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We present an improved formulation of 4-dimensional Lorentzian spinfoam quantum gravity with a
cosmological constant. The construction of spinfoam amplitudes uses the state-integral model of PSL(2, C)
Chern-Simons theory and the implementation of a simplicity constraint. The formulation has two key
features: (1) spinfoam amplitudes are all finite, and (2) with suitable boundary data, the semiclassical
asymptotics of the vertex amplitude has two oscillatory terms, with phase plus or minus the 4-dimensional
Lorentzian Regge action with a cosmological constant for the constant curvature 4-simplex.
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I. INTRODUCTION

Spinfoam quantum gravity is the covariant formulation
of loop quantum gravity (LQG) in 4 spacetime dimensions
[1,2]. There are two motivations to include the cosmologi-
cal constant A in the spinfoam quantum gravity: First,
spinfoam models without A are well known to have the
infrared divergence (see e.g., [3-5]); then, A is expected to
provide a natural infrared cutoff to make spinfoam ampli-
tudes finite. Second, the simplest consistent explanation for
the cosmological accelerating expansion is a positive A, so
quantum gravity should reproduce A in the semiclassical
regime. Based on these motivations, a satisfactory spin-
foam quantum gravity with A is expected to (1) define finite
spinfoam amplitudes and (2) consistently recover classical
gravity with A in the semiclassical limit. This work covers
both positive and negative A.

The semiclassical limit of LQG scales the Planck length
¢p — 0 while keeping the geometrical area a fixed. Using

the LQG area spectrum a = y£5/j(j + 1), the semi-
classical limit implies the SU(2) spin j — co. We do not
scale the Barbero-Immirzi parameter y. In the presence of
A, we require, in addition, that A should not scale in the
semiclassical limit; then in 4d, the dimensionless quantity
k o (|A|£3)™" scales as k — oo in addition to j — oo,
whereas j/k o« |A|a is fixed. This suggests that the semi-
classical limit of spinfoam quantum gravity with A should
be a double-scaling limit, i.e., j, kK = oo while fixing j/k. In
our following discussion, £ becomes the integer Chern-
Simons (CS) level.

In 3 dimensions, the Turaev-Viro (TV) model [6] with
quantum group SU(2), (q = e™/¥. k € Z) is the spinfoam
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quantum gravity with A that satisfies both expectations (1)
and (2): It gives finite amplitudes due to the cutoff of spins
given by SU(2),; the vertex amplitude, the 6j symbol of
SU(2),, recovers the Regge action of 3d gravity with A > 0
in the semiclassical limit [7].1

In contrast, a 4d spinfoam quantum gravity with A has
not yet been achieved that satisfies both expectations (1)
and (2) in the literature. There are 4d spinfoam models
based on the quantum Lorentz group, as generalizations
from the 3d quantum group TV model [8-10] (see also
e.g., [11,12] for the LQG kinematics with a quantum
group). These models produce finite spinfoam amplitudes
due to the spin cutoff from the quantum group. But it is
difficult to examine the semiclassical limits of these
models due to the complexity of their vertex amplitudes
in terms of quantum group symbols. More recently, a
more promising spinfoam model was found based on the
SL(2,C) CS theory instead of the quantum group [13].
The vertex amplitude AY of this model is defined to be
the CS evaluation of the projective SL(2, C) spin-network
function W, based on the I's graph embedded in S3 (see
Fig. 1):

A0 = / DADAe SsANY (A 2), (1)

where Scg is the unitary SL(2,C) CS action with the
complex level t =k + o0 (k€ Z,, o € iR) that unifies A

and y by k = Re(t) = lAlf‘;y, o = ilm(t) = iky,

'The semiclassical limit in 3d is the same double-scaling limit
since a « #p+/j(j + 1) becomes the length and k* « (A£%)~!.
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FIG. 1.

I's graph embedded in S3.

Scs = 8 Tr(A/\dA—I— A/\A/\A)
8’” Tr(.A/\dA—i— A/\A/\A) 2)

Here, Wr, reduces to the EPRL vertex amplitude [14]

when A, A — 0. The derivation of the model (1) from
the BF, theory is given in [13] and is reviewed briefly
around Eq. (3).

In the semiclassical limit (j,k — o0, 6 = iky — ioo,
keeping j/k fixed), and with a suitable boundary condition,
AY reproduces the constant curvature 4-simplex geometry
and gives the asymptotics as two oscillatory terms, with
phase plus or minus the Regge action of 4d Lorentzian
gravity with A. The sign of A is not fixed a priori, but rather
it emerges semiclassically and dynamically from equations
of motion and boundary data, as shown in the asymptotic
analysis in [13] However, the drawback of AY is that the
formal path integral in (1) is not mathematically well
defined, which makes the finiteness of the spinfoam
amplitude obscure.

In this work, we present an improved formulation of 4d
spinfoam quantum gravity with cosmological constant A,
which gives both finite spinfoam amplitudes and the
correct semiclassical behavior. We construct a new vertex
amplitude A, which replaces the formal CS path integral in
AY by a finite sum and finite-dimensional integral, based on
the recent state-integral model of complex CS theory [15-
17]. The resulting A, is a bounded function of boundary
data. The spinfoam amplitude made by A, is finite on any
triangulation. On the other hand, we are able to apply the
stationary phase analysis to the finite-dimensional integral
to show that A, indeed reproduces the constant curvature
4-simplex and the 4d Lorentzian Regge action with A
(positive or negative) in the semiclassical limit.

*First, the sign of A of boundary tetrahedra is determined by
the boundary data, and then the critical equations from the
stationary phase analysis cause the sign of A to propagate
between tetrahedra and 4-simplices. The critical equations have
no solution if the boundary tetrahedra fail to have a common sign
of A; then, the spinfoam amplitude is suppressed in the semi-
classical regime.

The new vertex amplitude A, is closely related to the
partition function Zg\r, of the PSL(2,C) = SL(2,C)/Z,
CS theory on S$*\I's, which is the complement of an open
tubular neighborhood of the I's graph in S3. Here, I's C S3
is dual to the triangulation of S* given by the 4-simplex’s
boundary. This duality delivers flat connections of the CS
theory to decorate the 4-simplex. We adopt the method
proposed in [16] to explicitly construct Zg\r, as a state-
integral model with a finite sum and finite-dimensional
integral (see Sec. II). Here, Zg\, quantizes the moduli
space Lgs\r, of PSL(2, C) flat connections on $*\I's and is
a wave function of flat connection data on the boundary of
S3\I's. Given a manifold M, the moduli space of the flat
connection with structure group G is the space of G
connections modulo gauge transformations with vanishing
curvature, equivalent to the character variety of represen-
tations of z;(M) in G modulo conjugation [18].

The new vertex amplitude A, contains only finite sums
and finite-dimensional integrals and thus improves the
earlier formulation (1). It is also different from the state-
integral model obtained in [19], which mainly focuses on
the holomorphic block of CS and does not specify the
integration cycle.” Note that A, has both holomorphic and
antiholomorphic parts of the CS theory. As a key to prove
the finiteness, the integration cycle is specified in A,.

By the construction in [16], the state-integral model
converges absolutely if the underlying 3-manifold admits a
“positive angle structure.” Our construction of Zg\p,
manifests that $*\I's indeed admits a positive angle
structure (&,ﬁ) € Poew, Where P, is a 30-dimensional
open convex polytope. The finiteness of Zg\p, is a
prerequisite for the finiteness of A, and spinfoam ampli-
tudes on triangulations.

The simplicity constraint needs to be imposed in order to
define A,: The derivation of (1) in [13] starts from the
Holst-BF,, theory on a 4-ball B,, which is topologically
identical to a 4-simplex,

—%/&Tr{(*+%>3 A F(A)]

|12| K* + %)B A Bl. (3)

Considering the formal path integral of Sy g, , integrating
out the so(l,3)-valued 2-form B gives the action
% g, Trl(* + %).7-' A F], which is a total derivative and
gives the CS action (2) on the boundary S* ~ 9B,. Using
the feature of the Gaussian integral, integrating out B
constraints |A|B/3 = F(A), which encodes B in the

SH-BF, =

*In addition, the construction here uses different symplectic
coordinates from [19].
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so(1,3) curvature F(A). On the boundary S3, F(A) is the
so(1,3) curvature of the CS connection A. Classically,
Suapr reduces to the Holst action of gravity with £|A
when the simplicity constraint B = +e A e is imposed,
where e is the cotetrad 1-form. At the quantum level, the
simplicity constraint must be imposed on the CS partition
function in order to obtain the spinfoam vertex amplitude.

Using the relation F(A) = |A|B/3, the simplicity con-
straint of B can be translated to constraining .A. By the
CS symplectic structure, the resulting simplicity constraint
can be divided into the first-class and second-class com-
ponents. The first-class components are imposed strongly
on Zg\r, and restrict certain boundary data to a discrete
set {2juptacp, a,b=1,...,5 where j, €Ny/2 and
Jap < (k—=1)/2. Note that {j,,},-, are analogs of SU
(2) spins associated to 10 boundary faces of the 4-simplex.
Interestingly, a consistency condition “4d area = 3d area”
(similar to [20]) gives restrictions to the positive angle

structure (&,E). The second-class components of the
simplicity constraint have to be imposed weakly. We
propose coherent states W, peaked at points p in the
(subspace of) phase space of .4 and apply the simplicity
constraint to restrict p. The restricted p is equivalent to the
set of 20 spinors &,, € C?> normalized by the Hermitian
inner product, such that foreach a = 1, .... 5, {jub €ab } pa
are subject to the generalized closure condition of a
constant curvature tetrahedra [21]. In our model, all
tetrahedra and triangles are spacelike. We denote the p
restricted by the simplicity constraint by Piz As a result,

the vertex amplitude is defined by the inner product

A,(j.¢) = <lilp7>5|ZS3\F5>7 (4)
where the complex conjugate of ¥, is conventional. This
inner product is a finite-dimensional integral of L type.
We show that the integral converges absolutely and A, is a

bounded function of f, E Here, A, as an inner product (4)
resembles the idea of A%, but now A, is well defined.

Given a simplicial complex K made by 4-simplices v,
tetrahedra e, and faces f, following the general scheme of
spinfoam state-sum models, the spinfoam amplitude asso-
ciated to I is defined by

(k— 1/2

= > T4 /dé’dﬁ’ HA JEE HA (7.9

iy f

where j is associated to a face f and Ee =(&1,.., &), 1s

associated to a tetrahedron e. The CS level k = ‘ Ali,’ﬁy ez
P

provides the cutoff to the sum over half-integer
0<j;<(k—1)/2. The face and edge amplitudes Ay,
A, are not specified here except for requiring that A, is a

Gaussian-like continuous function approaching 5(56, a,) as

Jj — 0. Given the boundedness of A, the amplitude A is
finite because the sum over j,’s is finite and the integral

over E’s is compact. Here Z/ indicates that some special
spins are excluded in the sum.
When K has a boundary, the boundary data of A are j,

Ee for boundary faces f and boundary tetrahedra e. These
data are deformations of the data of coherent intertwiners in
spin-network states. We conjecture that the boundary states
of A are q-deformed spin-network states of quantum group
SU(2), with q the root of unity.

After accomplishing the finiteness of the spinfoam
amplitude with A, we demonstrate the correct semiclassical
behavior for the new vertex amplitude A, in Sec. IV.
Note that A, in (4) as a finite-dimensional integral can be
expressed in the form f e where T depends on j’s only by
Jj/k. Therefore, we use the stationary phase analysis to
study the semiclassical behavior of A, as j, k — oo keeping
j/k fixed: The dominant contribution of A, comes from
critical points, i.e., solutions of the critical equation 6Z = 0.
Given any boundary data {j,,&,,} corresponding to the
geometrical boundary of a nondegenerate convex constant
curvature 4-simplex, there are exactly two critical points,
which are two flat connections 2, 2 € £ si\r, having
geometrical interpretations as the constant curvature
4-simplex. Note that 2, A give the same 4-simplex
geometry but opposite 4d orientations and that 2, 9[ are
analogous to the two critical points related by parity in the
EPRL vertex amplitude [22]. As a result, the asymptotic
behavior of A, is given up to an overall phase by

= (N, eiSreeetC 4 N_eSreee=C)[1 + O(1/k)],  (5)
where N, are nonoscillatory and relate to the Hessian
matrix of Z. In the exponents,

Ak}/
SRegge = <Zauh®ab - A|V4|> (6)

is the 4d Lorentzian Regge action with A of the constant
curvature 4-simplex reconstructed by 2 or 2. The gravi-
tational coupling is effectively given by % = ‘/1\2‘,’;7 Note
that C is an undetermined geometry-independent integra-
tion constant. This semiclassical result of A, is similar to
the one related to A? in [13,23,24].

Lastly, it is known that the formalism of state-integral
models that we use to construct Zg\, excludes the
contributions from Abelian flat connections [15,16,25].
This does not cause trouble for us since Abelian flat
connections only relate to degenerate tetrahedron geom-
etries, which we exclude in the model.

The paper is organized as follows. In Sec. II, we
construct the state-integral model of Zg\r,, and include

the discussion of ideal triangulation of S3\I's, and a brief
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review of PSL(2, C) CS theory on an ideal tetrahedron; we
define convenient phase space coordinates, construct octa-
hedron partition functions and then the partition function
Zg\ry»> and discuss coherent states. In Sec. III, we impose a
simplicity constraint and construct A,, and then we con-
struct the spinfoam amplitude A on a simplicial complex
and prove the finiteness; we also discuss the relation
between boundary data of A and LQG spin networks, as
well as various choices that we make in the definition of A.
In Sec. IV, we derive the asymptotic behavior of A, in the
semiclassical limit.

II. COMPLEX CHERN-SIMONS THEORY ON S3\I's

The purpose of this section is to construct the complex
CS theory on the 3-manifold S*\I's. In Sec. IT A, we first
review the ideal triangulation of S*\I's (see also [19]). As
the building block, the CS theory on the ideal tetrahedron is
reviewed in Sec. II B. Then, as an intermediate step, we
construct the CS partition function on the ideal octahedron
in Sec. II C since the ideal triangulation of S3\I's is made
by five ideal octahedra. Section II D defines the phase space
coordinates of the CS theory on S*\I's and the symplectic
transformation from the phase space coordinates of the CS
theory on the octahedra. The symplectic transformation
defines the Weil-like transformations which relate the
octahedron partition functions to the CS partition function
on S3\F5, as discussed in Sec. II E. In Sec. II F, we discuss
the coherent state of the CS theory, which will be useful for
the spinfoam model.

A. Ideal triangulation of S3\I's

The 3-manifold M5 = S*\I's is the complement in S* of
an open tubular neighborhood of the I's graph (see Fig. 3).
Here, M5 can be triangulated by a set of (topological) ideal
tetrahedra. An ideal tetrahedron A is a tetrahedron whose
vertices are located at infinities. It is convenient to truncate
the vertices to define the ideal tetrahedron as the “truncated
tetrahedron” as in Fig. 2. There are two types of boundary
components for the ideal tetrahedron: (a) the original
boundary of the tetrahedron and (b) the boundaries created
by truncating tetrahedron vertices. Following e.g.,
[15,26,27], the type-(a) boundary is called the geodesic

Z|

FIG. 2. Ideal tetrahedron.

boundary, and the type-(b) boundary is called the cusp
boundary.

Note that M5 also has two types of boundary com-
ponents: (A) the boundaries created by removing the
open ball containing vertices of the graph, and (B) the
boundaries created by removing tubular neighborhoods
of edges. Here each type-(A) boundary component is a
4-holed sphere. Each type-(B) boundary component is an
annulus which begins and ends at a pair of holes of two
type-(A) boundaries. The type-(A) boundary is called the
geodesic boundary of M3, and the type-(B) boundary is
called the cusp boundary. An ideal triangulation decom-
poses M3 into a set of ideal tetrahedra, such that the
geodesic boundary of M5 is triangulated by geodesic
boundaries of the ideal tetrahedra, while the cusp boundary
of M5 is triangulated by cusp boundaries of the ideal
tetrahedra. This ideal triangulation of S*\I's is not the
triangulation of S dual to I's (the latter is given by the
boundary of the 4-simplex). It is important to distinguish
these two triangulations.

