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In this work, we construct a five-dimensional spherically symmetric, charged and asymptotically anti–de
Sitter black hole with its singularity being pointlike and strictly localized on our brane. In addition, the
induced brane geometry is described by a Reissner-Nordström-(A)dS line element. We perform a careful
classification of the horizons, and demonstrate that all of them are exponentially localized close to the brane
thus exhibiting a pancake shape. The bulk gravitational background is everywhere regular, and reduces to
an AdS5 spacetime right outside the black hole event horizon. This geometry is supported by an anisotropic
fluid with only two independent components, the energy density ρE and tangential pressure p2. All energy
conditions are respected close to and on our brane, but a local violation takes place within the event horizon
regime in the bulk. A tensor-vector-scalar field-theory model is built in an attempt to realize the necessary
bulk matter, however, in order to do so, both gauge and scalar degrees of freedom need to turn phantomlike
at the bulk boundary. The study of the junction conditions reveals that no additional matter needs to be
introduced on the brane for its consistent embedding in the bulk geometry apart from its constant, positive
tension. We finally compute the effective gravitational equations on the brane, and demonstrate that the
Reissner-Nordström-(A)dS geometry on our brane is caused by the combined effect of the five-dimensional
geometry and bulk matter with its charge being in fact a tidal charge.
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I. PROLOGUE

The idea of the existence of extra spacelike dimensions,
first suggested by Kaluza [1] and Klein [2], is now more
than a hundred years old. During this time interval, it has
been employed in order to formulate fundamental theories
of particle physics, such as string theory [3,4], or more
phenomenologically oriented models such as the large extra
dimensions [5–7] or warped extra dimensions [8,9] sce-
naria. In the latter two models in particular, our four-
dimensional world is a 3-brane [10,11] embedded in a
higher-dimensional spacetime (the bulk). In the large extra
dimension scenario [5–7], the extra spacelike dimensions
are compactified to a new length scale—this scale is an
independent scale of the theory which however has to be
smaller than the μm scale in order to avoid observation
[12,13]. In the warped extra dimensions scenario [8,9],
there is only one extra spacelike dimension, which may be

either compactified, by introducing a second brane, or
assumed to be infinite—in the latter case, the localization of
the graviton close to our brane, ensured by an exponentially
decaying warp factor in the metric, leads to an effective
compactification of the infinite fifth dimension.
Motivated by the above, a plethora of higher-dimensional

studies in both particle physics and gravity were performed
over the years. The interest in the construction of black hole
solutions living in an arbitrary number of spacelike dimen-
sions, flat or warped, was intense. In the case of large extra
dimensions, the assumed flatness of the higher-dimensional
spacetime allowed for previously derived, analytical black
hole solutions [14,15] to accuratelymodel such gravitational
objects also in the new context. In contrast, the warping of
the bulk spacetime in the case of the warped extra dimen-
sions scenario posed a significant obstacle in the construc-
tion of analytical solutions describing black holes centered
on our brane and extending in a regular bulk spacetime. In
the first such attempt [16], the effort to construct a five-
dimensional braneworld black hole led instead to the
emergence of a black-string solution; although the line
element on the brane matched the Schwarzschild solution,
its singularity was not pointlike and localized on our brane,
where the gravitational collapse had taken place, but it was
extending along the infinite fifth dimension. This infinitely
long black-string solution was plagued by a curvature
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singularity at the anti–de Sitter (AdS) infinity, thus refuting
the gravity localization, and was also proven to be unstable
[17,18]. Since then, numerous attempts for the construction
of a robust braneworld black hole solution have been made
in the literature (for a partial only list, see [19–57]). Despite
these efforts, an exact, analytic solution describing a five-
dimensional black hole localized close to our brane and
leading also to a Schwarzschild black hole on the brane
was never found. The construction, on the other hand, of
numerical solutions describing small [58,59] and large
[60–62] black holes as well as the easiness with which
black-string solutions emerge in the context of the same
theory (again, for a nonexhaustive list, see [63–84]) kept
vibrant the interest in providing an answer as towhat type of
geometrical construction could lead to the long-sought
braneworld black hole solution.
In a recent work of ours [85], we have addressed the

above question and constructed from first principles,
the geometry of an analytic, spherically symmetric five-
dimensional black hole. This was done by combining
both bulk and brane perspectives, that is by employing a
set of coordinates that ensured the isotropy of the five-
dimensional spacetime and combining it with an appro-
priately selected metric function of the four-dimensional
line element. This geometrical construction resulted into a
black hole solution that had its singularity strictly localized
at a single point on the brane. Its horizon was extending
into the bulk, as expected, but it had a pancake shape and
was localized exponentially close to our brane. The five-
dimensional background was everywhere regular and
reduced to a pure AdS5 spacetime right outside the black
hole horizon. This geometric solution was not a vacuum
one, and a form of bulk matter had to be introduced in
order to support it. However, this bulk matter was charac-
terized by a very simple energy-momentum tensor describ-
ing an anisotropic fluid with only two independent
components, the energy density and tangential pressure.
The geometric background on the brane was of a pure
Schwarzschild form, which was shown to satisfy the
gravitational field equations of the effective four-dimen-
sional theory.
In the present work, we generalize our previous analysis

by retaining the basic method for the construction of the
five-dimensional, spherically symmetric black hole but by
considering an alternative form of the metric function. This
form is inspired by the one of the four-dimensional
Reissner-Nordström-(A)dS solution. In this way, we allow
for the presence of a charge term and of a cosmological
constant in the effective metric, thus generalizing our
previous assumption of a neutral, asymptotically flat brane
black hole. However, being also part of a five-dimensional
line element, the richer topological structure following
from this new metric function is transferred also in the bulk.
Thus, we perform a thorough study of both the horizon
structure of the five-dimensional spacetime and of all

curvature invariants. We demonstrate that the singularity
of the black hole remains pointlike and strictly localized on
the brane. We also show that every horizon radius char-
acterizing the spacetime, depending on the values of its
parameters, acquires a pancake shape and gets exponen-
tially localized close to the brane. The five-dimensional
spacetime is everywhere regular and reduces again to an
AdS5 spacetime right outside the black hole event horizon.
Our analysis remains at all points analytical and manages to
accommodate all geometrical features necessary for the
localization of a physical black hole solution close to our
brane. In fact, as we will demonstrate, our constructed line
element has the same general structure as the one used in
[61] for the numerical construction of such a solution with
the difference that in our case all metric components are
analytically known.
We next turn to the question of what is the form of the

bulk matter that would support the aforementioned geom-
etry. To this end, we perform a detailed study of the bulk
energy-momentum tensor, and show that its minimal
structure with only two independent components is pre-
served also in this case. We then attempt to construct a
field-theory model for the realization of the bulk matter, in
the form of a five-dimensional tensor-vector-scalar theory,
and discuss the conditions under which such a description
could be viable. We then focus on the presence of the brane
itself, and we first study the junctions conditions which
govern its consistent embedding in the five-dimensional
background. We demonstrate that these are satisfied by a
brane with no additional matter apart from its positive
tension. Finally, we derive the gravitational equations of the
effective theory and demonstrate that they are indeed
satisfied by the induced solution on the brane, namely
the Reissner-Nordström-(A)dS solution.
The structure of this paper is as follows: in Sec. II, we

present the general method for constructing the five-
dimensional geometry and study its geometrical properties.
In Sec. III, we turn to the gravitational theory, study the
profile of the bulk matter and present the field-theory toy
model. In Sec. IV, we investigate the junction conditions
and the effective gravitational theory on the brane. We
summarize our analysis and discuss our results in Sec. V.

II. THE GEOMETRICAL SETUP

We start our analysis with the Randall-Sundrum metric
ansatz [8,9], which describes a five-dimensional warped
spacetime. Its line element has the form

ds2 ¼ e−2kjyjð−dt2 þ dx⃗2Þ þ dy2: ð2:1Þ

The aforementioned spacetime is comprised by four-
dimensional flat slices stacked together along a fifth
dimension denoted by the coordinate y. The warp factor
of each slice is e−2kjyj, where k is the curvature of the five-
dimensional AdS spacetime. In [8,9], the AdS bulk
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spacetime is sourced by a negative five-dimensional cos-
mological constant. In the context of this work, we will
assume that our four-dimensional world is represented by a
3-brane located at y ¼ 0.
We may also write the above line element in conformally

flat coordinates: we thus introduce a new bulk coordinate z
via the relation z ¼ sgnðyÞðekjyj − 1Þ=k. In addition, as we
will address the presence of localized, spherically sym-
metric solutions on our brane, we employ spherical
coordinates for the spatial brane directions. Then, the line
element (2.1) takes the form

ds2 ¼ 1

ðkjzj þ 1Þ2 ð−dt
2 þ dr2 þ r2dΩ2

2 þ dz2Þ; ð2:2Þ

where dΩ2
2 ¼ dθ2 þ sin2 θdϕ2. As in the original Randall-

Sundrum models, the bulk-related Z2 symmetry under the
change z → −z has been also preserved here for consis-
tency reasons.
We will now extend the spherical symmetry into the bulk

by performing the following change of variables

fr ¼ ρ sin χ; z ¼ ρ cos χg; ð2:3Þ

in terms of which Eq. (2.2) reads

ds2 ¼ 1

ð1þ kρj cos χjÞ2 ð−dt
2 þ dρ2 þ ρ2dΩ2

3Þ: ð2:4Þ

In the above, χ is an angular coordinate which takes values
in the range ½0; π�, ρ denotes the radial coordinate of the
four-dimensional spatial part of the five-dimensional space-
time, while

