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We present an improved formulation of 4-dimensional Lorentzian spinfoam quantum gravity with a
cosmological constant. The construction of spinfoam amplitudes uses the state-integral model of PSLð2;CÞ
Chern-Simons theory and the implementation of a simplicity constraint. The formulation has two key
features: (1) spinfoam amplitudes are all finite, and (2) with suitable boundary data, the semiclassical
asymptotics of the vertex amplitude has two oscillatory terms, with phase plus or minus the 4-dimensional
Lorentzian Regge action with a cosmological constant for the constant curvature 4-simplex.
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I. INTRODUCTION

Spinfoam quantum gravity is the covariant formulation
of loop quantum gravity (LQG) in 4 spacetime dimensions
[1,2]. There are two motivations to include the cosmologi-
cal constant Λ in the spinfoam quantum gravity: First,
spinfoam models without Λ are well known to have the
infrared divergence (see e.g., [3–5]); then, Λ is expected to
provide a natural infrared cutoff to make spinfoam ampli-
tudes finite. Second, the simplest consistent explanation for
the cosmological accelerating expansion is a positive Λ, so
quantum gravity should reproduce Λ in the semiclassical
regime. Based on these motivations, a satisfactory spin-
foam quantum gravity withΛ is expected to (1) define finite
spinfoam amplitudes and (2) consistently recover classical
gravity with Λ in the semiclassical limit. This work covers
both positive and negative Λ.
The semiclassical limit of LQG scales the Planck length

lP → 0 while keeping the geometrical area a fixed. Using
the LQG area spectrum a ¼ γl2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

, the semi-
classical limit implies the SU(2) spin j → ∞. We do not
scale the Barbero-Immirzi parameter γ. In the presence of
Λ, we require, in addition, that Λ should not scale in the
semiclassical limit; then in 4d, the dimensionless quantity
k ∝ ðjΛjl2

PÞ−1 scales as k → ∞ in addition to j → ∞,
whereas j=k ∝ jΛja is fixed. This suggests that the semi-
classical limit of spinfoam quantum gravity with Λ should
be a double-scaling limit, i.e., j; k → ∞while fixing j=k. In
our following discussion, k becomes the integer Chern-
Simons (CS) level.
In 3 dimensions, the Turaev-Viro (TV) model [6] with

quantum group SUð2Þq (q ¼ eπi=k; k ∈ Z) is the spinfoam

quantum gravity with Λ that satisfies both expectations (1)
and (2): It gives finite amplitudes due to the cutoff of spins
given by SUð2Þq; the vertex amplitude, the 6j symbol of
SUð2Þq, recovers the Regge action of 3d gravity withΛ > 0

in the semiclassical limit [7].1

In contrast, a 4d spinfoam quantum gravity with Λ has
not yet been achieved that satisfies both expectations (1)
and (2) in the literature. There are 4d spinfoam models
based on the quantum Lorentz group, as generalizations
from the 3d quantum group TV model [8–10] (see also
e.g., [11,12] for the LQG kinematics with a quantum
group). These models produce finite spinfoam amplitudes
due to the spin cutoff from the quantum group. But it is
difficult to examine the semiclassical limits of these
models due to the complexity of their vertex amplitudes
in terms of quantum group symbols. More recently, a
more promising spinfoam model was found based on the
SLð2;CÞ CS theory instead of the quantum group [13].
The vertex amplitude A0

v of this model is defined to be
the CS evaluation of the projective SLð2;CÞ spin-network
function ΨΓ5

based on the Γ5 graph embedded in S3 (see
Fig. 1):

A0
v ≔

Z
DADĀe−iSCSðA;ĀÞΨΓ5

ðA; ĀÞ; ð1Þ

where SCS is the unitary SLð2;CÞ CS action with the
complex level t ¼ kþ σ (k ∈ Zþ, σ ∈ iR) that unifies Λ
and γ by k ¼ ReðtÞ ¼ 12π

jΛjl2Pγ
, σ ¼ iImðtÞ ¼ ikγ,

*hanm@fau.edu

1The semiclassical limit in 3d is the same double-scaling limit
since a ∝ lP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

becomes the length and k2 ∝ ðΛl2
PÞ−1.
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SCS ¼
t
8π

Z
S3
Tr
�
A ∧ dAþ 2

3
A ∧ A ∧ A

�

þ t̄
8π

Z
S3
Tr

�
Ā ∧ dĀþ 2

3
Ā ∧ Ā ∧ Ā

�
: ð2Þ

Here, ΨΓ5
reduces to the EPRL vertex amplitude [14]

when A; Ā → 0. The derivation of the model (1) from
the BFΛ theory is given in [13] and is reviewed briefly
around Eq. (3).
In the semiclassical limit (j; k → ∞, σ ¼ ikγ → i∞,

keeping j=k fixed), and with a suitable boundary condition,
A0
v reproduces the constant curvature 4-simplex geometry

and gives the asymptotics as two oscillatory terms, with
phase plus or minus the Regge action of 4d Lorentzian
gravity withΛ. The sign ofΛ is not fixed a priori, but rather
it emerges semiclassically and dynamically from equations
of motion and boundary data, as shown in the asymptotic
analysis in [13].2 However, the drawback of A0

v is that the
formal path integral in (1) is not mathematically well
defined, which makes the finiteness of the spinfoam
amplitude obscure.
In this work, we present an improved formulation of 4d

spinfoam quantum gravity with cosmological constant Λ,
which gives both finite spinfoam amplitudes and the
correct semiclassical behavior. We construct a new vertex
amplitude Av, which replaces the formal CS path integral in
A0
v by a finite sum and finite-dimensional integral, based on

the recent state-integral model of complex CS theory [15–
17]. The resulting Av is a bounded function of boundary
data. The spinfoam amplitude made by Av is finite on any
triangulation. On the other hand, we are able to apply the
stationary phase analysis to the finite-dimensional integral
to show that Av indeed reproduces the constant curvature
4-simplex and the 4d Lorentzian Regge action with Λ
(positive or negative) in the semiclassical limit.

The new vertex amplitude Av is closely related to the
partition function ZS3nΓ5

of the PSLð2;CÞ ¼ SLð2;CÞ=Z2

CS theory on S3nΓ5, which is the complement of an open
tubular neighborhood of the Γ5 graph in S3. Here, Γ5 ⊂ S3

is dual to the triangulation of S3 given by the 4-simplex’s
boundary. This duality delivers flat connections of the CS
theory to decorate the 4-simplex. We adopt the method
proposed in [16] to explicitly construct ZS3nΓ5

as a state-
integral model with a finite sum and finite-dimensional
integral (see Sec. II). Here, ZS3nΓ5

quantizes the moduli
space LS3nΓ5

of PSLð2;CÞ flat connections on S3nΓ5 and is
a wave function of flat connection data on the boundary of
S3nΓ5. Given a manifold M, the moduli space of the flat
connection with structure group G is the space of G
connections modulo gauge transformations with vanishing
curvature, equivalent to the character variety of represen-
tations of π1ðMÞ in G modulo conjugation [18].
The new vertex amplitude Av contains only finite sums

and finite-dimensional integrals and thus improves the
earlier formulation (1). It is also different from the state-
integral model obtained in [19], which mainly focuses on
the holomorphic block of CS and does not specify the
integration cycle.3 Note that Av has both holomorphic and
antiholomorphic parts of the CS theory. As a key to prove
the finiteness, the integration cycle is specified in Av.
By the construction in [16], the state-integral model

converges absolutely if the underlying 3-manifold admits a
“positive angle structure.” Our construction of ZS3nΓ5

manifests that S3nΓ5 indeed admits a positive angle
structure ðα⃗; β⃗Þ ∈ Pnew, where Pnew is a 30-dimensional
open convex polytope. The finiteness of ZS3nΓ5

is a
prerequisite for the finiteness of Av and spinfoam ampli-
tudes on triangulations.
The simplicity constraint needs to be imposed in order to

define Av: The derivation of (1) in [13] starts from the
Holst-BFΛ theory on a 4-ball B4, which is topologically
identical to a 4-simplex,

SH-BFΛ ¼ −
1

2

Z
B4

Tr

��
⋆þ 1

γ

�
B ∧ F ðAÞ�

−
jΛj
12

Z
B4

Tr

��
⋆þ 1

γ

�
B ∧ B�: ð3Þ

Considering the formal path integral of SH-BFΛ , integrating
out the soð1; 3Þ-valued 2-form B gives the action
3i
4jΛj
R
B4
Tr½ð⋆þ 1

γÞF ∧ F �, which is a total derivative and

gives the CS action (2) on the boundary S3 ≃ ∂B4. Using
the feature of the Gaussian integral, integrating out B
constraints jΛjB=3 ¼ F ðAÞ, which encodes B in the

FIG. 1. Γ5 graph embedded in S3.

2First, the sign of Λ of boundary tetrahedra is determined by
the boundary data, and then the critical equations from the
stationary phase analysis cause the sign of Λ to propagate
between tetrahedra and 4-simplices. The critical equations have
no solution if the boundary tetrahedra fail to have a common sign
of Λ; then, the spinfoam amplitude is suppressed in the semi-
classical regime.

3In addition, the construction here uses different symplectic
coordinates from [19].
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soð1; 3Þ curvature F ðAÞ. On the boundary S3, F ðAÞ is the
soð1; 3Þ curvature of the CS connection A. Classically,
SHΛBF reduces to the Holst action of gravity with �jΛj
when the simplicity constraint B ¼ �e ∧ e is imposed,
where e is the cotetrad 1-form. At the quantum level, the
simplicity constraint must be imposed on the CS partition
function in order to obtain the spinfoam vertex amplitude.
Using the relation F ðAÞ ¼ jΛjB=3, the simplicity con-

straint of B can be translated to constraining A. By the
CS symplectic structure, the resulting simplicity constraint
can be divided into the first-class and second-class com-
ponents. The first-class components are imposed strongly
on ZS3nΓ5

and restrict certain boundary data to a discrete
set f2jabga<b, a; b ¼ 1;…; 5, where jab ∈ N0=2 and
jab ≤ ðk − 1Þ=2. Note that fjabga<b are analogs of SU
(2) spins associated to 10 boundary faces of the 4-simplex.
Interestingly, a consistency condition “4d area ¼ 3d area”
(similar to [20]) gives restrictions to the positive angle
structure ðα⃗; β⃗Þ. The second-class components of the
simplicity constraint have to be imposed weakly. We
propose coherent states Ψρ peaked at points ρ in the
(subspace of) phase space of A and apply the simplicity
constraint to restrict ρ. The restricted ρ is equivalent to the
set of 20 spinors ξab ∈ C2 normalized by the Hermitian
inner product, such that for each a ¼ 1;…; 5, fjab; ξabgb≠a
are subject to the generalized closure condition of a
constant curvature tetrahedra [21]. In our model, all
tetrahedra and triangles are spacelike. We denote the ρ
restricted by the simplicity constraint by ρj⃗;ξ⃗. As a result,
the vertex amplitude is defined by the inner product

Avðj⃗; ξ⃗Þ ¼ hΨ̄ρj⃗;ξ⃗
jZS3nΓ5

i; ð4Þ

where the complex conjugate of Ψι is conventional. This
inner product is a finite-dimensional integral of L2 type.
We show that the integral converges absolutely and Av is a
bounded function of j⃗; ξ⃗. Here, Av as an inner product (4)
resembles the idea of A0

v, but now Av is well defined.
Given a simplicial complex K made by 4-simplices v,

tetrahedra e, and faces f, following the general scheme of
spinfoam state-sum models, the spinfoam amplitude asso-
ciated to K is defined by

A ¼
X0

ðk−1Þ=2

fjfg

Y
f

AfðjfÞ
Z

½dξdξ0�
Y
e

Aeðj⃗; ξ⃗e; ξ⃗0eÞ
Y
v

Avðj⃗; ξ⃗Þ

where jf is associated to a face f and ξ⃗e ¼ ðξ1;…; ξ4Þe is
associated to a tetrahedron e. The CS level k ¼ 12π

jΛjl2Pγ
∈ Z

provides the cutoff to the sum over half-integer
0 ≤ jf ≤ ðk − 1Þ=2. The face and edge amplitudes Af,
Ae are not specified here except for requiring that Ae is a
Gaussian-like continuous function approaching δðξ⃗e; ξ⃗0eÞ as

j → ∞. Given the boundedness of Av, the amplitude A is
finite because the sum over jf’s is finite and the integral

over ξ⃗’s is compact. Here
P0

indicates that some special
spins are excluded in the sum.
When K has a boundary, the boundary data of A are jf,

ξ⃗e for boundary faces f and boundary tetrahedra e. These
data are deformations of the data of coherent intertwiners in
spin-network states. We conjecture that the boundary states
of A are q-deformed spin-network states of quantum group
SUð2Þq with q the root of unity.
After accomplishing the finiteness of the spinfoam

amplitude with Λ, we demonstrate the correct semiclassical
behavior for the new vertex amplitude Av in Sec. IV.
Note that Av in (4) as a finite-dimensional integral can be
expressed in the form

R
ekI where I depends on j’s only by

j=k. Therefore, we use the stationary phase analysis to
study the semiclassical behavior of Av as j; k → ∞ keeping
j=k fixed: The dominant contribution of Av comes from
critical points, i.e., solutions of the critical equation δI ¼ 0.
Given any boundary data fjab; ξabg corresponding to the
geometrical boundary of a nondegenerate convex constant
curvature 4-simplex, there are exactly two critical points,
which are two flat connections A, Ã ∈ LS3nΓ5

having
geometrical interpretations as the constant curvature
4-simplex. Note that A, Ã give the same 4-simplex
geometry but opposite 4d orientations and that A, Ã are
analogous to the two critical points related by parity in the
EPRL vertex amplitude [22]. As a result, the asymptotic
behavior of Av is given up to an overall phase by

Av ¼ ðN þeiSReggeþC þN −e−iSRegge−CÞ½1þOð1=kÞ�; ð5Þ

where N � are nonoscillatory and relate to the Hessian
matrix of I . In the exponents,

SRegge ¼
Λkγ
12π

�X
a<b

aabΘab − ΛjV4j
�

ð6Þ

is the 4d Lorentzian Regge action with Λ of the constant
curvature 4-simplex reconstructed by A or Ã. The gravi-
tational coupling is effectively given by l2

P ¼ 12π
jΛjkγ. Note

that C is an undetermined geometry-independent integra-
tion constant. This semiclassical result of Av is similar to
the one related to A0

v in [13,23,24].
Lastly, it is known that the formalism of state-integral

models that we use to construct ZS3nΓ5
excludes the

contributions from Abelian flat connections [15,16,25].
This does not cause trouble for us since Abelian flat
connections only relate to degenerate tetrahedron geom-
etries, which we exclude in the model.
The paper is organized as follows. In Sec. II, we

construct the state-integral model of ZS3nΓ5
, and include

the discussion of ideal triangulation of S3nΓ5, and a brief
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review of PSLð2;CÞ CS theory on an ideal tetrahedron; we
define convenient phase space coordinates, construct octa-
hedron partition functions and then the partition function
ZS3nΓ5

, and discuss coherent states. In Sec. III, we impose a
simplicity constraint and construct Av, and then we con-
struct the spinfoam amplitude A on a simplicial complex
and prove the finiteness; we also discuss the relation
between boundary data of A and LQG spin networks, as
well as various choices that we make in the definition of A.
In Sec. IV, we derive the asymptotic behavior of Av in the
semiclassical limit.

II. COMPLEX CHERN-SIMONS THEORY ON S3nΓ5

The purpose of this section is to construct the complex
CS theory on the 3-manifold S3nΓ5. In Sec. II A, we first
review the ideal triangulation of S3nΓ5 (see also [19]). As
the building block, the CS theory on the ideal tetrahedron is
reviewed in Sec. II B. Then, as an intermediate step, we
construct the CS partition function on the ideal octahedron
in Sec. II C since the ideal triangulation of S3nΓ5 is made
by five ideal octahedra. Section II D defines the phase space
coordinates of the CS theory on S3nΓ5 and the symplectic
transformation from the phase space coordinates of the CS
theory on the octahedra. The symplectic transformation
defines the Weil-like transformations which relate the
octahedron partition functions to the CS partition function
on S3nΓ5, as discussed in Sec. II E. In Sec. II F, we discuss
the coherent state of the CS theory, which will be useful for
the spinfoam model.

