of the 2 × 2 matrix in Eq. (B26),

Ztm2q2 þM2ðm2 −M2Þ ¼ 0; ðB28Þ

leading to

μ2Et ¼
M2

Zt

�
1 −

M2

m2

�
: ðB29Þ

We require the stability conditions [1,21]

Z þ B > 0; 0 < M2 < m2: ðB30Þ

The properties of the graviton propagator obtained from
Eq. (B26) are discussed in detail in Refs. [1,22].
We next turn to the sector of scalars w̃ and σ. We write

the inverse propagator matrix in the form

Pw̃σ ¼
q2

12

�
4ðZ̃q2 þ m̃2 þ 2M2Þ −2ðm̃2 þ 2M2Þ

−2ðm̃2 þ 2M2Þ m̃2

�
;

ðB31Þ

with

Z̃ ¼ Z þ 4Bþ 12C; m̃2 ¼ m2 þ 3n2: ðB32Þ

One pole occurs for q2 ¼ 0, and the other is given by the
condition

Z̃q2 − 2M2ð1þ 2ỹÞ ¼ 0; ỹ ¼ M2

m̃2
: ðB33Þ

With

μ2w̃σ ¼ −
2M2

Z̃
ð1þ 2ỹÞ; ðB34Þ

the stability of Minkowski space requires either

Z̃ > 0; ỹ < −
1

2
; ðB35Þ

or

Z̃ < 0; ỹ > −
1

2
: ðB36Þ

5. Transverse vectors

For the coupled sector of the transverse vectors γμ and

wðtÞ
μ one has

Pwγ ¼
2

9

�ðZþ2BÞq2þ4m2þ2n2þM2 3
2
q2ðn2þM2Þ

3
2
q2ðn2þM2Þ 9

8
q4ðm2þn2Þ

�
:

ðB37Þ

Besides the pole at q2. ¼ 0 the other pole is determined by

ðZ þ 2BÞðm2 þ n2Þq2 þ ð4m2 þ 2n2 þM2Þðm2 þ n2Þ
− 2ðn2 þM2Þ2 ¼ 0: ðB38Þ

The corresponding mass term,

μ2wγ ¼ ðZ þ 2BÞ−1ðm2 þ n2Þ−1Awγ;

Awγ ¼ ð4m2 þ 2n2 þM2Þðm2 þ n2Þ − 2ðn2 þM2Þ2;
ðB39Þ

varies with M2=m2, with limiting values

AwγðM2 ¼ 0Þ ¼ 4m2

�
m2 þ 3

2
n2
�
;

AwγðM2 ¼ m2Þ ¼ 3m2ðm2 þ n2Þ;
Awγðn2 ¼ 0Þ ¼ ð4m2 þM2Þm2 − 2M4: ðB40Þ

For
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Z þ 2B > 0 ðB41Þ

no tachyonic instability occurs for a wide range of n2=m2.

Finally, in the sector of vðtÞμ and bνρ the quadratic
approximation to the effective action reads

ΓðvbÞ
2 ¼

Z
x

�
1

4
vðtÞμð−Z∂2 þm2 þM2ÞvðtÞμ

þm2

16
∂νbρσ∂νbρσ þ

M2

4
vðtÞμ εμνρσ∂νbρσ

�
: ðB42Þ

We define the vector

b̃μ ¼ εμνρσ∂νbρσ; b̃μb̃μ ¼ 2∂νbρσ∂νbρσ; ðB43Þ

and extract the inverse propagator matrix

Pvb ¼
1

2

 
Zq2 þm2 þM2 M2

2

M2

2
m2

2

!
: ðB44Þ

The vanishing of the eigenvalue of Pvb, determined by
q2 þ μ2vb ¼ 0, corresponds to a stable particle since

μ2vb ¼
1

Z

�
m2 þM2 −

M4

2m2

�
ðB45Þ

is positive for the conditions (B25) and (B30).