Here the geodesic boundary of S*\I's consists of five
4-holed spheres {S,}>_,, while the cusp boundary consists
of 10 annuli {#,; },-,,- The I's graph in Fig. 3 motivates us to
subdivide $*\T's into five tetrahedron-like regions (five gray
tetrahedra in Fig. 3, whose vertices coincide with the vertices
of the graph). Every tetrahedron-like region should actually
be understood as an ideal octahedron (with vertices trun-
cated). The octahedron faces triangulate the 4-holed spheres,
and the octahedron cusp boundaries (created by truncating
vertices) triangulate the annuli. The way of gluing five ideal
octahedra to form S?\I's is shown in Fig. 3. Each ideal
octahedron can be subdivided into four ideal tetrahedra as
shown in Fig. 4. A specific way of subdividing the octahe-
dron is specified by a choice of octahedron equator. As a
result, S*\I's is triangulated by 20 ideal tetrahedra.

Given M5 with both geodesic and cusp boundaries, a
framed PSL(2, C) flat connection on M3 is a PSL(2, C) flat
connection A on M3 with a choice of flat section s (called
the framing flag) in an associated C[P; bundle over every
cusp boundary (see e.g., [27-29]). The flat section s can be
viewed as a C? vector field on a cusp boundary, defined up
a complex rescaling and satisfying the flatness equation
(d—A)s =0 (d is the exterior derivative). Consequently,
the vector s(p) at a point p of the cusp boundary is an
eigenvector of the holonomy of A around the cusp based at
p. The eigenvector fixes the Weyl symmetry. Similarly, a
framed flat connection on dM5 is a flat connection 2 on
OM; with the same choice of framing flag on every cusp
boundary. In addition, if a cusp boundary component of a
certain 3-manifold is a small disc, such as the boundaries
created by truncating of tetrahedron vertices, the holonomy
of any framed flat connection 2 around the disc is uni-
potent. The moduli space of framed PSL(2,C) flat con-
nections on 9(S*\I's) is denoted by Pas\ry)» Which is a
symplectic manifold with the Atiyah-Bott symplectic form.
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5

Oct(1)

Oct(3)

5

Oct(2)

Oct(4)

Oct(5)

FIG. 3. Decomposition of S*\I's with five ideal octahedra (red), each of which can be decomposed into four ideal tetrahedra. The
truncations of octahedron vertices are not drawn in the figure. The faces with green labels a, b, ¢, d, e, f, g, h, i, j are the faces where a
pair of octahedra are glued. Two ideal octahedra are glued through a pair of faces having the same label. In each ideal octahedron, we
have chosen the edges with red label x, y, z, w to form the equator of the octahedron. This ideal triangulation first appeared in [19].

The moduli space of framed PSL(2, C) flat connections on
S*\I's is denoted by Lg\r,, which is a Lagrangian sub-
manifold in ,P(?(S3\l"5)'

B. Complex Chern-Simons theory
on ideal tetrahedron

Given the ideal triangulation, the building block of the
CS theory on S*\I's is the theory on an ideal tetrahedron A.
In this subsection, we review the main results of the CS
theory on A and refer to e.g., [15,16,27] for details. The
boundary JA of the ideal tetrahedron is a sphere with four
cusp discs. We denote by Py, the phase space of PSL(2, C)
CS theory on A. Note that Py, is the moduli space of
PSL(2, C) flat connections on a 4-holed sphere, where the
holonomy around each hole is unipotent.

The moduli space of PSL(2,C) flat connections on an
n-holed sphere can be described as follows: A 2-sphere in
which n discs are removed is an n-holed sphere. We make a
2d ideal triangulation of the n-holed sphere such that edges
in the triangulation end at the boundary of the holes.
For example, the boundary of the ideal tetrahedron is an

ideal triangulation of the 4-holed sphere. The 2d ideal
triangulation has 3(n — 2) edges. Each edge E is associated
to a coordinate xx of the moduli space. Given a framed flat
connection, xy is a cross-ratio of four framing flags sy, s,,
s3, s§4 associated to the vertices of the quadrilateral
containing E as the diagonal (see Fig. 5),

{851 A o) (53 A sy)
e (s1 A s3)(s2 A 54) @)

where (s; A s;) is an SL(2,C) invariant volume on C?
computed by parallel transporting s1, ..., sS4 to a common
point inside the quadrilateral by the flat connection. The set
of {xz} are the Fock-Goncharov (FG) edge coordinates
of the moduli space of PSL(2,C) flat connections on the
n-holed sphere. The correspondence between {xz},’s and
framed PSL(2, C) flat connections on S,, is 1-to-1 [29]. By
the “snake rule” [27,28], PSL(2,C) holonomies on the
n-holed sphere can be expressed as 2 x 2 matrices whose
entries are functions of {x}. In particular, the eigenvalue A
of the counterclockwise holonomy (of the flat connection)
around a single hole relates to xz by

104035-5
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FIG. 4. By choosing the equator edges with labels x, y, z, w, an
ideal octahedron can be subdivided into four ideal tetrahedra by
drawing a vertical line connecting the remaining two vertices
which does not belong to the equator. Vertices are truncated,
although truncations are not shown in the figure.

(=xp) = 22, (8)

E around hole

It is convenient to lift it to a logarithmic relation

S (re—in) = 2L, (9)

E around hole

where xp = e?=, ) = el. The moduli space has a natural
Poisson structure with

{)(E»)(E/} = €EFE, (10)

where ep p € 0,4+1, 42 counts the number of oriented
triangles shared by E, F’, and €5 p = +1 if E’ occurs to the
left of E in a triangle. Note that the moduli space of
PSL(2, C) flat connections on any n-holed sphere is not a
symplectic manifold unless A of all holes are fixed.

Applying this to the boundary of the ideal tetrahedron,
we denote the FG coordinates at the edges around a given
hole (cusp disc) by z,7z/.z"” (see Fig. 2). The trivial
holonomy around each hole gives

277" = -1. (11)

81 53

TE

82 84

FIG. 5. Quadrilateral in the 2d ideal triangulation for
defining xj.

Similar conditions for all four cusps identify the FG
coordinates at opposite edges. As a result, we find

P(’?A _ {Z,ZI,Z" c C*|ZZIZ” _ _1} ~ (C*)Z‘ (12)

Here, Py, is a symplectic manifold since the holonomy
eigenvalues at all holes are fixed. The Atiyah-Bott sym-
plectic formis Q = dzi,," A % We also define the logarithmic
phase space coordinates Z = log(z), Z' =log(7/), Z" =
log(z”) with canonical lifts that satisfy

Z+7' +7"=in, (13)
(2.2 g ={2" 2"} o ={Z/. Z}o = 1. (14)

The PSL(2,C) CS theory at levels k€ Z, o €iR
endows the following symplectic form wy, on Py,:

1

=— (1Q+71Q
47r( +19),

Op t==k+o, t:=k-o0, (15)

where k, o relates to the cosmological constant A by

127z

=, o =ik 16
NG 7 (16)

where y is the Barbero-Immirzi parameter [13]. We use the
following parametrization to change from y to b [16]:

1—1i

y = —, b = , 17
YT 1+ iy (17)
Ari g Ari i
ﬂ:l’(1+b2)’ 7_”:£(1+b—2), (18)
k 1 k
with complex b satisfying
Re(b) > 0, Im(b) #0, bl =1. (19)
We reparametrize z, 7' and define Z,Z” by
i
Z=exp [% (—iby — m)} , (20)
i
7 =exp [% (=ib~'u + m)} , (21)
i
7 = exp {Z’ (—ibv — n)] : (22)
» 2mi, .
7' =exp 7(—119 v+n)|, (23)

where (m, n) are real and periodic (m ~m + k,n ~ n + k).
When (u,v) are real, 7, Z” are complex conjugates of z, 7.
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But in the following, (u,v) will be analytically continued
away from the real axis. Here, w, , written in terms of u, v,
m, n gives

2
O = 771 (dv A du —dn A dm). (24)

The quantization of (Pyu.w; ) promotes u, v, m, n to
operators g, m, v, n satisfying the commutation relations

k

V= n,m| = - ,m| = ju.n|=0. 25
o) =mml=->—.  pm=un] 25)
The variables m, n are both canonical conjugate and
periodic, so the spectra of m, n are discrete and bounded:
m,n € Z/kZ. A representation of (25) is the kinematical
Hilbert space

' = L*(R) ® C*. (26)
For any wave function f(u|m) € H]((];;G) where ¢ € R and
m € Z/kZ, the actions of g, m, v, n are given by

pf(ulm) = uf(ulm). 7™ f(ulm) = e f (ulm).
F(ulm) = 5 =0, fulm). e F(ulm) = F(ulm +1).
7)

We also define the operators corresponding to z, 7", 7, 7",

= exp |22 (it~ m)|. 28)
2= exp |22 (vl ), (29)
BN T R
L | RG]

They satisfy g- and §-Weyl algebras

zz// — qz//z’ z‘z‘// — q"//z

7' =7z, ' =17"z,

¢ = oxp (_)
G = exp (@) exp {%(1 + b—Z)]. (33)

The above discussion focuses on flat connections on the
boundary JA. Only a subset of the flat connections on the

[% +b2] (32)

boundary can be extended into the bulk. The moduli space
of the PSL(2, C) flat connection on the ideal tetrahedron A,
denoted by L,, is a holomorphic Lagrangian submanifold
in Pya. Note that £, can be expressed as the holomorphic
algebraic curve in terms of z, z’ (see e.g., [15,27]):

’CA = {Z_l + Z” -1= 0} - POA? (34)

and similarly for the antiholomorphic variables Z, Z’. In the
quantum theory, we promote the algebraic curve to the
quantum constraints imposed on the wave functions,

(@' 42" = 1) (ulm) = (&' + 2" = 1)¥(ulm) = 0.

The solution is the quantum dilogarithm function (see e.g.,
[16,30-32])

0 ]_q/'+lz—l

j=0 T—g771 lq| < 1,
Walulm) = T (35)
J=0 T=gT1 lq| > 1.

Here, W, (u|m) is the CS partition function on the ideal
tetrahedron A, and W, (u|m) defines a meromorphic
function of y € C for each m € Z/kZ and is analytic in
b in each regime Im(b) > 0 and Im(b) < O (correspond-
ingly |g| < 1 and |g| > 1). The poles and zeros of W, (|m)
are

with wu,v € Z,

zeroes: u,v>1,
u—v:—m—l—kZ{ (36)
poles: u,v<0.

Hpole/zero — ibu + ib_ll),

Poles of W, are in the lower-half plane,

Im(ppore) = Re(b)(u + v) <0. (37)

Note that W, (u|m) is holomorphic in ¢ when Im(p) > 0.
The asymptotic behavior of W, (u|m) as Re(u) — oo
with fixed Im(y) is

(o) Re(u) » +o0
Wa(ulm) = { exp[Z(u—L£0)>+ O(1)] Re(u) > —c0,
Q=b+b"'>0. (38)

The asymptotic behavior indicates that W, (u|m) does not

belong to the Hilbert space Hl((];'f) but is a tempered

distribution. Note that W, (u|m) is analytic in the upper-
half plane Im(u) > 0. We have the following useful
observation from the asymptotic behavior: Let @ > 0; then
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|5 (4 + ialm)]
N {GXP (=2 s
exp[-Zula+p—-0/2)] pu— —co.

H = 0o

(39)

Therefore, e~ TP 5 (u + ialm) is a Schwartz function of y
if @, f is inside the open triangle *B(A):

PBA) ={(a.p) eR*|a.p> 0,0+ p < Q/2}.  (40)

The Fourier transform | due T, (u|m) is convergent if
the integration contour is shifted away from the real axis
while a = Im(u), # = Im(v) belong to B(A). Here, a,
can be understood as angles associated with coordinates z,
7' in the context of hyperbolic geometry. Note that (a, ) €
B(A) is called a “positive angle structure” of A [16,17].

C. Octahedron partition function

Four ideal tetrahedra are glued to form an ideal octahe-
dron as shown in Fig. 4. The phase space Py, is a
symplectic reduction from four copies of Pyr: The FG
edge coordinates {xp} of Py are a product of the
tetrahedron edge coordinates. In general, for any edge
on the boundary or in the bulk, it associates [27]

Xp = H(z 7/, 7" incidentat E) or

XE= Z(Z 7', 7" incident at E) (41)

as a product or sum over all the tetrahedron edge coor-
dinates incident at the edge E. For boundary edges, xy are
the FG coordinates of Py, The lift of yz = log(xg) is
determined by the lifts of Z, Z’, Z" of ideal tetrahedra. For
the bulk edge, xg or yg is rather a constraint which is
denoted by ¢y = exp(Cg), satisfying

cg=1 or Cg=2ni, (42)
because the flat connection holonomy around a bulk edge is
trivial. We denote the edge coordinates in four copies of
Paoa by X, Y, Z, W and their double primes. All the edge
coordinates of Py, are expressed in Fig. 4, where we have
a single constraint at the bulk edge,

C=X+Y+Z+W=2ni (43)

We make a symplectic transformation in Pyy X Py X
Poa X Pya from the tetrahedron coordinates (X,X"),
Y, Y", (z,Z"), (W,W") to a set of new symplectic
coordinates (X, Py), (Y, Py), (Z,P,), (C.T'), where

PX — XII _ W//
PZ =z W

PY — YI/ _ W//
r=w" (44)

and each pair are canonical conjugate variables, Poisson
commutative with other pairs. The octahedron phase
space Py 1S a symplectic reduction by imposing the
constraint C = 2zi and removing the “gauge orbit” vari-
able I'. A set of symplectic coordinates of Py, are given

by ¢ = (X.Y.Z), 7 = (Py.Py.P,). The Atiyah-Bott sym-
plectic form Q implies

{di.7j}q =6 {#ibi}to ={mi,mj}o =0. (45)

The CS partition function on the ideal octahedron, Z,
is a product of four tetrahedron partition functions followed
by the restriction on the quantum deformed constraint

4
surface e€ = g, e =G

Zoot(Hix py s piz|my, my, mz)
= ‘PA(ﬂx|mx)‘PA(MY|mY)lPA(/iZ|mZ)

X WaA(iQ — px — py — piz| — my —my —my).

The octahedron partition function gives the following
asymptotics behavior

N :
le kZiﬂ'”’Zoct({ﬂi + ia; }[{m;})]

e~ Fux(ax+By+ay+az=0/2) Uy —> 00
{ e_zT”ﬂX<aX+ﬂX_Q/2) 'uX - —0
where i = X, Y, Z. Similar behaviors are satisfied for

Uy = too or puy — too. Therefore, e_zfzfﬁf”onct X
({u; + ia;}|{m;}) is a Schwartz function of uyx, py, Uz,
if (ay,Bx.ay, By, az, Bz) € R® is contained by the open
polytope *B(oct) defined by the following inequalities:

aXaaYﬂaZ>Os aX+aY+aZ<Qa

ay + Px <g, ay+ﬂy<g, az+ﬂz<gv
2 2 2
0 0
ax+ay+az+ﬁx>5, ax+ay+az+ﬁy>5,
ax+ay+az+ﬂz>%. (46)

To see that P(oct) is not empty, Appendix A shows a plot,
Fig. 9, of the intersection between P(oct) and the plane of
ay = ay = az, fy = By = B,. Here, (a, ) € P(oct) is a
positive angle structure of the ideal octahedron.
Following [16], we consider any 2N-dimensional phase
space (P,w) with Darboux coordinates (u;,m;) and
(v;,m;) such that @ =223"" \(dv; A dp; —dn; A dmy).
The phase space is associated with an “angle space”

“The quantum deformation is necessary to make the partition
function invariant under the 3d Pachner move (see e.g., [15]).
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(Pangle: @angle) Whose universal cover is T*RY ~ R?V; the
Darboux coordinates of Py, are

a; = Im(y;), pi = Im(v;), (47)

SO Wypgle = SN, dp; A da;. Given a 2N-dimensional open
convex symplectic polytope P € Pyyqe, We define z(P)
to be the projection of P to the base of T*RY, with
coordinates a; we then define

strip(B) = {fi € CY|Im(ii) € z(*P)}. (48)
We define the functional space as

Fg = {holomorphic functions f: strip(p) — Cs.t.
VY (a, B) € ‘P, the function e‘%ﬁ'ﬁf(ﬁ +ia) € S(RN)

is the Schwartz class}.