dΩ2
3 ¼ dχ2 þ sin2χdθ2 þ sin2χsin2θdϕ2 ð2:5Þ

corresponds to the line element of a unit 3-sphere. From
(2.3) we easily deduce that ρ is always positive definite
while the domains χ ∈ ½0; π=2Þ and χ ∈ ðπ=2; π� corre-
spond to positive and negative values of z, respectively. The
line element (2.4) is invariant under the coordinate trans-
formation χ → π − χ, which relates the two domains, due
to the assumed Z2 symmetry. We may therefore focus only
on the ½0; π=2� domain for which cos χ ≥ 0. The inverse
transformation to (2.3) reads

fρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
; tan χ ¼ r=zg: ð2:6Þ

From this, we deduce that the radial coordinate ρ ranges
over the interval ½0;∞Þ. In fact, it receives contributions
both from the (brane) r and (bulk) z coordinates. Therefore,
the radial infinity, ρ → ∞, may describe both the asymp-
totic AdS boundary (jzj → ∞) and the radial infinity on the
brane (r → ∞). In the new coordinate system (2.3), the
brane, which was located at y ¼ 0 or z ¼ 0, now lies at

cos χ ¼ 0, i.e., at χ ¼ π=2. There, ρ reduces to the brane
radial coordinate r. The geometrical setup of the five-
dimensional spacetime along with the two systems of
coordinates are depicted in Fig. 1.
As mentioned previously, we are interested in placing a

spherically symmetric black hole on our brane. To this end,
we replace the two-dimensional flat part ð−dt2 þ dρ2Þ of
the line element in Eq. (2.4) with a curved part, and thus we
write

ds2 ¼ 1

ð1þ kρ cos χÞ2
�
−fðρÞdt2 þ dρ2

fðρÞ þ ρ2dΩ2
3

�
;

χ ∈ ½0; π=2�: ð2:7Þ

Here, fðρÞ is a general spherically symmetric function. In
the context of this work, we are interested in the study of
black holes, and we will therefore assume that fðρÞ has a
form inspired by the more general spherically symmetric
black hole solution of general relativity, namely the
Reissner-Nordström-(anti–)de Sitter solution:

fðρÞ ¼ 1 −
2M
ρ

þQ2

ρ2
−
Λ
3
ρ2: ð2:8Þ

Note that, on the brane where cos χ ¼ 0 and ρ ¼ r, the line
element (2.7) does reduce to a Reissner-Nordström-(anti–)
de Sitter black hole, with the parameter M being related to
its mass,Q to its charge and Λ to the effective cosmological
constant on the brane.1

FIG. 1. The geometrical setup of the five-dimensional space-
time and the set of coordinates.

1A similar construction of the bulk geometry was followed in
[44], however, a different form was used for the function fðρÞ. As
a result, no known black hole solution was recovered on the
brane. In addition, their choice did not support either an AdS5
spacetime asymptotically in the bulk, in contrast with our choice
as we will shortly demonstrate.
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However, its interpretation from the bulk point of
view needs to be carefully examined. Indeed, almost all
known analytic black hole solutions on the brane either
lack completely a bulk description, or correspond to bulk
solutions with an undesired topology (i.e., that of a black
string) or unattractive characteristics (i.e., nonasymptoti-
cally AdS solutions). We will therefore investigate now the
topological characteristics of our five-dimensional con-
struction. To this end, we compute all scalar gravitational
quantities, namely the Ricci scalar R, the Ricci tensor
combination R≡ RMNRMN and the Kretchmann scalar
K≡ RMNKLRMNKL. The expression of the Ricci scalar is
the most elegant one and is given below

R ¼ −20
�
k2 −

Λ
3

�
þ 12k2Mcos2χ

ρ

−
12k cos χðkQ2 cos χ þ 2MÞ

ρ2
þ 4ð2kQ2 cos χ þMÞ

ρ3
;

ð2:9Þ

while the more extended R and K quantities are presented
in Appendix A. The above expression contains a constant
term which involves the warping parameter k and the
effective cosmological parameter Λ. It also contains addi-
tional terms sourced by the mass and charge of the black
hole. These terms are singular at the value ρ ¼ 0 of the bulk
radial coordinate. However, this singularity arises only
when r and z are simultaneously zero, i.e., at the location of
the black hole singularity on the brane. Any bulk point
having by definition a nonzero value of z, and thus a
nonzero value of ρ, is regular. In addition, all singular
terms vanish in the limit ρ → ∞, i.e., when approaching
the AdS asymptotic boundary or the radial infinity on the
brane. Therefore, the spacetime (2.7) does describe the

gravitational background around a five-dimensional local-
ized black hole with a spacetime singularity strictly
restricted on the brane. We also note that no singularity
arises at the AdS asymptotic boundary, a feature which
plagues most nonhomogeneous black-string solutions. In
our case, far away from the brane, the spacetime becomes
a maximally symmetric one with a curvature determined
by the combination −20ðk2 − Λ=3Þ. For Λ ¼ 0, we obtain
the exact same AdS spacetime of the Randall-Sundrum
model; for positive but small values—compared to the
warping effect driven by k—of the effective cosmological
constant on the brane, the AdS character of the asymptotic
regime is again retained2 while, for Λ < 0, it is further
enhanced.
The expressions of the R and K invariant quantities

displayed in Appendix A also lead to the same conclusions
drawn above for the topology of the five-dimensional
spacetime. It is illuminating to plot the behavior of all
curvature quantities. To this end, we use the original ðr; yÞ
brane and bulk coordinates as it is easier to depict the
location of the brane. Using (2.6) in (2.9), we easily obtain
for R the expression

R ¼ −20
�
k2 −

Λ
3

�
þ 4k3Mð10 − 12ekjyj þ 3e2kjyjÞ

½k2r2 þ ðekjyj − 1Þ2�3=2

−
4k4Q2ð5 − 8ekjyj þ 3e2kjyjÞ

½k2r2 þ ðekjyj − 1Þ2�2 : ð2:10Þ

FIG. 2. (a) The scalar curvature R in terms of the coordinates ðr; yÞ for k ¼ 1, M ¼ 10, Q ¼ 1, and Λ ¼ 5 × 10−4, while (b) shows a
magnification of the geometry near the singularity.

2Although mathematically possible, we do not consider here
the case where Λ > 3k2. Since k is an energy scale close to the
fundamental gravity scale, that would demand an extremely
large Λ. Such an assumption is not supported by current
observational data.
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Similar expressions may be derived forR and K, and these
are again presented in Appendix A. In Fig. 2, we depict the
Ricci scalar R in terms of both r and y—we remind the
reader that, in this coordinate system, the brane is located at
y ¼ 0. We observe that the curvature of the 5-dimensional
spacetime increases only when we approach the brane and
simultaneously take the limit r → 0. All other bulk or brane
points are regular. The curvature quickly decreases as we
move away from the singularity on the brane acquiring its
constant, negative, asymptotic value corresponding to an
AdS spacetime—this value is much smaller than the one
adopted in the vicinity of the singularity and thus is not
visible in the plots. In Fig. 2(b), we present a magnification
of the behavior of the Ricci scalar close to the singular

point: we observe the presence of an interesting regime in
the bulk where the curvature of spacetime dips to a large
negative value before starting to increase close to the
singularity. We will comment on this feature in the fol-
lowing section. In Figs. 3(a) and 3(b), we also present the
behavior of the R and K invariant quantities, respectively.
They exhibit the same asymptotic and near-singularity
behaviors as the scalar curvature R with the only difference
being the absence of the negative curvature well.
In order to discuss further the topology of the five-

dimensional spacetime (2.7), let us also rewrite it in terms
of the original nonspherical coordinates ðr; yÞ. Employing
again the inverse transformations (2.6), the line element
takes the form

ds2 ¼ e−2kjyj
�
−fðr; yÞdt2 þ dr2

r2 þ z2ðyÞ
�

r2

fðr; yÞ þ z2ðyÞ
�
þ r2dΩ2

2 þ
2rzðyÞekjyj
r2 þ z2ðyÞ

�
1

fðr; yÞ − 1

�
drdy

�

þ dy2

r2 þ z2ðyÞ
�
r2 þ z2ðyÞ

fðr; yÞ
�
; ð2:11Þ

where zðyÞ ¼ sgnðyÞðekjyj − 1Þ=k, and

fðr; yÞ ¼ 1 −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2ðyÞ
p þ Q2

r2 þ z2ðyÞ −
Λ
3
½r2 þ z2ðyÞ�:

ð2:12Þ

As a side remark, we note that the line element (2.11) has
come out to have the exact same structure as the one
employed in [61] for the numerical construction of a five-
dimensional black hole localized on the brane. In our case
though all metric components are analytically known

whereas, in [61], the five unknown metric functions had
to be numerically determined.
Returning to the topology of our five-dimensional

solution, we are interested in the behavior of the black
hole horizon(s) in the bulk. If the aforementioned spacetime
describes a regular, localized-on-the-brane black hole, its
horizon(s) are expected to extend into the bulk but stay
close to the brane. To investigate this, we will study the
causal structure of the bulk spacetime as this is defined by
the light cone. We will consider radial null trajectories in
the five-dimensional background (2.11), and thus keep θ
and ϕ constant. Then, for a fixed value y ¼ y0 of the fifth
coordinate, the condition ds2 ¼ 0 leads to the result

FIG. 3. (a) The invariant quantityR≡ RMNRMN in terms of the coordinates ðr; yÞ for k ¼ 1,M ¼ 10, Q ¼ 1, and Λ ¼ 5 × 10−4, and
(b) the invariant quantity K≡ RMNKLRMNKL for the same values of the parameters.
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dt
dr

¼ � 1

fðr; y0Þ
�
r2k2 þ fðr; y0Þðekjy0j − 1Þ2

r2k2 þ ðekjy0j − 1Þ2
�
1=2

; ð2:13Þ

where

fðr; y0Þ ¼ 1 − 2M

�
r2 þ ðekjy0j − 1Þ2

k2

�−1
2

þQ2

�
r2 þ ðekjy0j − 1Þ2

k2

�−1

−
Λ
3

�
r2 þ ðekjy0j − 1Þ2

k2

�
: ð2:14Þ

The location and topology of the horizons characterizing
the line element (2.11) may be obtained via Eq. (2.13),
by determining the values of ðr; y0Þ for which dt=dr ¼
�∞, or equivalently fðr; y0Þ ¼ 0. For y0 ¼ 0, Eq. (2.14)
reduces to the metric function fðrÞ of a four-dimensional
Reissner-Nordström-(anti–)de Sitter spacetime for which
the emergence and location of horizons has been exten-
sively studied (see, for example, [86,87]). A similar
analysis may be conducted also in the context of the
five-dimensional spacetime (2.11), where the location of
horizons is determined by the equation fðρÞ ¼ 0, with
the bulk radial coordinate being ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2ðyÞ

p
—we

keep the y coordinate fixed in Eqs. (2.13) and (2.14) in
order to present the view of a static “observer” located at
different slices of the bulk spacetime as we move away
from the brane.