6. Saddle point of effective action

We conclude that Minkowski space is, indeed, stable for
a suitable range of parameters in the effective action. A
rather natural choice takes Z > 0, Z þ 2B > 0, and neg-
ative C according to Eq. (B1). This corresponds to Z̃ < 0 in
Eq. (B36). A negative sign of C resembles the situation in
higher derivative gravity where the coefficient of the term
∼R2 has to be negative for a stable asymptotic Minkowski
space. Decomposing Fμνρσ into irreducible pieces,

Fμνρσ ¼ C̃μνρσ þ Ẽμνρσ þ S̃μνρσ; ðB46Þ

with

Ẽμνρσ ¼
1

2
ðgμρF̃νσ þ gνσF̃μρ − gμσF̃νρ − gνρF̃μσÞ;

F̃μν ¼ Fμν −
1

4
Fgμν;

S̃μνρσ ¼
1

12
Fðgμρgνσ − gμσgνρÞ; ðB47Þ

one has

Z
8
FμνρσFμνρσ þ B

2
FμνFμν þ C

2
F2

¼ Z
8
C̃μνρσC̃

μνρσ þ 1

8
ðZ þ 2BÞẼμνρσẼμνρσ

þ 1

48
ð2Z̃ − ðZ þ 2BÞÞF2: ðB48Þ

With positive Z and Z þ 2B and negative Z̃ the coefficient
of F2 in Eq. (B48) is negative. A negative value of Z̃
therefore does not correspond to a minimum for the
combined field strength terms, but rather to a saddle point.

7. Mixing of scalar modes

We finally include the fluctuations of the scalar field χ
around some constant value χ0. For Yχ0 ¼ 0 the fluctua-
tions of χ decouple from the other fluctuations. Stability of
Minkowski space requires K > 0 and χ0 to be a minimum
of V. For Yχ0 ≠ 0 we take the approximation of a flat
potential, V ¼ 0. We observe now a mixing of χ with the
scalar metric fluctuations σ and w̃ according toZ
x
e
�
K
2
∂μχ∂μχþYUμ

μνχ∂νχ

�
¼
Z
q

�
K
2
q2δχ�δχþYχ0

4
q2½ðσ�− 2w̃�Þδχþ δχ�ðσ− 2w̃Þ�

�
:

ðB49Þ

This extends the inverse propagator matrix (B31) to a 3 × 3
matrix

Pw̃σχ

¼ q2

12

0B@4ðZ̃q2þ m̃2þ 2M2Þ −2ðm̃2þ 2M2Þ −12Yχ0
−2ðm̃2þ 2M2Þ m̃2 6Yχ0

−12Yχ0 6Yχ0 12K

1CA:

ðB50Þ

The mass term is shifted to

μ2 ¼ −
2M2

Z̃

�
1þ 2KM2

Km̃2 − 3Y2χ20

�
: ðB51Þ

We recover Eq. (B34) for Yχ0 → 0. For K > 0,M2 > 0 the
conditions of stability depend now on the ratio r,

r ¼ 3Y2χ20
Km̃2

; μ2 ¼ −
2M2

Z̃

�
1þ 2ỹ

1 − r

�
: ðB52Þ

They are given for ỹ > 0 by

Z̃ > 0 for 1 < r < 1þ 2ỹ;

Z̃ < 0 for r < 1 or r > 1þ 2ỹ: ðB53Þ
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For ỹ < 0; r < 0 the range of stability for Z̃ < 0 becomes
r < 1þ 2ỹ or ỹ > − 1

2
ð1 − rÞ. This amounts to the con-

dition

m̃2 < −2M2 þ 3Y2χ20
K

: ðB54Þ

8. Stability of Minkowski space

For the crossover models discussed in Sec. IX the late
universe is characterized by a “runaway cosmology” where
χ increases to infinity in the infinite future. For large χ one
has M2 ∼ χ2, and similarly for other parameters. The
question of stability of Minkowski space concerns the
region of large χ and the approximation of constant
coupling functions cannot be used. For the relevant range
of large χ we can use the frame-invariant coupling
functions. This amounts to a stability discussion which
can be performed in complete correspondence to the
discussion above, with the replacements

χ → s; M2 → 1; m2 →
1

y
; m̃2 →

1

ỹ
;

K → K̄; Yχ0 → Ȳ: ðB55Þ

The potential V̂ðsÞ given by Eq. (203) is very small for
large s, such that the approximation V ¼ 0 holds very
accurately. The main modification from a nonzero potential
is a small scalar mass term

μ̃2s ¼
∂2V̂
∂s2 ; ðB56Þ

which replaces in the propagator matrix (B50)