A. Ideal triangulation of S3nΓ5

The 3-manifold M3 ¼ S3nΓ5 is the complement in S3 of
an open tubular neighborhood of the Γ5 graph (see Fig. 3).
Here,M3 can be triangulated by a set of (topological) ideal
tetrahedra. An ideal tetrahedron Δ is a tetrahedron whose
vertices are located at infinities. It is convenient to truncate
the vertices to define the ideal tetrahedron as the “truncated
tetrahedron” as in Fig. 2. There are two types of boundary
components for the ideal tetrahedron: (a) the original
boundary of the tetrahedron and (b) the boundaries created
by truncating tetrahedron vertices. Following e.g.,
[15,26,27], the type-(a) boundary is called the geodesic

boundary, and the type-(b) boundary is called the cusp
boundary.
Note that M3 also has two types of boundary com-

ponents: (A) the boundaries created by removing the
open ball containing vertices of the graph, and (B) the
boundaries created by removing tubular neighborhoods
of edges. Here each type-(A) boundary component is a
4-holed sphere. Each type-(B) boundary component is an
annulus which begins and ends at a pair of holes of two
type-(A) boundaries. The type-(A) boundary is called the
geodesic boundary of M3, and the type-(B) boundary is
called the cusp boundary. An ideal triangulation decom-
poses M3 into a set of ideal tetrahedra, such that the
geodesic boundary of M3 is triangulated by geodesic
boundaries of the ideal tetrahedra, while the cusp boundary
of M3 is triangulated by cusp boundaries of the ideal
tetrahedra. This ideal triangulation of S3nΓ5 is not the
triangulation of S3 dual to Γ5 (the latter is given by the
boundary of the 4-simplex). It is important to distinguish
these two triangulations.
Here the geodesic boundary of S3nΓ5 consists of five

4-holed spheres fSag5a¼1, while the cusp boundary consists
of 10 annuli flabga<b. The Γ5 graph in Fig. 3 motivates us to
subdivide S3nΓ5 into five tetrahedron-like regions (five gray
tetrahedra in Fig. 3, whose vertices coincidewith the vertices
of the graph). Every tetrahedron-like region should actually
be understood as an ideal octahedron (with vertices trun-
cated). The octahedron faces triangulate the 4-holed spheres,
and the octahedron cusp boundaries (created by truncating
vertices) triangulate the annuli. The way of gluing five ideal
octahedra to form S3nΓ5 is shown in Fig. 3. Each ideal
octahedron can be subdivided into four ideal tetrahedra as
shown in Fig. 4. A specific way of subdividing the octahe-
dron is specified by a choice of octahedron equator. As a
result, S3nΓ5 is triangulated by 20 ideal tetrahedra.
Given M3 with both geodesic and cusp boundaries, a

framed PSLð2;CÞ flat connection onM3 is a PSLð2;CÞ flat
connection A on M3 with a choice of flat section s (called
the framing flag) in an associated CP1 bundle over every
cusp boundary (see e.g., [27–29]). The flat section s can be
viewed as a C2 vector field on a cusp boundary, defined up
a complex rescaling and satisfying the flatness equation
ðd − AÞs ¼ 0 (d is the exterior derivative). Consequently,
the vector sðpÞ at a point p of the cusp boundary is an
eigenvector of the holonomy of A around the cusp based at
p. The eigenvector fixes the Weyl symmetry. Similarly, a
framed flat connection on ∂M3 is a flat connection A on
∂M3 with the same choice of framing flag on every cusp
boundary. In addition, if a cusp boundary component of a
certain 3-manifold is a small disc, such as the boundaries
created by truncating of tetrahedron vertices, the holonomy
of any framed flat connection A around the disc is uni-
potent. The moduli space of framed PSLð2;CÞ flat con-
nections on ∂ðS3nΓ5Þ is denoted by P∂ðS3nΓ5Þ, which is a
symplectic manifold with the Atiyah-Bott symplectic form.FIG. 2. Ideal tetrahedron.
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The moduli space of framed PSLð2;CÞ flat connections on
S3nΓ5 is denoted by LS3nΓ5

, which is a Lagrangian sub-
manifold in P∂ðS3nΓ5Þ.

B. Complex Chern-Simons theory
on ideal tetrahedron

Given the ideal triangulation, the building block of the
CS theory on S3nΓ5 is the theory on an ideal tetrahedron Δ.
In this subsection, we review the main results of the CS
theory on Δ and refer to e.g., [15,16,27] for details. The
boundary ∂Δ of the ideal tetrahedron is a sphere with four
cusp discs. We denote byP∂Δ the phase space of PSLð2;CÞ
CS theory on Δ. Note that P∂Δ is the moduli space of
PSLð2;CÞ flat connections on a 4-holed sphere, where the
holonomy around each hole is unipotent.
The moduli space of PSLð2;CÞ flat connections on an

n-holed sphere can be described as follows: A 2-sphere in
which n discs are removed is an n-holed sphere. We make a
2d ideal triangulation of the n-holed sphere such that edges
in the triangulation end at the boundary of the holes.
For example, the boundary of the ideal tetrahedron is an

ideal triangulation of the 4-holed sphere. The 2d ideal
triangulation has 3ðn − 2Þ edges. Each edge E is associated
to a coordinate xE of the moduli space. Given a framed flat
connection, xE is a cross-ratio of four framing flags s1, s2,
s3, s4 associated to the vertices of the quadrilateral
containing E as the diagonal (see Fig. 5),

xE ¼ hs1 ∧ s2ihs3 ∧ s4i
hs1 ∧ s3ihs2 ∧ s4i

ð7Þ

where hsi ∧ sji is an SLð2;CÞ invariant volume on C2

computed by parallel transporting s1;…; s4 to a common
point inside the quadrilateral by the flat connection. The set
of fxEgE are the Fock-Goncharov (FG) edge coordinates
of the moduli space of PSLð2;CÞ flat connections on the
n-holed sphere. The correspondence between fxEgE’s and
framed PSLð2;CÞ flat connections on Sa is 1-to-1 [29]. By
the “snake rule” [27,28], PSLð2;CÞ holonomies on the
n-holed sphere can be expressed as 2 × 2 matrices whose
entries are functions of fxEg. In particular, the eigenvalue λ
of the counterclockwise holonomy (of the flat connection)
around a single hole relates to xE by

FIG. 3. Decomposition of S3nΓ5 with five ideal octahedra (red), each of which can be decomposed into four ideal tetrahedra. The
truncations of octahedron vertices are not drawn in the figure. The faces with green labels a; b; c; d; e; f; g; h; i; j are the faces where a
pair of octahedra are glued. Two ideal octahedra are glued through a pair of faces having the same label. In each ideal octahedron, we
have chosen the edges with red label x, y, z, w to form the equator of the octahedron. This ideal triangulation first appeared in [19].
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Y
E around hole

ð−xEÞ ¼ λ2: ð8Þ

It is convenient to lift it to a logarithmic relation

X
E around hole

ðχE − iπÞ ¼ 2L; ð9Þ

where xE ¼ eχE , λ ¼ eL. The moduli space has a natural
Poisson structure with

fχE; χE0g ¼ ϵE;E0 ; ð10Þ

where ϵE;E0 ∈ 0;�1;�2 counts the number of oriented
triangles shared by E, E0, and ϵE;E0 ¼ þ1 if E0 occurs to the
left of E in a triangle. Note that the moduli space of
PSLð2;CÞ flat connections on any n-holed sphere is not a
symplectic manifold unless λ of all holes are fixed.
Applying this to the boundary of the ideal tetrahedron,

we denote the FG coordinates at the edges around a given
hole (cusp disc) by z; z0; z00 (see Fig. 2). The trivial
holonomy around each hole gives

zz0z00 ¼ −1: ð11Þ

Similar conditions for all four cusps identify the FG
coordinates at opposite edges. As a result, we find

P∂Δ ¼ fz; z0; z00 ∈ C�jzz0z00 ¼ −1g ≃ ðC�Þ2: ð12Þ

Here, P∂Δ is a symplectic manifold since the holonomy
eigenvalues at all holes are fixed. The Atiyah-Bott sym-
plectic form is Ω ¼ dz00

z00 ∧ dz
z . We also define the logarithmic

phase space coordinates Z ¼ logðzÞ, Z0 ¼ logðz0Þ, Z00 ¼
logðz00Þ with canonical lifts that satisfy

Z þ Z0 þ Z00 ¼ iπ; ð13Þ

fZ; Z00gΩ ¼ fZ00; Z0gΩ ¼ fZ0; ZgΩ ¼ 1: ð14Þ

The PSLð2;CÞ CS theory at levels k ∈ Z, σ ∈ iR
endows the following symplectic form ωk;σ on P∂Δ:

ωk;σ ≔
1

4π
ðtΩþ t̄ Ω̄Þ; t ≔ kþ σ; t̄ ≔ k − σ; ð15Þ

where k, σ relates to the cosmological constant Λ by

k ¼ 12π

jΛjl2
Pγ

; σ ¼ ikγ ð16Þ

where γ is the Barbero-Immirzi parameter [13]. We use the
following parametrization to change from γ to b [16]:

iγ ¼ 1 − b2

1þ b2
; b2 ¼ 1 − iγ

1þ iγ
; ð17Þ

4πi
t

¼ 2πi
k

ð1þ b2Þ; 4πi
t̄

¼ 2πi
k

ð1þ b−2Þ; ð18Þ

with complex b satisfying

ReðbÞ > 0; ImðbÞ ≠ 0; jbj ¼ 1: ð19Þ

We reparametrize z, z0 and define z̃; z̃00 by

z ¼ exp

�
2πi
k

ð−ibμ −mÞ
�
; ð20Þ

z̃ ¼ exp

�
2πi
k

ð−ib−1μþmÞ
�
; ð21Þ

z00 ¼ exp

�
2πi
k

ð−ibν − nÞ
�
; ð22Þ

z̃00 ¼ exp

�
2πi
k

ð−ib−1νþ nÞ
�
; ð23Þ

where ðm; nÞ are real and periodic ðm ∼mþ k; n ∼ nþ kÞ.
When ðμ; νÞ are real, z̃; z̃00 are complex conjugates of z, z0.

FIG. 5. Quadrilateral in the 2d ideal triangulation for
defining xE.

FIG. 4. By choosing the equator edges with labels x, y, z, w, an
ideal octahedron can be subdivided into four ideal tetrahedra by
drawing a vertical line connecting the remaining two vertices
which does not belong to the equator. Vertices are truncated,
although truncations are not shown in the figure.
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But in the following, ðμ; νÞ will be analytically continued
away from the real axis. Here, ωk;σ written in terms of μ, ν,
m, n gives

ωk;σ ¼
2π

k
ðdν ∧ dμ − dn ∧ dmÞ: ð24Þ

The quantization of ðP∂Δ;ωk;σÞ promotes μ, ν, m, n to
operators μ, m, ν, n satisfying the commutation relations

½μ; ν� ¼ ½n;m� ¼ −
k
2πi

; ½ν;m� ¼ ½μ;n� ¼ 0: ð25Þ

The variables m, n are both canonical conjugate and
periodic, so the spectra of m, n are discrete and bounded:
m; n ∈ Z=kZ. A representation of (25) is the kinematical
Hilbert space

Hðk;σÞ
kin ¼ L2ðRÞ ⊗ Ck: ð26Þ

For any wave function fðμjmÞ ∈ Hðk;σÞ
kin where μ ∈ R and

m ∈ Z=kZ, the actions of μ, m, ν, n are given by

μfðμjmÞ ¼ μfðμjmÞ; e−
2πi
k mfðμjmÞ ¼ e−

2πi
k mfðμjmÞ;

νfðμjmÞ ¼ k
2πi

∂μfðμjmÞ; e−
2πi
k nfðμjmÞ ¼ fðμjmþ 1Þ:

ð27Þ

We also define the operators corresponding to z; z00; z̃; z̃00,

z ¼ exp

�
2πi
k

ð−ibμ −mÞ
�
; ð28Þ

z̃ ¼ exp

�
2πi
k

ð−ib−1μþmÞ
�
; ð29Þ

z00 ¼ exp

�
2πi
k

ð−ibν − nÞ
�
; ð30Þ

z̃00 ¼ exp

�
2πi
k

ð−ib−1νþ nÞ
�
: ð31Þ

They satisfy q- and q̃-Weyl algebras

zz00 ¼ qz00z; z̃z̃00 ¼ q̃z̃00z̃;

zz̃00 ¼ z̃00z; z̃z00 ¼ z00z̃;

q ¼ exp
�
4πi
t

�
¼ exp

�
2πi
k

ð1þ b2Þ
�
; ð32Þ

q̃ ¼ exp

�
4πi
t̄

�
¼ exp

�
2πi
k

ð1þ b−2Þ
�
: ð33Þ

The above discussion focuses on flat connections on the
boundary ∂Δ. Only a subset of the flat connections on the

boundary can be extended into the bulk. The moduli space
of the PSLð2;CÞ flat connection on the ideal tetrahedronΔ,
denoted by LΔ, is a holomorphic Lagrangian submanifold
in P∂Δ. Note that LΔ can be expressed as the holomorphic
algebraic curve in terms of z, z0 (see e.g., [15,27]):

LΔ ¼ fz−1 þ z00 − 1 ¼ 0g ⊂ P∂Δ; ð34Þ

and similarly for the antiholomorphic variables z̃; z̃00. In the
quantum theory, we promote the algebraic curve to the
quantum constraints imposed on the wave functions,

ðz−1 þ z00 − 1ÞΨΔðμjmÞ ¼ ðz̃−1 þ z̃00 − 1ÞΨΔðμjmÞ ¼ 0:

The solution is the quantum dilogarithm function (see e.g.,
[16,30–32])

ΨΔðμjmÞ ¼
8<
:
Q∞

j¼0
1−qjþ1z−1

1−q̃−jz̃−1 jqj < 1;Q∞
j¼0

1−q̃jþ1 z̃−1

1−q−jz−1 jqj > 1:
ð35Þ

Here, ΨΔðμjmÞ is the CS partition function on the ideal
tetrahedron Δ, and ΨΔðμjmÞ defines a meromorphic
function of μ ∈ C for each m ∈ Z=kZ and is analytic in
b in each regime ImðbÞ > 0 and ImðbÞ < 0 (correspond-
ingly jqj < 1 and jqj > 1). The poles and zeros ofΨΔðμjmÞ
are

μpole=zero ¼ ibuþ ib−1v; with u; v ∈ Z;

u − v ¼ −mþ kZ

�
zeroes∶ u; v ≥ 1;

poles∶ u; v ≤ 0:
ð36Þ

Poles of ΨΔ are in the lower-half plane,

ImðμpoleÞ ¼ ReðbÞðuþ vÞ ≤ 0: ð37Þ

Note that ΨΔðμjmÞ is holomorphic in μ when ImðμÞ > 0.
The asymptotic behavior of ΨΔðμjmÞ as ReðμÞ → ∞

with fixed ImðμÞ is

ΨΔðμjmÞ ¼
�
Oð1Þ ReðμÞ → þ∞
exp ½iπk ðμ − i

2
QÞ2 þOð1Þ� ReðμÞ → −∞;

Q ¼ bþ b−1 > 0: ð38Þ

The asymptotic behavior indicates that ΨΔðμjmÞ does not
belong to the Hilbert space Hðk;σÞ

kin but is a tempered
distribution. Note that ΨΔðμjmÞ is analytic in the upper-
half plane ImðμÞ > 0. We have the following useful
observation from the asymptotic behavior: Let α > 0; then
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je−2π
k βμΨΔðμþ iαjmÞj

∼
�
exp ½− 2π

k βμ� μ → ∞

exp ½− 2π
k μðαþ β −Q=2Þ� μ → −∞:

ð39Þ

Therefore, e−
2π
k βμΨΔðμþ iαjmÞ is a Schwartz function of μ

if α, β is inside the open triangle PðΔÞ:

PðΔÞ ¼ fðα; βÞ ∈ R2jα; β > 0; αþ β < Q=2g: ð40Þ

The Fourier transform
R
dμe

2πi
k νμΨΔðμjmÞ is convergent if

the integration contour is shifted away from the real axis
while α ¼ ImðμÞ, β ¼ ImðνÞ belong to PðΔÞ. Here, α, β
can be understood as angles associated with coordinates z,
z0 in the context of hyperbolic geometry. Note that ðα; βÞ ∈
PðΔÞ is called a “positive angle structure” of Δ [16,17].