In Fig. 4, we depict a flowchart3 which constitutes an
attentive scrutiny of the roots of the quartic polynomial

fðρÞ ¼ 1 − 2M
ρ þ Q2

ρ2
− Λ

3
ρ2. Every real, positive root of

this polynomial corresponds either to a black hole or a
cosmological horizon of the five-dimensional spacetime
(2.7). Let us consider some indicative cases. ForM ≠ 0 but
Q ¼ 0 and Λ ¼ 0, we obtain the case of a five-dimensional
spacetime with a sole black hole horizon at ρH ¼ 2M. This
may be written in terms of ðr; yÞ as

r2H ¼ 4M2 −
ðekjy0j − 1Þ2

k2
: ð2:15Þ

FIG. 4. All possible roots of the quartic polynomial fðρÞ ¼ 1 − 2M
ρ þ Q2

ρ2
− Λ

3
ρ2. In the above flowchart, we catalog the maximum

possible number of horizons for each particular case.

3A flowchart is a graphical representation of a process or a
flow of consecutive steps. It was originated from computer
science as a tool for representing algorithms and programming
logic but nowadays plays an extremely useful role in displaying
information visually and plainly. It is often the case that different
flowcharts use different conventions about their symbols, thus, in
our case we clarify that

(i) Ellipse/terminator represents the starting or ending point
of the system.

(ii) Rectangle/process represents a particular process, or a
statement that is true.

(iii) Rhombus/decision represents a decision or a branching
point. Lines coming out from the rhombus indicates
different possible situations, leading to different subpro-
cesses/subcases.

(iv) Parallelogram/data represents information entering or
leaving the system (input or output). In our case it has
mainly used as the final result/conclusion of each subcase.
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This case was studied in [85] where it was shown that
the black hole horizon was exponentially localized close
to the brane. Indeed, the aforementioned equation reveals
the exponential decrease of rH as jy0j increases and the
existence of a value where the horizon vanishes, namely at
jy0j ¼ lnð2Mkþ 1Þ=k. Beyond this point, any y slice of the
five-dimensional spacetime is horizon free and almost pure
AdS, as was shown in [85]. In addition, the black hole
singularity was strictly localized on the brane as in the
present analysis.
Does the horizon exponential localization persist also in

the case of multiple horizons? Let us consider the case with
M ≠ 0 and Q ≠ 0 (M2 > Q2), but Λ ¼ 0 for simplicity. In
that case, it is easy to see that two horizons emerge, an
internal Cauchy horizon and an external event horizon

located at ρ� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. Employing again the

ðr; yÞ coordinates, these are rewritten as

r2� ¼ ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ2 − ðekjy0j − 1Þ2

k2
: ð2:16Þ

We observe that both horizons shrink as we move to y slices
of the bulk spacetime located further away from the brane.
Once again both horizons cease to exist beyond a certain
value of y, namely at the values

jy0j� ¼ 1

k
ln

�
1þ kM

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Q2

M2

r ��
: ð2:17Þ

Note that each horizon will vanish at its own value of the y
coordinate and that the horizon corresponding to the
smaller value of the radial coordinate ρ, i.e., to the smaller
root of the equation fðρÞ ¼ 0, will vanish first.
The most general case arises when M ≠ 0, Q ≠ 0, and

Λ > 0. Then, we can have at most three real, positive roots
of the equation fðρÞ ¼ 0, and thus three horizons: an
internal Cauchy horizon ρ−, an external event horizon ρþ
and a cosmological horizon ρC. Their location in terms of
the radial coordinate ρ is determined solely by the param-
eters M, Q, and Λ and they naturally extend both on the
brane and in the bulk. As above, their profile in the bulk
may be studied if we change to the ðr; yÞ coordinates; then,
the following general relation holds

r2h ¼ ρ2h −
ðekjy0j − 1Þ2

k2
; ð2:18Þ

where the subscript h has been used to denote the location
of all three horizons. Since the value of ρh is fixed byM,Q,
and Λ, it is obvious that as jy0j increases the value of rh
exponentially decreases. Thus, as we move along the extra

FIG. 5. The horizon of the localized five-dimensional Schwarzschild black hole from the bulk point of view for M ¼ 7, k ¼ 0.5,
Q ¼ 0, and Λ ¼ 0. Both (a) and (b) depict the same image from different angles. The depicted brane coordinates are the radial
coordinate r and the angular coordinate ϕ.
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dimension away from the brane, rh quickly shrinks and
becomes zero at a distance

jy0jðhÞ ¼
1

k
lnðkρh þ 1Þ: ð2:19Þ

Again, each horizon will vanish at a different point along
the extra dimension: the Cauchy horizon will vanish first,
the event horizon will follow next and the cosmological
horizon will disappear last.4 Due to the exponential falloff
of each rh in terms of the y coordinate, all horizons acquire
a “pancake” shape with its longer dimension lying along
the brane and its shorter one along the bulk. As an
indicative case, in Fig. 5 we give the geometrical repre-
sentation of the event horizon of the five-dimensional
Schwarzschild spacetime. It is important to stress that by
introducing nonvanishing Q or Λ the depicted general
behavior does not change.

III. THE GRAVITATIONAL THEORY

After constructing the geometrical setup of our five-
dimensional gravitational theory, we now consider its action
functional which is described by the general expression

SB ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
R
2κ25

þ LðBÞ
m

�
: ð3:1Þ

In the above, R is the Ricci scalar constructed in terms of the
metric tensor gMN of the five-dimensional spacetime, and
κ25 ¼ 8πG5 incorporates the five-dimensional gravitational
constant G5. All matter fields, which may exist in the bulk,

are described by the Lagrangian densityLðBÞ
m . Notice that we

have not explicitly included the five-dimensional cosmo-
logical constantΛ5 in the above action—as wewill see in the
analysis below, this quantity will appear naturally inside the
bulk energy-momentum tensor.
By varying the aforementioned action functional SB with

respect to the metric tensor gMN, we may derive the gra-
vitational field equations in the bulk which have the form

GMN ¼ κ25T
ðBÞ
MN: ð3:2Þ

The quantity GMN ¼ RMN − 1
2
gMNR denotes the Einstein

tensor while

TðBÞ
MN ¼ −

2ffiffiffiffiffiffi−gp δðLðBÞ
m

ffiffiffiffiffiffi−gp Þ
δgMN ð3:3Þ

is the bulk energy-momentum tensor associated with the

Lagrangian density LðBÞ
m . If we use the gravitational back-

ground (2.7) constructed in the previous section, we find

that the nonzero components of TðBÞ
MN in mixed form are the

following:

TðBÞt
t ¼ TðBÞρ

ρ

¼ 1

κ25

�
2ð3k2 − ΛÞ þ 3k cos χ

ρ2

�
3M −

2Q2

ρ

�
−
3M
ρ3

�
;

ð3:4Þ

TðBÞχ
χ ¼ TðBÞθ

θ ¼ TðBÞϕ
ϕ

¼ 1

κ25

�
2ð3k2 − ΛÞ − 6k2cos2χ

ρ

�
M −

Q2

ρ

�

þ 6kM cos χ
ρ2

�
: ð3:5Þ

The bulk energy-momentum tensor is thus characterized
solely by three components: the energy-density ρE ≡ −TðBÞt

t,
the radial pressure p1 ≡ TðBÞρ

ρ, and a common tangential
pressure p2 ≡ TðBÞχ

χ ¼ TðBÞθ
θ ¼ TðBÞϕ

ϕ. Therefore, the
gravitational background (2.7) of a five-dimensional, local-
ized close to the brane black hole solution may be supported
by a diagonal energy-momentum tensor that describes an
anisotropic fluid. Employing the fluid’s timelike five velocity
UM and a spacelike unit vector in the direction ofρ coordinate
satisfying the relations

UM ¼ fUt; 0; 0; 0; 0g; UMUNgMN ¼ −1; ð3:6Þ

XM ¼ f0; Xρ; 0; 0; 0g; XMXNgMN ¼ 1; ð3:7Þ

the bulk energy-momentum tensor may be written in a
covariant notation as follows

TðBÞMN ¼ ðρE þ p2ÞUMUN þ ðp1 − p2ÞXMXN þ p2gMN:

ð3:8Þ

The aforementioned, rather minimal, content of the bulk
energy-momentum tensor was first found in the case where
the brane background was assumed to be the Schwarzschild
solution [85]. Aswe see, this structure persists also in the case
where the brane background assumes the form of more
generalized four-dimensional black hole solutions.
In fact, there are only two independent components of

the energy-momentum tensor, namely the energy-density
ρE and the tangential pressure component p2; as Eq. (3.4)
reveals, the radial pressure component p1 is found to satisfy