K → K̄ þ μ̃2s
q2

: ðB57Þ

For typical runaway solutions of the field equations one
finds a μ̃2s ≈ Ĥ2, such that for all distances which are small
as compared to the horizon we can neglect μ̃2s .
We concentrate in the main text on B ¼ 0, M2 > 0, and

Z > 0; Z̃ < 0; y > 0: ðB58Þ

The stability condition in this scalar sector is then given by
Eqs. (B53) and (B54) with

r ¼ 3Ȳ2y
K̄

: ðB59Þ

In particular, for ỹ < 0 one has

1þ 2ỹ >
3Ȳ2ỹ
K̄

;
k̂2ð1þ 2ỹÞ

K̄
> 0: ðB60Þ

We require a positive kinetic term for the scalar in the
effective variable gravity model

k̂2 > 0; K̄ð1þ 2ỹÞ > 0: ðB61Þ

The stability condition for the traceless tensor modes reads

y < 1; ðB62Þ

which also guarantees the positivity of μ2vb ∼ ð1þ y − y2

2
Þ.

Finally, the positivity of μ2wγ in Eq. (B39) requires

Zμ̃2wγ ¼
6

yðyþ 2ỹÞ
�
yþ ỹþ yỹ−

1

2
y2− y2ỹ

�
≥ 0: ðB63Þ

For the choice ỹ ¼ −y this condition is obeyed:
Zμ̃2wγ ¼ 9 − 6y > 0.

APPENDIX C: STABILITY OF DE SITTER
SOLUTIONS WITH VANISHING

SCALAR FIELD

In this appendix we discuss the stability properties of the
de Sitter solutions (68) and (69) for χ ¼ 0, c ¼ 0. For this
purpose we consider the linear expansion

b̃ ¼ b̃0 þ v; H ¼ H0 þ w; ðC1Þ

with b̃0 and H0 the values according to the de Sitter
solution. The linearized Eq. (33) reads

∂2
t vþ 3H0∂tvþ 2H2

0vþ b̃0∂twþ 4H0b̃0w

¼ μ2b
2ỹ

ðv − wÞ þ 6b̃20v: ðC2Þ

For the expansion of the Hubble parameter we employ
Eq. (77)

H0w¼ ð1þ 2ỹÞb̃0v

þ Z̃
m̃2

ðH0b̃0∂tvþH2
0b̃0vþH0b̃

2
0w− 2b̃30vÞ; ðC3Þ

or

w ¼
�
1 −

Z̃b̃20
m̃2

�
−1
�
ð1þ 2ỹÞ b̃0

H0

v

þ Z̃
m̃2

�
b̃0∂tvþH0b̃0v −

2b̃30
H0

v

��
: ðC4Þ

Insertion into Eq. (C2) yields a closed linear second order
differential equation for v which allows a standard stability
analysis.
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Consider first the de Sitter solutions of type 1 with
b̃0 ¼ H0. We denote

g ¼ Z̃b̃20
m̃2

ðC5Þ

such that

w ¼ ð1 − gÞ−1
�
ð1þ 2ỹ − gÞvþ g

H0

∂tv

�
: ðC6Þ

We eliminate H0 by z ¼ H0t and use Eq. (32) for μ̃2b,
resulting for Eq. (C2) in

∂2
zvþ 3∂zvþ ∂zw ¼

�
4 −

1þ 2ỹ
g

�
ðv − wÞ: ðC7Þ

The derivative of Eq. (C6) yields

∂zw ¼ g
1 − g

∂2
zvþ ∂zvþ

2ỹ
1 − g

∂zv: ðC8Þ

Insertion of Eqs. (C8) and (C6) into Eq. (C7) results in the
simple linear evolution equation

∂2
zvþ 3∂zvþ μ̃2vv ¼ 0; ðC9Þ

with

μ̃2v ¼ −2ỹ
�
1þ 2ỹ

g
− 4

�
¼ μ2b

H2
0

þ 8ỹ

¼ −
6ð1þ 2ỹÞM4

Z̃V
þ 8ỹ: ðC10Þ

With

v ¼ vþ expðλþH0tÞ þ v− expðλ−H0tÞ

the stability properties depend on the eigenvalues λ� which
are solutions of the quadratic equation