C. Octahedron partition function

Four ideal tetrahedra are glued to form an ideal octahe-
dron as shown in Fig. 4. The phase space P∂oct is a
symplectic reduction from four copies of P∂Δ: The FG
edge coordinates fxEg of P∂oct are a product of the
tetrahedron edge coordinates. In general, for any edge
on the boundary or in the bulk, it associates [27]

xE ¼
Y

ðz; z0; z00 incident atEÞ or

χE ¼
X

ðZ; Z0; Z00 incident atEÞ ð41Þ

as a product or sum over all the tetrahedron edge coor-
dinates incident at the edge E. For boundary edges, xE are
the FG coordinates of P∂oct. The lift of χE ¼ logðxEÞ is
determined by the lifts of Z; Z0; Z00 of ideal tetrahedra. For
the bulk edge, xE or χE is rather a constraint which is
denoted by cE ¼ expðCEÞ, satisfying

cE ¼ 1 or CE ¼ 2πi; ð42Þ

because the flat connection holonomy around a bulk edge is
trivial. We denote the edge coordinates in four copies of
P∂Δ by X, Y, Z, W and their double primes. All the edge
coordinates of P∂oct are expressed in Fig. 4, where we have
a single constraint at the bulk edge,

C ¼ X þ Y þ Z þW ¼ 2πi: ð43Þ

We make a symplectic transformation in P∂Δ × P∂Δ ×
P∂Δ × P∂Δ from the tetrahedron coordinates ðX;X00Þ,
ðY; Y 00Þ, ðZ; Z00Þ, ðW;W00Þ to a set of new symplectic
coordinates ðX;PXÞ, ðY; PYÞ, ðZ; PZÞ, ðC;ΓÞ, where

PX ¼ X00 −W00; PY ¼ Y 00 −W00;

PZ ¼ Z00 −W00; Γ ¼ W00 ð44Þ

and each pair are canonical conjugate variables, Poisson
commutative with other pairs. The octahedron phase
space P∂oct is a symplectic reduction by imposing the
constraint C ¼ 2πi and removing the “gauge orbit” vari-
able Γ. A set of symplectic coordinates of P∂oct are given
by ϕ⃗ ¼ ðX; Y; ZÞ, π⃗ ¼ ðPX; PY; PZÞ. The Atiyah-Bott sym-
plectic form Ω implies

fϕi; πjgΩ ¼ δij; fϕi;ϕjgΩ ¼ fπi; πjgΩ ¼ 0: ð45Þ

The CS partition function on the ideal octahedron, Zoct,
is a product of four tetrahedron partition functions followed
by the restriction on the quantum deformed constraint
surface eC ¼ q, eC̃ ¼ q̃4:

ZoctðμX; μY; μZjmX;mY;mZÞ
¼ ΨΔðμXjmXÞΨΔðμY jmYÞΨΔðμZjmZÞ
×ΨΔðiQ − μX − μY − μZj −mX −mY −mZÞ:

The octahedron partition function gives the following
asymptotics behavior

je−2π
k

P
i
βiμiZoctðfμi þ iαigjfmigÞj

∼
�
e−

2π
k μXðαXþβXþαYþαZ−Q=2Þ μX → ∞

e−
2π
k μXðαXþβX−Q=2Þ μX → −∞

where i ¼ X, Y, Z. Similar behaviors are satisfied for

μY → �∞ or μZ → �∞. Therefore, e−
2π
k

P
i
βiμiZoct ×

ðfμi þ iαigjfmigÞ is a Schwartz function of μX, μY , μZ,
if ðαX; βX; αY; βY; αZ; βZÞ ∈ R6 is contained by the open
polytope PðoctÞ defined by the following inequalities:

αX; αY; αZ > 0; αX þ αY þ αZ < Q;

αX þ βX <
Q
2
; αY þ βY <

Q
2
; αZ þ βZ <

Q
2
;

αX þ αY þ αZ þ βX >
Q
2
; αX þ αY þ αZ þ βY >

Q
2
;

αX þ αY þ αZ þ βZ >
Q
2
: ð46Þ

To see that PðoctÞ is not empty, Appendix A shows a plot,
Fig. 9, of the intersection between PðoctÞ and the plane of
αX ¼ αY ¼ αZ, βX ¼ βY ¼ βZ. Here, ðα⃗; β⃗Þ ∈ PðoctÞ is a
positive angle structure of the ideal octahedron.
Following [16], we consider any 2N-dimensional phase

space ðP;ωÞ with Darboux coordinates ðμi; miÞ and
ðνi; miÞ such that ω ¼ 2π

k

P
n
i¼1ðdνi ∧ dμi − dni ∧ dmiÞ.

The phase space is associated with an “angle space”

4The quantum deformation is necessary to make the partition
function invariant under the 3d Pachner move (see e.g., [15]).
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(Pangle;ωangle) whose universal cover is T�RN ≃R2N ; the
Darboux coordinates of Pangle are

αi ¼ ImðμiÞ; βi ¼ ImðνiÞ; ð47Þ

so ωangle ¼
P

N
i¼1 dβi ∧ dαi. Given a 2N-dimensional open

convex symplectic polytope P ∈ Pangle, we define πðPÞ
to be the projection of P to the base of T�RN , with
coordinates α⃗; we then define

stripðPÞ ≔ fμ⃗ ∈ CN jImðμ⃗Þ ∈ πðPÞg: ð48Þ

We define the functional space as

FP ≔ fholomorphic functions f∶ stripðPÞ → C s:t:

∀ ðα⃗; β⃗Þ ∈ P; the function e−
2π
k μ⃗·β⃗fðμ⃗þ iα⃗Þ ∈ SðRNÞ

is the Schwartz classg:

We have the convergence for any f ∈ FP,Z
dNμe

2πi
k μ⃗·ν⃗fðμ⃗Þ < ∞ ð49Þ

when the integration contour is shifted away from the real
axis while α⃗ ¼ Imðμ⃗Þ, β⃗ ¼ Imðν⃗Þ belong to P. Note that
f ∈ FP implies the Fourier transform of f also belongs
to FP.
To accommodate partition functions of complex Chern-

Simons theory at level k, we define

F ðkÞ
P ¼ FP ⊗C ðVkÞ⊗N; Vk ≃ Ck: ð50Þ

As examples, the tetrahedron partition functionΨΔ belongs

to F ðkÞ
PðΔÞ with N ¼ 1, and the octahedron partition function

Zoct belongs to F ðkÞ
PðoctÞ with N ¼ 3.

D. Phase space coordinates of P∂ðS3nΓ5Þ
The geodesic boundary of S3nΓ5 consists of five 4-holed

spheres, denoted by Sa¼1;…;5. In Fig. 3, each Sa is made by
the triangles from the geodesic boundaries of the octahedra.

We compute all FG edge coordinates χðaÞmn (a labels the
4-holed sphere and mn labels the edge E) of flat con-
nections on Sa¼1;…;5 using Eq. (41) and list them in Table I
in Appendix B.
The phase space P∂ðS3nΓ5Þ is the moduli space of framed

PSLð2;CÞ flat connections on the 2d boundary ∂ðS3nΓ5Þ.
We choose the Darboux coordinates of P∂ðS3nΓ5Þ as follows:
First, the complex Fenchel-Nielsen (FN) length variables
λ2ab ¼ e2Lab are squared eigenvalues of PSLð2;CÞ holon-
omies meridian to the 10 annuli lab connecting 4-holed

spheres Sa and Sb. They relate edge coordinates χðaÞmn

using Eq. (9). Ten 2Lab are linear combinations of
ðXa; PXa

Þ; ðYa; PYa
Þ; ðZa; PZa

Þ from five OctðaÞ with inte-
ger coefficients. Their expressions are given in
Appendix B. The resulting Lab are mutually Poisson

commutative and commute with all edge coordinates χðaÞmn.
All Lab commute with 4-holed sphere edge coordinates

χðaÞmn, and P∂ðS3nΓ5Þ is complex 30-dimensional. Among the
Darboux coordinates, the position variables include ten
2Lab and five variables Xa (a ¼ 1;…; 5), one for each 4-

holed sphere. We choose Xa to be one of χðaÞmn:

X1 ¼ χð1Þ25 ; X2 ¼ χð2Þ15 ; X3 ¼ χð3Þ15 ;

X4 ¼ χð4Þ15 ; X5 ¼ χð5Þ14 : ð51Þ

We denote the conjugate momentum variables by T ab
and Ya, and denote

QI ¼ ð2Lab;XaÞ; PI ¼ ðT ab;YaÞ; I ¼ 1;…; 15;

where I labels the boundary components ðlab;SaÞ. The
momentum variables T ab conjugate to 2Lab are called the
twist variables. On each Sa, the momentum variable Ya
conjugate to Xa also turns out to be the FG edge
coordinates up to sign and 2πi.

Y1 ¼ χð1Þ23 ; Y2 ¼ χð2Þ14 ; Y3 ¼ χð3Þ45 − 2πi;

Y4 ¼ −χð4Þ35 þ 2πi; Y5 ¼ χð5Þ34 − 2πi: ð52Þ

Explicit expressions of 2Lab, T ab, Xa, Ya in terms of
ðXa; PXa

Þ; ðYa; PYa
Þ; ðZa; PZa

Þ are given in Appendix B.
There exists a linear symplectic transformation from

Φ⃗≡ ðXa; Ya; ZaÞ5a¼1 and Π⃗≡ ðPXa
; PYa

; PZa
Þ5a¼1 to Q⃗; P⃗,

�
Q⃗

P⃗

�
¼
�
A B

−ðBTÞ−1 0

��
Φ⃗
Π⃗

�
þ iπ

�
⃗t

0⃗

�
; ð53Þ

such that all entries in A;B; ⃗t are integers. Here, ⃗t is a 15-
dimensional vector, and A, B are 15 × 15 blocks satisfying
the fact that ABT is a symmetric matrix. Matrices A;B; ⃗t
are given explicitly in Appendix C.
Following from (45), the Atiyah-Bott symplectic form Ω

on P∂ðS3nΓ5Þ is expressed as

Ω ¼
X15
I¼1

dPI ∧ dQI

¼ 2
X
a<b

dT ab ∧ dLab þ
X5
a¼1

dYa ∧ dXa: ð54Þ

The coordinates Q⃗; P⃗ are used below for constructing the
CS partition function of S3nΓ5. We sometimes use the
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notations Qab ¼ 2Lab, Qa ¼ Xa, Pab ¼ T ab, Pa ¼ Ya in
our following discussion.
It is remarkable that there is no additional constraint

for gluing octahedra to form S3nΓ5 since gluing octahedra
does not produce an additional bulk edge. Therefore,
P∂ðS3nΓ5Þ ≃ ×5

a¼1P∂octðaÞ. It is simply a symplectic trans-

formation from the octahedra Darboux coordinates Φ⃗,
Π⃗ to PI, QI of P∂ðS3nΓ5Þ. The moduli space of framed
flat connections on each octahedron is a Lagrangian

submanifold LoctðaÞ ⊂ P∂octðaÞ. Then, ×5
a¼1LoctðaÞ ≃ LS3nΓ5

is a Lagrangian submanifold in ×5
a¼1P∂octðaÞ ≃ P∂ðS3nΓ5Þ.

Given any five framed flat connections on five octahedra,
respectively, they define a flat connection on S3nΓ5.

E. S3nΓ5 partition function

The symplectic matrix in (53) can be decomposed into
generators

�
A B

−ðBTÞ−1 0

�
¼
�
0 −I
I 0

��
I 0

ABT I

��
−ðB−1ÞT 0

0 −B

�
: ð55Þ

We start with a product of five octahedron partition
functions, each of which is associated to an octahedron in
the decomposition of S3nΓ5,

Z×ðμ⃗jm⃗Þ ¼
Y5
a¼1

ZoctðμXa
; μYa

; μZa
jmXa

;mYa
; mZa

Þ

∈ F ðkÞ
PðoctÞ×5 : ð56Þ

The generators of the symplectic transformation are rep-
resented as a Weil-like action on Z× according to the order
in (55) [15,16].
1. U-type transformation:

U ¼
�
−ðB−1ÞT 0

0 −B

�
; ð57Þ

Z1ðμ⃗jm⃗Þ ¼ ðU ⊳ Z×Þðμ⃗jm⃗Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−BÞ

p
Z×ð−BT μ⃗j −BTm⃗Þ; ð58Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−BÞp ¼ 4i. The fact that all entries of B are

integers guarantees that Z1 is well defined for m⃗ ∈ Z=kZ.

In addition, Z× ∈ F ðkÞ
PðoctÞ×5 indicates that the following

function is of Schwartz class when ðα⃗; β⃗Þ ∈ PðoctÞ×5,

e−
2π
k ð−BT μ⃗Þ·β⃗Z×ð−BT μ⃗þ iα⃗jm⃗Þ

¼ e−
2π
k μ⃗·ð−Bβ⃗ÞZ×ð−BTðμ⃗ − iðB−1ÞT α⃗Þjm⃗Þ; ð59Þ

where μi ∈ R. Therefore, Z1 belongs to F ðkÞ
P1
, where

P1 ¼ U ∘PðoctÞ×5, with U acting on the angle space
Pangle as a symplectic transformation.
2. T-type transformation:

T ¼
�

I 0

ABT I

�
; ð60Þ

Z2ðμ⃗jm⃗Þ ¼ ðT ⊳ Z1Þðμ⃗jm⃗Þ
¼ ð−1Þm⃗·ABT ·m⃗e

iπ
k ð−μ⃗·ABT ·μ⃗þm⃗·ABT ·m⃗ÞZ1ðμ⃗jm⃗Þ: ð61Þ

All entries ofABT are integers so that Z2 is well defined for

m⃗ ∈ ðZ=kZÞ15. Note that Z1 ∈ F ðkÞ
P1

implies that the

following function is of Schwartz class when ðα⃗; β⃗Þ ∈ P1,

e−
2π
k μ⃗·β⃗Z1ðμ⃗þ iα⃗jm⃗Þ ¼ phase · e−

2π
k μ⃗·ðβ⃗þABT ·α⃗ÞZ2ðμ⃗þ iα⃗jm⃗Þ:

ð62Þ

Therefore, Z2 belongs to F ðkÞ
P2
, where P2 ¼ T ∘P1.