4The vanishing of the cosmological horizon does not mean
that the causal spacetime disappears but rather that a change of
coordinates is necessary (see Appendix B). After this point, a
static “observer” no longer exists and a set of planar coordinates,
such as the ones used in cosmology to describe a time-dependent
de Sitter universe, is more appropriate. If one insists in keeping
the static, spherically symmetric set of coordinates of Eq. (2.7),
and thus the notion of a static “observer,” then an interesting
bound arises as to how far from the first brane a second one may
be introduced.
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the equation of state p1 ¼ −ρE everywhere in the bulk.
In addition, at asymptotic infinity, i.e., as ρ → þ∞, all
three components of the energy-momentum tensor reduce
to a constant value, which can be identified as the five-
dimensional cosmological constant Λ5,

lim
ρ→þ∞

ρEðρ; χÞ ¼ − 2ð3k2 − ΛÞ
κ25

≡ Λ5; ð3:9Þ

lim
ρ→þ∞

p1ðρ; χÞ ¼ lim
ρ→þ∞

p2ðρ; χÞ ¼
2ð3k2 −ΛÞ

κ25
≡−Λ5:

ð3:10Þ
As discussed in the previous section and also confirm here,
the asymptotic form of the bulk spacetime depends on the
sign of the quantity ð3k2 − ΛÞ. If 3k2 > Λ, the asymptotic

form of the energy-momentum tensor reduces to that of a
negative bulk cosmological constant and the curvature
invariant quantities R, R, K match the ones of an AdS5
spacetime. Then, the brane parameter Λ is determined
through the relation 2Λ ¼ 6k2 − κ25jΛ5j, and its exact value
depends on the interbalance between the warp parameter k
and the bulk cosmological constant Λ5. In the special case
where a fine-tuning is imposed so that Λ ¼ 0, the metric
(2.7) incorporates exactly the Randall-Sundrum model
[8,9] at the spacetime boundary. Note, however, that the
form of the warp factor remains of an exponential form, i.e.,
e−kjyj, in our analysis regardless of the value of Λ.
In order to study in more detail the profiles of the energy

density ρE and pressure p2 in the bulk, we employ again
the coordinates ðr; yÞ. Using Eqs. (2.6), (3.4), and (3.5),
we find

ρEðr; yÞ ¼ −
1

κ25

�
2ð3k2 − ΛÞ − 3Mk3ð4 − 3ekjyjÞ

½k2r2 þ ðekjyj − 1Þ2�3=2 −
6Q2k4ðekjyj − 1Þ

½k2r2 þ ðekjyj − 1Þ2�2
�
; ð3:11Þ

p2ðr; yÞ ¼
1

κ25

�
2ð3k2 − ΛÞ þ 6Mk3ðekjyj − 1Þð2 − ekjyjÞ

½k2r2 þ ðekjyj − 1Þ2�3=2 þ 6Q2k4ðekjyj − 1Þ2
½k2r2 þ ðekjyj − 1Þ2�2

�
: ð3:12Þ

In Fig. 6(a), we present the profiles of the energy density ρE
and tangential pressure p2 in terms of the bulk coordinate y.
In this indicative case, the values of the parameters were

chosen to be κ5 ¼ 1, k ¼ 1, M ¼ 10, Q ¼ 9, Λ ¼
5 × 10−21, and we have also fixed the radial coordinate
on the brane at the random value r ¼ 0.85. Substituting the

(a) (b)

FIG. 6. (a) The profiles of the energy density ρE and tangential pressure p2 in terms of the y coordinate for κ5 ¼ 1, k ¼ 1, M ¼ 10,
Q ¼ 9,Λ ¼ 5 × 10−21, and r ¼ 0.85. (b) The profiles of TðBÞr

r, TðBÞr
y, TðBÞy

r, and TðBÞy
y depicted for the same values of the parameters.

Region I lies inside the Cauchy horizon, region II corresponds to the bulk spacetime between the two black hole horizons, while region
III is located between the exterior black hole horizon and the cosmological one.
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aforementioned values of M, Q, and Λ in the flowchart of
Fig. 4, one can evaluate the locations of the three distinct
horizons, namely ρ− ¼ 5.64 (Cauchy horizon), ρþ ¼ 14.36
(exterior black hole horizon) and ρC ¼ 2.45 × 1010 (cos-
mological horizon). Given these values and the fixed
radial distance r ¼ 0.85, it is straightforward to calculate
from Eq. (2.18) the corresponding values of y at which we
encounter the three horizons in the bulk: the Cauchy
horizon lies at y− ¼ 1.88, the exterior black hole horizon
at yþ ¼ 2.73, and the cosmological horizon at yc ¼ 23.92.
We denote the bulk region inside the Cauchy horizon as
region I, the region between the two black hole horizons as
region II, and the region between the exterior black hole
horizon and the cosmological horizon as region III; we
denote these regions also in Fig. 6(b).
We observe that both the energy density ρE and

tangential pressure p2 exhibit a shell-like distribution in
region I, i.e., in the region between the brane, located at
y ¼ 0, and the Cauchy horizon. As the latter is approached,
both components quickly decrease towards their AdS5
asymptotic values given by Eqs. (3.9) and (3.10). These
values are adopted even before the exterior black hole
horizon is reached, therefore, as Fig. 6(a) clearly depicts,
region III describes a pure AdS5 spacetime. On the brane,
the energy density ρE and tangential pressure p2 adopt
values that respect all energy conditions since there we have
ρE > 0, ρE þ p1 ¼ 0 and ρE > p2. Although the profiles of
ρE and p2 depend on the chosen values of the parameters of
the theory, the behavior depicted in Fig. 6(a) is by no means
a special one and in fact arises for a large number of sets of
parameter values. What we should also stress is the
emergence of a regime close to the Cauchy horizon where
the energy conditions are violated since ρE < p2. The same
behavior was also observed in our previous work [85] and
seems to be a requisite for the localization of the black hole
topology close to the brane as well as for the transition to a
pure AdS5 spacetime, which, by construction, is charac-
terized by the relation pi ¼ −ρE ¼ jΛ5j.
When we perform the coordinate change described via

Eq. (2.6), the components TðBÞM
N of the energy-momentum

tensor are bound to change. The TðBÞt
t ≡ −ρE and TðBÞθ

θ ¼
TðBÞϕ

ϕ ≡ p2 components receive no additive corrections and
their change amounts to merely substituting fρ; χg by fr; yg
in their expressions, thus leading to Eqs. (3.11) and (3.12).
However, the TðBÞr

r, TðBÞr
y, TðBÞy

r, and TðBÞy
y components

receive also additive corrections and their expressions are
significantly modified. The analysis leading to the new
expressions of all the components of the energy-momentum
tensor is given in Appendix C. Therefore, for completeness,
in Fig. 6(b) we depict also the behavior of these four
components of the energy-momentum tensor in terms of
the extra dimension y and for the same set of parameter
values as in Fig. 6(a). As was the case with ρE and p2, these
components remain everywhere regular, have a shell-
like distribution inside region I and quickly adopt their

asymptotic values even before the exterior black hole hori-
zon is reached: for the TðBÞr

r and TðBÞy
y components, this

asymptotic value is jΛ5j while, for the off-diagonal compo-
nents TðBÞr

y and TðBÞy
r, this asymptotic value is zero, as

expected. Note also that the coordinate change (2.6) destroys
the simple relations (3.4), (3.5) between the components
of the energy momentum tensor which were valid in the
ft; ρ; χ; θ;ϕg set of coordinates. All these reveal that,
although the “axial” set of coordinates ft; r; θ;ϕ; yg serve
better to illustrate the behavior of both the curvature and
distribution of matter with respect to the brane observer, it is
the “spherical” set of coordinates ft; ρ; χ; θ;ϕg that encodes
the highest symmetry of the five-dimensional theory and
leads to the simplest profile of both the spacetime and the
energy-momentum tensor.

A. A field-theory toy model

In this subsection, wewill investigate further the nature of
the bulk energy-momentum tensor that is necessary to
support the geometry of the five-dimensional localized
Reissner-Nordström-(A)dS black hole presented in Sec. II.

Due to the simple structure ofTðBÞ
MN , given in Eqs. (3.4), (3.5),

the term “anisotropic fluid” was used to describe it, and a
covariant form for its expression was also found. However, it
would be interesting to see if a field-theory model could be
proposed to support it, and under which conditions on the
associated fields this task could be fulfilled.
In the following analysis, we will use the spherically

symmetric set of coordinates ft; ρ; χ; θ;ϕg in which TðBÞ
MN

takes its simplest possible form, as argued above. We will
employ five-dimensional fields that are allowed to propa-
gate outside our brane, and thus consider scalar or gauge
fields which are distinct from the corresponding Standard
Model degrees of freedom living on the brane. According
to our results, a theory with only minimally coupled scalars
or with only minimally coupled vector fields fails to lead
to the desired structure of the bulk energy-momentum
tensor. We therefore consider a tensor-vector-scalar five-
dimensional field theory where the bulk matter Lagrangian

density LðBÞ
m appearing in Eq. (3.1) is given by

LðBÞ
m ≔ LðgÞ þ LðscÞ; ð3:13Þ

with

LðgÞ ≔ −
1

4
FMNFMN; ð3:14Þ

LðscÞ≔−f1ðξ;ψÞð∂ξÞ2−f2ðξ;ψÞð∂ψÞ2−Vðξ;ψÞ: ð3:15Þ

Above, FMN ¼ ∇MAN −∇NAM is the field-strength tensor
of an Abelian gauge field AM and fξðρ; χÞ;ψðρ; χÞg are two
scalar fields. In addition, we have introduced two arbitrary
functions f1ðξ;ψÞ and f2ðξ;ψÞ in the kinetic terms of
the scalar fields as well as an interaction potential Vðξ;ψÞ.
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The variation of
ffiffiffiffiffiffi−gp