λ2 þ 3λþ μ̃2v ¼ 0 ðC11Þ

or

λ� ¼ 1

2



−3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4μ̃2v

q �
: ðC12Þ

For positive μ̃2v in the range 0 < μ̃2v < 9=4 one finds both
eigenvalues λ� real and positive, while for μ̃2v > 9=4 one
observes damped oscillations. In both cases the de Sitter
solution of type 1 is a stable attractor. The rate of attraction
is given by the real part of λþ. In particular, for μ̃2v > 9=4
the difference from the early attractor solution decreases
by a factor expð−3=2Þ for each e-folding. In contrast, for

μ̃2v < 0 the de Sitter solution of type 1 becomes unstable,
characterized by an exponential growth of v with the rate
given by λþ.
The range of stability is given by Eq. (C10). For Z̃ < 0,

1þ 2ỹ > 0 one finds stability unless V is very large.
For the parameters chosen for Figs. 2 and 3 one has
μ̃2v ¼ 3.6=V − 1.6 ¼ 10.4 > 9=4, corresponding to the
visible damped oscillations.
A similar analysis can be done for the de Sitter solutions

of type 2. It is algebraically a bit more lengthy and not
presented here. As visible from Fig. 4 the de Sitter solutions
of type 2 are unstable for the parameters used.
Finally, one can perform a similar stability investigation

for the gauge fields c̃. For the de Sitter solutions of type 1
the linearized field equation (34) reads

ð∂2
z þ 3∂z þ μ̃2cÞc ¼ 0; ðC13Þ

with

μ̃2c ¼
μ2c
H2

0

−
4Z̃
Z

: ðC14Þ

Stability is guaranteed for μ2c > 0, Z̃=Z < 0. If initial
conditions are set for t0 → −∞ both v and c are zero
for any finite t.

APPENDIX D: VARIABLE GRAVITY
APPROXIMATION FOR HOMOGENEOUS

FIELD EQUATIONS

In this appendix we discuss the embedding of variable
gravity into our model of pregeometry on the level of the
effective action and field equations for homogeneous
isotropic configurations. While the results are, in principle,
already contained in the more general discussion of Sec. V,
the present treatment shows in a concrete way the approx-
imations made when one uses the field equations of
variable gravity.

1. Effective action for homogeneous configurations

We may investigate the issue first by looking at the
effective action for homogeneous isotropic cosmologies.
For the homogeneous isotropic configurations (15) one
finds for Δ in Eq. (88)

Δ ¼ −
6

a2
½∂ηðb −HÞ þ ðbþHÞðb −HÞ − c2�

¼ −
6

a2
½∂ηf þ ðf þ 2HÞf − c2�: ðD1Þ

We observe from Eq. (16) that Γ2 in Eq. (87) contains a
piece Γf that vanishes for f ¼ 0, c ¼ 0, and a “higher
derivative piece” ΓHD,
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Γ2 ¼ Γf þ ΓHD; ðD2Þ

where (for B ¼ 0)

Γf ¼ Ω3

Z
η

�
3a2

2
ðm2c2 − m̃2f2Þ − 3M2a2½∂ηf

þ ð2Hþ fÞf − c2� þ 3Ya2χ∂ηχf

þ 3Z
2

�
4H3f þ 6H2f2 þ 4Hf3 þ f4 þ c4 − 6ðH2

þ 2Hf þ f2Þc2 þ 2∂ηH∂ηf þ ð∂ηfÞ2 − ð∂ηcÞ2
�

þ 18C

�
4H3f þ 6H2f2 þ 4Hf3 þ f4 þ c4

− 2ð2Hf þ f2Þc2 þ 2ðH2 þ ∂ηHþ 2Hf þ f2Þ∂ηf

þ 2∂ηHð2Hf þ f2Þ þ ð∂ηfÞ2
��

ðD3Þ

and

ΓHD ¼ Ω3

Z
η

�
3Z
2
ðH4 þ ð∂ηHÞ2Þ þ 18CðH2 þ ∂ηHÞ2

�
:

ðD4Þ

The higher derivative term (88) corresponds to

ΓHD ¼
Z
x

ffiffiffi
g

p �
Z
8
RμνρσRμνρσ þ C

2
R2

�
; ðD5Þ

with Rμνρσ the Riemann curvature tensor formed from the
metric gμν and R the corresponding curvature scalar. It
obtains by inserting the homogeneous isotropic ansatz (15),
gμν ¼ a2ημν. This term can be interpreted as a higher
derivative term within variable gravity.
For f ¼ c ¼ 0 one recovers, indeed, the higher deriva-

tive extension of variable gravity whose cosmology has
been discussed in Refs. [50,60]. For late cosmology higher
derivative terms play no role if their coefficients are not
huge. In many circumstances the effects of the higher
derivative term are negligible even for early stages of
inflation or the “beginning” of the universe, and cosmology
can be well described by the simple form (83). The effective
action Γ1 þ ΓHD only involves the functions aðηÞ and χðηÞ.
Any new effects of pregeometry are therefore connected to
nonzero f or c.
Since c appears only quadratically in Γf, we will find

consistent solutions with c ¼ 0. We will pursue this type of
solutions here. In contrast, Γf contains terms that are linear
in f,

Γf;1 ¼ Ω3

Z
η

�
−3M2∂ηða2fÞ þ 3Z̃ð2H3f þ ∂ηH∂ηfÞ

þ 3ðZ̃ − ZÞ∂ηðH2fÞ þ 3Ya2χ∂ηχf

�
¼ Ω3

Z
η

�
3a2
�∂M2

∂χ þ Yχ
�
∂ηχf

þ 3Z̃

�
2H3 − ∂2

ηH −
∂ ln Z̃
∂χ ∂ηχ∂ηH

�
f

− 3H2f∂χðZ̃ − ZÞ∂ηχ

�
; ðD6Þ

where the second line obtains by partial integration. For
constant Z̃, Z the derivative of this expression with respect
to f produces the driving term in the field equation (50) for
f. Because of this driving term the cosmological solutions
of variable gravity will be modified whenever f plays a
role. If we omit for a moment ∂χZ, ∂χZ̃, and powers ofH or
∂ηH, a typical size of f is given by

f ∼
�∂M2

∂χ þ Yχ

�
∂ηχðm̃2 þ 2M2Þ−1: ðD7Þ

This quantity vanishes if Y ¼ 0 andM2 is independent of χ,
as well as for m̃2 → ∞. For the particular case Y ¼ 0,
M2 ∼ χ2, and constant ỹ ¼ M2=m̃2 one has

f ∼
2ỹ

1þ 2ỹ
∂η ln χ: ðD8Þ

For K̃ ¼ K and f ¼ 0 the scalar field equation (102)
agrees with Eq. (49). On the other hand, for Y ¼ 0 and
f ¼ 0 Eq. (100) agrees with Eq. (47) provided that CR ¼ 0.
These findings are consistent for ∂M2=∂χ ¼ 0. In this case
f can be neglected, and also CR vanishes. For nonzero
∂M2=∂χ, as typically relevant for late cosmology where χ2

is much larger than k2, or nonzero Y, one needs to account
for both nonzero f and nonzero CR. These effects of
nonvanishing f and CR can be summarized by the shift in
the kinetial (84).

2. Leading effects

In the leading order we can approximate

Γf ¼ Γf;1 þ Γf;2; ðD9Þ

with

Γf;2 ¼ Ω3

Z
η
−
a2

2
ð3m̃2 þ 6M2Þf2; ðD10Þ

and Γf;1 given by Eq. (D6). Insertion of the approximate
solution,
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f ¼ 1

m̃2 þ 2M2

��∂M2

∂χ þ Yχ

�
∂ηχ þ

Z̃
a2

ð2H3 − ∂2
ηHÞ

�
;

ðD11Þ

yields

Γf ¼
3

2

Z
x

1

m̃2 þ 2M2

�
a2
�∂M2

∂χ þ Yχ

�
2

ð∂ηχÞ2 þ � � �
�

¼ −
3

2

Z
x
e

1

m̃2 þ 2M2

��∂M2

∂χ þ Yχ

�
2∂μχ∂μχ þ � � �

�
;

ðD12Þ

where we employ e ¼ a4, ð∂ηχÞ2 ¼ −a2∂μχ∂μχ.
Equation (D12) agrees, indeed, with the first term in
Eq. (98). We note for Uτ

τ
m the relations Uτ

τ
0 ¼

−3f=a, Uτ
τ
k ¼ 0.