3. S-type transformation:

S ¼
�
0 −I
I 0

�
; ð63Þ

Z3ðμ⃗jm⃗Þ ¼ ðS ⊳ Z2Þðμ⃗jm⃗Þ

¼ 1

k15
X

n⃗∈ðZ=kZÞ15

Z
C
d15νe

2πi
k ð−μ⃗·ν⃗þm⃗·n⃗ÞZ2ðν⃗jn⃗Þ: ð64Þ

If we set αi ¼ ImðμiÞ and βi ¼ ImðνiÞ (i ¼ 1;…; 15),

e
2πi
k ð−μ⃗·ν⃗ÞZ2ðν⃗jn⃗Þ ¼ ½e2π

k α⃗·Reðν⃗ÞZ2ðReðν⃗Þ þ iβ⃗jn⃗Þ�
× e

2πi
k ½−Reðμ⃗Þ·Reðν⃗Þþα⃗·β⃗�þ2π

kReðμ⃗Þ·β⃗

is a Schwartz function in Reðν⃗Þ, when ðβ⃗;−α⃗Þ ∈ P2 (the
function in the square brackets is a Schwartz function, and
e
2πi
k ½−Reðμ⃗Þ·Reðν⃗Þ� is a phase), or equivalently,

ðα⃗; β⃗Þ ∈ P3 ¼ S ∘P2 ¼ S ∘T ∘U ∘PðoctÞ×5: ð65Þ

Given any ðα⃗; β⃗Þ ∈ P3, let ImðμiÞ ¼ αi and the integration
contour C be defined such that ImðνiÞ ¼ βi; then Z3ðμ⃗jm⃗Þ
converges absolutely, and Z3 ∈ F ðkÞ

P3
. As long as the
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contour C satisfies the condition ImðνiÞ ¼ βi, ðα⃗; β⃗Þ ∈ P3,
Z3ðμ⃗jm⃗Þ is independent of the choices of C, i.e., choices of
βi, due to the analyticity of Z2 and the fast decay of the
integrand at infinity.
4. Affine shift5:

σ ⃗t∶
�
X⃗

P⃗

�
↦

�
X⃗

P⃗

�
þ iπ

�
⃗t

0⃗

�
; ð66Þ

ZS3nΓ5
ðμ⃗jm⃗Þ ¼ ðσ ⃗t ⊳ Z3Þðμ⃗jm⃗Þ

¼ Z3

�
μ⃗ −

iQ
2
⃗tjm⃗
�
: ð67Þ

We have ZS3nΓ5
∈ F ðkÞ

Pnew
, where

Pnew ¼ σ0⃗t ∘P3 ¼ σ0⃗t ∘ S ∘T ∘U ∘PðoctÞ×5;

σ0⃗t∶
�
α⃗

β⃗

�
↦

�
α⃗0

β⃗0

�
≔
�
α⃗þ Q

2
⃗t

β⃗

�
: ð68Þ

The resulting ZS3nΓ5
ðμ⃗jm⃗Þ is the CS partition function on

S3nΓ5. Here, Pnew is obviously nonempty since PðoctÞ is
nonempty. Every ðα⃗; β⃗Þ ∈ Pnew is a positive angle structure
of S3nΓ5, and it leads to the absolute convergence
of ZS3nΓ5

ðμ⃗jm⃗Þ.
Note that μ⃗; m⃗ relate to fQI; Q̃IgI¼1;…;15 by

μI ¼
kðQ̃0

I þQ0
IÞ

2πðbþ b−1Þ ; mI ¼
ikðQ0

I − b2Q̃0
IÞ

2πðb2 þ 1Þ ; ð69Þ

Q0
I ¼ QI − iπtI; Q̃0

I ¼ Q̃I − iπtI ð70Þ

or in terms of exponentials,

ð−1ÞtI eQI ¼ exp

�
2πi
k

ð−ibμI −mIÞ
�
; ð71Þ

ð−1ÞtI eQ̃I ¼ exp

�
2πi
k

ð−ib−1μI þmIÞ
�
: ð72Þ

Consider the shifts QI → QI þ 2πipI , Q̃I → Q̃I − 2πip̃I

(pI; p̃I ∈ Z), which leave eQI ; eQ̃I invariant. Fixing

ImðμIÞ ¼ αI implies p̃I ¼ pI , and then the shifts reduce
to the gauge freedom mI → mI þ kpI in Z=kZ.

F. Coherent states

Given the 4-holed sphere Sa, we transform the corre-
sponding phase space coordinates from Xa;Ya; X̃a; Ỹa to
μa, νa, ma, na by

Xa − iπta ¼
2πi
k

ð−ibμa −maÞ; ð73Þ

X̃a − iπta ¼
2πi
k

ð−ib−1μa þmaÞ; ð74Þ

Ya ¼
2πi
k

ð−ibνa − naÞ; ð75Þ

Ỹa ¼
2πi
k

ð−ib−1νa þ naÞ; ð76Þ

where μa is the component in μ⃗ ∈ stripðPnewÞ. These
coordinates parametrize PSLð2;CÞ flat connections on
Sa with fixed e2Lab at the holes. The moduli space of
PSLð2;CÞ flat connections on Sa is locally C6, but fixing
e2Lab reduces the space to C2 locally. Let us fix ImðμaÞ ¼
αa and focus on degrees of freedom ReðμaÞ; ma. In the
following discussions of this section, we use μa ∈ R to
represent ReðμaÞ. We define the Hilbert space

HSa
¼ L2ðRÞ ⊗C Vk; Vk ≃ Ck; ð77Þ

containing functions of μa ∈ R; ma ∈ Z=kZ. Operators μa,
νa, ma, na on HSa

are defined in the same way as in (27).
We suppress the a index in the following discussions.
We first focus on L2ðRÞ and define the “annihilation

operator” and coherent state ψ zðμÞ labeled by z ∈ C. Here,
ψ zðμÞ satisfies

1ffiffiffi
2

p
 ffiffiffiffiffiffi

2π

k

r
μþ i

ffiffiffiffiffiffi
2π

k

r
ν

!
ψ0
zðμÞ ¼

ffiffiffiffiffiffi
k
2π

r
zψ0

zðμÞ:

The solution is

ψ0
zðμÞ ¼

�
2

k

�
1=4

e−
π
kðμ− k

π
ffiffi
2

p ReðzÞÞ2ei
ffiffi
2

p
μImðzÞ; ð78Þ

where ψ0
zðμÞ is normalized by the standard L2-norm. The

coherent state label z relates to the classical phase space
coordinates μ0, ν0 as

z ¼ 1ffiffiffi
2

p 2π

k
ðμ0 þ iν0Þ: ð79Þ

We can multiply ψ0
z by a prefactor that relates to the

polytope Pnew; namely, for each Sa we define

5The affine shifted classical coordinate X þ iπt ðt ∈ ZÞ has
the quantum deformation X þ ðiπ þ ℏ

2
Þt when entering the

partition function [15]. In terms of the exponential variables,
the affine shift is given by ð−q1

2ÞteX ¼ ð−q1
2Þtx. Here, we

define q
1
2 ¼ e

ℏ
2, where ℏ ¼ 2πi

k ð1þ b2Þ. If we parametrize
eX ¼ exp½2πik ð−ibμ −mÞ�, the affine shift X → X þ ðiπ þ ℏ

2
Þt

corresponds to μ → μþ 1
2
iðbþ b−1Þt, m → m, and adding an

overall ð−1Þt to eX .
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ψ zaðμaÞ ¼ e−
ffiffi
2

p
βaReðzaÞψ0

zaðμaÞ; ð80Þ

where βa is the component in ðα⃗; β⃗Þ ∈ Pnew. The prefactor
does not affect the semiclassical behavior of ψ z, but it
relates to the finiteness of the amplitude. Note that fβag5a¼1

cannot be zero because e.g., β1 ¼ αZ2
þ αZ3

> 0 according
to (46). It is still a viable choice to work with the
normalized coherent state ψ0

za ; then, certain requirements
should be implemented to the spinfoam edge amplitude.
We come back to this point in Sec. III E.
We denote the coherent state in Vk by ξðx;yÞðmÞ, where

ðx; yÞ ∈ ½0; 2πÞ × ½0; 2πÞ and m ∈ Z=kZ [33],

ξðx;yÞðmÞ ¼
�
2

k

�1
4

e−
ikxy
4π

X
n∈Z

e−
k
4πð2πmk −2πn−xÞ2e− ik

2πyð2πmk −2πn−xÞ:

ð81Þ

Note that ðx; yÞ relates to the classical phase space
coordinates m0, n0 by

y ¼ 2π

k
n0; x ¼ 2π

k
m0; mod 2π ð82Þ

and ξðx;yÞðmÞ satisfy the overcompleteness relation in Vk,

k
4π2

Z
T2

dxdyξðx;yÞðmÞξ̄ðx;yÞðm0Þ ¼ δm;m0 : ð83Þ

We define coherent states in HSa
by tensor products

ψ za ⊗ ξðpa;qaÞ ∈ HSa
: ð84Þ

Note that za; z̄a; xa; ya coordinatize the part of the phase
space associated to Sa, and they form a coordinate system
on the moduli space of PSLð2;CÞ flat connections on Sa

(with fixed e2Lab). We get the following relation:

ψ̄ za ⊗ ξ̄ðxa;yaÞ ¼ ψ z̄a ⊗ ξðxa;−yaÞ: ð85Þ

We multiply the coherent states over five Sa,

ΨρðfμagjfmagÞ ¼
Y5
a¼1

ψ zaðμaÞξðxa;yaÞðmaÞ ∈ ⊗a HSa

ρ ¼ fza; xa; yag5a¼1; ð86Þ

where μa ∈ R. The partition functionZS3nΓ5
is a function of

μ⃗; m⃗, including μa, ma. We consider the (partial) L2 inner
product between ZS3nΓ5

and Ψ̄ρ (this may be understood as
ZS3nΓ5

acting on Ψ̄ρ since ZS3nΓ5
is a tempered distribution),

ZS3nΓ5
ðιÞ ¼ hΨ̄ρjZS3nΓ5

i⊗aHSa
¼

X
fmag∈ðZ=kZÞ5

Z
R5

Y5
a¼1

dμaZS3nΓ5
ðμ⃗þ iα⃗jm⃗ÞΨρðfμagjfm⃗agÞ; ð87Þ

where μ⃗þ iα⃗ ∈ stripðPnewÞ. Here, ZS3nΓ5
ðιÞ is a function of

ι ¼ ðfμab þ iαab; mabga<b; fza; xa; yag5a¼1; fαa; βag5a¼1Þ; μab ∈ R; mab ∈ Z=kZ; za ∈ C; ðxa; yaÞ ∈ T2; ð88Þ

which includes the position variables of annuli and both the position and momentum variables of 4-holed spheres. Note that ι
determines a unique PSLð2;CÞ flat connection on eachSa: Given an ι and using (79) and (82), za, xa, ya determine phase space
coordinates that relate to FG coordinates by (73)–(76). The resulting FG coordinates and e2Lab given by μab; mab of the same ι
determine a unique PSLð2;CÞ flat connection on Sa.
Theorem II.1. Fixing the annulus data fμab; mabga<b, jZS3nΓ5

ðιÞj is bounded for all fza; xa; yag5a¼1.
Proof: In ZS3nΓ5

ðιÞ, the sum over m⃗0 is finite, and for any m,

ξðx;yÞðmÞ ¼
ffiffiffi
4

p
2e−

kyðyþixÞ
4π ϑ3ð12 ð− 2πm

k þ x − iyÞ; e−π
kÞ

k3=4

is smooth in ðx; yÞ ∈ ½0; 2πÞ × ½0; 2πÞ ≃ T 2; thus, jξðx;yÞðmÞj is bounded on T 2 for any m. Therefore, the boundedness of
ZS3nΓ5

ðιÞ is implied by the boundedness of the following integral for all m⃗:
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����
Z
R5

Y5
a¼1

dμ0aZS3nΓ5
ðμ⃗0 þ iα⃗jm⃗0Þ

Y5
a¼1

ψ zaðμ⃗0aÞ
����

¼
����e− ffiffi2p P

a
βaReðzaÞ

Z
R5

Y5
a¼1

dμ0aZS3nΓ5
ðμ⃗0 þ iα⃗jm⃗0Þ

Y5
a¼1

ψ0
zaðμ⃗0aÞ

����
≤
�
1

k

�5
4

e−
ffiffi
2

p P
a
βaReðzaÞ

Z
R5

Y
a

dμ0ajZS3nΓ5
ðμ⃗0 þ iα⃗jm⃗0Þe−2π

k

P
a
βaμ

0
a j
Y5
a¼1

jψ0
zaðμ⃗0aÞe

2π
k βaμ

0
a j

≤ C

�
1

k

�5
4

e−
ffiffi
2

p P
a
βaReðzaÞ

Z
R5

Y
a

dμ0ae
−π
k

P
a
ðμ0a− k

π
ffiffi
2

p ReðzaÞÞ2e
2π
k

P
a
βaμ

0
a

¼ Ck
5
4e
P

a

πβ2a
k : ð89Þ

In the third step we use ZS3nΓ5
∈ F ðkÞ

Pnew
; thus, as a

function of μ0a (a ¼ 1;…; 5), ∀ ðα⃗; β⃗Þ ∈ Pnew,

e−
2π
k

P
a
μ0aβaZS3nΓ5

ðμ⃗0 þ iα⃗jm⃗Þ ∈ SðR5Þ; ð90Þ

where C is the upper bound of je−2π
k

P
a
μ0aβaZS3nΓ5

×
ðμ⃗0 þ iα⃗jm⃗Þj. ▪

III. SPINFOAM AMPLITUDE WITH A
COSMOLOGICAL CONSTANT

The purpose of this section is to impose the simplicity
constraint on ZS3nΓ5

ðιÞ in order to relate the CS partition
function to the spinfoam vertex amplitude in 4d. The
simplicity constraint reduces the PSLð2;CÞ flat connection
to PSU(2) on five Sa’s. Based on the resulting vertex
amplitude, we define the spinfoam amplitude withΛ on any
simplicial complex and prove its finiteness, as well as
discuss several related perspectives.

A. Simplicity constraint and vertex amplitude

In the simplicial context with Λ ¼ 0, the simplicity
constraint (in the EPRL/FK model) imposes that for any
spacelike tetrahedron e, there exists a timelike unit vector
NI in 4d Minkowski space such that BIJ

f NJ ¼ 0, where BIJ
f

(f ¼ 1;…; 4) are bivectors associated to four faces f.
The simplicity constraint and closure condition endow
every e with a convex geometrical tetrahedron in flat
space. Indeed, the BIJ

f that satisfy the constraint are equi-
valent to 3d vectors afnI

f ¼ 1
2
ϵIJKLNJBKL (nInI ¼ 1) in

the plane normal to NI . Then, the BF closure conditionP
4
f¼1 B

IJ ¼ 0 implies
P

4
f¼1 afn

I
f ¼ 0, which endows e

with a convex geometrical tetrahedron (whose face areas
and normals are af and nI

f) using Minkowski’s theorem
[34]. At the quantum level, the first-class part of the
simplicity constraint, i.e., the diagonal simplicity constraint
ϵIJKLBIJ

f B
KL
f ¼ 0, is imposed strongly on the states,

whereas the second-class part of the simplicity constraint
is weakly imposed [14,20,35].
In the presence of nonvanishing Λ, Γ5 ⊂ S3 is the dual

graph of the triangulation of S3 given by the 4-simplex’s
boundary. Each node of Γ5, or each Sa ⊂ ∂ðS3nΓ5Þ, is dual
to a boundary tetrahedron ea of the 4-simplex. Each link of
Γ5, or each annulus lab ⊂ ∂ðS3nΓ5Þ, is dual to a boundary
triangle fab of the 4-simplex. All tetrahedra and triangles
are spacelike, similar to the EPRL/FK model. Given any ea,
the generalization of the closure condition is the defining
equation of PSLð2;CÞ flat connections on the 4-holed
sphere Sa: O4O3O2O1 ¼ 1, where Of¼1;…;4 ∈ PSLð2;CÞ
are holonomies around four holes based at a common point
pa ∈ Sa. Using the non-Abelian Stokes theorem, we
identify Of ¼ ejΛjBf=3 ∈ SOð1; 3Þþ due to the relation
F ðAÞ ¼ jΛjB=3 from integrating out B in (3). Here
F ðAÞ, as the curvature of the CS connection A on S3,
is proportional to the delta function supported on Γ5

(equivalent to the fact that A is flat on S3nΓ5). Namely,

F ðAÞ ¼ jΛj
3
Bfδ

2ðxÞdx1 ∧ dx2 on face f coordinated by
ðx1; x2Þ transverse to an edge of Γ5 at x⃗ ¼ 0.O4O3O2O1 ¼
1 withOf ¼ ejΛjBf=3 reduces to the linear closure conditionP