We have the convergence for any f € Fy,

/ uFTf () < oo (49)

when the integration contour is shifted away from the real
axis while @ = Im(i), § = Im(7) belong to B. Note that
S € Fy implies the Fourier transform of f also belongs
to F B

To accommodate partition functions of complex Chern-
Simons theory at level k, we define

Fy =Fp® (V).  VixcCh  (50)

As examples, the tetrahedron partition function ¥, belongs
to ]—" (k)

Zoct belongs to ]—"

with N = 1 and the octahedron partition function
with N = 3.

OCt

D. Phase space coordinates of P\

The geodesic boundary of S*\I's consists of five 4-holed
spheres, denoted by S,,_; 5. In Fig. 3, each S, is made by
the triangles from the geodesic boundaries of the octahedra.

We compute all FG edge coordinates ;(S,’,l,), (a labels the
4-holed sphere and mn labels the edge E) of flat con-
nections on S,_; s using Eq. (41) and list them in Table I
in Appendix B.

The phase space Pys\r,) 1s the moduli space of framed
PSL(2,C) flat connections on the 2d boundary d(S*\I's).
We choose the Darboux coordinates of Py g\, as follows:
First, the complex Fenchel-Nielsen (FN) length variables
22, = e*Lo are squared eigenvalues of PSL(2,C) holon-
omies meridian to the 10 annuli Z,, connecting 4-holed

spheres S, and S,. They relate edge coordinates )(5,?2[

.....

using Eq. (9). Ten 2L,, are linear combinations of
(X4, Px,), (Y4 Py,),(Z,, Pz, ) from five Oct(a) with inte-
ger coefficients. Their expressions are given in
Appendix B. The resulting L,, are mutually Poisson
commutative and commute with all edge coordinates )(5,‘,1,2

All L,, commute with 4-holed sphere edge coordinates

)(ﬁ,?,)l, and Py(g\ry) is complex 30-dimensional. Among the

Darboux coordinates, the position variables include ten
2L, and five variables X, (a =1, ...,5), one for each 4-

holed sphere. We choose X, to be one of )(,(,f,),:

1 3
=40 a=40 ay =Y,

Xo=rpsh  Xs=a (51)

We denote the conjugate momentum variables by 7,
and ),, and denote
Q= (LX), Pr= (T Vo). I=1....15
where [ labels the boundary components (£, S,). The
momentum variables 7 ,;, conjugate to 2L, are called the
twist variables. On each S,, the momentum variable ),
conjugate to X, also turns out to be the FG edge
coordinates up to sign and 27xi.

V= )(23)7 Yy = )(14), V3= )(45 — 27i,
V=19 421, Vs =45 -2z (52)

Explicit expressions of 2L, T o, X4 YV, in terms of

(X4 Px,). (Y4 Py ). (Z,. Py ) are given in Appendix B.
There exists a linear symplectic transformation from

®=(X,.Y,.Z,)_ and [l = (Px,.Py . Pz ) t0QP,

(7%): (éaﬂ)-l E)(i)*’”(g) G3)

such that all entries in A, B, 7 are integers. Here, 7isa15-
dimensional vector, and A, B are 15 x 15 blocks satisfying
the fact that AB” is a symmetric matrix. Matrices A, B,7
are given explicitly in Appendix C.

Following from (45), the Atiyah-Bott symplectic form €
on Pysa\ry) is expressed as

15
Q= de, A dQ,

=2 dT,, AdLy, + Z dy, AdX,. (54)

a<b

The coordinates é 73 are used below for constructing the
CS partition function of S*\I's. We sometimes use the
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notations Q,, = 2L, @, = Xy Papy =T aps Py = Y, in
our following discussion.

It is remarkable that there is no additional constraint
for gluing octahedra to form $3\I's since gluing octahedra
does not produce an additional bulk edge. Therefore,
Pasry) = XZ=17)t)ocn(a)- It is simply a symplectic trans-
formation from the octahedra Darboux coordinates <13
II to P], QI of P@(S3\F5)'

flat connections on each octahedron is a Lagrangian

|
<I—A<BT>-' ;3) - ((1)

We start with a product of five octahedron partition
functions, each of which is associated to an octahedron in
the decomposition of S*\T's,

i)~ ] 2

()
e}",m

The moduli space of framed

" mYavaa)

Q

(56)

oct)*>”

The generators of the symplectic transformation are rep-
resented as a Weil-like action on Z, according to the order
in (55) [15,16].

1. U-type transformation:

U= (‘(B_I)T 0 ) (57)

0 -B

(U > Z,)(lm)
det(—B)Z, (-BTji| - B'@m),  (58)

Zy(flm) =

where \/det(—B) = 4i. The fact that all entries of B are
integers guarantees that Z, is well defined for m € Z/kZ.

In addition, Z, € F gzoct)” indicates that the following

function is of Schwartz class when (a, ﬁ) € P(oct),
TP 7, (-B i + idlin)
= cHBIZ (~B (i - i(B™)7@)|i),  (59)
where p; € R. Therefore, Z, belongs to }",%{l) , where

B, = UoP(oct)*>, with U acting on the angle space
Phangle as a symplectic transformation.
2. T-type transformation:

~(awr 1) @

W

submanifold Loe(a) C Pooct(a)- Then, 33_; Loc(a)

is a Lagrangian submanifold in X3_, Py«

>~ L: S3\F5
@ = Pos\ry)-
Given any five framed flat connections on five octahedra,
respectively, they define a flat connection on S3\T's.

E. $3\I's partition function

The symplectic matrix in (53) can be decomposed into
generators

ALT 2) <_(B0_1)T _0B ) (55)

Zy(lm) = (T > Zy)(4lm)
_ (_l)rﬂABT o (—H-ABT ji+ii-AB'- ”’)Zl(mﬁi). (61)

All entries of ABT are integers so that Z, is well defined for
m € (Z/kZ)". Note that Z; € ]—"%‘]) implies that the
following function is of Schwartz class when (a, ﬁ) € By,

e—z—k”ﬁ'ﬁll (i + ia|m) = phase - e‘%ﬁ'(ﬁ+ABT'a>Zz(ﬁ + ialm).

(62)
Therefore, Z, belongs to F SIQ where 3, = T o 3;.
3. S-type transformation:
S = (0 _I> (63)
1L 0 )

Zs(f|m) = (S > Zz)(ﬂ|m

/dlsue% —ATHR) 7 (D)), (64)
c(z/kz)'s

(1/[) (l = 1,

[e¥3Re0) 2, (Re(?) + i)

x 2 -Re(ji) Re(D)+-pl+2Re(ji)f

If we set @; = Im(y;) and f; = Im , 15),

N Z, (D)) =

is a Schwartz function in Re(7), when (ﬁ, —a) € P, (the
function in the square brackets is a Schwartz function, and

¢ TIRe(i)Re(@)] 5 g phase), or equivalently,

-

(@5) € Ps=SoP, =SoToUoP(oct).  (65)

Given any (a, ﬁ) € P, let Im(y;) = «; and the integration
contour C be defined such that Im(v;) = f;; then Z5(ji|m)

converges absolutely, and Z; e]-"g;j. As long as the
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contour C satisfies the condition Im(v;) = S, (@, ﬁ) € Bs,
Z3(ji|m) is independent of the choices of C, i.e., choices of
P, due to the analyticity of Z, and the fast decay of the
integrand at infinity.

4. Affine shifts:

Zgnr, (Hlm) = (o7 > Z3) (flm)
~2,(7-"21) (67
We have Zg\; € F, %{:ew, where

s'Bnew: SI}%—G*OSOTOUOSB(OCO

©-G)-CF) -

The resulting Z g\ (#|m) is the CS partition function on

Nl\

I~

™! R

S3\I's. Here, P,y is obviously nonempty since B(oct) is
nonempty. Every (a, ﬁ) € B, 1S @ positive angle structure
of $3\I's, and it leads to the absolute convergence
of Zgop, (ili).

Note that ji, m relate to {Q;, O;},—;._ 5 by
KQf + Q) ik(Q - b*Q))
— =T == TR (g9
M=o +oy T 2?1 1) (69)
Q/I = Ql - iﬂtl, QI Ql lﬂ'tl (70)

or in terms of exponentials,

-1yre® = exp |28 =ity =mp)|. ()

(1)@ —exp |8 (07 4| 2

Consider the shifts Q; — Q; + 2zip;, O, » O, — 2xip;

(p;, P € Z), which leave ¢, e invariant. Fixing

>The affine shifted classical coordinate X + izt (t € Z) has
the quantum deformation X + (iz +%)7 when entering the
partition function [15]. In terms of the exponential variables,
the affine shift is given by (—q2)'e¥ = (—¢?)'x. Here, we
define ¢* = ¢?, where h = (1 +p?). If we parametrize
eX = exp[Z (—iby — m)], the affine shift X — X + (iz +2)1
corresponds to u — p+%i(b+b')t, m — m, and adding an
overall (—=1)" to e*.

Im(y;) = a; implies p; = p;, and then the shifts reduce
to the gauge freedom m; - m; + kp; in Z/kZ.

F. Coherent states

Given the 4-holed sphere S,, we transform the corre-
sponding phase space coordinates from X,,),, X,, Y, to
ﬂa’ I/a’ ma’ na by

2mi

Xa - lﬂta = 7 (_lb/'ta - ma)7 (73)
- . 2ri 1
X, —int, = k( ib"yu, +my), (74)
2 gi
Vo == (=ibvy = n,). (75)
- 2
Vo = 2 b7 ), (76)

where p, is the component in i € strip(P,ey). These
coordinates parametrize PSL(2,C) flat connections on
S, with fixed e*« at the holes. The moduli space of
PSL(2, C) flat connections on S,, is locally C®, but fixing
e?La reduces the space to C? locally. Let us fix Im(u,) =
a, and focus on degrees of freedom Re(u,),m,. In the
following discussions of this section, we use y, € R to
represent Re(u,). We define the Hilbert space
Hs, = L*(R) Q¢ V. V, ~Ck, (77)

containing functions of y, € R, m, € Z/kZ. Operators pu,,,
Vg, My, n, on Hg are defined in the same way as in (27).
We suppress the a index in the following discussions.

We first focus on L?(R) and define the “annihilation
operator” and coherent state y_(¢) labeled by z € C. Here,
w,(u) satisfies

% (\/%ﬂ + i\/%l/) w2(u) = \/gzw?(u)-

The solution is

2 1/4 —z(—k_R,
wl(p) = <%) e HHARe

where y?(u) is normalized by the standard L?-norm. The
coherent state label z relates to the classical phase space
coordinates g, v as

1\/_;41m ’ (78)

c= \1[2; (4o + ). (79)

We can multiply w? by a prefactor that relates to the
polytope [3,..,; namely, for each S, we define
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— ,—V2B.Re(z,),,,0 k -
Yz, (:ua) =e V2PuRe(: )Wza (Ma)’ (80) — dxdyg(x V)<m)§(x y>(m') = 5m - (83)
4r° [ N : ’
where f3, is the component in (a, ﬁ) € P, ew- The prefactor
does not affect the semiclassical behavior of y, but it
relates to the finiteness of the amplitude. Note that {3, 2:1
cannot be zero because e.g., f; = az, + az, > 0 according Ve @ Cipoa,) € s, (84)
to (46). It is still a viable choice to work with the

normalized coherent state W(z),,; then, certain requirements

We define coherent states in Hg by tensor products

Note that z,,,7Z,, x,, ¥, coordinatize the part of the phase
. X : space associated to S,, and they form a coordinate system
should be implemented to the spinfoam edge amplitude. o the moduli space of PSL(2, C) flat connections on S,

We come back to this point in Sec. III E. (with fixed e*!«). We get the following relation:
We denote the coherent state in V. by &, ,)(m), where

(x,y) €10,27) x [0,27) and m € Z/kZ [33], Vo @&y =Wz, ® oy (85)

g( )(m) — (g> i—% o 2mn—x)? y—iky(2m27n—) We multiply the coherent states over five S,
X,y — y 7\ k -
nez s
(81) lpp({/"u}Hma}) = Hl//za (/’tu)g(xa,y,,)(ma) € ®a HS,,
a=1
Note that (x,y) relates to the classical phase space P = {20 X Ya o (86)
coordinates my, ny by ararJata=1

where i, € R. The partition function Zg\r, is a function of

2 2 o . . . .
y= %no, X = %mo, mod 27 (82)  ji,m, including p,, m,. We consider the (partial) L? inner
product between Z g\, and ¥, (this may be understood as
and &, )(m) satisfy the overcompleteness relation in V, Z g\, acting on ‘i’p since Z g\ r, is a tempered distribution),
|
B 5
Zor, ) = (F 2o r)ems, = D A T duaZgr, G+ ialm) ¥, ({ua {7}, (87)

{m.}e(z/kz)? a=l

where ji + ia € strip(Pyey ). Here, Zg\r, (1) is a function of

L= ({/’lab + iaab? mab}a<b’ {Zav-xw ya}fz:lv {aa’ﬂa}gzl)» Hap € R’ Mgy € Z/kZ’ 2. € 67 (xwyu) € Tz! (88)

which includes the position variables of annuli and both the position and momentum variables of 4-holed spheres. Note that z
determines a unique PSL(2, C) flat connection on each S,: Given an and using (79) and (82), z,, x,,, y, determine phase space
coordinates that relate to FG coordinates by (73)—~(76). The resulting FG coordinates and e?“« given by u,;,, m,;, of the same 1
determine a unique PSL(2, C) flat connection on S,,.

Theorem IL1. Fixing the annulus data {g),. map}o<p» |Z50r,(2)] is bounded for all {z,.x,.v4},;-

Proof: In Zg\r, (1), the sum over m' is finite, and for any m,

VR (-2 x —iy), o)
‘f(x.,.v)(m) = PR

is smooth in (x,y) € [0,27) x [0, 27) ~ T thus, |£,,)(m)| is bounded on T* for any m. Therefore, the boundedness of
Zgnr, (1) is implied by the boundedness of the following integral for all m:

104035-12



FOUR-DIMENSIONAL SPINFOAM QUANTUM GRAVITY WITH A ...

PHYS. REV. D 104, 104035 (2021)

5 5
[Tz, -+ ) T 2
T a=1 =

o~V2D_ PaRe(z) / Hdﬂuzsg\n i@+ ialm’ szu

1\ 2N T i
< <z)4e_\/izuﬂaRe(za) / Hdﬂ:l|ZS3\r5 (@ + ia'|ﬁ1/)e_72a/ju”a| H o (ﬁ;)ezrﬁma
: a=1

—\/_ /i,,Re Za !/ - a(ﬂfA_ﬂl\ a 2 2z /ja”a
el [T

5 G
— CkZeZa "u'

In the third step we use ZS3\F5 € F%{:&W; thus, as a

5), ¥ (@) € Boews

function of i, (a =1, ...,
eTEL S Z g (i + id|iR) € S(RS), (90

where C is the upper bound of |e_27”2a”/“ﬂ”253\r5x
(i + ia|m)|. L]

III. SPINFOAM AMPLITUDE WITH A
COSMOLOGICAL CONSTANT

The purpose of this section is to impose the simplicity
constraint on Zgr(z) in order to relate the CS partition
function to the spinfoam vertex amplitude in 4d. The
simplicity constraint reduces the PSL(2, C) flat connection
to PSU(2) on five S,’s. Based on the resulting vertex
amplitude, we define the spinfoam amplitude with A on any
simplicial complex and prove its finiteness, as well as
discuss several related perspectives.