3. Equivalence of homogeneous field equations

Up to omitted higher derivative contributions we can
verify that the scalar field equation (49) in pregeometry,
indeed, agrees with the scalar field equation (102) of
variable gravity by use of the identity

3

�∂M2

∂χ þYχ

�
ð∂ηfþ 2Hfþf2Þþ 3

2

∂m̃2

∂χ f2

¼ ðK− K̃Þð∂2
ηχþ 2H∂ηχÞþ

1

2

∂
∂χ ðK− K̃Þð∂ηχÞ2: ðD13Þ

Similarly, the gravitational field equation (47) in pregeom-
etry agrees with (100) in variable gravity, using

ðK − K̃Þð∂ηχÞ2 − a2CR

¼ −3ðm̃2 þ 2M2Þð∂ηf þ 2Hf þ f2Þ − 3
∂m̃2

∂χ ∂ηχf:

ðD14Þ

The field equations of variable gravity are considerably
simpler than the ones in pregeometry. Only the metric and
the scalar field remain as relevant degrees of freedom. The
homogeneous isotropic field equations only depend on a
and χ, while f and c are eliminated since the gauge fields
become fixed functions of the vierbein in the low-energy
effective theory. When the conditions of validity of the low-
energy effective theory are met, we will directly use the
field equations of variable gravity. This has the additional
advantage that the substantial body of cosmological inves-
tigations for variable gravity can be taken over to our model
of pregeometry. Already in the late phases of the infla-
tionary epoch the Hubble parameter is substantially smaller
than the effective Planck mass, H2=M2 ≪ 1. This is the
range of applicability of the low energy effective theory.
The predictions of pregeometry for the properties of the

observable primordial cosmic fluctuations are precisely
those of the corresponding model of variable gravity.
We will discuss in Sec. X that beyond the leading order

(D11) for f and c ¼ 0 there can be small oscillations. They
contribute in variable gravity as an effective energy
momentum tensor for cold dark matter.

APPENDIX E: TRACELESS TRANSVERSAL
TENSOR FLUCTUATIONS FOR DE SITTER

SOLUTIONS OF TYPE 2

In this appendix we discuss the transverse traceless
tensor fluctuations in the background of the de Sitter
solutions of type 2. For the second family of de Sitter
solutions (69) we substitute the constants V and Z by the
constants b̃ and H. With

b ¼ αH; α ¼ b̃
H
; ðE1Þ

Eq. (67) determines Va2 and Z=a2 as functions ofH and α,
namely,

Va2

m2
¼ cVH2; cV ¼ 3m̃2

4m2
½αð1þ αÞð1þ 2ỹÞ − 2�; ðE2Þ

and

m2a2

Z
¼ cZH2; cZ ¼ 2αð1þ αÞm2Z̃

ð1þ 2ỹÞm̃2Z
: ðE3Þ

For solutions with ∂ηχ ¼ 0 this yields for the elements in
Eq. (323) the operators

A ¼ ∂2
η − 2ð2 − αÞH∂η þ k2 þ ½2 − 2αþ ð1 − yÞcZ�H2;

ðE4Þ

and

B ¼ ½2α2 þ ð1 − yÞcZ�H2: ðE5Þ

For the elements C and D Eqs. (321) and (322) imply

C ¼ m2

��
1 − yþ 2α

cZ

�
∂2
η þ

�
1 − yþ 2α2

cZ

�
k2

−
�
2þ yðα − 3Þ þ 2αð3 − α2Þ

cZ

�
H∂η þ γCH2

�
ðE6Þ

and

D ¼ m2½∂2
η − ð1þ αÞH∂η þ k2 þ γDH2�: ðE7Þ

We observe that for α ≠ 1 the operator C is not Lorentz
invariant even for the modes with very high k2. The
coefficients of ∂2

η and k2 in this operator are no longer
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the same due to the difference between ∂ηb and b2. This
contrasts with the de Sitter solution of type 1. The origin of
the breaking of Lorentz symmetry are the nonzero gauge
fields b.
For early enough epochs or k2 ≫ H2 we can neglect the

terms ∼H2 in the operators A, B, C, andD. With B ¼ 0 one
has in this limit the equations