LðBÞ
m with respect to gMN leads to

the result

TðBÞMN ¼ TðgÞMN þ TðscÞMN; ð3:16Þ

where

TðgÞMN ¼ FMAFN
A −

1

4
gMNFABFAB; ð3:17Þ

and

TðscÞ
MN ¼ 2f1ðξ;ψÞ∂Mξ∂Nξþ2f2ðξ;ψÞ∂Mψ∂NψþgMNLðscÞ:

ð3:18Þ

In what follows, we will also assume the following
configuration for the gauge field-strength tensor

ðFMNÞ ¼

0
BBBBBB@

0 E1ðρ; χÞ E2ðρ; χÞ 0 0

−E1ðρ; χÞ 0 0 0 0

−E2ðρ; χÞ 0 0 0 0

0 0 0 0 Bðρ; χ; θÞ
0 0 0 −Bðρ; χ; θÞ 0

1
CCCCCCA
; ð3:19Þ

where E1, E2, and B stand for two components of the “electric” bulk gauge field and a sole component of the “magnetic”
field, respectively. Employing the above in Eq. (3.17), one may easily calculate the components of the gauge-field energy-

momentum tensor TðgÞMN. Using also the expression (3.18), the components of TðscÞ
MN for the two scalar fields readily follow.

Taking their sum, we obtain the following results for the nonvanishing mixed components of the bulk energy-momentum
tensor

TðBÞt
t ¼

1

2
ð−bB2 þ a1E2

1 þ a2E2
2Þ − f1ð∂ξÞ2 − f2ð∂ψÞ2 − V;

TðBÞρ
ρ ¼

1

2
ð−bB2 þ a1E2

1 − a2E2
2Þ þ f1ð∂ρξ∂ρξ − ∂χξ∂χξÞ þ f2ð∂ρψ∂ρψ − ∂χψ∂χψÞ − V;

TðBÞρ
χ ¼ a2E1E2 þ 2ðf1∂ρξ∂χξþ f2∂ρψ∂χψÞ;

TðBÞχ
χ ¼

1

2
ð−bB2 − a1E2

1 þ a2E2
2Þ − f1ð∂ρξ∂ρξ − ∂χξ∂χξÞ − f2ð∂ρψ∂ρψ − ∂χψ∂χψÞ − V;

TðBÞθ
θ ¼ TðBÞϕ

ϕ ¼ 1

2
ðbB2 − a1E2

1 − a2E2
2Þ − f1ð∂ξÞ2 − f2ð∂ψÞ2 − V: ð3:20Þ

In the above, we have defined the quantities a1 ≡ gttgρρ,
a2 ≡ gttgχχ , and b≡ gθθgϕϕ for simplicity.
Let us now investigate whether the above set of compo-

nents can be simplified in order to resemble the minimal
configuration described by Eqs. (3.4), (3.5). We thus first
demand that TðBÞt

t ¼ TðBÞρ
ρ, and we obtain the constraint

E2
2 ¼

2ðf1∂ρξ∂ρξþ f2∂ρψ∂ρψÞ
a2

: ð3:21Þ

We next observe that the configuration of Eqs. (3.4), (3.5)
has no off diagonal component. Thus demanding that
TðBÞρ

χ ¼ 0 and employing Eq. (3.21), we also obtain

E2
1 ¼

1

a2

2ðf1∂ρξ∂χξþ f2∂ρψ∂χψÞ2
f1∂ρξ∂ρξþ f2∂ρψ∂ρψ

: ð3:22Þ

Demanding finally that TðBÞχ
χ ¼ TðBÞθ

θ ¼ TðBÞϕ
ϕ, we are

led to a third constraint

B2 ¼ 2½f1ð∂ξÞ2 þ f2ð∂ψÞ2�
b

: ð3:23Þ

Therefore, the coexistence in the bulk of the three compo-
nents of the field-strength tensor with the two scalar fields,
in a way that they satisfy the above three constraints,
ensures that the total energy-momentum tensor in the bulk
acquires the form dictated by Eqs. (3.4), (3.5).
In addition, setting ρE ≡ −TðBÞt

t and p2 ≡ TðBÞχ
χ , the

remaining two components give

f1ð∂ξÞ2 þ f2ð∂ψÞ2 þ V ¼ 1

2
ðρE − p2Þ; ð3:24Þ
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bB2 − a1E2
1 − a2E2

2 ¼ ρE þ p2: ð3:25Þ

Therefore, the two independent components of the energy-
momentum tensor in the bulk are determined by the exact
profiles of the gauge and scalar fields. These in turn must
satisfy their own equations of motion. By considering the
variation of the action SB with respect to AM, we obtain the
five-dimensional equation for the gauge field in the bulk,
namely

∂Mð
ffiffiffiffiffiffi
−g

p
FMNÞ ¼ 0: ð3:26Þ

Considering the components N ¼ t and N ¼ ϕ, we find

∂ρE1 þ ∂χE2 þ E1

∂ρ
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi−gp þ E2

∂χ
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi−gp ¼ 0; ð3:27Þ

∂θBþ B cos θ
sin θ

¼ 0 ⇒ Bðρ; χ; θÞ ¼ B0ðρ; χÞ
sin θ

; ð3:28Þ

respectively, while the remaining components are identi-
cally zero. Additionally, the variation of SB with respect to
the scalar fields ξ and ψ results in the equations

1

2
½ð∂ξf1Þð∂ξÞ2 þ ð∂ξf2Þð∂ψÞ2 þ ∂ξV�

¼ ∂Mð ffiffiffiffiffiffi−gp
f1gMN∂NξÞffiffiffiffiffiffi−gp ; ð3:29Þ

1

2
½ð∂ψf1Þð∂ξÞ2 þ ð∂ψf2Þð∂ψÞ2 þ ∂ψV�

¼ ∂Mð ffiffiffiffiffiffi−gp
f2gMN∂NψÞffiffiffiffiffiffi−gp : ð3:30Þ

The above set of four differential equations (3.27)–
(3.30), together with the constraints (3.22)–(3.25), may
indeed possess a mathematically consistent solution.
The complexity of the system would most likely demand
numerical calculation for this solution to be derived.
However, instead of attempting to solve this coupled
system of equations, we would like to examine the ensuing
characteristics of the fields. To this end, let us focus on
Eq. (3.25): employing the exact form of the components ρE
and p2 from Eqs. (3.4), (3.5), we may rewrite it as

bB2 − a1E2
1 − a2E2

2 ¼
1

κ25

�
−
6k2cos2χ

ρ

�
M −

Q2

ρ

�
−
3k cos χ

ρ2

�
3M −

2Q2

ρ

�
þ 3M

ρ3

�
: ð3:31Þ

The right-hand side of the above equation is clearly not
sign definite. For small ρ, it is positive definite since
in this regime both ρE and p2 are positive, as Fig. 6(a)
reveals. However, as ρ increases, negative-valued terms
inside the square brackets begin to dominate making
this combination clearly negative for large values of ρ.
Since a1 < 0, a2 < 0 and b > 0, according to their
definitions below Eq. (3.20), this means that at least
one of the components of the gauge field strength-tensor
FMN must turn imaginary near the bulk boundary. Due to
the constraints (3.22), (3.23), this may lead to ξ or ψ also
becoming imaginary.
Simpler variants of the above model may also be built,

however, they all suffer from the above problem. For
instance, if we consider the case with E2 ¼ 0 and ξ ¼
ξðχÞ together with the condition f2 ¼ 0, the energy-
momentum tensor comes out to be automatically diagonal
and satisfying TðBÞt

t ¼ TðBÞρ
ρ. The constraints (3.21),

(3.22) now disappear while the one for B still holds.
The gauge-field equations (3.27) and (3.28) are easily
satisfied for a wide range of choices for E1 and B. The
second scalar field ψðρ; χÞ is now an auxiliary field whose
equation of motion (3.30) introduces a constraint between
f1 and V. Nevertheless, Eq. (3.31) still holds with E2 ¼ 0,
and thus the necessity for a “phantom” gauge field (and a
“phantom” scalar field) at the bulk boundary still exists.

Phantom scalar fields are often used in the context of
four-dimensional analyses as a mean to create the necessary
yet peculiar dark energy component with w < −1 in our
Universe. In our analysis, a bulk matter with also peculiar
characteristics seems to be necessary to localize a five-
dimensional black hole on the brane, otherwise its singu-
larity would leak in the bulk. The desired structure of the
bulk energy-momentum tensor as well as the introduction
of the “charge” parameter Q in our metric demand the
presence of gauge and scalar fields with phantomlike
properties at the bulk boundary. We should stress that all
fields are “ordinary” close to our brane and no violation of
energy conditions takes place on our brane. Could a gauge
field, that turns phantomlike at the outskirts of the bulk
spacetime, be considered as “natural” or at least accept-
able? Such an analysis, although well-motivated, would
take us beyond the scope of the present study and is thus
left for a future work.