A. Simplicity constraint and vertex amplitude

In the simplicial context with A =0, the simplicity
constraint (in the EPRL/FK model) imposes that for any
spacelike tetrahedron e, there exists a timelike unit vector
N' in 4d Minkowski space such that B} N; = 0, where B}/
(f =1,...,4) are bivectors associated to four faces f.
The simplicity constraint and closure condition endow
every e with a convex geometrical tetrahedron in flat
space. Indeed, the B} that satisfy the constraint are equi-
valent to 3d vectors a;n} = 5€/X“N;By; (w'n; = 1) in
the plane normal to N'. Then the BF closure condition
>-7_1 B =0 implies >}, a;nf =0, which endows e
with a convex geometrical tetrahedron (whose face areas
and normals are a; and n}) using Minkowski’s theorem
[34]. At the quantum level, the first-class part of the
simplicity constraint, i.e., the diagonal simplicity constraint
ek BY BfY =0, is imposed strongly on the states,

(39)

|
whereas the second-class part of the simplicity constraint
is weakly imposed [14,20,35].

In the presence of nonvanishing A, I's C S3 is the dual
graph of the triangulation of S* given by the 4-simplex’s
boundary. Each node of I's, or each S, C 9(5*\I's), is dual
to a boundary tetrahedron e, of the 4-simplex. Each link of
[s, or each annulus Z,;, C 9(S*\I's), is dual to a boundary
triangle f,;, of the 4-simplex. All tetrahedra and triangles
are spacelike, similar to the EPRL/FK model. Given any e,
the generalization of the closure condition is the defining
equation of PSL(2,C) flat connections on the 4-holed
sphere S,: 0,030,0, = 1, where O;_, 4 € PSL(2,C)
are holonomies around four holes based at a common point
p. € S,. Using the non-Abelian Stokes theorem, we
identify O, = elBs/3 € SO(1,3)" due to the relation
F(A) =|A|B/3 from integrating out B in (3). Here
F(A), as the curvature of the CS connection A on $°,
is proportional to the delta function supported on Is
(equivalent to the fact that A is flat on $3\I's). Namely,
F(A) = @Bféz(x)dxl A dx? on face f coordinated by
(x!', x?) transverse to an edge of I's at X = 0. 0,03;0,0, =
1 with Oy = €l*B//3 reduces to the linear closure condition
>3-1B; =0 as A — 0. Moreover, the simplicity con-
straint B /N, =0forall f =1, ..., 4 restricts O =1
common PSU(2) subgroup stabilizing the timelike vector
N'. The result in [21] shows that restricting all O ¢ to the
subgroup PSU(2) endows e with a convex geometrical
tetrahedron with constant curvature. The effect of restrict-
ing Oy to PSU(2) is analogous to the simplicity constraint
reviewed above. This motivates us to define this restriction
to be the simplicity constraint in the presence of non-
vanishing A [36]:

Definition III.1. Semiclassically, in the presence of a
nonvanishing cosmological constant, the simplicity con-
straint restricts the moduli spaces of PSL(2,C) flat con-
nections on 4-holed spheres to the ones that can be gauge
transformed to PSU(2) ~ SO(3) flat connections.

.....
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1. First-class constraints

Our proposal is to quantize and impose the simplicity
constraint on Z g (1). First, flat connections on all S, are
PSU(2), which implies e*~« € U(1), or equivalently y,;, =
0 for all annuli #Z,,. However, due to the presence of
gy, = Im(uy, ), at the quantum level we may have to decide
whether we impose

Rpap) Zsnr, (1) =0 or  papZgr, (1) = 0. (91)

In either case, these ten constraints are first class since
{Map}a<p are commutative; thus, they can be imposed
strongly on Z g\ (z). Note that {#,, } ., are multiplication
operators acting on Zgr, (1). The former choice restricts

Re(uap) =0, V 4 (92)

in 1. The latter choice restricts both Re(p,;,) and the positive
angle structure,

Re(pa,) =0 and au, =0, V £y, (93)
and thus, it is much stronger than the former choice.
However, the semiclassical limit of the theory is insensitive

to the choices: Consider the former (weaker) choice; e*fa
determined by : is given by

2l

e*lar = (=1)" exp {7 (batay — mab)]

2mi k
= exp a ba,, — | my, + t“bi
2rxi ) €ub
= exp {7 (baab + <2Jab + 7) )} (94)

where a,;, = Im(u,,). In the last step, since —(my, +
tu%) €Z/KZ (or Z/kZ +1/2) if k is even (or odd),
we introduce the half-integer “spin” j,, such that
—(Map + 14 5) = 2jup + % mod kZ where

1—(—1)'ab
cw={, 7 Lo (95)
0 k even
. 1 k—1
jab—o,i,...,T. (96)

The double-scaling limit j,;,, k — oo with j,,/k fixed is the
semiclassical limit for the spinfoam amplitude with a
cosmological constant (see Sec. IV for a discussion). In
this limit, e’ is insensitive to a,,, €, since they do not
scale with k,

2L

pni
2Lar S exp [%jab e u(l). (97)

Both choices in (91) lead to the same semiclassical result.
At least semiclassically, each holonomy around holes on S,
can be individually conjugated to PSU(2), while j,,/k
determines the conjugacy class of the holonomy.

The stronger choice (93) is indeed viable. We can have
(52,[7) € P, With ten a,, = 0 because, for instance, all
ten a,;, = 0 can be given by ay, = ay, = az, = Q/4 and
Bx, =Py, =Pz, =0 (a=1,...,5), which satisfy (46).
The simplicity constraint results in, restrictively, eta e
U(1) when a,, =0, whereas e*:« ¢ U(1) for other
a,, # 0. Note that a,;, = 0 is a preferred choice because
e?le € U(1) implies that after imposing the simplicity
constraint, the area from the 4d bivector B coincides with
the face area of the 3d tetrahedron at the quantum level:
Recall the discussion above Definition III.1. We diago-
nalize an O, € PSL(2,C) by a gauge transformation

Of — idiag(ellab’ e_Lub) f— ieRe(Lab>63+iIm(Lab)53

< o2Re(Ly)KP2Im(Ly)L _ B, SO(1,3)*

where Im(L,;,) € [0, 7) and K, L? are so(1, 3) generators.
We obtain 4B, = 2Re(L,,)K> - 2Im(L,,)L> for the
preferred lift of By. Then, L, relates to the area
from the 4d bivector, |B/| = |3 Tr(B})|"/?, by @\Bﬂ =
2|Re(L,,)? —Im(L,;)%|"/?. Restricting a,, =0 and the
simplicity constraint Re(u,;,) = 0, we get

1A]
3

. A
(.]uh + eab/4) = %auh» (98)

4n

Byl = 2Im(L) =

where a,;, is the face area of the 3d tetrahedron (this is
implied by the generalized closure condition, see [21] or
the discussion below). Both Z\ -, and ¥, are functions of
L,; thus, both the 4d and 3d area operators, m\Bf| =
2[Re(Lyy)? = Im(Ly)2 "% and Ala,, = 2Im(L,,), act as
multiplications. The above shows that these two operators
coincide when a,, = 0. A similar consistency constraint
“4d area = 3d area” has also been imposed on the EPRL
model [20].

However, to keep discussions general, we still use
the weaker version (92) and keep a,, general in the
following discussion. But we prefer a,, = 0 using the
above argument.

2. Second-class constraints

The first-class part of the simplicity constraint and j;, fix
e’La on ten annuli. Classically, fixing e?/« reduces the
moduli space of PSL(2, C) flat connections on S, to two
complex dimensions whose Darboux coordinates 9, ¢ € C

104035-14



FOUR-DIMENSIONAL SPINFOAM QUANTUM GRAVITY WITH A ...

PHYS. REV. D 104, 104035 (2021)

are studied in [37], with {8, ¢} = 1 (they are the complex-
ification of 0, ¢ in Sec. III B). Constraining flat connections
to PSU(2) restricts Im(89) = Im(p) = 0. The restriction
gives second-class constraints due to the noncommutativity
of 9, ¢. Using the lessons from the EPRL/FK model, the
constraints have to be imposed weakly at the quantum
level. Our strategy is to impose the constraints on the label
(24> X4»¥a) Where the coherent state ¥, is peaked. Here,
(24> X4» ¥q) 18 @ point in the moduli space of PSL(2,C)
flat connections on S, with fixed e?‘«’s. We restrict
(24, X4» ¥q) to the subspace of flat connections that can
be gauge transformed to PSU(2).

Classically, our simplicity constraint is an analog of
the linear simplicity constraint in the EPRL/FK model,
as discussed at the beginning of this subsection. At the
quantum level, although all spinfoam models weakly
impose the second-class simplicity constraint, here the
constraint is imposed on the coherent state labels, similar
to the FK model [35] but different from the EPRL model
where the constraint is imposed by a master constraint
operator.

Although the following discussion does not assume large
Jjab» before Eq. (108), we ignore a,;, so that e*!«» € U(1) is
assumed since we are only concerned with the semi-
classical simplicity constraint here. After Eq. (108) we
take into account, in general, a,;, # 0 and e*l» ¢ U(1) at
the quantum level.

On the 4-holed sphere S,, flat connections that can
be gauge transformed to PSU(2) are described by four
PSL(2,C) holonomies O;, O,, O3, O, that can be
simultaneously conjugated to PSU(2). Here, O;, O,, Os,
O, are based at a common point p, and each of them travels
around a hole of S,. As holonomies of flat connections,
they satisfy the generalized closure condition

04030201 — 1 (99)

This equation is invariant under the PSL(2,C) gauge
transformation. We apply the gauge transformation to
make all O; € PSU(2), and we treat (99) as an equation
of PSU(2) holonomies. The conjugacy class of each O; has
been fixed by (97), which specifies the squared eigenvalue
of O;. There exists a lift from O; to H; € SU(2) such that

+eti 0
H =M M(&), 100
=me( T e oo
)
weo- (5 3 ) (1o)
satisfying
H4H3H2H1 - 1 (102)

In each H;, we neglect ¢,, when discussing the para-
metrization of PSU(2) flat connections,

Ji = Jab

as 7, ends at the hole labeled by i, and similarly for #,.
Note that & = (&!,E2)T is defined up to a complex scaling
by the above formula of H;. If we fix det(M(&;)) =1,

=&l6g, i=1,...4,
where 6 = (o- 6°,6%) are Pauli matrices  (103)
giving four unit 3-vectors in R3. The geometrical inter-
pretation of (99) relates the holonomies to a geometrical
3d tetrahedron with constant curvature (see [13,21] or
Theorem IV.2), in which 42 Tii= ‘ | a; is the face area and 7;
are face normals parallel transponed to a common vertex of
the tetrahedron.® Note that {7i;}+ | relates to the outward
pointing normals {n;}}, of the tetrahedron by
n; = sgn(A)ii;. Equation (102) with H; = "% reduces
to the flat closure condition ), ¥; = 0 for small A.

To clarify our convention, consider #,, connecting the
ith hole of S, to the jth hole of S;,. We choose the framing
flag s, ~of Z,, such that on S,, the eigenvector of the
holonomy O; = O, & =&, coincides with s, —parallel
transported to the common base point p, € S, of {O;}1,.
If our convention is (99) on both S, and &, the parallel
transport of O; = 0, of S, gives 0;1 = 0,, of S;, i.e.,
G;g 0.,G ., = Oy, with a holonomy G, along 7. Here,
s¢,, evaluated at a point p, € S, gives &, as the eigen-
vector of O, with upper eigenvalue +¢>%/i/k But £,, does
not equal &; = (&}, &7)" on Sb, but it does equal (&3, &))"
in the conventlon of (100)

If a mmus sign is present in (100), we write
where j' = k/2 — j; then, Eq. (100) can

27i ;

—e kj — e /( J s
be rewritten as

zf,] 0
Hi:M/(é:i)<eO e_%11> (61) ’ (104)

_252 _61
we - (5 ) (105)
If there is a plus sign in (100), we set j/ = j. Flipping+ —
— in (100) corresponds to j — k/2 — j and M(&) — M'(&).

®Note that 42 Tii= ‘A‘ a; mismatches (98) if €,;, # 0, but this is

not a problem smce here we discuss coherent state labels, whereas
(987) is about operator elgenvalues

The inverse of H,; in (100) can be written as H;' =
+M'(&)diag(eTi, e~ k/')M/(é)‘1 where M'(£) is given by
(105)
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MUXIN HAN
Lemma IIL1. The lifts H;_; , € SU(2) satisfy
H,H3H,H, = 1, which exist if and only if j;_, , satisfy

.....

the triangle inequality, i.e., there exists J such that

=l <7 <min(jy + . k= jy = j5). - (106)

3 —Jal £J <min(j5 + ji. k=5 = ji).  (107)

The proof of this Lemma is given in Appendix D.
Equations (106) and (107) agree with the spin-coupling rule
of SU(2), with q = ¢™/(+2),

Lemma IIL.2. 0,050,0, =1 has the solution O; €
PSU(2) if j; given by (97) equals either j, or k/2 — j.,
where { .} satisfies the triangle inequality (106) and (107).

Proof: Given a solution H; € SU(2) to HyH:H,H, =1,
both +H; projectto O; € PSU(2), solving 0,030,0, = 1.
If H; is given by (104) with j' = k/2 — j,

e%(k/z_j:‘) 0

_ M)
0 e—%(k/z—m) (&)

Since both £H, are allowed for the PSU(2) equation, j; is
given by the squared eigenvalue (97) of either H; or —H;, and
thus can be either j; or k/2 — ji. m

We restrict j,, to satisfy the condition in Lemma II1.2 so
that 0,050,0; =1 has a solution at every S, The
triangle inequality in Lemma III.1 is the analog of the
triangle inequality for SU(2) intertwiners in spinfoam
models without a cosmological constant.

The eigenvector of the holonomy 0, & = (&1, )T or
(—&3. &))" is the framing flag s, (of £ connecting the hole i)
parallel transported to the base point p of O;, i.e.,

- = m(e)

&=s:(p). PES. (108)
The FG coordinates on S, can be expressed in terms of &'
Without loss of generality, we assume that p is inside the
quadrilateral shown in Fig. 6, and each O; travels around

the hole i counterclockwise. We have

FIG. 6. Ideal triangulation of a 4-holed sphere.

v3 = H2H1

v2 =M v4 = HsHyH,y

v =1

FIG. 7. The 4-gon in SU(2) determined by H,H;H,H, = 1.
(E1 A &E)E N &)
SRSAR -
(0485 7 &) N &)
(048 NENE N &)

XEG, E) =

XE’(}:E) =

(109)

Here, O, is given by

+ela 0

04 == M(gél.) ( 0 j:e_L"b

)M@w, (110)

where +elw = texp (2 (bay, + (2ju +4))] for £,
attached to the fourth hole. Here, xz is independent of
the + sign. Both xx(J, E) xp(J, E) are invariant under the
PSL(2,C) gauge transformation of (99): O; — hO;h™,
& — h&.

The correspondence between {xp}z’s and framed
PSL(2,C) flat connections on S, is 1-to-1 [29], so
Xg, Xp given by (109) and four ¢!« at the holes uniquely
determine a PSL(2, C) flat connection labeled by i &. This
connection reduces to PSU(2) when a,;, = 0. We choose E,
E' to be such that xg, xz equals e, eYe in (e<, e”r). We
lift xg, xp to logarithmic coordinates yx = log(xg), yp =
log(xg ) [the lift is uniquely given by (41) and the lifts of
ideal-tetrahedra coordinates] and obtain X', ), as func-
tions of ;, E Using (73)—(76), we have u,, v,, m,, n, € R
as functions of ; E Furthermore, using (79) and (82), we
uniquely obtain the functions z,(J, E) x,(j. E), and y, (. E)

Recalling (88), the implementation of the simplicity
constraint restricts the label 7 to the subspace

3
D = (zaG.8).%.).740.9)).

where .7 = {jab + eab/4}a<b and E = {fdb}a,bzl 5 Note

.....

that m,, relates to j,, according to (94). Here, j has to
satisfy the condition in Lemma III.2 so that the solution
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Therefore, the simplicity constraint restricts the partition
function Zg\r(z) in (87) to

-

ZS‘\FS(I“) =A,(.9). (111)
which is defined to be the spinfoam vertex amplitude with a
cosmological constant.