4
f¼1 Bf ¼ 0 as Λ → 0. Moreover, the simplicity con-

straint BIJ
f NJ ¼ 0 for all f ¼ 1;…; 4 restrictsOf¼1;…;4 to a

common PSU(2) subgroup stabilizing the timelike vector
NI . The result in [21] shows that restricting all Of to the
subgroup PSU(2) endows e with a convex geometrical
tetrahedron with constant curvature. The effect of restrict-
ing Of to PSU(2) is analogous to the simplicity constraint
reviewed above. This motivates us to define this restriction
to be the simplicity constraint in the presence of non-
vanishing Λ [36]:
Definition III.1. Semiclassically, in the presence of a

nonvanishing cosmological constant, the simplicity con-
straint restricts the moduli spaces of PSLð2;CÞ flat con-
nections on 4-holed spheres to the ones that can be gauge
transformed to PSUð2Þ ≃ SOð3Þ flat connections.
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1. First-class constraints

Our proposal is to quantize and impose the simplicity
constraint on ZS3nΓ5

ðιÞ. First, flat connections on all Sa are
PSU(2), which implies e2Lab ∈ Uð1Þ, or equivalently μab ¼
0 for all annuli lab. However, due to the presence of
αab ¼ ImðμabÞ, at the quantum level we may have to decide
whether we impose

ℜðμabÞZS3nΓ5
ðιÞ ¼ 0 or μabZS3nΓ5

ðιÞ ¼ 0: ð91Þ

In either case, these ten constraints are first class since
fμabga<b are commutative; thus, they can be imposed
strongly onZS3nΓ5

ðιÞ. Note that fμabga<b are multiplication
operators acting on ZS3nΓ5

ðιÞ. The former choice restricts

ReðμabÞ ¼ 0; ∀ lab ð92Þ

in ι. The latter choice restricts both ReðμabÞ and the positive
angle structure,

ReðμabÞ ¼ 0 and αab ¼ 0; ∀ lab; ð93Þ

and thus, it is much stronger than the former choice.
However, the semiclassical limit of the theory is insensitive
to the choices: Consider the former (weaker) choice; e2Lab

determined by ι is given by

e2Lab ¼ ð−1Þtab exp
�
2πi
k

ðbαab −mabÞ
�

¼ exp

�
2πi
k

�
bαab −

�
mab þ tab

k
2

���

¼ exp

�
2πi
k

�
bαab þ

�
2jab þ

ϵab
2

���
ð94Þ

where αab ¼ ImðμabÞ. In the last step, since −ðmab þ
tab

k
2
Þ ∈ Z=kZ (or Z=kZþ 1=2) if k is even (or odd),

we introduce the half-integer “spin” jab such that
−ðmab þ tab k

2
Þ ¼ 2jab þ ϵab

2
mod kZ where

ϵab ¼
� 1−ð−1Þtab

2
k odd

0 k even
ð95Þ

jab ¼ 0;
1

2
;…;

k − 1

2
: ð96Þ

The double-scaling limit jab, k → ∞with jab=k fixed is the
semiclassical limit for the spinfoam amplitude with a
cosmological constant (see Sec. IV for a discussion). In
this limit, e2Lab is insensitive to αab, ϵab since they do not
scale with k,

e2Lab → exp

�
4πi
k

jab

�
∈ Uð1Þ: ð97Þ

Both choices in (91) lead to the same semiclassical result.
At least semiclassically, each holonomy around holes on Sa
can be individually conjugated to PSU(2), while jab=k
determines the conjugacy class of the holonomy.
The stronger choice (93) is indeed viable. We can have

ðα⃗; β⃗Þ ∈ Pnew with ten αab ¼ 0 because, for instance, all
ten αab ¼ 0 can be given by αXa

¼ αYa
¼ αZa

¼ Q=4 and
βXa

¼ βYa
¼ βZa

¼ 0 (a ¼ 1;…; 5), which satisfy (46).
The simplicity constraint results in, restrictively, e2Lab ∈
Uð1Þ when αab ¼ 0, whereas e2Lab ∉ Uð1Þ for other
αab ≠ 0. Note that αab ¼ 0 is a preferred choice because
e2Lab ∈ Uð1Þ implies that after imposing the simplicity
constraint, the area from the 4d bivector Bf coincides with
the face area of the 3d tetrahedron at the quantum level:
Recall the discussion above Definition III.1. We diago-
nalize an Of ∈ PSLð2;CÞ by a gauge transformation

Of ¼ �diagðeLab ; e−LabÞ ¼ �eReðLabÞσ3þiImðLabÞσ3

↔ e2ReðLabÞK3−2ImðLabÞL3 ¼ e
jΛj
3
Bf ∈ SOð1; 3Þþ

where ImðLabÞ ∈ ½0; πÞ andK3,L3 are soð1; 3Þ generators.
We obtain jΛj

3
Bf ¼ 2ReðLabÞK3 − 2ImðLabÞL3 for the

preferred lift of Bf. Then, Lab relates to the area

from the 4d bivector, jBfj ¼ j 1
2
TrðB2

fÞj1=2, by jΛj
3
jBfj ¼

2jReðLabÞ2 − ImðLabÞ2j1=2. Restricting αab ¼ 0 and the
simplicity constraint ReðμabÞ ¼ 0, we get

jΛj
3

jBfj ¼ 2ImðLabÞ ¼
4π

k
ðjab þ ϵab=4Þ≡ jΛj

3
aab; ð98Þ

where aab is the face area of the 3d tetrahedron (this is
implied by the generalized closure condition, see [21] or
the discussion below). Both ZS3nΓ5

and Ψι are functions of

Lab; thus, both the 4d and 3d area operators, jΛj
3
jBfj ¼

2jReðLabÞ2 − ImðLabÞ2j1=2 and jΛj
3
aab ¼ 2ImðLabÞ, act as

multiplications. The above shows that these two operators
coincide when αab ¼ 0. A similar consistency constraint
“4d area ¼ 3d area” has also been imposed on the EPRL
model [20].
However, to keep discussions general, we still use

the weaker version (92) and keep αab general in the
following discussion. But we prefer αab ¼ 0 using the
above argument.

2. Second-class constraints

The first-class part of the simplicity constraint and jab fix
e2Lab on ten annuli. Classically, fixing e2Lab reduces the
moduli space of PSLð2;CÞ flat connections on Sa to two
complex dimensions whose Darboux coordinates ϑ;φ ∈ C
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are studied in [37], with fϑ;φg ¼ 1 (they are the complex-
ification of θ;ϕ in Sec. III B). Constraining flat connections
to PSU(2) restricts ImðϑÞ ¼ ImðφÞ ¼ 0. The restriction
gives second-class constraints due to the noncommutativity
of ϑ;φ. Using the lessons from the EPRL/FK model, the
constraints have to be imposed weakly at the quantum
level. Our strategy is to impose the constraints on the label
ðza; xa; yaÞ where the coherent state Ψρ is peaked. Here,
ðza; xa; yaÞ is a point in the moduli space of PSLð2;CÞ
flat connections on Sa with fixed e2Lab’s. We restrict
ðza; xa; yaÞ to the subspace of flat connections that can
be gauge transformed to PSU(2).
Classically, our simplicity constraint is an analog of

the linear simplicity constraint in the EPRL/FK model,
as discussed at the beginning of this subsection. At the
quantum level, although all spinfoam models weakly
impose the second-class simplicity constraint, here the
constraint is imposed on the coherent state labels, similar
to the FK model [35] but different from the EPRL model
where the constraint is imposed by a master constraint
operator.
Although the following discussion does not assume large

jab, before Eq. (108), we ignore αab so that e2Lab ∈ Uð1Þ is
assumed since we are only concerned with the semi-
classical simplicity constraint here. After Eq. (108) we
take into account, in general, αab ≠ 0 and e2Lab ∉ Uð1Þ at
the quantum level.
On the 4-holed sphere Sa, flat connections that can

be gauge transformed to PSU(2) are described by four
PSLð2;CÞ holonomies O1, O2, O3, O4 that can be
simultaneously conjugated to PSU(2). Here, O1, O2, O3,
O4 are based at a common point p, and each of them travels
around a hole of Sa. As holonomies of flat connections,
they satisfy the generalized closure condition

O4O3O2O1 ¼ 1: ð99Þ

This equation is invariant under the PSLð2;CÞ gauge
transformation. We apply the gauge transformation to
make all Oi ∈ PSUð2Þ, and we treat (99) as an equation
of PSU(2) holonomies. The conjugacy class of each Oi has
been fixed by (97), which specifies the squared eigenvalue
of Oi. There exists a lift from Oi to Hi ∈ SUð2Þ such that

Hi ¼ MðξiÞ
��e

2πi
k ji 0

0 �e−
2πi
k ji

�
MðξiÞ−1; ð100Þ

MðξÞ ¼
�
ξ1 −ξ̄2

ξ2 ξ̄1

�
; ð101Þ

satisfying

H4H3H2H1 ¼ 1: ð102Þ

In each Hi, we neglect ϵab when discussing the para-
metrization of PSU(2) flat connections,

ji ¼ jab;

as lab ends at the hole labeled by i, and similarly for ti.
Note that ξi ¼ ðξ1i ; ξ2i ÞT is defined up to a complex scaling
by the above formula of Hi. If we fix detðMðξiÞÞ ¼ 1,

n⃗i ¼ ξ†i σ⃗ξi; i ¼ 1;…; 4;

where σ⃗ ¼ ðσ1; σ2; σ3Þ are Pauli matrices ð103Þ

giving four unit 3-vectors in R3. The geometrical inter-
pretation of (99) relates the holonomies to a geometrical
3d tetrahedron with constant curvature (see [13,21] or

Theorem IV.2), in which 4π
k ji ¼ jΛj

3
ai is the face area and n⃗i

are face normals parallel transported to a common vertex of
the tetrahedron.6 Note that fn⃗ig4i¼1 relates to the outward
pointing normals fnig4i¼1 of the tetrahedron by
ni ¼ sgnðΛÞn⃗i. Equation (102) with Hi ¼ eΛv⃗i·σ⃗ reduces
to the flat closure condition

P
i v⃗i ¼ 0 for small Λ.

To clarify our convention, consider lab connecting the
ith hole of Sa to the jth hole of Sb. We choose the framing
flag slab of lab such that on Sa, the eigenvector of the
holonomy Oi ≡Oab, ξi ≡ ξab coincides with slab parallel
transported to the common base point pa ∈ Sa of fOig4i¼1.
If our convention is (99) on both Sa and Sb, the parallel
transport of Oi ≡Oab of Sa gives O−1

j ≡Oba of Sb, i.e.,
G−1

abOabGab ¼ Oba with a holonomy Gab along lab. Here,
slab evaluated at a point pb ∈ Sb gives ξba as the eigen-
vector ofOba with upper eigenvalue�e2πiji=k. But ξba does
not equal ξj ¼ ðξ1j ; ξ2jÞT on Sb, but it does equal ð−ξ̄2j ; ξ̄1jÞT
in the convention of (100).7

If a minus sign is present in (100), we write
−e2πi

k j ¼ e−
2πi
k j

0
, where j0 ¼ k=2 − j; then, Eq. (100) can

be rewritten as

Hi ¼ M0ðξiÞ
�
e
2πi
k j

0
i 0

0 e−
2πi
k j

0
i

�
M0ðξiÞ−1; ð104Þ

M0ðξÞ ¼
�
−ξ̄2 −ξ1

ξ̄1 −ξ2

�
: ð105Þ

If there is a plus sign in (100), we set j0 ¼ j. Flippingþ →
− in (100) corresponds to j → k=2 − j andMðξÞ → M0ðξÞ.

6Note that 4π
k ji ¼ jΛj

3
ai mismatches (98) if ϵab ≠ 0, but this is

not a problem since here we discuss coherent state labels, whereas
(98) is about operator eigenvalues.

7The inverse of Hi in (100) can be written as H−1
i ¼

�M0ðξiÞdiagðe2πi
k ji ; e−

2πi
k jiÞM0ðξiÞ−1 where M0ðξÞ is given by

(105).
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Lemma III.1. The lifts Hi¼1;…;4 ∈ SUð2Þ satisfy
H4H3H2H1 ¼ 1, which exist if and only if j0i¼1;…;4 satisfy
the triangle inequality, i.e., there exists J such that

jj01 − j02j ≤ J ≤ min ðj01 þ j02; k − j01 − j02Þ; ð106Þ

jj03 − j04j ≤ J ≤ min ðj03 þ j04; k − j03 − j04Þ: ð107Þ

The proof of this Lemma is given in Appendix D.
Equations (106) and (107) agree with the spin-coupling rule
of SUð2Þq with q ¼ eπi=ðkþ2Þ.
Lemma III.2. O4O3O2O1 ¼ 1 has the solution Oi ∈

PSUð2Þ if ji given by (97) equals either j0i or k=2 − j0i,
where fj0ig satisfies the triangle inequality (106) and (107).
Proof: Given a solutionHi ∈ SUð2Þ toH4H3H2H1 ¼ 1,

both�Hi project toOi ∈ PSUð2Þ, solvingO4O3O2O1 ¼ 1.
If Hi is given by (104) with j0 ¼ k=2 − j,

−Hi ¼ MðξiÞ
�
e
2πi
k ðk=2−j0iÞ 0

0 e−
2πi
k ðk=2−j0iÞ

�
MðξiÞ−1:

Since both �Hi are allowed for the PSU(2) equation, ji is
given by the squared eigenvalue (97) of eitherHi or−Hi, and
thus can be either j0i or k=2 − j0i. ▪
We restrict jab to satisfy the condition in Lemma III.2 so

that O4O3O2O1 ¼ 1 has a solution at every Sa. The
triangle inequality in Lemma III.1 is the analog of the
triangle inequality for SU(2) intertwiners in spinfoam
models without a cosmological constant.
The eigenvector of the holonomy Oi, ξ0i ¼ ðξ1i ; ξ2i ÞT or

ð−ξ̄2j ; ξ̄1jÞT is the framing flag sl (of l connecting the hole i)
parallel transported to the base point p of Oi, i.e.,

ξ0i ¼ slðpÞ; p ∈ Sa: ð108Þ

The FG coordinates on Sa can be expressed in terms of ξ0i:
Without loss of generality, we assume that p is inside the
quadrilateral shown in Fig. 6, and each Oi travels around
the hole i counterclockwise. We have

xEðj⃗; ξ⃗Þ ¼
hξ01 ∧ ξ02ihξ04 ∧ ξ03i
hξ01 ∧ ξ04ihξ02 ∧ ξ03i

;

xE0 ðj⃗; ξ⃗Þ ¼ hO4ξ
0
3 ∧ ξ01ihξ04 ∧ ξ02i

hO4ξ
0
3 ∧ ξ04ihξ01 ∧ ξ02i

: ð109Þ

Here, O4 is given by

O4 ¼ Mðξ04Þ
��eLab 0

0 �e−Lab

�
Mðξ04Þ−1; ð110Þ

where �eLab ¼ � exp ½πik ðbαab þ ð2jab þ ϵab
2
ÞÞ� for lab

attached to the fourth hole. Here, xE0 is independent of
the � sign. Both xEðj⃗; ξ⃗Þ, xE0 ðj⃗; ξ⃗Þ are invariant under the
PSLð2;CÞ gauge transformation of (99): Oi → hOih−1,
ξ0i → hξ0i.
The correspondence between fxEgE’s and framed

PSLð2;CÞ flat connections on Sa is 1-to-1 [29], so
xE; xE0 given by (109) and four e2Lab at the holes uniquely
determine a PSLð2;CÞ flat connection labeled by j⃗, ξ⃗. This
connection reduces to PSU(2) when αab ¼ 0. We choose E,
E0 to be such that xE, xE0 equals eXa , eYa in ðeQI ; ePIÞ. We
lift xE, xE0 to logarithmic coordinates χE ¼ logðxEÞ; χE0 ¼
logðxE0 Þ [the lift is uniquely given by (41) and the lifts of
ideal-tetrahedra coordinates] and obtain Xa, Ya as func-
tions of j⃗, ξ⃗. Using (73)–(76), we have μa, νa, ma, na ∈ R
as functions of j⃗, ξ⃗. Furthermore, using (79) and (82), we
uniquely obtain the functions zaðj⃗; ξ⃗Þ, xaðj⃗; ξ⃗Þ, and yaðj⃗; ξ⃗Þ.
Recalling (88), the implementation of the simplicity

constraint restricts the label ι to the subspace

ιj⃗;ξ⃗ ¼ ðf0; mabga<b; fρðaÞj⃗;ξ⃗
g5
a¼1

Þ;

ρðaÞ
j⃗;ξ⃗

¼ ðzaðj⃗; ξ⃗Þ; xaðj⃗; ξ⃗Þ; yaðj⃗; ξ⃗ÞÞ;

where j⃗ ¼ fjab þ ϵab=4ga<b and ξ⃗ ¼ fξabga;b¼1;…;5. Note

that mab relates to jab according to (94). Here, j⃗ has to
satisfy the condition in Lemma III.2 so that the solution
Oi¼1;…;4 ∈ PSUð2Þ to Eq. (99) exists, and ξ⃗ are eigenvec-
tors of the solution Oi¼1;…;4.FIG. 6. Ideal triangulation of a 4-holed sphere.