½∂2
η − 2ð2 − αÞH∂η þ k2�Eij ¼ 0 ðE8Þ

and

½∂2
η − ð1þ αÞH∂η þ k2�tij ¼ −

C
m2

Eij: ðE9Þ

One of the eigenmodes corresponds to Eij ¼ 0, tij ≠ 0 and
may be called the t mode. For the other eigenmode, the E
mode, one has Eij ≠ 0, obeying Eq. (E8). The correspond-
ing fluctuation of tij is then given by Eq. (E9). We observe
that the violation of Lorentz symmetry for k2 → ∞ only
concerns the relation between tij and Eij for the E mode,
where C appears explicitly. The oscillations of Eij for the E
mode and tij for the t mode both approach the plane waves
in Minkowski space.
The damping term ∼H∂η depends on α. For α < 1 one

has 1þ α < 2 and 4 − 2α > 2. In this case the E mode
becomes dominant, increasing faster than the t mode. For a
general evolution equation

½∂2
η − 2δH∂η þ k2 þ γH2�φ ¼ 0; ðE10Þ

one finds for the asymptotic solution for H2 ≪ k2

φ ¼ aδφ̃; ðE11Þ

where φ̃ oscillates with constant amplitude similar to t̃ij in
Eq. (337). Starting with similar amplitudes and evolving for
many e-foldings only the mode with larger δ survives
effectively. We can therefore always concentrate on the
dominant mode. In later stages when the universe evolves
away from the de Sitter solutions, the two modes will mix,
such that also the t mode will get an amplitude comparable
to the Emode. For α < 1 the leadingEmode increases with
δ ¼ 2 − α > 1, and therefore faster than the graviton modes
for the type 1 de Sitter solutions which both increase with
δ ¼ 1. The relative strength of the vierbein fluctuations
increases or decreases ∼aδ−2; cf. Eqs. (338) and (339). For
δ ¼ 2 or α ¼ 0 the relative strength remains constant. For
α < 0 one finds positive δ − 2 such that the relative strength
of inhomogeneities increases with increasing time. An
approximately homogeneous initial state becomes rapidly
strongly inhomogeneous. Finally, for α > 1 the dominant
mode is the t mode, with δ ¼ ð1þ αÞ=2. It is now this
mode that increases faster than the graviton modes for the
type 1 de Sitter solution. Again, for α > 3 the relative

strength of the inhomogeneities increases. We conclude
that for α < 0 or α > 3 the de Sitter solutions exhibit a
further instability beyond the one in the scalar χ. The
transversal traceless tensor fluctuations tij and Eij are
unstable.
We can compute the parameter α from the model

parameters by inserting the explicit de Sitter solution.
From Eq. (67) one infers the relation

4α

1þ α
¼ F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 − 16

p
; ðE12Þ

where

F ¼ 5þ 2ỹ −
8VZ̃

3ð1þ 2ỹÞm̃4
¼ 5þ 2ỹ −

8x
1þ 2ỹ

: ðE13Þ

Using Eq. (72) we infer for the two possible de Sitter
solutions of type 2 the relation

α ¼ −
1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ − x
xc − x

r
; ðE14Þ

where we recall 0 < xc < xþ and x < 0 for VZ̃ < 0. In
particular, for V ¼ 0, x ¼ 0 one has

α ¼ −
1

2
� 1

2

ffiffiffiffiffiffi
xþ
xc

r
¼ −

1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 2ỹ
1þ 2ỹ

s
: ðE15Þ

In the limit ỹ → 0 this yields α− ¼ −2, αþ ¼ 1. We observe
that the de Sitter solution with the minus sign of the root
always leads to negative α and is therefore unstable with
respect to the E mode. For the positive root we can write

α ¼ 1

2

�
3

�
1þ rα

9

�1
2ð1þ rαÞ−1

2 − 1

�
; ðE16Þ

with

rα ¼ 2ỹ −
8x

1þ 2ỹ
: ðE17Þ

For negative rα, as characteristic for ỹ < 0 and small jxj,
one finds α > 1. For the corresponding de Sitter solution
the t mode dominates, with δ > 1.
For both de Sitter solutions of type 2 the inhomogeneous

part of the vierbein and the metric vanishes for the leading
mode for a → 0 proportional to aδ−1. This contrasts with
the de Sitter solutions of type 1 for which the inhomo-
geneous part of the vierbein and the metric remain con-
stant for a → 0. For the type 2 solutions the dominant
inhomogeneous part for a → 0 is given by the nonleading
or decaying mode. While this mode becomes unim-
portant as time progresses, it dominates for the backward
extrapolation.
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