Note that only two FG coordinates xj, xz out of six are
used in z,, x,, y,. Only these two coordinates are restricted
to be (109). The other four FG coordinates xg» # X, Xp
may not be simultaneously expressed in terms of J, 5
(109) when a;, # 0, since otherwise 4> = HEamundhole Xg
would belong to U(1), whereas generally e*2« ¢ U(1) for
a,, 7 0. However, the other four xz» # xp, Xz are absent in

the coherent label. Note that p}’? is generally a PSL(2,C)

flat connection, but it reduces to PSU(2) when «a,;, = 0 or
in the semiclassical limit.

B. SU(2) flat connections on S, and 4-gon

A simple counting of degrees of freedom shows that E’s
solving 04,030,0; =1 modulo PSU(2) gauge transfor-
mations generically span real 2-dimensional space. This 2-
dimensional space is denoted by ./\/l;. Note that xg, xg in

(109) are densely defined functions on /\/17.

A description of M; [37] generalizes the Kapovich-
Millson phase space description [38,39]: We lift to the
cover space /\717 the moduli space of an SU(2) flat con-
nection with fixed 7 Here, /\?l; is the moduli space of
solutions to HyH3H,H; = 1 with

o0
=) (<) 9 e

0
where j; = j,, of annuli £, connecting to the holes.
Given the 4-dimensional complex vector space V =

Mat,,»(C) ~ C* of complex 2 x 2 matrices, we endow V
with the complex metric (X, Y) = —1[Tr(XY) — TrXTrY].
If we write X=x7+>3 x%, and Y =)I+

3 ¥%,, (X,Y) is the complexified Minkowski metric
on C*: (X,Y) = x%°% = 573 _, xy“. Here, SU(2) is the unit
3-sphere in Vi ~R* C V defined by

3
H=H+iY hi,hy.  h,€R,

a=1
3
(H.H) = (K2 + ) (h*)? = 1.
a=1
When restricting h° +i>3_, h%6, with hy, h, € R, (-,-)

becomes the Euclidean metric on R* and induces the
spherical metric of $* on SU(2).

Given H; 4, € SU(2) satisfying H4H;H,H| = 1, the
set of H; determines four points vy, ..., v4 in SU(2) Fig. 7,
where

1}1:1, ’U2:H1, 7)3:H2H1, ’[]4:H3H2H1.

We first assume the generic situation that vy, ..., v, are
linearly independent in R*. Any pair (v;,v;) viewed as

in R* determines a 2-plane E; =
Spang (v;, v;) C R*. The intersection between E;; and
SU(2) is the geodesic e;; connecting v;, v; [SU(2) is the

unit 3-sphere in R*],

two vectors

eij = El] N SU(2) = {tlvi + l21}j|
t% =+ l% + 2t]l2<1)i, UJ> = 1, l], tz Z O}
The vertices v; and edges e;,, €53, €34, €14 make a 4-gon

in SU(2). The geodesic distance 0;; between v; and v; is
given by

cos(0;;) = (0, ).

(vi,v;) = cijs 0; €
The lengths of e,, €3, €34, €14 are a; = 0, ;; such that
cos(a;) = Tr(H,;)/2.

We draw the diagonal geodesic connecting v, v3. Here, 63
is the length of the diagonal.

The face fj; with the vertices v;, v;, vy is the intersection
of F;j = Spang(v;,v;,v;) and SU(2),

fijk = Fijk N SU(2) = {I]Ul' + tzl)j + t3'l)k|t|, 1,13 > O,
l% ‘|‘ l% + l% + 2t1t2€ij + 2tlt3cik + 2t2t3Cjk = 1}
The unit normal n;; of F,; is defined by (f.n) =0,

V f € Fij, and (n,n) = 1. A choice of orientation of F
corresponds to the sign of n. We define the bending angle

¢i; € (0,7) by
cos(¢;) =

Note that § = 6,3, ¢ = ¢,4 are symplectic coordinates of
/\~/l; [37]. Up to isometries of S°, (6, ¢») determines a unique

<nik1»njkl>- (112)

4-gon in $? ~ SU(2) whose geodesic edge lengths relate to
the conjugacy classes of H;. Indeed, geodesic edge lengths
a;, 8 € (0,7) uniquely determine two triangles sharing
the diagonal e;5, up to isometries of S3. We break the
translational symmetry by fixing »; = 1. The remaining
symmetry is the rotation leaving v, = (1,0,0,0) € R*
invariant. We use the freedom of the rotation to fix the
position of v,, v3 of the triangle (v, v,, v3). Fixing the
position of the triangle (v, v,, v3) breaks the continuous
rotational symmetry, and wv;, v,, v3 determine the
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hyperplane F,; C R*. The freedom of v, is equivalent to
choosing the hyperplane F'34, which is determined by the
bending angle ¢ up to a parity symmetry with respect
to F'y,3. This parity symmetry can be fixed by also choosing
the orientation of the bending flow, i.e., fixing the ori-
entation of nyy3 A ny34 (see Appendix E). As a result,
vy, ..., 4 € SU(2) are uniquely determined by (6, ¢) once
we ﬁx v; = 1 and the rotation symmetry. Here, v, = H|,
H2H1, vy = H3H,H| determine H; 4, with H, =
(H3H2 1)~L. Using (100) and the given {j; }1_,, we obtain
all ¢; as the eigenvector of H; whose squared eigenvalue
is e*i/k. We normalize &;’s by det(M(&;)) =1 up to
individual phases. As a result, all &;’s are functions of j; and
0, ¢. Appendix E provides an algorithm to determine &;’s
from 6, ¢ in practice.
For any function f on ./\/l f can be lifted to a function

on MA and is invariant under H; - —H,;. We define the
followmg integral on Ms:

/Mﬁdéf:/de/\dqﬁf.

The integral on the right-hand side is over the compact
domain; thus, it is finite, provided that |f| is bounded.
The degenerate 4-gons with 8, ¢ =0 are included as
boundaries of the integral. This integral is needed for
gluing vertex amplitudes to construct spinfoam amplitudes
on complexes.

(113)

It may happen that for certain 7, /\~/lj only contain a
degenerate 4-gon (i.e., becoming an n-gon with n < 4)
where a vector v; is a linear combination of another two
vectors vj, vy in R*. In this case the dimension of /\N/lj is less
than 2; thus, the above integral is ill-defined. The degenerate
4-gon leads to at least two H,’s belonging to a U(1) subgroup
in SU(2). It sometimes gives a pair of collinear &;’s that result

in ill-defined x, x on the entire M H [see (109)]. We set the

contribution from ; such that dim(M;) <2 so that it

vanishes in the spinfoam amplitude. In particular, we set
the contribution of j; = 0 to vanish.

C. Finite spinfoam amplitude on
a simplicial complex
Given a simplicial complex K made by a finite number
of 4-simplices, we associate each 4-simplex with a VCI‘tCX

amplitude as a function on x> /\/l~ when fixing ],

A@(; E) = 353\1"5(1],5) (114)

where 1z = (Jabs pQ) When gluing a pair of 4-simplices
by 1dent1fy1ng a pair of tetrahedra, we identify four spins j,

(of tetrahedron face areas) for the pair of tetrahedra; we

x(7.8),y(j. &) (of the tetrahedron
shape) to one tetrahedron and associate

associate p; z = (z(J, E)

-

Jpsz = (2. 8).x(. &), —v(7. ) (115)
to the other tetrahedron [recall (85)]. We may define the
gluing of the pair of vertex amplitudes by

/M dEZ g, (7 Pj,g)zs3\r5 (; J, ;,g), (116)

i

where we only focus on variables associated to the pair of
tetrahedra identified by gluing. Here, [, déis an analog of
7

integrating SU(2) coherent intertwiners in the EPRL model.

The gluing defined by (116) identifies f_f at the quantum
level between the pair of tetrahedra. Generally speaking, it
may only be necessary to identify E semiclassically, i.e.,
gluing 4-simplices by identifying two tetrahedra with shape
matching only semiclassically. Thus, we define the more
general gluing by

/M AEde Zgr (7. ;)A€ &) 2, (L0 5). (117)

i

where A, is called the edge amplitude. Note that A, is a
function of f, &, & relating to the tetrahedron e (A, may
depend on k, y, which is implicit in the formula). The
precise form A, is not determined in this work, but we
require that A, is a Gaussian-like continuous function
peaked at £ =¢ and suppressed elsewhere. Here, A,
approaches 8(, £ ) when j — oo. Choices of the integration
measures of &, & are included in choices of A,.

Given any simplicial complex C, we associate a “spin”
jr =0.1.....551 to each (internal or boundary) face f and
associate to each (internal or boundary) tetrahedron e a

PSU(2) flat connection labeled by ;,E on the 4-holed
sphere. These dataenter vertex amplitudes A, = Zg\r, (152),

edge amplitudes A, (;, 3 E’), and face amplitudes A (j;). We

construct the full spinfoam amplitude A on K by integrating
over p;z of all internal tetrahedra e and summing over j; of

all internal faces,

(k—1) /2
a= " TIatn [zl [acG & BTG
Ub [ e v

(118)

We use the subscript e to manifest that A, only depends on
variables relating to e. Here, [[d£] is a product of integrals
(117) over all internal tetrahedra e, and A,(j;) is an
undetermined face amplitude. Note that [[, is a product
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of over all 4-simplices, and Zf{jf} sums j, atall internal faces

in K. The sum of each j, is finite according to (96). The
cosmological constant relating to k provides a cutoff to the

sum over spins. Here, Z/ indicates that we exclude j’s that
do not satisfy the triangle inequality or lead to ./\~/lj~. of

dimension less than 2.

Theorem II1.3. The amplitude A is finite for any choice
of simplicial complex.

Proof: |A,| is bounded because of Theorem II.1 since it

is continuous on the compact space of Ee, E/L The integral in
A integrates a function whose absolute value is bounded on
a compact domain and thus is absolutely convergent. Then,
the finite sum over j implies the finiteness of A. [

D. Boundary data

The boundary data of the spinfoam amplitude A relate to
the kinematical states of LQG up to a deformation. The
boundary of the 4d simplicial complex K is a 3d simplicial
complex OK. The dual complex OK* =TI is an (oriented)
graph with links [ C " dual to faces f C 9K and nodes
b €T dual to tetrahedra e C OK. The boundary data of A
color every link by a spin ji =0.1,....55, and color
every node b by an element p, = M;. There is a 1-to-1
correspondence between p, and a convex constant curva-
ture tetrahedron (up to degenerate tetrahedra) whose face
areas are determined by j; of I adjacent to b (see [21] or
Theorem IV.1). These data are perfect analogs of LQG
spin-network data on I': spins j; on links and coherent

intertwiners ||, E)b at nodes. The coherent intertwiners 1-
to-1 correspond to convex flat tetrahedra whose face areas
are proportional to j; [40—42]. The boundary data of A are a
deformation of the spin-network data due to the cutoff k%l

of j; and p, for constant curvature tetrahedra versus ||; E)D
for flat tetrahedra. When k& — oo while fixing j, (different
from the semiclassical limit j, k — oo fixing j/k), the
cutoff is removed and the constant curvature A given by
(16) reduces so that it is flat; then, the boundary data of A
reduce to the spin-network data.

We expect that A defines transition amplitudes of
boundary states that are the eigenstates of area operators
at links and coherent with respect to quantum tetrahedra
at nodes, similar to spin-network states with coherent
intertwiners. The coherent states at nodes are expected
to quantize the phase space /\;lf: the moduli space of SU(2)
flat connections on a 4-holed sphere with fixed conjugacy
classes. The quantization of (M;,%Q) is known to give
the Hilbert space of quantum group SU(2), intertwiners
with q = e™/*+2) (see e.g., [43,44]). Using these argu-
ments, we conjecture that the boundary Hilbert space of A
is spanned by g-deformed spin-network states |, ji, iy)
where jy, i, are unitary irreps and intertwiners of SU(2),,

respectively. The proof of this conjecture is a work in

progress. It involves the coherent intertwiner of SU(2), and
shows the relation to the curved tetrahedron labeled by the
SU(2) flat connection. Some earlier studies of the quantum
group coherent intertwiner are given in [45]. Research
related to constructing geometrical operators for the boun-
dary Hilbert space is also in progress (see [46] for the
first step).

E. Ambiguities

The construction of the spinfoam amplitude with a
cosmological constant depends on several choices, which
may relate to ambiguities of the model. In the following we
classify and discuss these choices:

(1) The spinfoam amplitude depends on choices of
coherent states in Sec. IIF. This dependence is a result
of the proposal of imposing the simplicity constraint on
coherent state labels. In this work we choose the coherent
states (80) and (81). But a different set of coherent states
may be chosen, as long as they are peaked semiclassically
at points in the phase space.

(2) There is freedom in choosing edge and face ampli-
tudes A,, Ay in (118). See e.g., [47,48] for some existing
discussion about preferred choices of A,, A, in the absence
of A. The freedom of A, contains the freedom of the

integration measure for E Moreover, the freedom of A, has
an overlap with the freedom of coherent states discussed in

(1). Namely, if we make a change of coherent state ‘P/"'E >
Js

‘I”piZ = [d¢ K (Ee, E;)‘Ppw with a certain function K of &,

E/e of the tetrahedron e, the spinfoam amplitude constructed

with the new state lP/p-g can be written in the same form as
Je

(118) with A, of the old state ¥ . while A, transforms

as A, (€. &) > [ A2 S Ko E)ACe COK (. &),

(3) The vertex amplitude depends on the positive angle
structure (a, ,E) € Prew since Zg\r, depends on (a, B)
More precisely, Zg\r, only depends on a but is indepen-

dent of specific E as long as (a, ,E) € P,ew» according to the
discussion below (65). The dependence on angles a =
({@abtacp {@a}y—y) in Zg\p, may be analogous to the
framing anomaly of CS theory with a compact group
[49,50]. For the consistency “4darea = 3darea” at the
quantum level, it is preferred to restrict all a,, in A, to
vanish and still be inside *B,..,, Whereas there still exists
some freedom of {a,}>_,.

The spinfoam amplitude depends on {f,}>_, because
they enter the vertex amplitude A, via the prefactor
e~V2iRe(z) of the coherent state w. in (80). But this
prefactor can be absorbed in A, (or the definition of the
integration measure of Z‘). Thus, this dependence on
{B.}>_, is part of the freedom of (1) and (2). In more
detail, using the freedom of coherent states, we choose 1//?0
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instead of . in the definition of Zg . (1). Then (89) for
the bound of |Zg\r (1)| is modified by

5 5
- H dpy Zonr, (0 + iatm’) H‘//ga (Ha)
a=1 a=1

< Ck5/4Heﬂ,,(LZ”+\/59f(za)).

(119)

The bound diverges if Re(z,) approaches co or —oo
depending on sgn(f3,). This can happen even after impos-
ing the simplicity constraint since xg, xz can approach
infinity when a pair of & becomes collinear in (109),
particularly when the constant curvature tetrahedron
becomes degenerate. In addition, we need to require the
following behavior of A, as Re(z) approaches co or —oo
correspondingly,

2

A (G, E E VIBRe(, (7 2))

)| < ClemVRez(7) o
where the exponential decay factors should cancel the
exponential growth in (119) of two vertex amplitudes
sharing the tetrahedron e. The freedom of f, becomes
part of the freedom of A,. The integrand of [[d&] in (118)
still has a bounded absolute value; then, A is finite.