IV. JUNCTION CONDITIONS AND
EFFECTIVE THEORY

In this final section, we turn our attention from the
structure and content of the five-dimensional spacetime to
issues related to the presence of the brane itself, namely
its consistent embedding in the bulk and the effective
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four-dimensional gravitational equations. A detailed deri-
vation of the effective theory on the 3-brane in braneworld
models was presented in [88], however, in order to keep our
analysis self-contained, we will reproduce here the main
results and equations. It is also important to note that in [88]
the bulk matter of the braneworld model was described
only by a negative cosmological constant, whereas in our
case the bulk spacetime contains an anisotropic fluid, a
feature that slightly modifies some parts of the analysis.
In the standard braneworld scenario, our 3-brane

(Σ, hMN) is embedded in the five-dimensional spacetime
(M, gMN) at y ¼ 0. The induced metric on the brane is
defined via the relation hMN ≡ ðgMNÞy¼0 − nMnN , where
nM is the unit normal vector to the 3-brane. From
Eq. (2.11), we may deduce that nM ¼ δMy. In what follows,
we will denote tensors on Σ with a bar to be distinguished
from the corresponding five-dimensional tensors. Using the
Gauss’s Theorema Egregium5

R̄A
BCD ¼ hAMhNBhKChLDRM

NKL þ 2KA½CKD�B; ð4:1Þ

and the Codazzi’s equation6

RABhAMnB ¼ DLKL
M −DMK; ð4:4Þ

we obtain the following relation for the Einstein tensor on
the 3-brane:

ḠMN ¼ hAMhBNGAB þRABnAnBhMN þKKMN −KM
LKLN

−
1

2
hMNðK2 −KABKABÞ− ẼMN: ð4:5Þ

In the above, KMN is the extrinsic curvature of the brane
defined as

KMN ≡ hAMhBN∇AnB ¼ hLM∇LnN; ð4:6Þ

while

ẼMN ≡ RA
BCDnAnChBMhDN: ð4:7Þ

Decomposing the Riemann tensor into the Weyl curvature,
the Ricci tensor and the Ricci scalar, we obtain

RABCD ¼ 2

3
ðgA½CRD�B − gB½CRD�AÞ −

1

6
gA½CgD�BRþ CABCD:

ð4:8Þ

Using the five-dimensional gravitational field equa-
tions (3.2) together with (4.8) in (4.5) we are led to

ḠMN ¼ 2κ25
3

�
hAMhBNT

ðBÞ
AB þ

	
nAnBTðBÞ

AB −
TðBÞ

4



hMN

�

þ KKMN − KM
LKLN −

1

2
hMNðK2 − KABKABÞ

− EMN; ð4:9Þ

where TðBÞ ≡ TðBÞL
L is the trace of the bulk energy-

momentum tensor, and

EMN ≡ CA
BCDnAnChBMhDN: ð4:10Þ

As is usual in all braneworld scenarios, we may write the

total energy-momentum tensor as the sum of the bulk TðBÞ
MN

and brane TðbrÞ
μν energy-momentum tensors, namely

TMN ¼ TðBÞ
MN þ δμMδ

ν
NT

ðbrÞ
μν δðyÞ: ð4:11Þ

The brane energy-momentum tensor can be decomposed
further as follows

TðbrÞ
μν ¼ −σhμν þ τμν; ð4:12Þ

where σ is the tension of the brane, and τμν encodes all the
other possible sources of energy and/or pressure on the
brane. A natural question which arises in the context of our
analysis is whether the consistent embedding of our brane
in the five-dimensional line element (2.11) demands the
introduction of a nontrivial τμν on the brane.
In order to investigate this, we will study Israel’s junction

conditions [89] at y ¼ 0. These require that

½hMN � ¼ 0; ð4:13Þ

½Kμν� ¼ −κ25

�
TðbrÞ
μν −

1

3
hμνTðbrÞ

�
: ð4:14Þ

In the above, the bracket notation for a quantity X simply
means

½X� ¼ lim
y→0þ

X − lim
y→0−

X ¼ XðþÞ − Xð−Þ: ð4:15Þ

5We note that the square brackets ½� in a tensor’s indices denote
antisymmetrization, namely A½MN� ≡ 1

2
ðAMN − ANMÞ.

6A tensor at a point P ∈ Σ is invariant under the projection
hMN if

TM1M2���Mp
N1N2���Nq

¼ hM1
A1
hM2

A1
� � �hMp

Ap
hB1

N1
hB2

N2
� � �hBq

Nq
TA1A2���Ap

B1B2���Bq
:

ð4:2Þ

The covariant derivative DL on Σ can be defined via the
projection of the covariant derivative on M; for any tensor
obeying (4.2) we define

DLTM1���Mp
N1���Nq

¼ hKLhM1
A1
� � � hMp

Ap
hB1

N1
� � � hBq

Nq
∇KTA1���Ap

B1���Bq
: ð4:3Þ
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Let us determine first the components of the induced metric on the brane hMN . These are found to be

ðhMNÞ ¼

0
BBBBBB@

−ð1 − 2M
r þ Q2

r2 −
Λ
3
r2Þ 0 0 0 0

0 ð1 − 2M
r þ Q2

r2 −
Λ
3
r2Þ−1 0 0 0

0 0 r2 0 0

0 0 0 r2sin2θ 0

0 0 0 0 0

1
CCCCCCA
: ð4:16Þ

We may easily see that they indeed satisfy Israel’s first
condition. Also, employing these, we may easily determine
the components of the extrinsic curvature close to the
3-brane, which have the form

KMN ¼ −k
djyj
dy

δμMδ
ν
Nhμν: ð4:17Þ

The trace of KMN is also found to be K ¼ −4kðdjyj=dyÞ.
We may alternatively write Eq. (4.14) as7

TðbrÞ
μν ¼ −

1

κ25
ð½Kμν� − hμν½K�Þ: ð4:18Þ

Using Eq. (4.15), the assumedZ2 symmetry of the model in
the bulk and the components of Kμν, we find

TðbrÞ
μν ¼ −

6k
κ25

hμν: ð4:19Þ

Comparing Eq. (4.19) with Eq. (4.12), we easily deduce
that σ ¼ 6k=κ25 > 0, while τμν ¼ 0. This means that
the consistent embedding of our 3-brane in the five-
dimensional spacetime constructed in Sec. II—and de-
scribed by either the line element (2.11) or (2.7)—does not
demand the introduction of any additional matter on the
brane.8 In the context of the five-dimensional theory, the
brane contains only its constant positive self-energy σ. In
fact, it is this quantity together with the five-dimensional
gravitational constant κ25 that determine the warp parameter
k of the line element in the bulk.
We may now proceed to derive the effective theory on

the brane. The gravitational equations on the 3-brane can be
determined from Eq. (4.9) by setting y ¼ 0. We note that
for eitherM orN equal to y, the rhs of (4.9) is trivially zero;
this implies that ḠyN ¼ 0 ∀N, as expected. Due to the Z2

symmetry, we may perform the calculation either on the

þ or − side of the brane, therefore we will omit the� signs
in what follows. Using the results for the induced metric
hMN , the extrinsic curvature KMN and the normal vector nM

derived above in (4.12), we obtain

Ḡμν ¼ 8πG4ðTðeffÞ
μν þ τμνÞ þ κ45

�
πμν −

σ2

12
hμν

�
− Eμν

����
y→0

;

ð4:20Þ
where

G4 ¼
κ45σ

48π
; ð4:21Þ

TðeffÞ
μν ≡ 2

3k

�
TðBÞ
μν þ

�
TðBÞ
yy −

TðBÞ

4

�
hμν

�
y¼0

; ð4:22Þ

πμν ¼ −
1

4
τμ

λτλν þ
1

12
ττμν þ

1

8
ταβταβhμν −

1

24
τ2hμν:

ð4:23Þ
In the above, G4 constitutes the effective four-dimensional
gravitational constant on the brane; this is also defined
in terms of the fundamental gravitational constant κ25 and
the brane tension σ. The quantity πμν is the well-known
quadratic contribution of τμν [88] which here, however,

trivially vanishes since τμν ¼ 0. Finally, TðeffÞ
μν can be

interpreted as the effective energy-momentum tensor on
the brane. Together with Eμν, they constitute the imprint
of the dynamics of the bulk fields—gravitational, and
possibly gauge and scalar fields generating the bulk

energy-momentum tensor TðBÞ
MN—on the brane. The com-

ponents of TðeffÞ
μν are given by the following relation

TðeffÞ
μν ¼ 1

κ25k

2
66643k2hμν−Λhμνþ

M
r3

0
BBB@
−htt 0 0 0

0 −hrr 0 0

0 0 hθθ 0

0 0 0 hϕϕ

1
CCCA

3
7775;

ð4:24Þ
while the components of the tensor Eμν, defined in (4.10),
are evaluated to be

7For an explicit proof of Eq. (4.18) see Appendix D.
8The absence of the need for the introduction of any brane

matter but the necessity for the presence of bulk fields in order to
localize the black hole geometry close to the brane could be
related to similar conclusions derived following the effective-field
theory point of view in braneworlds [90].
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Eμνjy→0 ¼
�
−
Q2

r4
þM

r3

�
0
BBB@

−htt 0 0 0

0 −hrr 0 0

0 0 hθθ 0

0 0 0 hϕϕ

1
CCCA: ð4:25Þ

We notice that Eμν is evaluated infinitesimally close to the brane but not exactly on it, its source being the five-dimensional
Weyl tensor. Substituting the above relations in (4.20), we obtain

Ḡμν ¼

0
BBBBBB@

ðQ2

r4 þ Λ4ÞfðrÞ 0 0 0

0 −ðQ2

r4 þ Λ4Þ 1
fðrÞ 0 0

0 0 ðQ2

r4 − Λ4Þr2 0

0 0 0 ðQ2

r4 − Λ4Þr2sin2θ

1
CCCCCCA
; ð4:26Þ

with

fðrÞ≡ 1 −
2M
r

þQ2

r2
−
Λ4

3
r2: ð4:27Þ

One can verify that the expression of the Einstein tensor
in (4.26) matches exactly the Einstein tensor of the
four-dimensional Reissner-Nordström-(A)dS metric, with
Λ4 ¼ Λ being the effective cosmological constant on the
brane and Q2=r4 the equivalent of the energy-momentum
tensor component of an electromagnetic field. Although we
have called our five-dimensional black hole solution a
Reissner-Nordström-(A)dS one, it is clear that no four-
dimensional electromagnetic field has been—or needed to
be—introduced on the brane. The “charge” Q is a con-
served quantity carried by the bulk fields and left as an
imprint in the four-dimensional spacetime. It is therefore a
tidal charge, as the one accommodated in the black hole
solution of [21], rather than an ordinary electromagnetic
one. It is worth noting that our present analysis can be
considered as one which completes the brane black hole
solution found in [21] since it provides the bulk description
that was lacking from the aforementioned work.