FIG. 7. The 4-gon in SU(2) determined by H4H3H2H1 ¼ 1.
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Therefore, the simplicity constraint restricts the partition
function ZS3nΓ5

ðιÞ in (87) to

ZS3nΓ5
ðιj⃗;ξ⃗Þ≡ Avðj⃗; ξ⃗Þ; ð111Þ

which is defined to be the spinfoam vertex amplitude with a
cosmological constant.
Note that only two FG coordinates xE, xE0 out of six are

used in za, xa, ya. Only these two coordinates are restricted
to be (109). The other four FG coordinates xE00 ≠ xE, xE0

may not be simultaneously expressed in terms of j⃗, ξ⃗0 as
(109) when αab ≠ 0, since otherwise λ2 ¼QE around hole xE
would belong to U(1), whereas generally e2Lab ∉ Uð1Þ for
αab ≠ 0. However, the other four xE00 ≠ xE, xE0 are absent in

the coherent label. Note that ρðaÞ
j⃗;ξ⃗

is generally a PSLð2;CÞ
flat connection, but it reduces to PSU(2) when αab ¼ 0 or
in the semiclassical limit.

B. SU(2) flat connections on Sa and 4-gon

A simple counting of degrees of freedom shows that ξ⃗’s
solving O4O3O2O1 ¼ 1 modulo PSU(2) gauge transfor-
mations generically span real 2-dimensional space. This 2-
dimensional space is denoted by Mj⃗. Note that xE, xE0 in
(109) are densely defined functions on Mj⃗.
A description of Mj⃗ [37] generalizes the Kapovich-

Millson phase space description [38,39]: We lift to the
cover space M̃j⃗ the moduli space of an SU(2) flat con-

nection with fixed j⃗. Here, M̃j⃗ is the moduli space of
solutions to H4H3H2H1 ¼ 1 with

Hi ¼ MðξiÞ
�
e
2πi
k ji 0

0 e−
2πi
k ji

�
MðξiÞ−1;

where ji ¼ jab of annuli lab connecting to the holes.
Given the 4-dimensional complex vector space V ¼

Mat2×2ðCÞ ≃ C4 of complex 2 × 2 matrices, we endow V
with the complex metric hX; Yi ¼ − 1

2
½TrðXYÞ − TrXTrY�.

If we write X ¼ x0I þP3
a¼1 x

aσa and Y ¼ y0I þP
3
a¼1 y

aσa, hX; Yi is the complexified Minkowski metric
on C4: hX; Yi ¼ x0y0 −

P
3
a¼1 x

aya. Here, SU(2) is the unit
3-sphere in VR ≃R4 ⊂ V defined by

H ¼ h0 þ i
X3
a¼1

haσa; h0; ha ∈ R;

hH;Hi ¼ ðh0Þ2 þ
X3
a¼1

ðhaÞ2 ¼ 1:

When restricting h0 þ i
P

3
a¼1 h

aσa with h0, ha ∈ R, h·; ·i
becomes the Euclidean metric on R4 and induces the
spherical metric of S3 on SU(2).

Given H1;…;4 ∈ SUð2Þ satisfying H4H3H2H1 ¼ 1, the
set of Hi determines four points v1;…; v4 in SU(2) Fig. 7,
where

v1 ¼ 1; v2 ¼ H1; v3 ¼ H2H1; v4 ¼ H3H2H1:

We first assume the generic situation that v1;…; v4 are
linearly independent in R4. Any pair ðvi; vjÞ viewed as
two vectors in R4 determines a 2-plane Eij ¼
SpanRðvi; vjÞ ⊂ R4. The intersection between Eij and
SU(2) is the geodesic eij connecting vi, vj [SU(2) is the
unit 3-sphere in R4],

eij ¼ Eij ∩ SUð2Þ ¼ ft1vi þ t2vjj
t21 þ t22 þ 2t1t2hvi; vji ¼ 1; t1; t2 ≥ 0g:

The vertices vi and edges e12, e23, e34, e14 make a 4-gon
in SU(2). The geodesic distance θij between vi and vj is
given by

cosðθijÞ ¼ hvi; vji≡ cij; θij ∈ ð0; πÞ:

The lengths of e12, e23, e34, e14 are ai ¼ θi;iþ1 such that

cosðaiÞ ¼ TrðHiÞ=2:

We draw the diagonal geodesic connecting v1, v3. Here, θ13
is the length of the diagonal.
The face fijk with the vertices vi, vj, vk is the intersection

of Fijk ¼ SpanRðvi; vj; vkÞ and SU(2),

fijk ¼ Fijk ∩ SUð2Þ ¼ ft1vi þ t2vj þ t3vkjt1; t2; t3 ≥ 0;

t21 þ t22 þ t23 þ 2t1t2cij þ 2t1t3cik þ 2t2t3cjk ¼ 1g:

The unit normal nijk of Fijk is defined by hf; ni ¼ 0,
∀ f ∈ Fijk, and hn; ni ¼ 1. A choice of orientation of Fijk

corresponds to the sign of n. We define the bending angle
ϕij ∈ ð0; πÞ by

cosðϕijÞ ¼ hnikl; njkli: ð112Þ

Note that θ ¼ θ13, ϕ ¼ ϕ24 are symplectic coordinates of
M̃j⃗ [37]. Up to isometries of S3, ðθ;ϕÞ determines a unique

4-gon in S3 ≃ SUð2Þ whose geodesic edge lengths relate to
the conjugacy classes of Hi. Indeed, geodesic edge lengths
ai, θ ∈ ð0; πÞ uniquely determine two triangles sharing
the diagonal e13, up to isometries of S3. We break the
translational symmetry by fixing v1 ¼ 1. The remaining
symmetry is the rotation leaving v1 ¼ ð1; 0; 0; 0Þ ∈ R4

invariant. We use the freedom of the rotation to fix the
position of v2, v3 of the triangle ðv1; v2; v3Þ. Fixing the
position of the triangle ðv1; v2; v3Þ breaks the continuous
rotational symmetry, and v1, v2, v3 determine the
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hyperplane F123 ⊂ R4. The freedom of v4 is equivalent to
choosing the hyperplane F134, which is determined by the
bending angle ϕ up to a parity symmetry with respect
to F123. This parity symmetry can be fixed by also choosing
the orientation of the bending flow, i.e., fixing the ori-
entation of n123 ∧ n134 (see Appendix E). As a result,
v1;…; v4 ∈ SUð2Þ are uniquely determined by ðθ;ϕÞ once
we fix v1 ¼ 1 and the rotation symmetry. Here, v2 ¼ H1,
v3 ¼ H2H1, v4 ¼ H3H2H1 determine H1;…;4 with H4 ¼
ðH3H2H1Þ−1. Using (100) and the given fjig4i¼1, we obtain
all ξi as the eigenvector of Hi whose squared eigenvalue
is e4πiji=k. We normalize ξi’s by detðMðξiÞÞ ¼ 1 up to
individual phases. As a result, all ξi’s are functions of ji and
θ, ϕ. Appendix E provides an algorithm to determine ξi’s
from θ, ϕ in practice.
For any function f on Mj⃗, f can be lifted to a function

on M̃j⃗ and is invariant under Hi → −Hi. We define the
following integral on Mj⃗:Z

Mj⃗

dξf ¼
Z

dθ ∧ dϕf: ð113Þ

The integral on the right-hand side is over the compact
domain; thus, it is finite, provided that jfj is bounded.
The degenerate 4-gons with θ, ϕ ¼ 0 are included as
boundaries of the integral. This integral is needed for
gluing vertex amplitudes to construct spinfoam amplitudes
on complexes.
It may happen that for certain j⃗, M̃j⃗ only contain a

degenerate 4-gon (i.e., becoming an n-gon with n < 4)
where a vector vi is a linear combination of another two
vectors vj, vk inR4. In this case the dimension of M̃j⃗ is less
than 2; thus, the above integral is ill-defined. The degenerate
4-gon leads to at least twoHi’s belonging to a U(1) subgroup
in SU(2). It sometimes gives a pair of collinear ξ0i’s that result
in ill-defined xE, xE0 on the entire M̃j⃗ [see (109)]. We set the

contribution from j⃗ such that dimðM̃j⃗Þ < 2 so that it
vanishes in the spinfoam amplitude. In particular, we set
the contribution of ji ¼ 0 to vanish.

C. Finite spinfoam amplitude on
a simplicial complex

Given a simplicial complex K made by a finite number
of 4-simplices, we associate each 4-simplex with a vertex
amplitude as a function on ×5

a¼1Mj⃗a
when fixing j⃗,

Avðj⃗; ξ⃗Þ ¼ ZS3nΓ5
ðιj⃗;ξ⃗Þ ð114Þ

where ιj⃗;ξ⃗ ¼ ðjab; ρðaÞj⃗;ξ⃗
Þ. When gluing a pair of 4-simplices

by identifying a pair of tetrahedra, we identify four spins jf
(of tetrahedron face areas) for the pair of tetrahedra; we

associate ρj⃗;ξ⃗ ¼ ðzðj⃗; ξ⃗Þ; xðj⃗; ξ⃗Þ; yðj⃗; ξ⃗ÞÞ (of the tetrahedron
shape) to one tetrahedron and associate

Jρj⃗;ξ⃗ ¼ ðzðj⃗; ξ⃗Þ; xðj⃗; ξ⃗Þ;−yðj⃗; ξ⃗ÞÞ ð115Þ

to the other tetrahedron [recall (85)]. We may define the
gluing of the pair of vertex amplitudes byZ

Mj⃗

dξZS3nΓ5
ðj⃗; ρj⃗;ξ⃗ÞZS3nΓ5

ðj⃗; Jρj⃗;ξ⃗Þ; ð116Þ

where we only focus on variables associated to the pair of
tetrahedra identified by gluing. Here,

R
Mj⃗

dξ is an analog of

integrating SU(2) coherent intertwiners in the EPRLmodel.
The gluing defined by (116) identifies ξ⃗ at the quantum
level between the pair of tetrahedra. Generally speaking, it
may only be necessary to identify ξ⃗ semiclassically, i.e.,
gluing 4-simplices by identifying two tetrahedra with shape
matching only semiclassically. Thus, we define the more
general gluing byZ
Mj⃗

dξdξ0ZS3nΓ5
ðj⃗; ρj⃗;ξ⃗ÞAeðj⃗; ξ⃗; ξ⃗0ÞZS3nΓ5

ðj⃗; Jρ0
j⃗;ξ⃗0

Þ; ð117Þ

where Ae is called the edge amplitude. Note that Ae is a
function of j⃗; ξ⃗; ξ⃗0 relating to the tetrahedron e (Ae may
depend on k, γ, which is implicit in the formula). The
precise form Ae is not determined in this work, but we
require that Ae is a Gaussian-like continuous function
peaked at ξ⃗ ¼ ξ⃗0 and suppressed elsewhere. Here, Ae

approaches δðξ⃗; ξ⃗0Þwhen j → ∞. Choices of the integration
measures of ξ⃗; ξ⃗0 are included in choices of Ae.
Given any simplicial complex K, we associate a “spin”

jf ¼ 0; 1
2
;…; k−1

2
to each (internal or boundary) face f and

associate to each (internal or boundary) tetrahedron e a
PSU(2) flat connection labeled by j⃗; ξ⃗ on the 4-holed
sphere. These data enter vertex amplitudesAv ¼ ZS3nΓ5

ðιj⃗;ξ⃗Þ,
edge amplitudesAeðj⃗; ξ⃗; ξ⃗0Þ, and face amplitudesAfðjfÞ.We
construct the full spinfoam amplitude A onK by integrating
over ρj⃗;ξ⃗ of all internal tetrahedra e and summing over jf of
all internal faces,

A ¼
X0

ðk−1Þ=2

fjfg

Y
f

AfðjfÞ
Z

½dξdξ0�
Y
e

Aeðj⃗; ξ⃗e; ξ⃗0eÞ
Y
v

Avðj⃗; ξ⃗Þ:

ð118Þ

We use the subscript e to manifest that Ae only depends on
variables relating to e. Here,

R ½dξ� is a product of integrals
(117) over all internal tetrahedra e, and AfðjfÞ is an
undetermined face amplitude. Note that

Q
v is a product
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of over all 4-simplices, and
P0

fjfg sums jf at all internal faces

in K. The sum of each jf is finite according to (96). The
cosmological constant relating to k provides a cutoff to the
sum over spins. Here,

P0
indicates that we exclude jf’s that

do not satisfy the triangle inequality or lead to M̃j⃗ of
dimension less than 2.
Theorem III.3. The amplitude A is finite for any choice

of simplicial complex.
Proof: jAvj is bounded because of Theorem II.1 since it

is continuous on the compact space of ξ⃗e, ξ⃗
0
e. The integral in

A integrates a function whose absolute value is bounded on
a compact domain and thus is absolutely convergent. Then,
the finite sum over jf implies the finiteness of A. ▪

D. Boundary data

The boundary data of the spinfoam amplitude A relate to
the kinematical states of LQG up to a deformation. The
boundary of the 4d simplicial complex K is a 3d simplicial
complex ∂K. The dual complex ∂K� ¼ Γ is an (oriented)
graph with links l ⊂ Γ dual to faces f ⊂ ∂K and nodes
v ∈ Γ dual to tetrahedra e ⊂ ∂K. The boundary data of A
color every link by a spin jl ¼ 0; 1

2
;…; k−1

2
, and color

every node v by an element ρv ¼ Mj⃗. There is a 1-to-1
correspondence between ρv and a convex constant curva-
ture tetrahedron (up to degenerate tetrahedra) whose face
areas are determined by jl of l adjacent to v (see [21] or
Theorem IV.1). These data are perfect analogs of LQG
spin-network data on Γ: spins jl on links and coherent
intertwiners jjj⃗; ξ⃗iv at nodes. The coherent intertwiners 1-
to-1 correspond to convex flat tetrahedra whose face areas
are proportional to jl [40–42]. The boundary data of A are a
deformation of the spin-network data due to the cutoff k−1

2

of jl and ρv for constant curvature tetrahedra versus jjj⃗; ξ⃗iv
for flat tetrahedra. When k → ∞ while fixing jl (different
from the semiclassical limit j, k → ∞ fixing j=k), the
cutoff is removed and the constant curvature Λ given by
(16) reduces so that it is flat; then, the boundary data of A
reduce to the spin-network data.
We expect that A defines transition amplitudes of

boundary states that are the eigenstates of area operators
at links and coherent with respect to quantum tetrahedra
at nodes, similar to spin-network states with coherent
intertwiners. The coherent states at nodes are expected
to quantize the phase space M̃j⃗: the moduli space of SU(2)
flat connections on a 4-holed sphere with fixed conjugacy
classes. The quantization of ðM̃j⃗;

k
2πΩÞ is known to give

the Hilbert space of quantum group SUð2Þq intertwiners

with q ¼ eπi=ðkþ2Þ (see e.g., [43,44]). Using these argu-
ments, we conjecture that the boundary Hilbert space of A
is spanned by q-deformed spin-network states jΓ; jl; ivi
where jl, iv are unitary irreps and intertwiners of SUð2Þq,
respectively. The proof of this conjecture is a work in

progress. It involves the coherent intertwiner of SUð2Þq and
shows the relation to the curved tetrahedron labeled by the
SU(2) flat connection. Some earlier studies of the quantum
group coherent intertwiner are given in [45]. Research
related to constructing geometrical operators for the boun-
dary Hilbert space is also in progress (see [46] for the
first step).