(4) The amplitude A generally depends on the choice of
the simplicial complex /C, similar to spinfoam models in the
absence of a cosmological constant.

IV. SEMICLASSICAL ANALYSIS

In this section, we examine the semiclassical behavior of
the vertex amplitude A, and show that the semiclassical
limit of A, reproduces the 4d Regge action with A.

The semiclassical limit of quantum gravity is £p — 0
while keeping geometrical quantities—e.g., areas, shapes,
curvature, etc.—fixed. Note that A, is the LQG transition
amplitude associated to a 4-simplex whose boundary is

|

. 4i
Zgnr, (am) = 5

e(2/kz2)"

Soz%[—z@—g*) U+ 2m-ii—7-ABT D

2

Z, (|m) =

n:ju-

Hw, = iQ —Hx, —Hy, —Hz,

and W, is given by (35).

We use (69) to change variables from u;, m; to Q) = Q; —

ﬂx |mx lI’A(MY |

made by five tetrahedra labeled by a,b =1,...,5, and A,
depends on k, v, j;, and &,;,. Using the result of [21] (to be
reviewed in Sec. IV B), the &,,’s parametrize geometrical
shapes of five boundary constant curvature tetrahedra as
boundary data of A,, while j,,/k (up to &,,/k) is propor-
tional to |A|a,,. Here, a,, is the area of the face f,;, shared
by tetrahedra a and b. The cosmological constant A equals
the constant curvature of tetrahedra. Therefore, the semi-
classical limit in our context is £p — 0 while keeping &,,;,’s,
a,,’s, and A fixed. The Barbero-Immirzi parameter y is also
fixed. The relation between k and A in (16) indicates that
k — oo in the semiclassical limit. These features motivate
the following definition:

Definition IV.1 The semiclassical limit of A, is the
asymptotic behavior of A, when we uniformly scale all
Jap = o0 and k — oo (so ¢ = iky — ico) while keeping
Jan/k fixed.

This limit generalizes the semiclassical limit of the
Turaev-Viro model in 3d gravity and is studied in [13]
for the 4d spinfoam vertex amplitude.

The semiclassical limit of the spinfoam amplitude is the
same as the semiclassical limit of CS theory. Indeed, the
flat connection position variables Q; depend on j,, only
through the ratio j,,/k [see (94)]. The above semiclassical
limit sends kK — oo but leaves Q, finite. The limit effec-
tively removes the dependence of a,,, €, in e?l«. The
limit k£ — oo, keeping Q; finite, is the same as the semi-
classical limit of the CS partition function. Therefore, it is
useful to first study the semiclassical limit of the CS
partition function Zg\p, in Sec. IVA; then, the result
can be applied straightforwardly to the semiclassical limit
of A, in Secs. IVB and IV C.

A. Semiclassical analysis of Chern-Simons
partition function

Recall the construction of Zg\r in Sec. IIE.
Equations (58), (61), (64), and (67) lead to

/dlsl/eSOZ (-B77| — BT#), (120)
(k—i—l)ﬁ-ABT-ﬁ' , (121)
)TA(/JZ[,‘mZa)lPA(,“WJmW(,)f (122)

mWa = —mXa — mya — mza, (123)

irt; and Q,’ = Q, — ixt;. It is intuitive to make a similar

change of variables from v;, n; to P, P, for studying the semiclassical limit,
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bk(P; +P)) k(P - b*P))

- , - 124
27(b + 1) T T 1 ) (124)

Semiclassically, P here is identical to the classical momenta conjugate to o) [recall (55) and the discussion there]. Using the
change of variables,

1. - =z ik - - =, 2 2 2
= __7. - - . (ABT . 2 2D . (ABT . 20/
So 2t (P+P) 42(l + %) {P ( P+29)+b°P-( P +29)]
ik? - 2 - 2
- (P-Db*P)-ABT - (P - b*P). 125
(i pp P bP) (P—5°P) (125)

We treat the sum ), 77 by the Poisson resummation

Z f / dlSnf 2ﬂlpn

e(z/kz)> "1—0 pez®
_ (i) / dlij/( ) zkpj;y (126)
2 pez’s
_27m,_i(771—b 7)]) . N
g, =2 AP VR ) - ), (127)

Here, f(i1) = y(i1)g(i1), where g(1) is the summand in (120) extended from 71 € (Z/kZ)" to i1 € R'>. Note that y(7) is a
compact support function satisfying y(i7) = 1 for 77 € Z'3, and y(7) vanishes out51de [=8, k — 8]'5\U (with arbitrarily small
8 > 0) where { is an open neighborhood of singularities of g(77) and 4 N Z'5 = @. ® The result does not depend on details
of y at7i & Z" because 3, .7 e*P" = 3,7 8(n; — nj). By changing integration variables,

k
dl/ldjl QdPIdPI (128)
The following large-k asymptotic formula of the quantum dilogarithm is useful [15,51]:
B ik 5 Liz(e‘z) ik — Liz(e‘i)
lpA = ¢ 2x(1+H?) 21(1+b=2) [] + 0(]/k)]_ (129)
The large-k asymptotic behavior of Z, is given by
Z. () = S5 [1+ 0(1/k)), (130)
ik
Si=———5+ Liy(e7™«) + Liy(e7Y«) + Liy(e7%) + Liy(e="4)], 131
i (+b2);[2( )+ Liy(e™") + Lip(e™*) + Liy(e™")] (131)
) n 5 3 -
1= 53 57 O La(e ™)+ Lin(e ™) - Lin(e ) + Lin(e™™)]. (132)
a:l

Here (X,, Y., Z,)> —B”P and (X0, Y, Z)_ = —BT’P and W,, W, are given by

a=1=

27i
Xo+Y, +Z,+W, _2m+7(1+b2)

- - 2xi
oA T+ W, = 2m‘+%(1 +572) (133)

X, +

~<h

coinciding with the classical octahedron constraint (43) up to O(1/k).

*When extending W, (u|m) to m € R, poles of W, (u|m) are given by e.g., Hpole = ibu+ b~ v with v = —jand u = —j —m + kZ
(j € Ny) when Im(b) > 0. Poles with u > 1 cancel with zeros when m € Z/kZ, but this cancellation does not apply for noninteger m.
At poles, Im(pe.) = Re(b)(u + v) = Re(b)(—2j — m + kZ). There exists m’s such that Im(u,..) = a; i.e., the pole lies on the
integration contour C and may cause the integral to diverge. Therefore, open neighborhoods of these m’s should be removed.
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Therefore, we rewrite Zg\r, for large k by
Zovr, =No Y / d'5PdPPeSiy[l + 0(1/k)], (134)
pez's Cp

S5 = So(P.P.Q.Q) + 8,(-BTP) + §,(-BTP)
k

—bz—Hf)-(P—bzﬁ). (135)
where ) = —(2;‘)@%. The integration domain Cp is the

30 (real)-dimensional submanifold of (7_5 P) € C satis-
fying 7 € C and J € [, 27 — §)'°.

The large-k asymptotics of Z g\, can be analyzed by the
stationary phase approximation. The dominant contribu-
tions of integrals in (134) come from critical points that are
solutions of the critical equations dp, S; = 05 S5 = 0 (see
Appendix F for details).

We make the linear transformation from é/, Ptod=

(X Yy Z,)3_, and T = (P, . Py, Pz )>_,, and similarly
for tilded variables
QO —2zni(ii+p)=A-®+B-I, (136)
Ot 2ri(i+p)—A-d+B-T,  (137)
p——(B)'®,  P=—(B)'d. (138)
In terms of (5, fI, the critical equations reduce to
Py =X, — Wy, Py =Y, —Wy,  (139)
Py, =Zy;-W;, Py =X,-W,  (140)
Py =Y, -Wi, P, =Zi-W, (141
where
X! =log (1 — eXe), Y" =log (1 —eYe),
Z!' =log (1 — e7%), Wi =log (1 —e W),  (142)
nglog(l—e‘xa), Ygzlog(l—e_fa),
7' =log(1—e%), W, =log(1—e"). (143)

Equations (142) and (143) reproduce e.g., z7' + 7' -1 =
0 with z = ¢Z and 7 = %', i.e., the Lagrangian submani-
fold £, C Py, of framed flat PSL(2, C) connections on the
ideal tetrahedron A. Here, W,, W, are given by (133). The
above logarithms are defined with the same canonical lifts
as in (13). Moreover, X,,Y,,Z,, Px, , Py, , Pz, satisfying
Egs. (139)—(141) parametrize the moduli space of framed

flat PSL(2, C) connections on the ideal octahedron oct(a)
made by gluing four ideal tetrahedra. Therefore, any
solution of critical equations gives five flat connections,
respectively, on five ideal octahedra and vice versa. As a
result, all possible critical points are in Lg\r, since the set
of five flat connections on five ideal octahedra, respectively,
is equivalent to a flat connection on S*\I's [see the
discussion below (54)]. Given a PSL(2, C) flat connection

on S3\F5, @/, 73 at the critical point are determined by
(136)—(138), the same as in (53) up to 27zi(ii + p).

Wesetn; € Zin (136) and (137) as an approximation up
to O(1/k) because for large k any 7; € R in (127) can be
approximated by n; € Z up to O(1/k).” Semiclassically,
critical equations are insensitive to O(1/k). Then (136)—
(138) are the same as (53) (only up to gauge shifts m; —
my; 4+ kZ of m; € Z/k2Z).

Fixing the range of m; (e.g., fixing m; =0,....,k— 1) in
Z g, (i|m) fixes the lifts of Q, Q, from %, ¢< and then
uniquely fixes p = p, € Z, given the lifts of logarithms in
(142) and (143), since different p; € Z change 9, Q, by
F 2xip; (n; is determined by P;). Therefore, only one term
with p = p, in (134) has a critical point and contributes to
the leading order, whereas other terms with p # p, have no
critical point and thus are suppressed faster than O (k=) for
all N > 0.

Given ji, m or é O such that there exists a PSL(2,C) flat
connection on S°\I's satisfying (136) and (137),
Zgnr, (H|m) has a critical point and thus is not suppressed
fast, or in physics terms, Zg\r, (4|m) has a semiclassical
approximation. In this case, the critical point is generally
nonunique; namely, there exists multiple critical points

corresponding to the same é Q Indeed, different 73 and
thus different ®, I, satisfying (138)~(143) can give the
same Q via (136) (the critical equations expressed in terms

of e, eP1 are polynomial equations of degree higher than
1) and similarly for tilded variables. The critical points 1-to-

1 correspond to the solutions of (73 P) with given 0, 0.
The solutions are denoted by (P9 (P), P (Q)), a € Z,
where 7 is a set of indices labeling the solutions. Here, a
labels the branches of L. Given any a, the coordinates

-

Q provide a local parametrization of L.
The asymptotic behavior of Zg\ - relates to the action

S5-5, evaluated at critical points

$9(Q, Q) = 5;,(Q.0.P(Q), P9(Q)).  (144)

(a)

The derivatives of Sﬁo with respect to 0,0 are

"When k = 10000, J;/27 = 0.5624587 --- can be approxi-
mated by n; = 5625, and the errorbound is | 7; /27 — n; /k| < 1/k.
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HSW — = P 14
955, 27(1 + b2)7) (). (145)
0.5 — k35 (146)

0" Po 27(1 + b72) ’

where we have used 0pSj = 0555, = 0 since {P@(Q), P\ (Q)},er satisfy the critical equations. It implies that'’

Po

@y Ik O =@y 3 / ) )L a
5, (2.Q) = zﬂ(1+b2)/ PH(Q)-dQ ~ 427:(”[9 (&) -dd + v, (147)

where C” is an integration constant. The integrals are along certain curves embedded in L\, . The result is independent of
smooth deformations of the integration contour in Lg\ -, since Q = 0 on the Lagrangian submanifold Lg\r,. From this
result, exp(S( )) is expressed as an analog of the WKB wave function. The large-k asymptotics of Z\r, is given by a finite
sum over cntlcal points,

Zgo\r (i) = ZN ) Si @11 4 0(1/k)), (148)

wNo = N (149)
det(—H,/2x)

where H , is the Hessian matrix 9> 5, €valuated at the critical point. Note that H,, is generically nondegenerate as supported
by a large number of numerical experiments.

B. Critical points of the vertex amplitude and constant curvature 4-simplex

Let us recall Z Ss\rs(l) and the coherent states v , & defined in (80) and (81). Restricting 1 = 1~ ; to satisfy the

Xa:Ya) Jg

simplicity constraint, A, = Z 53\r5(ljg) is the vertex amplitude with a cosmological constant.
The simplicity constraint restricts Re(u,;,) = 0 (the semiclassical behavior is insensitive to a,,); thus,

2mi i
€2Lab = exp |: 3 (ba b +2Jab + > >:| ze%]ab’

r 2 ] i ;
el — exp [%l (b_laah — 2 — e%b>:| ~ e_4T/ab.

Here, ~ stands for the semiclassical approximation.
We make the change of variable (69) in vy (recall Q) = Q; —inty, Q) = Q; —int))

_ (Vs DK+ Q[ 5 B+ Q)] Kt )
u&r(%) e S 22(0> + 1) [ﬁ” 2(b2+1)} 8z (150)

where we neglect the term —/2,Re(z,,) since it is subleading as k — co. Note that &(x,.v,) 18 simplified by k — oo and by
restricting m, =0, ...,k —1 and x,,y, € (0,2x). After neglecting exponentially small contributions,

2 i ikxgya 27rmg . 2 i
f(xa_y“) ~ (k>4ek4—7{g_£( 3 —X,,)ze—ty,,m,, — <k)465(m,ya), (151)

ikx,y, k {i( ;—bzé’a)_xr k(Q, — h2Q.,)

A - .
Guve) = 4r T ag 22(b? +1)

(152)

"Given the S(¥) function on R” and Vs (x

f‘()‘c’), we choose a curve ¢ C R” parametrized by t € [0, 1] ending at x,,. We denote by 7
the tangent vector of c. Then, 4 S(X(z)) = T

f( (1)). Therefore, S(X) f*(lf ¥)-d¥ + C.

“*l\_/
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The vertex amplitude A, is expressed as

A=N >

me(z/kz)’ ne(z/kz)

= SO(Pv 75’ Qv Q) + Sl (_BTP> + §1<_BT75) + Z [Szn(Qav Qa) + S(xu.ya)(Qav Qa)]'

/ dsﬂdISI/eI(Pﬁ,QQ)’
15 JRIXC

4i (2\5/2

5 (153)

a=1

For finite z,, the integrand is a Schwartz function of both i and v along the integration cycle [y, is a Gaussian function; see
the discussion below (64)], so interchanging the ji-integral with the p-integral does not affect the result. We apply the

Poisson resummation similarly to (126),

5045415 P15 D ,L5:(P.P.Q.0 i(k/2)45/2
A, =N P QA QdP P Pelss(PPRQ) N = (154)
(p 5y /CaxCr 8192770
5
T3 = I(P.PQ.Q) s (B=?P) =53 5,(Qu - 120,) (155)
. o b +1 b +1 e o

where Cg is a 10-dimensional real manifold satisfying y, €
R and m, € [0, k) [here u,, m, are understood as continu-
ous variables relating Q,,, Qa by (69)].

We again apply the stationary phase analysis to the
integral as k — oco. The critical equations 0pZ;; =
0pLy5 =0 give the same results as (136)—(143) whose
solutions are flat connections on S*\I's. The other set of
critical equations dgZ55 = 05755 = 0 implies

27

TRe(/"a) = \/ERe(Zu)7
2 27
My = X4, Tna = Ya>

k

2 Re(u,) = VaIm(z,),

(156)

s, = 0.

See Appendix F for derivations. At the critical point, the
4-holed sphere data Q,, Qu, P,, P, are determined by the
coherent state labels z,, x,, y,. The determined 4-holed
sphere data, together with 2L,,, 2L, determined by j,,,
provide the boundary condition to the flat connection
solving (136)—(143).