V. EPILOGUE

In this work, we have generalized our previous analysis
[85], where we studied the localization of a five-
dimensional spherically symmetric, neutral and asymptoti-
cally flat black hole on our brane, by considering also a
cosmological constant and a charge term in the metric
function. We have preserved the assumption of spherical
symmetry in the five-dimensional bulk and by adopting an
appropriate set of spherical coordinates, we have built a
black hole solution with its singularity strictly residing on
the brane. We have performed a careful classification of the
horizons that this background admits, depending on the
values of its parameters, and demonstrated that all of them
have pancake shapes and one after the other get exponen-
tially localized close to the brane. The bulk gravitational

background is everywhere regular, as the calculation of all
scalar gravitational quantities has shown, and reduces to an
AdS5 spacetime right outside the black hole event horizon.
Our analytically constructed, five-dimensional line element
has all the desired geometric features of a physical black
hole localized close to our brane, and shares the exact same
structure as the line element employed in [61] where such a
solution was numerically constructed.
In order to support such a geometric background, we need

to assume the presence of a bulk energy-momentum tensor.
In terms of the spherical coordinates, this quantity has a
minimal structure: it is diagonal with only two independent
components, the energy density ρE and tangential pressure
p2, and may be thus described as an anisotropic fluid. Close
to and on the brane, both ρE and p2 are positive, and respect
all energy conditions. However, in order to localize the black
hole topology close to the brane and prevent the leaking of
the singularity along the extra dimension, a transition needs
to take place in the bulk resulting in the violation of both
the ρE ≥ 0 and ρE þ p2 ≥ 0 conditions. This violation is
only local and takes place within the event horizon regime
in the bulk—soon afterwards, both ρE and p2 reduce to
constant quantities, which give rise to the AdS5 spacetime
outside the black hole event horizon. In fact, a general
question emerges from our analysis as to the nature of the
necessary bulk matter that is usually asked to satisfy all
energy conditions at the location of our brane and, at the same
time, to support asymptotically—in the context of most
braneworld models—an AdS spacetime which by construc-
tionviolatesmost energy conditions.Are therematter or field
configurations that would support and smoothly match these
two asymptotic behaviors?
To this end, we attempted to provide a physical inter-

pretation of the nature of the bulk matter by building a field-
theory model involving scalar and gauge fields living in the
bulk. Without determining explicitly the profiles of these
fields—a task that would demand numerical analysis, we
obtained the primary constraints and equations for a viable
solution. Although we demonstrated that this scalar-vector
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model could indeed reproduce the general structure of the
energy-momentum tensor in the bulk, our analysis also
revealed that the gauge, and inevitably the scalar, fields
should become phantomlike at the bulk boundary. The
decision on whether a five-dimensional tensor-scalar-vector
theory, whose particle degrees of freedom are well behaved
near and on our brane but they turn phantomlike away from
it, is physically acceptable is still pending. Alternative field
theory constructions could also be considered. For instance,
the negative sign of the energy density of the bulk matter
points perhaps to a nonminimal gravitational coupling of
the fields that takes over at the outskirts of the bulk—the
fact that all terms proportional to the charge Q, and
therefore sourced by the bulk gauge field, remain always
positive whereas the gravitational terms proportional to M
are the ones that cause the energy density to turn negative
seems to agree with this. We plan to study this alternative
model in a follow-up work.
By considering the junction conditions, we have sub-

sequently studied in detail the consistent embedding of our
3-brane into the bulk geometry we have constructed. We
have demonstrated that no additional matter needs to be
introduced on the brane by hand, and that the only energy
content of our brane in the context of the five-dimensional
theory is its constant, and positive self-energy or tension. In
fact it is this quantity together with the five-dimensional
gravitational constant that determine the warp parameter of
the bulk metric—we note that the warp factor of the model
has the exact same form as the one of the original Randall-
Sundrum model, a feature that also ensures the localization
of gravity close to our brane. These two fundamental
quantities determine also the effective four-dimensional
gravitational constant on our brane as the study of the
effective theory on the brane revealed. There, we showed
that the combined effect of the five-dimensional geometry
and the bulk matter leaves its imprint on the brane and
supports the Reissner-Nordström-(A)dS geometry that the
four-dimensional observer sees. Let us, however, stress
again that the charge appearing in the metric is a tidal
charge, first employed in the brane construction of [21],
rather than an electromagnetic one as it is sourced by the
bulk, gravitational, and gauge fields. In this sense, our work
provides the description of the bulk geometry that gives rise
to the four-dimensional Reissner-Nordström-type of back-
ground of [21] and which was missing from that analysis.

Apart from the successful localization of the black hole
geometry close to our brane and the incorporation of the
Randall-Sundrum model in our analysis, our construction
supports an anti–de Sitter spacetime not only at the bulk
boundary but effectively throughout the bulk regime outside
the black hole event horizon. Therefore, our results could be
considered also in the context of holography [91–93] and
used to study interesting field-theory phenomena such as
chiral symmetry breaking [94,95], confinement/deconfine-
ment [96], etc. Future directions of work could also address
the stability behavior of our solution as the Gregory-
Laflamme instability arguments [17] do not hold here. In
previous studies, a stability analysis led also to observable
effects such as echoes of braneworld compact objects
[55,56], as well as other exotic compact objects [97–99].
A natural question emerges of whether gravitational waves
from black hole mergers or other astrophysical processes
could provide evidence for extra dimensions and distinguish
braneworld solutions of this type from the corresponding
four-dimensional ones [57]. The study of the cosmological
aspects of our construction on the brane is also a future
direction of research (see, for example, [100,101]). Also,
could we construct alternative localized black hole solutions
by considering different forms of the metric function fðρÞ,
such as the Schwarzschild-Rindler-(anti–) de Sitter solution
with an additional linear term associated with dark matter or
scalar-hair effects [102], and what would be in that case the
profile of the bulk matter? Is it finally possible to construct
rotating braneworld black holes using a similar process as the
onewe developed for static braneworld black holes?We plan
to return to, at least, some of those questions, in futureworks.
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APPENDIX A: CURVATURE INVARIANTS

In ðρ; χÞ coordinates, the expressions of the scalar
invariants R and K are given by

R ¼ 80

9
ð3k2 − ΛÞ2 − 32k2Mð3k2 − ΛÞcos2χ

ρ
−
8ð27k3Mcos3χ þ 12k2 − 4ΛÞð2kQ2 cos χ þMÞ

3ρ3

þ 2k cos χfk cos χ½3k2ð9M2 þ 16Q2Þ − 16ΛQ2� þM½9k3M cosð3χÞ þ 96k2 − 32Λ�g
ρ2

þ 6k2cos2χ½6k2Q4 cosð2χÞ þ 6k2Q4 þ 4kMQ2 cos χ þ 17M2�
ρ4

þ 14ð2kQ2 cos χ þMÞ2
ρ6

þ 12k cos χ½2k2Q4 cosð2χÞ þ 2k2Q4 − 8kMQ2 cos χ − 5M2�
ρ5

; ðA1Þ
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K ¼ 40

9
ð3k2 − ΛÞ2 − 16k2Mð3k2 − ΛÞcos2χ

ρ
þ 8k cos χ½3k2ð27M2 − 4Q2Þ þ 4ΛQ2�

3ρ3

þ 4k cos χfk cos χ½3k2ð9M2 þ 4Q2Þ − 4ΛQ2� þM½9k3M cosð3χÞ þ 24k2 − 8Λ�g
ρ2

−
4Mf27k3½kQ2ð4 cosð2χÞ þ cosð4χÞ þ 3Þ − 2M cosð3χÞ� þ 12k2 − 4Λg

3ρ3

þ 24k2cos2χ½3k2Q4 cosð2χÞ þ 3k2Q4 − 28kMQ2 cos χ þ 19M2�
ρ4

þ 48k cos χ½4k2Q4 cosð2χÞ þ 4k2Q4 − 19kMQ2 cos χ þ 5M2�
ρ5

þ 72Q4

ρ8

þ 8½31k2Q4 cosð2χÞ þ 31k2Q4 − 64kMQ2 cos χ þ 11M2�
ρ6

−
144Q2ðM − 2kQ2 cos χÞ

ρ7
; ðA2Þ

while, in ðr; yÞ coordinates, the above expressions take the form

R ¼ 80

9
ð3k2 − ΛÞ2 þ 2k6M2ð160 − 384ekjyj þ 375e2kjyj − 180e3kjyj þ 36e4kjyjÞ

½k2r2 þ ðekjyj − 1Þ2�3

þ 32k4Q2ð3k2 − ΛÞðekjyj − 1Þð3ekjyj − 5Þ
3½k2r2 þ ðekjyj − 1Þ2�2 þ 8k8Q4ðekjyj − 1Þ2ð10 − 12ekjyj þ 9e2kjyjÞ