E. Ambiguities

The construction of the spinfoam amplitude with a
cosmological constant depends on several choices, which
may relate to ambiguities of the model. In the following we
classify and discuss these choices:
(1) The spinfoam amplitude depends on choices of

coherent states in Sec. II F. This dependence is a result
of the proposal of imposing the simplicity constraint on
coherent state labels. In this work we choose the coherent
states (80) and (81). But a different set of coherent states
may be chosen, as long as they are peaked semiclassically
at points in the phase space.
(2) There is freedom in choosing edge and face ampli-

tudes Ae, Af in (118). See e.g., [47,48] for some existing
discussion about preferred choices of Ae, Af in the absence
of Λ. The freedom of Ae contains the freedom of the
integration measure for ξ⃗. Moreover, the freedom of Ae has
an overlap with the freedom of coherent states discussed in
(1). Namely, if we make a change of coherent state Ψρj⃗;ξ⃗

↦

Ψ0
ρj⃗;ξ⃗

¼ R dξeKðξ⃗e; ξ⃗0eÞΨρj⃗;ξ⃗0
with a certain function K of ξ⃗e,

ξ⃗0e of the tetrahedron e, the spinfoam amplitude constructed
with the new state Ψ0

ρj⃗;ξ⃗
can be written in the same form as

(118) with Av of the old state Ψρj⃗;ξ⃗
, while Ae transforms

as Aeðξ⃗e; ξ⃗0eÞ ↦
R
dζedζ0eKðζ⃗e; ξ⃗eÞAeðζ⃗e; ζ⃗0eÞKðζ⃗0e; ξ⃗0eÞ.

(3) The vertex amplitude depends on the positive angle
structure ðα⃗; β⃗Þ ∈ Pnew since ZS3nΓ5

depends on ðα⃗; β⃗Þ.
More precisely, ZS3nΓ5

only depends on α⃗ but is indepen-

dent of specific β⃗ as long as ðα⃗; β⃗Þ ∈ Pnew, according to the
discussion below (65). The dependence on angles α⃗ ¼
ðfαabga<b; fαag5a¼1Þ in ZS3nΓ5

may be analogous to the
framing anomaly of CS theory with a compact group
[49,50]. For the consistency “4d area ¼ 3d area” at the
quantum level, it is preferred to restrict all αab in Av to
vanish and still be inside Pnew, whereas there still exists
some freedom of fαag5a¼1.
The spinfoam amplitude depends on fβag5a¼1 because

they enter the vertex amplitude Av via the prefactor

e−
ffiffi
2

p
βaReðzaÞ of the coherent state ψ za in (80). But this

prefactor can be absorbed in Ae (or the definition of the
integration measure of ξ⃗). Thus, this dependence on
fβag5a¼1 is part of the freedom of (1) and (2). In more
detail, using the freedom of coherent states, we choose ψ0

za
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instead of ψ za in the definition of ZS3nΓ5
ðιÞ. Then (89) for

the bound of jZS3nΓ5
ðιÞj is modified by

����
Z
R5

Y5
a¼1

dμ0aZS3nΓ5
ðμ⃗0 þ iα⃗jm⃗0Þ

Y5
a¼1

ψ0
zaðμ⃗0aÞ

����
≤ Ck5=4

Y
a

eβað
πβa
k þ ffiffi

2
p

ℜðzaÞÞ: ð119Þ

The bound diverges if ReðzaÞ approaches ∞ or −∞
depending on sgnðβaÞ. This can happen even after impos-
ing the simplicity constraint since xE, xE0 can approach
infinity when a pair of ξ0i becomes collinear in (109),
particularly when the constant curvature tetrahedron
becomes degenerate. In addition, we need to require the
following behavior of Ae as ReðzÞ approaches ∞ or −∞
correspondingly,

jAeðj⃗; ξ⃗; ξ⃗0Þj ≤ C0e−
ffiffi
2

p
βeReðzeðj⃗;ξ⃗ÞÞe−

ffiffi
2

p
β0eReðzeðj⃗;ξ⃗0ÞÞ

where the exponential decay factors should cancel the
exponential growth in (119) of two vertex amplitudes
sharing the tetrahedron e. The freedom of βe becomes
part of the freedom of Ae. The integrand of

R ½dξ� in (118)
still has a bounded absolute value; then, A is finite.
(4) The amplitude A generally depends on the choice of

the simplicial complexK, similar to spinfoammodels in the
absence of a cosmological constant.

IV. SEMICLASSICAL ANALYSIS

In this section, we examine the semiclassical behavior of
the vertex amplitude Av and show that the semiclassical
limit of Av reproduces the 4d Regge action with Λ.
The semiclassical limit of quantum gravity is lP → 0

while keeping geometrical quantities—e.g., areas, shapes,
curvature, etc.—fixed. Note that Av is the LQG transition
amplitude associated to a 4-simplex whose boundary is

made by five tetrahedra labeled by a; b ¼ 1;…; 5, and Av
depends on k, γ, jab, and ξab. Using the result of [21] (to be
reviewed in Sec. IV B), the ξab’s parametrize geometrical
shapes of five boundary constant curvature tetrahedra as
boundary data of Av, while jab=k (up to εab=k) is propor-
tional to jΛjaab. Here, aab is the area of the face fab shared
by tetrahedra a and b. The cosmological constant Λ equals
the constant curvature of tetrahedra. Therefore, the semi-
classical limit in our context is lP → 0 while keeping ξab’s,
aab’s, and Λ fixed. The Barbero-Immirzi parameter γ is also
fixed. The relation between k and Λ in (16) indicates that
k → ∞ in the semiclassical limit. These features motivate
the following definition:
Definition IV.1 The semiclassical limit of Av is the

asymptotic behavior of Av when we uniformly scale all
jab → ∞ and k → ∞ (so σ ¼ ikγ → i∞) while keeping
jab=k fixed.
This limit generalizes the semiclassical limit of the

Turaev-Viro model in 3d gravity and is studied in [13]
for the 4d spinfoam vertex amplitude.
The semiclassical limit of the spinfoam amplitude is the

same as the semiclassical limit of CS theory. Indeed, the
flat connection position variables QI depend on jab only
through the ratio jab=k [see (94)]. The above semiclassical
limit sends k → ∞ but leaves QI finite. The limit effec-
tively removes the dependence of αab, ϵab in e2Lab . The
limit k → ∞, keeping QI finite, is the same as the semi-
classical limit of the CS partition function. Therefore, it is
useful to first study the semiclassical limit of the CS
partition function ZS3nΓ5

in Sec. IVA; then, the result
can be applied straightforwardly to the semiclassical limit
of Av in Secs. IV B and IV C.

A. Semiclassical analysis of Chern-Simons
partition function

Recall the construction of ZS3nΓ5
in Sec. II E.

Equations (58), (61), (64), and (67) lead to

ZS3nΓ5
ðμ⃗jm⃗Þ ¼ 4i

k15
X

n⃗∈ðZ=kZÞ15

Z
C
d15νeS0Z×ð−BT ν⃗j −BTn⃗Þ; ð120Þ

S0 ¼
πi
k

�
−2
�
μ⃗ −

iQ
2
⃗t

�
· ν⃗þ 2m⃗ · n⃗ − ν⃗ ·ABT · ν⃗þ ðkþ 1Þn⃗ ·ABT · n⃗

�
; ð121Þ

Z×ðμ⃗jm⃗Þ ¼
Y5
a¼1

ΨΔðμXa
jmXa

ÞΨΔðμYa
jmYa

ÞΨΔðμZa
jmZa

ÞΨΔðμWa
jmWa

Þ; ð122Þ

μWa
¼ iQ − μXa

− μYa
− μZa

; mWa
¼ −mXa

−mYa
−mZa

; ð123Þ

and ΨΔ is given by (35).
We use (69) to change variables from μI, mI to Q0

I ¼ QI − iπtI and Q̃I
0 ¼ Q̃I − iπtI. It is intuitive to make a similar

change of variables from νI , nI to PI,P̃I for studying the semiclassical limit,
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νI ¼
bkðP̃I þ PIÞ
2πðb2 þ 1Þ ; nI ¼

ikðPI − b2P̃IÞ
2πðb2 þ 1Þ : ð124Þ

Semiclassically, P⃗ here is identical to the classical momenta conjugate to Q⃗ [recall (55) and the discussion there]. Using the
change of variables,

S0 ¼ −
1

2
⃗t · ðP⃗ þ ⃗P̃Þ − ik

4πð1þ b2Þ
�
P⃗ · ðABT · P⃗ þ 2Q⃗0Þ þ b2 ⃗P̃ · ðABT · ⃗P̃ þ 2

⃗Q̃0Þ�

−
ik2

4πð1þ b2Þ2 ðP⃗ − b2 ⃗P̃Þ ·ABT · ðP⃗ − b2 ⃗P̃Þ: ð125Þ

We treat the sum
P

nI∈Z=kZ by the Poisson resummation

X
n⃗∈ðZ=kZÞ15

fðn⃗Þ ¼
Xk−1
nI¼0

fðn⃗Þ ¼
X
p⃗∈Z15

Z
k−δ

−δ
d15nfðn⃗Þe2πip⃗·n⃗

¼
�

k
2π

�
15 X

p⃗∈Z15

Z
2π−δ0

−δ0
d15J f0ðJ⃗ Þeikp⃗·J⃗ I ; ð126Þ

J I ¼
2πnI
k

¼ iðPI − b2P̃IÞ
b2 þ 1

; f0ðJ⃗ Þ ¼ fðn⃗Þ: ð127Þ

Here, fðn⃗Þ ¼ χðn⃗Þgðn⃗Þ, where gðn⃗Þ is the summand in (120) extended from n⃗ ∈ ðZ=kZÞ15 to n⃗ ∈ R15. Note that χðn⃗Þ is a
compact support function satisfying χðn⃗Þ ¼ 1 for n⃗ ∈ Z15, and χðn⃗Þ vanishes outside ½−δ; k − δ�15nU (with arbitrarily small
δ > 0) where U is an open neighborhood of singularities of gðn⃗Þ and U ∩ Z15 ¼ ∅.8 The result does not depend on details
of χ at n⃗ ∉ Z15 because

P
pI∈Z e2πipInI ¼Pn0I∈Z

δðnI − n0IÞ. By changing integration variables,

dνIdJ I ¼
k

2πiQ
dPIdP̃I: ð128Þ

The following large-k asymptotic formula of the quantum dilogarithm is useful [15,51]:

ΨΔ ¼ e
− ik
2πð1þb2ÞLi2ðe

−ZÞ− ik
2πð1þb−2ÞLi2ðe

−Z̃Þ½1þOð1=kÞ�: ð129Þ
The large-k asymptotic behavior of Z× is given by

Z×ðμ⃗jm⃗Þ ¼ eS1þS̃1 ½1þOð1=kÞ�; ð130Þ

S1 ¼ −
ik

2πð1þ b2Þ
X5
a¼1

½Li2ðe−XaÞ þ Li2ðe−YaÞ þ Li2ðe−ZaÞ þ Li2ðe−WaÞ�; ð131Þ

S̃1 ¼ −
ik

2πð1þ b−2Þ
X5
a¼1

½Li2ðe−X̃aÞ þ Li2ðe−ỸaÞ þ Li2ðe−Z̃aÞ þ Li2ðe−W̃aÞ�: ð132Þ

Here ðXa; Ya; ZaÞ5a¼1 ≡ −BTP⃗ and ðX̃a; Ỹa; Z̃aÞ5a¼1 ≡ −BT ⃗P̃, and Wa, W̃a are given by

Xa þ Ya þ Za þWa ¼ 2πiþ 2πi
k

ð1þ b2Þ;

X̃a þ Ỹa þ Z̃a þ W̃a ¼ 2πiþ 2πi
k

ð1þ b−2Þ ð133Þ

coinciding with the classical octahedron constraint (43) up to Oð1=kÞ.

8When extending ΨΔðμjmÞ to m ∈ R, poles of ΨΔðμjmÞ are given by e.g., μpole ¼ ibuþ ib−1v with v ¼ −j and u ¼ −j −mþ kZ
(j ∈ N0) when ImðbÞ > 0. Poles with u ≥ 1 cancel with zeros when m ∈ Z=kZ, but this cancellation does not apply for noninteger m.
At poles, ImðμpoleÞ ¼ ReðbÞðuþ vÞ ¼ ReðbÞð−2j −mþ kZÞ. There exists m’s such that ImðμpoleÞ ¼ α; i.e., the pole lies on the
integration contour C and may cause the integral to diverge. Therefore, open neighborhoods of these m’s should be removed.
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Therefore, we rewrite ZS3nΓ5
for large k by

ZS3nΓ5
¼ N 0

X
p⃗∈Z15

Z
CP

d15Pd15P̃eSp⃗χ½1þOð1=kÞ�; ð134Þ

Sp⃗ ¼ S0ðP; P̃;Q; Q̃Þ þ S1ð−BTPÞ þ S̃1ð−BTP̃Þ

−
k

b2 þ 1
p⃗ · ðP⃗ − b2 ⃗P̃Þ: ð135Þ

where N 0 ¼ − 4k15

ð2πÞ30Q15. The integration domain CP is the

30 (real)-dimensional submanifold of ðP⃗; ⃗P̃Þ ∈ C30 satis-
fying ν⃗ ∈ C and J⃗ ∈ ½−δ0; 2π − δ0�15.
The large-k asymptotics ofZS3nΓ5

can be analyzed by the
stationary phase approximation. The dominant contribu-
tions of integrals in (134) come from critical points that are
solutions of the critical equations ∂PI

Sp⃗ ¼ ∂P̃I
Sp⃗ ¼ 0 (see

Appendix F for details).