The simplicity constraint requires that z,, x,, y, are
determined by the data ; E via (109). Then (156)
determines the 4-holed sphere FG coordinates X',, Y,.
Because of the 1-to-1 correspondence between values of
FG coordinates {x;} and framed PSL(2, C) flat connec-
tions on S, [29], the resulting X, V,, together with 9« =
e?La [belonging to U(1) as k — oo], uniquely determine a
PSU(2) ~SO(3) flat connection on S,. We denote by
M (8., PSU(2)) the moduli space of PSU(2) flat con-
nections on the 4-holed sphere S,. Flat connections in this
moduli space have the following geometrical interpreta-
tions as constant curvature tetrahedra.

a=1

|

Theorem IV.1. There is a bijection between flat con-
nections in M, (S,, PSU(2)) and convex constant curva-
ture tetrahedron geometries in 3d, except for degenerate
geometries. Nondegenerate tetrahedral geometries are
dense in My, (S,,PSU(2)).

The proof of this theorem is given in [21]. Both positive
and negative constant curvature tetrahedra are included
in Mﬂat(sa’PSU(z))'

Given the boundary condition leading to PSU(2) flat
connections on {S,}>_,, if there exists a PSL(2,C) flat
connection on $*\TI's satisfying the boundary condition, it
is a critical point of A, = Zg\r, (’].E) and has the geomet-
rical interpretation as a constant curvature 4-simplex.

Theorem IV.2. There is a bijection between PSL(2, C)
flat connections on S®\I's satisfying the boundary con-
dition and the nondegenerate, convex, oriented, geometri-
cal 4-simplex with constant curvature in the Lorentzian
signature.

The proof of this theorem is given in [13]. Note that not
every flat connection on XZZISH can extend to a flat
connection §3 \I's. It is shown in [13] that there is a subset
of PSU(2) flat connections on x>_,S,, that can serve as the
boundary of PSL(2,C) flat connections on $*\I's, and
these boundary PSU(2) flat connections corresPond to five
constant curvature tetrahedra that can be glued1 to form the
close boundary of a nondegenerate 4-simplex with the same
constant curvature A. Here, the A, with these boundary data
has critical points. However, any boundary PSU(2) flat
connection corresponding to five tetrahedra that cannot be
glued to form a 4-simplex boundary cannot extend to a

""Namely, they have the same constant curvature A and satisfy
triangle shape matching and orientation matching when they are
glued.
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PSL(2, C) flat connection on S*\I's; the result is that A, has
no critical point and thus is suppressed faster than O (k™)
for all N > 0.

We do not discuss the possible flat connections corre-
sponding to the degenerate 4-simplex or tetrahedron. We
also do not consider the boundary condition with z, - o
which leads to critical points located at infinity of the
integration cycle."

In this geometrical correspondence between the
flat connection and 4-simplex geometry, the holonomy’s
squared eigenvalue e?’w relates to the area a,, of
the 4-simplex boundary triangle f,, shared by the
pair of tetrahedra a, b (corresponding to S,, S,); i.e.,
semiclassically,

o~ eiFon a, €[0,6x/|A]. (157
The framing flag s, evaluated at p, € S, sz, (Pa) = Eup
relates to the unit normal 7i,, (located at a vertex of the
curved tetrahedron) of the face f,;, viewed in the frame of
tetrahedra a by 7, = fzbﬁéab. Note that £, is not always
the same as &; in (100); see the discussion in the paragraph
above (104). Given the tetrahedra a, if we denote by #i; the
geometrical outward pointing face normal of the tetrahe-
dron, we have 7, = sgn(A)#; if £, = & = (£}, &)7, and
ﬁab = _Sgn(A>t_{i if & = (_ 1‘27 éll)T [24].

In order to obtain the geometrical interpretation of the
conjugate 7 ,;,, we review the definition of the complex FN
twist variable: Let us consider the annulus cusps £ con-
necting a pair of 4-holed spheres Sy, S,. Let s be the
framing flag for # and s, s;,,, be the framing flags for a
pair of other cusps connecting S ,,. Then, the complex FN
twist is defined by (see e.g., [27])

= (so A sp)  {sa As){sh As)
e =~ <S0 /\0s><560/\ s> <Sn A s;) ) (158)

where (s A s') are evaluated at a common point after
parallel transportation. Without loss of generality, we eva-
luate the first ratio with factors (s A s3), (59 A 5), (s A §)
at a point p, € Sy, and we evaluate the second ratio with
factors (s, A s), (s, A s),(s, As,) at a point p, € S,,.
The evaluation involves both s(p,) and s(p,) at two ends of
¢, while the parallel transportation between s(p,) and s(p,,)
depends on a choice of contour y, connecting py, P,
(Fig. 8). Different y, may transform s(p,) — A,s(p,) but
keep s(py) invariant. Moreover, by definition, 7, also
depends on the choice of two other auxiliary cusps for
each of Sy, S,,. The choices of y, and the auxiliary cusps are

"Critical points at infinity give z, 7 or 7’ — oo of certain
A C S3\I's. They either correspond to degenerate 4-simplex
or to special 4-simplices which become close to degenerate if
|Aa| < 1; i.e., scales of 4-simplices are small (see [19] and
Appendix E therein).

FIG. 8. Contour y, used to define the complex FN twist 7., and
the meridian cycle y,; used to define the complex FN length A,.

0.20

a=Q/3

-02f N

-0.3L

FIG. 9. Settlng Ay =y =0y = Q, ﬂX = ﬂY = ﬂz = ﬂ, and
0 = 1/2,%B(oct) is restricted to the gray open triangle in the plot.

part of the definition for z,. The choices in defining 7, do not
affect our later result. The Atiyah-Bott symplectic form
implies that log(z,) is the conjugate variable of the FN length
variable L, = log(4,) associated to the same annulus ¢

{Ls.log(zs)}o =6 (159)

Applying the above definition to S3\I's, we set Sy = S,
Po=p,and S, = S,, p, = p,. Framing flags associated to
holes in S,, (or S;,) evaluated at p, (or p;) are {&,} ., (or
{€bc}enp)- In particular, s(p,) = &4 and s(p,) = &y, We
denote by G, the flat connection holonomy along y, starting
at p, and ending at p,,. Note that G, satisfies [13,19,24]
Gabéab = e_%bsgn(VA)OabJrieabéba’ V= Sgn<A) (160)
By the geometrical correspondence of the flat connection,
0, is the hyperdihedral (boost) angle hinged by the face £,
shared by the tetrahedra a, b on the boundary of the
4-simplex. Note that sgn(V,) = %1 is the orientation of
the 4-simplex, and 6,, € [0, 27) is an angle relating to the
phase convention of the £’s. Inserting (160) in the definition
of 7,, we obtain

— — ,—vsgn(Vy)0,,+2i6
Tf,,b = Tab = e g ( 4) ab Hb){ab(é)’

<§hd N 5bh> <§ac A 5ah><§ue A 6ah>
(Eba A Epa)(Eon A Sba) (Eae A Eae)

)(ab(§> =
(161)
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where we have set so(p,) = Epa S6(Pp) = &, and
$2(Pa) = Eacs Su(Pa) = e Here, x(&) is a function only
depending on the boundary condition on {S,}3_,.

Theorem IV.3. Given a PSL(2,C) flat connection A
on S3\I's corresponding to a nondegenerate convex con-
stant curvature 4-simplex, there exists a unique flat con-
nection A # A sharing the same boundary condition.
Here, 2, 2 correspond to the same constant curvature
4-simplex geometry but opposite orientations: sgn(V,)|y =
—sen(V)lg.

The detailed proof is again given in [13]. The boundary
condition corresponding to the boundary tetrahedra of the
nondegenerate 4-simplex gives exactly two critical points
A, A, which are called the parity pair, as an analog of a
similar situation in the EPRL amplitude [22]. That 2, A
correspond to the same geometry means that they endow
the same edge lengths, areas, angles, etc. to the 4-simplex.
Implied by this result, e*“«, e« ¢¥« have the same value at
A, A since they are determined by the geometry, whereas
7, are different,

Tabl?[ = e_DGab+2i9"b)(ab<§)’ z-ab|2~[ = ey®"b+2i0ab)(ab (5)?

since 7., relates to the orientation. Here 0,,, y,, (&) are the
same at 2, 2A since they are determined only by the
boundary condition.

Lemma IV.4. Ateach annulus £, 7,, = 7., is related
to Ty by Ty = %log(%h) + f{Lap}s {Xa Va}), where
f is a linear function of {L,,},{X,,V,}.

Proof: Each 7, is a product of z*!, 7/*!, "*! of some
ideal tetrahedra in the triangulation of S*\I's (see
Appendix A.3.3 in [27]). When expressing this in terms
of octahedron phase space coordinates, each log(z,,) is a
linear function of X, Px , Y,, Py, Z,, Pz, (a=1,...,5)
when we impose C, = 2xi; see [19] for explicit examples
of log(z,;,). Using the symplectic transformation (53), we
CXpI‘CSS IOg( ab) - Zc<d(a(ab)~(cd)Tcd +:B(ab),(cd)Lcd) +

1 (peXe +0.Ye) +inZ. Using  {Lglog(zp)}g =
00, We determine &(qp) (ca) = 20(ap),(ca) and define f=
_%[Zc<dﬁ(ab),(cd)14cd+Zgzl (chc +O-cyc) +l”Z] u

As a result, 7, are given by

T aply = —%V(aah +1i0, + %k)g)(ah(f)

+ F{Lap} AX0 YV} + NG (162)
Tl = %I/@ab +i0,, + %log)(ab(‘f)

+f{Lap} X0 Vo)) + NG (163)

where NE:Z), N fj})) € Z label the lifts of logarithms.

C. Asymptotics of the vertex amplitude

The vertex amplitude A, has precisely two critical points

A, 2 when the boundary condition corresponds to five
tetrahedra that can be glued to form the close boundary of a
nondegenerate constant curvature 4-simplex. Using (148),
the vertex amplitude has the following large-k asymptotics:

@ (0.5 (0.0
VL’ 9+ AL Q) 1+ 0(1/k)]
(164)

AU(}’ E) =

N/ez;‘;, > 4Re(za)Im(za)—x,,ya]

N, = ,
det( H,/27)

(165)

(@)

where SI30 is given in (147). The nondegeneracy of the

Hessian matrix H,l:a%ﬁoﬁ is supported by many

numerical experiments. Note that 9, Q, are the same at
the critical points 2, 9, and a, @ are branches of the
Lagrangian submanifold Lg\r containing 2, oA, respec-
tively. The asymptotics (164) of A, reduces to the same
form as the one studied in [23,24]. In the following we
sketch the computation of (164) and refer to [23,24] for the
details.

We rewrite (164) in A, ~ (N €5 + N _e™5) where we
factor out the overall phase ¢, and we are interested in the
phase difference ¢?® between two exponentials in (164). To
extract the phase difference, we consider a small variation
09, 5@,. The consequent variation of 4§ is given by

ik

26§ =—-— (P -PD) .50 —c.c.
271487 )-6Q-cc
kA
=—— N "(®,, +27iN)da,, — c.c.
67[(1 +b2) ;( ap + 271 ah) QAqp — C.C
= ——Im Z®ab5aab Re (1> Napbag.
a<b a<b

where N, = sgn(A)(Ny;) - Ng;)) € Z. Only 0, and
NE;Z), NE;;) in 7,, give nonvanishing contributions to
258 because each of {L,;, Xy, Voo xap(€),0up} gives the
same value at 2 and 2 (see [23,24] for details). By the
Schlifli identity > ,_j, 60,,a,, = A|V4| of the constant
curvature 4-simplex [52], 6S can be integrated as

iNky
25 =-— (;aab% - A|V4|>
iAk
~2ENTN a0y, +2C, (166)
a<b

where |V, is the 4-simplex volume. 2C is a geometry-
independent integration constant. Equations (157) and (97)
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imply @aab =4 thus, LES"  Npa,, €277 is

negligible in e¢?5. As a result, we obtain the leading

asymptotics of A, as

AU — eiﬂ(N+giSRegge+C + N_e_iskegge_c)[l + O(I/k)]’
(167)

N’/
V det(_Ha,d/Zﬂ:)

Ni_ = (168)

where in the exponents

Aky
SRegge = E (Zaab®ab - A|V4|> (169)
a<b

is the Regge action of the constant curvature 4-simplex.

The coefficient % is identified to be the inverse gravi-

tational coupling 1/#%. This identification is consistent
with (16).

V. CONCLUSION AND OUTLOOK

In this work, we propose an improved formulation of 4d
spinfoam quantum gravity with a cosmological constant A.
This formulation is featured with the finite spinfoam
amplitudes on simplicial complexes and the correct semi-
classical behavior of the vertex amplitude.

Despite the above promising aspects, this formulation
still has several open issues, which are expected to be
addressed in future work: First, it is conjectured in
Sec. III D that the boundary Hilbert space of the spinfoam
amplitude A is the Hilbert space of q-deformed spin-
network states with q root of unity. To prove this con-
jecture, we need to define and study coherent intertwiners
of g-deformed spin networks and clarify if there is a
canonical bijection between these coherent intertwiners
and the boundary data of A. The expected coherent
intertwiner should be a q deformation of the Livine-
Speciale coherent intertwiner [40].

We need to construct a geometrical operator on the
boundary Hilbert space to understand the quantum geo-
metrical interpretation of boundary states. The construction
may be based on the combinatorial quantization of SU(2)
CS theory [53,54]. It is interesting to define coherent states
that are coherent in both spins (areas) and intertwiners
(shapes of curved tetrahedra). The coherent state may be a q
deformation of the complexifier coherent states in [55]. In
addition, we need to direct the sum over all graphs to define
the entire q-deformed LQG kinematical Hilbert space and
check the cylindrical consistency of operators. This should
generalize the work [12] from the real q to q root of unity.

In Sec. IITE, we discuss that the spinfoam amplitude A
has ambiguities in which the freedom of choosing coherent
states is due to imposing a semiclassical simplicity

constraint on coherent state labels. It may be useful to
develop an operator formalism or other ways to impose the
simplicity constraint (such as the master constraint, Gupta-
Bleuler, etc.) at the quantum level for reducing the freedom
of the amplitude. Another possible drawback of our
implementation of the simplicity constraint is that spins
such that dim(/\~/l;) <2 (/\7[7 only contains degenerate

4-gons) have to be excluded from our formalism.

In the present work, we only study the semiclassical
behavior of the vertex amplitude. The semiclassical analy-
sis should generalize to the spinfoam amplitude with A on
an arbitrary simplicial complex, as well as taking into
account the sum over j.

Note that A in this spinfoam model should be understood
as the ultraviolet value of the cosmological constant. It
would be interesting to apply the Wilson renormalization to
the spinfoam model with A (see e.g., [56] for some earlier
results). The spinfoam renormalization is expected to result
in a flow of A from the ultraviolet to infrared, where the
infrared value of A should relate to the observation.

It would also be interesting to develop a group field
theory (GFT) based on the spinfoam formulation with A.
The notion of group fields might be suitably generalized to
include A. The “group fields” might actually be fields on
the moduli space of flat connections. The GFT is expected
to reproduce spinfoam amplitudes A, which are finite order
by order in the perturbative expansion.
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APPENDIX A: A PLOT FOR THE
POLYTOPE P(oct)

The open polytope B(oct) is defined by the following
inequalities:

aX’aYa9aZ>O9 aX+aY+aZ<Q’

ax+ﬂx<g» ay+ﬁy<g7 az+ﬁz<g,
2 2 2
0 Q
ax+ay+az+ﬂx>3, aX+aY+aZ+ﬂY>E’
0
ax+ay+az+ﬁz>5.