½k2r2 þ ðekjyj − 1Þ2�4

−
8k3M

3½k2r2 þ ðekjyj − 1Þ2�7=2 f40½3k
6r4 þ k4ð3Q2 − Λr4 þ 6r2Þ þ k2ð3 − 2Λr2Þ − Λ�

− 16ekjyj½9k6r4 þ k4ð21Q2 − 3Λr4 þ 48r2Þ þ k2ð39 − 16Λr2Þ − 13Λ�
þ e2kjyj½36k6r4 þ k4ð387Q2 − 12Λr4 þ 888r2Þ − 148k2ð2Λr2 − 9Þ − 444Λ�
þ e3kjyj½−9k4ð25Q2 þ 48r2Þ þ 48k2ð3Λr2 − 31Þ þ 496Λ� þ 2e4kjyj½9k4ð3Q2 þ 4r2Þ − 12k2ðΛr2 − 38Þ − 152Λ�
þ 12ð3k2 − ΛÞe5kjyjðekjyj − 8Þg; ðA3Þ

K ¼ −
16k3Mð3k2 − ΛÞð10 − 12ekjyj þ 3e2kjyjÞ

3½k2r2 þ ðekjyj − 1Þ2�3=2 −
16k7MQ2ð10 − 28ekjyj þ 39e2kjyj − 30e3kjyj þ 18e4kjyjÞ

½k2r2 þ ðekjyj − 1Þ2�7=2

þ 8k6M2ð20 − 48ekjyj þ 57e2kjyj − 36e3kjyj þ 18e4kjyjÞ
½k2r2 þ ðekjyj − 1Þ2�3 þ 16k4Q2ð3k2 − ΛÞðekjyj − 1Þð3ekjyj − 5Þ

3½k2r2 þ ðekjyj − 1Þ2�2

þ 8k8Q4ð5 − 16ekjyj þ 26e2kjyj − 24e3kjyj þ 18e4kjyjÞ
½k2r2 þ ðekjyj − 1Þ2�4 þ 40

9
ð3k2 − ΛÞ2: ðA4Þ

APPENDIX B: HOW TO REMEDY THE
COSMOLOGICAL HORIZON SINGULARITY

The line element (2.7) in terms of the radial, null
coordinates ðu; vÞ, which are defined by

�
v ¼ tþ ρ�
u ¼ t − ρ�

�
; ðB1Þ

takes the form

ds2 ¼ 1

ð1þ kρ cos χÞ2 ½−fðρÞdudvþ ρ2dΩ2
3�: ðB2Þ

In the above, the variable ρ� is determined by the following
relation

ρ� ¼
Z

dρ
fðρÞ ¼ −

1

2κC
ln

���� ρ

ρC
− 1

����þ 1

2κþ
ln

���� ρ

ρþ
− 1

����
−

1

2κ−
ln

���� ρ

ρ−
− 1

����þ 1

2κ4
ln

���� ρρ4 − 1

����; ðB3Þ
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where the integration constant has been set to zero. The
constants ρC, ρþ, ρ−, ρ4 are the roots9 of the quartic
polynomial fðρÞ ¼ 0 which for Λ > 0 satisfy the inequal-
ity ρC > ρþ > ρ− > ρ4, with ρ4 < 0. The parameters κi
denote the surface gravity at the corresponding ith horizon
located at ρ ¼ ρi (for more details see [86]). Using the
aforementioned roots, the function fðρÞ given by (2.8) can
be factorized as follows

fðρÞ ¼ −
Λ
3

ðρ − ρCÞðρ − ρþÞðρ − ρ−Þðρ − ρ4Þ
ρ2

: ðB4Þ

Combining Eqs. (B3) and (B4), the function fðρÞ near the
cosmological horizon reduces to

lim
ρ→ρ�C

fðρÞ ¼ ∓2ρCκCe−2κCρ� ; ðB5Þ

where the minus or plus sign on the right-hand side depends
on the direction from which we approach the cosmological
horizon, while

κC ¼ Λ
6

ðρC − ρþÞðρC − ρ−ÞðρC − ρ4Þ
ρ2C

: ðB6Þ

The future cosmological horizon ρC lies at t → þ∞ and
ρ� → þ∞, i.e., at v → þ∞. Consequently, by defining the
coordinates

�
V ¼ −e−κCv

U ¼ eκCu

�
; ðB7Þ

we can readily see that V → 0 as v → þ∞. Therefore,
using the limit (B5) and the ðU;VÞ coordinates, the line

element (B2) near the future cosmological horizon takes the
form

ds2 ≃
1

ð1þ kρ cos χÞ2
�
2ρC
κC

dUdV þ ρ2dΩ2
3

�
: ðB8Þ

It is easy to see now that in the above coordinate system the
geometry close to the cosmological horizon is completely
regular.

APPENDIX C: BULK ENERGY-MOMENTUM
TENSOR COMPONENTS TRANSFORMED

In this section, we will derive the components of
the energy-momentum tensor as we change from the
set of coordinates xM ¼ ft; ρ; χ; θ;ϕg to the set x0M ¼
ft; r; θ;ϕ; yg. We will denote all new quantities with a
prime in order to distinguish them from those in the old
coordinates. Thus, using Eq. (3.8) we have

T 0ðBÞMN ¼ðρEþp2ÞU0MU0N þðp1−p2ÞX0MX0Nþp2g0MN:

ðC1Þ
The quantities ρE,p1, andp2 are scalars and thus they do not
change under a coordinate transformation. Their expressions
in the new coordinates can be easily obtained fromEqs. (3.4)
and (3.5) by using the relations of Eq. (2.6). However, the
vectors U0M and X0M, defined in (3.6) and (3.7), under the
coordinate transformation are transformed as follows

U0M ¼ dx0M

dxA
UA ¼ dx0M

dt
Ut ¼ ekjyjffiffiffiffiffiffiffiffiffiffiffiffiffi

fðr; yÞp δMt; ðC2Þ

X0M ¼ dx0M

dxA
XA ¼ dx0M

dρ
Xρ ¼

�
r2 þ ðekjyj − 1Þ2

k2

�−1=2
ekjyj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr; yÞ

p �
rδMr þ

1 − e−kjyj

k
δMy

�
: ðC3Þ

In the above, the function fðr; yÞ is given in Eq. (2.12). One can also verify that U0MU0Ng0MN ¼ −1 and X0MX0Ng0MN ¼ 1,
where g0MN is evaluated from the line element (2.11). Then, for the mixed components of the energy-momentum tensor
T 0ðBÞM

N , we obtain

T 0ðBÞM
N ¼ T 0ðBÞMLg0LN ¼ ðρE þ p2ÞU0MU0tg0tN þ ðp1 − p2ÞX0MðX0rg0rN þ X0yg0yNÞ þ p2δ

M
N: ðC4Þ

Using Eqs. (C2) and (C3) in Eq. (C4), it is straightforward to calculate the nonzero mixed components of the energy-
momentum tensor in the new coordinate system. These read

TðBÞt
t ¼ −ρEðr; yÞ ¼

1

κ25

�
2ð3k2 − ΛÞ − 3Mk3ð4 − 3ekjyjÞ

½k2r2 þ ðekjyj − 1Þ2�3=2 −
6Q2k4ðekjyj − 1Þ

½k2r2 þ ðekjyj − 1Þ2�2
�
; ðC5Þ

9It is implied that ρ1 ¼ ρC, ρ2 ¼ ρþ, ρ3 ¼ ρ−.
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TðBÞr
r ¼

1

κ25

�
2ð3k2 − ΛÞ þ 3k3Mf−4ð1þ k2r2Þ þ ekjyj½14 − 2ekjyjð9 − 5ekjyj þ e2kjyjÞ þ 3k2r2�g

½k2r2 þ ðekjyj − 1Þ2�5=2

þ 6k4Q2ðekjyj − 1Þð3ekjyj − 3e2kjyj þ e3kjyj − k2r2 − 1Þ
½k2r2 þ ðekjyj − 1Þ2�3

�
; ðC6Þ

TðBÞr
y ¼ e2kjyjTðBÞy

r ¼
3k4re2kjyj

κ25

�
Mðekjyj − 1Þð2ekjyj − 3Þ
½k2r2 þ ðekjyj − 1Þ2�5=2 −

2kQ2ðekjyj − 1Þ2
½k2r2 þ ðekjyj − 1Þ2�3

�
; ðC7Þ

TðBÞθ
θ ¼ TðBÞϕ

ϕ ¼ p2ðr; yÞ ¼
1

κ25

�
2ð3k2 − ΛÞ þ 6Mk3ðekjyj − 1Þð2 − ekjyjÞ

½k2r2 þ ðekjyj − 1Þ2�3=2 þ 6Q2k4ðekjyj − 1Þ2
½k2r2 þ ðekjyj − 1Þ2�2

�
; ðC8Þ

TðBÞy
y ¼

1

κ25

�
2ð3k2 −ΛÞ þ 3k3Mðekjyj − 1Þ½ekjyjð3ekjyj − 2k2r2 − 7Þ þ 4ð1þ k2r2Þ�

½k2r2 þ ðekjyj − 1Þ2�5=2 þ 6k4Q2ðekjyj − 1Þ2ð1þ k2r2 − ekjyjÞ
½k2r2 þ ðekjyj − 1Þ2�3

�
:

ðC9Þ

APPENDIX D: BRANE ENERGY-MOMENTUM TENSOR IN TERMS
OF THE EXTRINSIC CURVATURE

From Eq. (4.14), we have

hμν½Kμν� ¼ ½hμνKμν� ¼ −κ25

�
hμνTðbrÞ

μν −
1

3
hμνhμνTðbrÞ

�
⇒ TðbrÞ ¼ 3

κ25
½K�: ðD1Þ

Using then Eq. (D1) in Eq. (4.14), we obtain

½Kμν� ¼ −κ25

�
TðbrÞ
μν −

1

3
hμν

3

κ25
½K�

�
⇒ TðbrÞ

μν ¼ −
1

κ25
ð½Kμν� − hμν½K�Þ: ðD2Þ
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