Figure 9 plots the intersection between $(oct) and the
plane of ay = ay = az, fx = py = fz.
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APPENDIX B: DARBOUX COORDINATES OF Py g\

Darboux coordinates Q; = (2L, X,,), P; = (7 4, V,) expressed in terms of (X,, Px ),(Y,, Py, ),(Z4. Pz,).(Cy.T,)
are listed below:

2Ly = —C3 = Cy— Cs + Py, + Py, + Py_+ X3 + Xy + X5 + Y3 + Yy + Y5 + 3ix, (B1)
2L3=-C,—Cs+ Py, + Py, — Pz, + Pz, + Xo + Xs + Y, + Y5+ 2Z5 + im, (B2)
2Ly ==C3+ Py, + Py, — Pz, + Pz, — Pz, + X5+ Y3 + 273, (B3)

2Ls ==Cy = C4y+ Py, + Pz, — Py, + Pz, + Xo + Xy + Yo + Y4 + 227, + 27, (B4)
2Ly; = —Px, + Px, — Px, — Py, + X4 — Yy, (B5)

2Ly = —Px, + Px, = Py, = Py, - X, + X5 =Y, = Y5 + ir, (B6)
2Lys = Py, + Px, = Px, — Py, = Py, + X, + X3 =Y, = V3, (B7)

2Ly =Cy—=Cs+Px, +Px, —Py,— Pz —P; =X, + X5+ Xs =Y, =Y, + Y5 =27, +ir, (B8)
2L3s =—=Cy + Px, = Px, = Px, =Pz + Pz, + X, = X4 + Y, — Y4 + 2ix, (B9)
2Lys = —C5—Px, + Px3+ Py, — Pz + Pz, —P;, — X, + X5 =Y, + Y3 + 2in. (B10)
X =Y =Py —P, -7, + Zs +ix, (B11)

TABLE I. Edge coordinates )(S,‘f,z of 4-holed spheres. Recall in Fig. 3 that the octahedra are glued through the
triangles labeled by a, b, c,d, e, f, g, h, i, j. For example, d} labels the triangles symmetric to the triangle a with
respect to the equator of Oct(2). The “primed triangles” with primed labels triangulate the geodesic boundary of
S3\I's. Here X,, Y,, Z,, W, (a=1,...,5) are the tetrahedron edge coordinates from the four tetrahedra
triangulating Oct(a).

81:

83:

84:

Wy Nk Y =2, + 2,
h’zneﬁ‘:;((zz) =Zi+W,+2,
Wy V5t 2o = Y5+ 25+ Zs
fini: 23 =X{+ ¥+ X5

0 f3: 2 =X+ Xy
Finbhs g = Wi+ X] + Xs

bindy: y) =27+ Wi+ X,

by dy: gy = Wi+ XY+ X+ Y

3
vinds: Y =w, + W, + X!

a nc’zt;(g? =Z1+X,+7Y]

ay N j: 23 = Y]+ 24+ Wy XY
. 4
) 01’5:;(<15>:Z’1’+W/1—|—X’5+Y’5’

iney: y) =Y+ 70+ Wy + X4

hnd: gy =Y+ X5+ Yy

i gyt 2y = X) Y+ Wit X

Hyney: 2y = Y5+ 25+ 7 + W,
Hyn ek 73 = Z5+ Wy + Y2 + Z
¢ N Ckt g = Vi Zy+ 28+ Wy
B0 fy 2 = XL+ Y5 WX,
0By Y = W X, + XY+ Y
2
Fin bkt 2 = X4 Y+ W Xy
dyndy: g5 = Wi+ Xy + Y, + Zj
dyndy: g5y = X4+ Y+ ZL + W
3
dyndy: 1Y) =Y, +Ws
Ny = Yo+ 2+ 7+ W
. 4
chN s sy = Yo+ Y5+ 24
. . 4
B0 s A = Wi+ s
NGt sy = Zh+ W+ Yy + 2
gyt sy = Wo+ Zy+ Wi

9,3 ﬂg&: }(gz) = Y3+W4
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Xz )(55)— PX]—X1+X5+17T

X3:Z§35) =C—-Cs+Px, - X1 +Xs-Y,+Ys—2Z,+Zs + in,
X4=ZY§) =—C) =Py, + Py, + Pz, + X, = Xs + Y| + Z, + 2in,

Xs =y = =Cy = Py, + Py, + Py = X| + X4 + Yy + Z + 2ir.

Tn=5X-X3-X4+ Y, +Y,=Y3-Y,+2Z,),

N[ =

Ti3=;(=X+X3=-Y, +Y3-Ys+2Z—-2,-Zs),
1
71425(—Y2—Z2—Z3+Zs)7
(=X, =Yy =27, - Zy),
Ty =

(X4 + Y+ Yy —Ys+Z - Zs),

724: (X2+X3—X4+Y]+Y3—Y4+Z3+ZS),

N[ =
—_

Tos=5(-X3—Xg+ Y1 +Y3-Yy—Zy),

2

[

Toy=- (=X +X3+Y3=Ys+2Z)+Zy),

2

Tys=-(X3+Y3=Ys+2Z -2y~ Zs),

1
2
1

Tys = E(Xz +Zy+ Zy + Zs).

Y= )(23 =2y + 75,

Vo= )(14 =X + Xy,
Vs =4 = omi = —X5+ Yy — Y5 — Zs.
V=58 +2mi = X5+ Y5~ Y5 + Zs,

y5 )(34 2ﬂi:—X4+Y3—Y4—Z4.

We impose C, = 2zi on all 2L, and X,. We check that (45) implies

{lePJ}Q =0y, {Qh QJ}Q = {PIvPJ}Q =0. 1,J= (l’ﬂabvsa)'
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MUXIN HAN

APPENDIX C: SYMPLECTIC TRANSFORMATION

—

, to é, ‘P is given by

5
a=

(PXa’PYa’PZa)

1andﬁ

(Xo Y Z,)3

-

The linear symplectic transformation from ©®

(C1)

10 1AL

Explicitly, A, B, 7 are given below:

(C2)

0

0 0 0 0 O

-1 0 0 0 O
0

0
0

1
0 0 0 0 O
-1

0 0 0 O

0
0

0

-1 0 O
0 0 0 0 O
0 0 0 O

-1

0

0 0 O

-1

0

0
0
0
0

0 0 0 O

-1

0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 O

0
0
0
0

(C3)

(C4)

f=(-3,-3,-2,-4,0,1,0,1,0,0,1,1,1,0,0)".
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APPENDIX D: PROOF OF LEMMA II1.1

.....

.....

inequality, i.e., there exists J such that
i =/l 4 <min(jy + /5, k= jy = j3), (D)

I3 —Jal £J <min(j5 +ji. k= j5 = ji).  (D2)

Proof: We denote *ji =r; €[0,27). Here, H; =
cos(r;/2) + in - osin(r;/2), where i’ is a unit vector in
R3. Note that 77/ = —7 when there is aminus sign in (100) and
n' = n when there is a plus sign. We denote H,H, =
cos(R/2) + iN - Gsin(R/2) with R = 2] € [0,2x); then
HyHy = cos(R/2) — iN - & sin(R/2). Taking the trace gives

cos 5 = cos n cos L — - nhsin n sin L ,
2 2 2 2 2 2

(D3)

R r3 Ty o o . (T3 . (T4
cos <§) = cos <E> cos <?> — 1% - 1) sin <?> sin <5 .

(D4)

Since sin(%) > 0, unit vectors 7_, _, exist if and only if

2cos(0yy) =

(e +e?)\/era(A)esa(A) = 2(myms 4 mymy) + A(myms + mymy)

r1+r2 R ry—rnr
LI ) < e
cos( 7 >_cos<2>_cos< 3 >, (DS)
r3—|—r4 R r3—r4
< — 1 <
cos( 7 )_c0s<2>_cos< 5 ) (D6)

which is equivalent to

|[ry —ry| KR <min(ry + ry,4n —r; —ry), (D7)

|[r3s —ryl KR <min(ry + ry,4m —r3 — ry). (D8)

Conversely, Eqgs. (D5) and (D6) or Egs. (D7) and (DS8)
imply the existence of two spherical triangles in S sharing
a common edge. The spherical triangles form a 4-gon
whose edges are geodesics in S* with length r;/2
(i=1,...,4). The diagonal of the 4-gon is a geodesic
whose length is R/2. The 4-gon in S° implies the existence
of Hi=1 ____ 4 (S SU(2), which Satisfy H4H3H2H1 =1 by the
argument in Sec. III B. n

APPENDIX E: DETERMINING &’s
FROM 6 AND ¢

It is useful to consider cos(fy) = —%[Tr(H H;')—
Tr(H,)Tr(H,)) = 3 Tr(HyH,) = 3 Tr(H,H3). The follow-
ing relation holds between ¢ and 6,4 [37]:

where m; = Tr(H;) and

A = el + e—z(i7

AT -4 ’ (EL)

For SU(2) flat connections satisfying H,H;H,H, = 1, we make a partial gauge fixing that H, = diag(e'®, e=/%),

a, € [0,77).]3 Thus, as a unit vector in Euclidean R*, v; = (1;?, vjl., v?, vf)
vy = (cos(ay),0,0,—sin(ay)) (E3)

representing H}!. For the triangle (v, v3, v4), we use v; = (1,0,0,0), (v}, v3) = cos(0;3) (013 = 0), (v3,v4) = cos(az),

and (v4, v4) = 1 to determine v3,

v3 = (cos(63), 0,3, v3),

v} = \/—(cscz(a4)(cos2(a3) +c0s?(613))) + 2 cos(az) cot(ay) esc(ay) cos(6)3) + 1,

3

v3 = csc(ay)(cos(ay) cos(f3) — cos(az)).

(E4)

where we use the remaining rotational symmetry (of the 1-2 plane) to fix v} =0 and v > 0. Then we use
(v, v7) = cos(ay), (vy, v3) = cos(as), (vy, v4) = c08(6yy), and (v,, v,) = 1 to determine v,

"“We use the conjugation ediag(4,A™')e~! = diag(4~'. 1), where e,5 = —ey, and det(e) = 1, to fix a4 € [0.7) in 1 = €.
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vy = (cos(ay), v}, v3, csc(ay)(cos(a;) cos(ay) — cos(0ay))),

vy = (2 cos(ay) csc(ay)(cot(ay)(cos(ay) cos(az) + cos(0;3) cos(Bay)) — csc(ay)(cos(ay ) cos(6,3)
+ cos(az) cos(6r4))) + csc(ay) (=2 cos(a; ) cot(ay) cos(6ay) + csc(ay)(cos?(0)3) + sin?(63)cos?(0,y4))
—2cos(az) cos(03)(cot(ay) — cos(a; ) csc(ay) cos(Bry)) + cos?(az) csc(ay) + sin?(az)cos?(a;) csc(ay))
+ cos?(ay) — 1)2(csc?(ay) (cos?(as) + cos2(0y3)) — 2 cos(as) cot(ay) csc(ay) cos(03) — 1)72,

v3 = 2(cos(a;)(cos(83) — cos(az) cos(ay)) + cos(6a4)(cos(as) — cos(ay) cos(0;3)) + sin*(ay)(—cos(a,)))

X \/—(cscz(a4)(cosz(a3) + cos?(60;3)

x (—4cos(asz) cos(ay) cos(6y3) + cos

)) + 2 cos(as) cot(ay) csc(ay) cos(0y3) + 1
(2a3) + cos (2ay) + cos (26,3) +1)7", (E5)

where + of v} corresponds to the parity symmetry with respect to the plane of F3, (spanned by the x°, x2, x* directions in

R*) where v, v3, v4 leave. Choosing + or — of v} is equivalent to fixing the orientation of 1,3 A 1,34 since v} — —v}

transforms as
Nip3 A Myzs = —Nyoz A R where n¢, ||n; |l = €apeav?v20§ (E6)
123 A\ i34 N3 A Nyzs, iji1Mijkll = €abeali Vi Vi
Now all {H;}?_, are fixed by

Hy = v,, H4=UZI, H3:U4U3_l, H2:v3v5', (E7)
3

where v; = 091 +i ) vie,. (ES8)

a=1

Every H, is uniquely determined by (a;, 6,3, 654), Where 6,, relates to ¢ by (E1); then &; is determined up to a scaling as the
eigenvector of H; for the eigenvalue whose square is e*fa.

APPENDIX F: CRITICAL EQUATIONS

Derivatives of S are given by

LV 550 = ABT - P+Q+7ABT-(73—I9273), (F1)

ik (1+b%)
—%”)a S5y = ABT-73+é—(1+b2)ABT-(73—b273), (F2)
—(17:1?2)3 »$1=-B-(Px_ . Py_ Pz )" (F3)
e.g. Pz =log(l—e%) —log(l —eXat¥alZa), (F4)
—Ma =81 =-B-(Px_ Py Pz, ). (F5)

T s ¥ 5 P70 s

e.g. Py =log (1 - e~Za) —log (1 — eXatTutZa), (Fo6)
P =B (Xomt 5. Yaut, 5 Zam1,5)"s ()
P= —(BT) (Koot 5. Yot 50 Zamr . 5)". (F8)

where the branches of the logarithms are the same as the canonical lift in (13).

104035-32



FOUR-DIMENSIONAL SPINFOAM QUANTUM GRAVITY WITH A ...

PHYS. REV. D 104, 104035 (2021)

We define

Xl =log (1 — e ),
Zl=log (1 — %),

Y i=log (1 — e Ya),
W =1log (1 — e Wa), (F9)

V" :=log (1 — e~Ya),
W = log (1 — e™Wa),

X! :=1log (1 — %),

Zy =log (1 — e7%), (F10)

such that eg, z=¢% and 7’ =e? reproduce
7' +7"=1=0, ie., the Lagrangian submanifold £, C
Pya of framed flat PSL(2,C) connections on the ideal
tetrahedron A. Here, W,, W, are given by (133). The above
logarithms are defined with the same canonical lifts as
in (13). We define Py, Py, P and I3Xa, Pya, ﬁza
(a=1,...,5) in the same way as (44). Note that X, Y,
Z., Py, Py, Pz with Egs. (F9), (F10), and (133)
parametrize the moduli space of framed flat PSL(2,C)

z"

connections on the ideal octahedron oct(a) made by gluing
four ideal tetrahedra.
The critical equations Oy, S5 =%, S5 =0 can be

written in terms of ®= (X, Y, Z,)3_, and Tl=
(PXG’PY,,7PZ,Z)5

a=1:

/

+ B -1l + 27i(ii + p).

Sl

A -

(o)
Il

(F11)

O =A-&+B-N-27i(i+p), (F12)
where p € ZP. Up to 2zi(7i + p), the critical equa-
tions (136) and (137) reproduce the Q part of (53), whereas
here ® and T1 are related by (F9), (F10), and (44). Note that
the P part of (53) has been reproduced by the relation

between (X,,Y,,Z,)>_, and P [see above (133)].

a=1
For the vertex amplitude A,, the critical equations

8915.; = 8QI,~,; =0 give

2”(1; &) 99, I55=—iP,+ V2bz, - bZ(lgi;Q;) Qlerb;Q’a +Ya +ixg =275, =0 (F13)
= —iP, 4+ V2bz, — %ya - @ma + vy, +ix, — 275, =0, (F14)
2x(1 Z b2) 0 Ty — —iBy + /352, - (%;:b?;) B Q;] —er;éﬁz =i, + 275, = 0 (F15)
= —iP, +V2b 'z, - 2”:_1 Ha + %m —Ya — iXq + 275, = 0, (F16)
where y, and m, relate to Q) and Q) by (69). The above equations are solved as

where v, and n,, relate to X, and X, by (69). Although y,, v, have nonzero imaginary parts, a, = Im(u,), #, = Im(v,) are
fixed and do not scale as k — oo [whereas Re(y,, ), Re(v,,) are not fixed and need to be determined by the critical equations];
thus, we can view p,, v, as real in (F17) as far as the semiclassical limit is concerned. The domain of n, has been restricted
to the single period n, € [-6, k — 8] by (126) (6 > 0 is arbitrarily small), so the last equation implies

s,=0

(F18)

when y, € [0,27) and y, is not infinitesimally close to O or 27.
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