We make the linear transformation from Q⃗0, P⃗ to Φ⃗≡
ðXa; Ya; ZaÞ5a¼1 and Π⃗≡ ðPXa

; PYa
; PZa

Þ5a¼1
, and similarly

for tilded variables

Q⃗0 − 2πiðn⃗þ p⃗Þ ¼ A · Φ⃗þ B · Π⃗; ð136Þ

⃗Q̃0 þ 2πiðn⃗þ p⃗Þ ¼ A · ⃗Φ̃þB · ⃗Π̃; ð137Þ

P⃗ ¼ −ðBTÞ−1Φ⃗; ⃗P̃ ¼ −ðBTÞ−1 ⃗Φ̃: ð138Þ

In terms of Φ⃗, Π⃗, the critical equations reduce to

PXa
¼ X00

a −W00
a; PYa

¼ Y 00
a −W00

a; ð139Þ

PZa
¼ Z00

a −W00
a; P̃Xa

¼ X̃00
a − W̃00

a; ð140Þ

P̃Ya
¼ Ỹ 00

a − W̃00
a; P̃Za

¼ Z̃00
a − W̃00

a; ð141Þ

where

X00
a ¼ log ð1 − e−XaÞ; Y 00

a ¼ log ð1 − e−YaÞ;
Z00
a ¼ log ð1 − e−ZaÞ; W00

a ¼ log ð1 − e−WaÞ; ð142Þ

X̃00
a ¼ log ð1 − e−X̃aÞ; Ỹ 00

a ¼ log ð1 − e−ỸaÞ;
Z̃00
a ¼ log ð1 − e−Z̃aÞ; W̃a

00 ¼ log ð1 − e−W̃aÞ: ð143Þ

Equations (142) and (143) reproduce e.g., z−1 þ z00 − 1 ¼
0 with z ¼ eZ and z00 ¼ eZ

00
, i.e., the Lagrangian submani-

foldLΔ ⊂ P∂Δ of framed flat PSLð2;CÞ connections on the
ideal tetrahedron Δ. Here, Wa, W̃a are given by (133). The
above logarithms are defined with the same canonical lifts
as in (13). Moreover, Xa; Ya; Za; PXa

; PYa
; PZa

satisfying
Eqs. (139)–(141) parametrize the moduli space of framed

flat PSLð2;CÞ connections on the ideal octahedron octðaÞ
made by gluing four ideal tetrahedra. Therefore, any
solution of critical equations gives five flat connections,
respectively, on five ideal octahedra and vice versa. As a
result, all possible critical points are in LS3nΓ5

since the set
of five flat connections on five ideal octahedra, respectively,
is equivalent to a flat connection on S3nΓ5 [see the
discussion below (54)]. Given a PSLð2;CÞ flat connection
on S3nΓ5, Q⃗

0, P⃗ at the critical point are determined by
(136)–(138), the same as in (53) up to 2πiðn⃗þ p⃗Þ.
We set nI ∈ Z in (136) and (137) as an approximation up

to Oð1=kÞ because for large k any J I ∈ R in (127) can be
approximated by nI ∈ Z up to Oð1=kÞ.9 Semiclassically,
critical equations are insensitive to Oð1=kÞ. Then (136)–
(138) are the same as (53) (only up to gauge shifts mI →
mI þ kZ of mI ∈ Z=kZ).
Fixing the range of mI (e.g., fixing mI ¼ 0;…; k − 1) in

ZS3nΓ5
ðμ⃗jm⃗Þ fixes the lifts ofQI , Q̃I from eQI , eQ̃I and then

uniquely fixes p⃗ ¼ p⃗0 ∈ Z, given the lifts of logarithms in
(142) and (143), since different pI ∈ Z change QI, Q̃I by∓ 2πipI (nI is determined byPI). Therefore, only one term
with p⃗ ¼ p⃗0 in (134) has a critical point and contributes to
the leading order, whereas other terms with p⃗ ≠ p⃗0 have no
critical point and thus are suppressed faster thanOðk−NÞ for
all N > 0.

Given μ⃗, m⃗ or Q⃗, ⃗Q̃ such that there exists a PSLð2;CÞ flat
connection on S3nΓ5 satisfying (136) and (137),
ZS3nΓ5

ðμ⃗jm⃗Þ has a critical point and thus is not suppressed
fast, or in physics terms, ZS3nΓ5

ðμ⃗jm⃗Þ has a semiclassical
approximation. In this case, the critical point is generally
nonunique; namely, there exists multiple critical points

corresponding to the same Q⃗, ⃗Q̃. Indeed, different P⃗, and
thus different Φ⃗, Π⃗, satisfying (138)–(143) can give the

same Q⃗ via (136) (the critical equations expressed in terms
of eQI , ePI are polynomial equations of degree higher than
1) and similarly for tilded variables. The critical points 1-to-

1 correspond to the solutions of ðP⃗; ⃗P̃Þ with given Q⃗, ⃗Q̃.
The solutions are denoted by ðPðαÞðPÞ; P̃ðαÞðQ̃ÞÞ, α ∈ I ,
where I is a set of indices labeling the solutions. Here, α
labels the branches of LS3nΓ5

. Given any α, the coordinates

Q⃗ provide a local parametrization of LS3nΓ5
.

The asymptotic behavior of ZS3nΓ5
relates to the action

Sp⃗¼p⃗0
evaluated at critical points

SðαÞp⃗0
ðQ; Q̃Þ ¼ Sp⃗0

ðQ; Q̃;PðαÞðQÞ; P̃ðαÞðQ̃ÞÞ: ð144Þ

The derivatives of SðαÞp⃗0
with respect to Q⃗; ⃗Q̃ are

9When k ¼ 10000, J I=2π ¼ 0.5624587 � � � can be approxi-
matedbynI ¼ 5625, and the error bound is jJ I=2π − nI=kj < 1=k.
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∂Q⃗S
ðαÞ
p⃗0

¼ −
ik

2πð1þ b2Þ P⃗
ðαÞðQÞ; ð145Þ

∂ ⃗Q̃
SðαÞp⃗0

¼ −
ik

2πð1þ b−2Þ
⃗P̃
ðαÞðQ̃Þ; ð146Þ

where we have used ∂PSp⃗0
¼ ∂P̃Sp⃗0

¼ 0 since fPðαÞðQÞ; P̃ðαÞðQ̃Þgα∈I satisfy the critical equations. It implies that10

SðαÞp⃗0
ðQ; Q̃Þ ¼ −

ik
2πð1þ b2Þ

Z
Q⃗
P⃗ðαÞðQ0Þ · dQ⃗0 −

ik
2πð1þ b−2Þ

Z ⃗Q̃ ⃗P̃ðαÞðQ̃0Þ · d ⃗Q̃0 þ Cα; ð147Þ

where Cα is an integration constant. The integrals are along certain curves embedded in LS3nΓ5
. The result is independent of

smooth deformations of the integration contour in LS3nΓ5
since Ω ¼ 0 on the Lagrangian submanifold LS3nΓ5

. From this

result, expðSðαÞp⃗0
Þ is expressed as an analog of the WKB wave function. The large-k asymptotics of ZS3nΓ5

is given by a finite
sum over critical points,

ZS3nΓ5
ðμ⃗jm⃗Þ ¼

X
α

N ðαÞ
0 e

SðαÞ
p⃗0

ðQ;Q̃Þ½1þOð1=kÞ�; ð148Þ

N ðαÞ
0 ¼ N 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−Hα=2πÞ
p ð149Þ

whereHα is the Hessian matrix ∂2Sp⃗0
evaluated at the critical point. Note thatHα is generically nondegenerate as supported

by a large number of numerical experiments.

B. Critical points of the vertex amplitude and constant curvature 4-simplex

Let us recall ZS3nΓ5
ðιÞ and the coherent states ψ za , ξðxa;yaÞ defined in (80) and (81). Restricting ι ¼ ιj⃗;ξ⃗ to satisfy the

simplicity constraint, Av ¼ ZS3nΓ5
ðιj⃗;ξ⃗Þ is the vertex amplitude with a cosmological constant.

The simplicity constraint restricts ReðμabÞ ¼ 0 (the semiclassical behavior is insensitive to αab); thus,

e2Lab ¼ exp

�
2πi
k

�
bαab þ 2jab þ

ϵab
2

��
≃ e

4πi
k jab ;

e2L̃ab ¼ exp

�
2πi
k

�
b−1αab − 2jab −

ϵab
2

��
≃ e−

4πi
k jab :

Here, ≃ stands for the semiclassical approximation.
We make the change of variable (69) in ψ za (recall Q0

I ¼ QI − iπtI, Q̃
0
I ¼ Q̃I − iπtI)

ψ za ¼
�
2

k

�
1=4

eSza ; Sza ≃
bkðQ̃0

a þQ0
aÞ

2πðb2 þ 1Þ
� ffiffiffi

2
p

za −
bðQ̃0

a þQ0
aÞ

2ðb2 þ 1Þ
�
−
kðz̄a þ zaÞ2

8π
; ð150Þ

where we neglect the term −
ffiffiffi
2

p
βaReðzaÞ since it is subleading as k → ∞. Note that ξðxa;yaÞ is simplified by k → ∞ and by

restricting ma ¼ 0;…; k − 1 and xa; ya ∈ ð0; 2πÞ. After neglecting exponentially small contributions,

ξðxa;yaÞ ≃
�
2

k

�1
4

e
ikxaya

4π e−
k
4πð2πma

k −xaÞ2e−iyama ¼
�
2

k

�1
4

eSðxa;yaÞ ; ð151Þ

Sðxa;yaÞ ¼
ikxaya
4π

−
k
4π

�
iðQ0

a − b2Q̃0
aÞ

b2 þ 1
− xa

�2
þ kðQ0

a − b2Q̃0
aÞ

2πðb2 þ 1Þ ya: ð152Þ

10Given the Sðx⃗Þ function onRn and ∇⃗Sðx⃗Þ ¼ f⃗ðx⃗Þ, we choose a curve c ⊂ Rn parametrized by t ∈ ½0; 1� ending at x0. We denote by ⃗t
the tangent vector of c. Then, d

dt Sðx⃗ðtÞÞ ¼ ⃗t · ∇⃗Sðx⃗ðtÞÞ ¼ ⃗t · f⃗ðx⃗ðtÞÞ. Therefore, Sðx⃗0Þ ¼
R
x0
c f⃗ðx⃗Þ · dx⃗þ C.
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The vertex amplitude Av is expressed as

Av ¼ N
X

m⃗∈ðZ=kZÞ5

X
n⃗∈ðZ=kZÞ15

Z
R5×C

d5μd15νeIðP;P̃;Q;Q̃Þ; N ¼ 4i
k15

�
2

k

�
5=2

;

I ¼ S0ðP; P̃;Q; Q̃Þ þ S1ð−BTPÞ þ S̃1ð−BTP̃Þ þ
X5
a¼1

½SzaðQa; Q̃aÞ þ Sðxa;yaÞðQa; Q̃aÞ�: ð153Þ

For finite za, the integrand is a Schwartz function of both μ⃗ and ν⃗ along the integration cycle [ψ za is a Gaussian function; see
the discussion below (64)], so interchanging the μ⃗-integral with the ν⃗-integral does not affect the result. We apply the
Poisson resummation similarly to (126),

Av ¼ N 0 X
ðp⃗;s⃗Þ∈Z20

Z
CQ×CP

d5Qd5Q̃d15Pd15P̃eI p⃗;s⃗ðP;P̃;Q;Q̃Þ; N 0 ¼ iðk=2Þ45=2
8192π40Q20

ð154Þ

I p⃗;s⃗ ¼ IðP; P̃;Q; Q̃Þ − k
b2 þ 1

p⃗ · ðP⃗ − b2 ⃗P̃Þ − k
b2 þ 1

X5
a¼1

saðQa − b2Q̃aÞ; ð155Þ

where CQ is a 10-dimensional real manifold satisfying μa ∈
R and ma ∈ ½0; kÞ [here μa, ma are understood as continu-
ous variables relating Qa, Q̃a by (69)].
We again apply the stationary phase analysis to the

integral as k → ∞. The critical equations ∂PI p⃗;s⃗ ¼
∂P̃I p⃗;s⃗ ¼ 0 give the same results as (136)–(143) whose
solutions are flat connections on S3nΓ5. The other set of
critical equations ∂QI p⃗;s⃗ ¼ ∂Q̃I p⃗;s⃗ ¼ 0 implies

2π

k
ReðμaÞ ¼

ffiffiffi
2

p
ReðzaÞ;

2π

k
ReðνaÞ ¼

ffiffiffi
2

p
ImðzaÞ;

2π

k
ma ¼ xa;

2π

k
na ¼ ya; sa ¼ 0: ð156Þ

See Appendix F for derivations. At the critical point, the
4-holed sphere data Qa, Q̃a, Pa, P̃a are determined by the
coherent state labels za, xa, ya. The determined 4-holed
sphere data, together with 2Lab, 2L̃ab determined by jab,
provide the boundary condition to the flat connection
solving (136)–(143).
The simplicity constraint requires that za, xa, ya are

determined by the data j⃗, ξ⃗ via (109). Then (156)
determines the 4-holed sphere FG coordinates Xa, Ya.
Because of the 1-to-1 correspondence between values of
FG coordinates fxEgE and framed PSLð2;CÞ flat connec-
tions on Sa [29], the resulting Xa, Ya, together with eQab ¼
e2Lab [belonging to U(1) as k → ∞], uniquely determine a
PSUð2Þ ≃ SOð3Þ flat connection on Sa. We denote by
MflatðSa; PSUð2ÞÞ the moduli space of PSU(2) flat con-
nections on the 4-holed sphere Sa. Flat connections in this
moduli space have the following geometrical interpreta-
tions as constant curvature tetrahedra.

Theorem IV.1. There is a bijection between flat con-
nections in MflatðSa; PSUð2ÞÞ and convex constant curva-
ture tetrahedron geometries in 3d, except for degenerate
geometries. Nondegenerate tetrahedral geometries are
dense in MflatðSa; PSUð2ÞÞ.
The proof of this theorem is given in [21]. Both positive

and negative constant curvature tetrahedra are included
in MflatðSa; PSUð2ÞÞ.
Given the boundary condition leading to PSU(2) flat

connections on fSag5a¼1, if there exists a PSLð2;CÞ flat
connection on S3nΓ5 satisfying the boundary condition, it
is a critical point of Av ¼ ZS3nΓ5

ðιj⃗;ξ⃗Þ and has the geomet-
rical interpretation as a constant curvature 4-simplex.
Theorem IV.2. There is a bijection between PSLð2;CÞ

flat connections on S3nΓ5 satisfying the boundary con-
dition and the nondegenerate, convex, oriented, geometri-
cal 4-simplex with constant curvature in the Lorentzian
signature.
The proof of this theorem is given in [13]. Note that not

every flat connection on ×5
a¼1Sa can extend to a flat

connection S3nΓ5. It is shown in [13] that there is a subset
of PSU(2) flat connections on ×5

a¼1Sa that can serve as the
boundary of PSLð2;CÞ flat connections on S3nΓ5, and
these boundary PSU(2) flat connections correspond to five
constant curvature tetrahedra that can be glued11 to form the
close boundary of a nondegenerate 4-simplex with the same
constant curvatureΛ. Here, the Av with these boundary data
has critical points. However, any boundary PSU(2) flat
connection corresponding to five tetrahedra that cannot be
glued to form a 4-simplex boundary cannot extend to a

11Namely, they have the same constant curvature Λ and satisfy
triangle shape matching and orientation matching when they are
glued.
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PSLð2;CÞ flat connection on S3nΓ5; the result is that Av has
no critical point and thus is suppressed faster than Oðk−NÞ
for all N > 0.
We do not discuss the possible flat connections corre-

sponding to the degenerate 4-simplex or tetrahedron. We
also do not consider the boundary condition with za → ∞
which leads to critical points located at infinity of the
integration cycle.12

In this geometrical correspondence between the
flat connection and 4-simplex geometry, the holonomy’s
squared eigenvalue e2Lab relates to the area aab of
the 4-simplex boundary triangle fab shared by the
pair of tetrahedra a, b (corresponding to Sa, Sb); i.e.,
semiclassically,

e2Lab ≃ ei
jΛj
3
aab ; aab ∈ ½0; 6π=jΛj�: ð157Þ

The framing flag slab
evaluated at pa ∈ Sa, slabðpaÞ ¼ ξab

relates to the unit normal n⃗ab (located at a vertex of the
curved tetrahedron) of the face fab viewed in the frame of
tetrahedra a by n⃗ab ¼ ξ†abσ⃗ξab. Note that ξab is not always
the same as ξi in (100); see the discussion in the paragraph
above (104). Given the tetrahedra a, if we denote by n⃗i the
geometrical outward pointing face normal of the tetrahe-
dron, we have n⃗ab ¼ sgnðΛÞn⃗i if ξab ¼ ξi ¼ ðξ1i ; ξ2i ÞT , and
n⃗ab ¼ −sgnðΛÞn⃗i if ξab ¼ ð−ξ̄2i ; ξ̄1i ÞT [24].
In order to obtain the geometrical interpretation of the

conjugate T ab, we review the definition of the complex FN
twist variable: Let us consider the annulus cusps l con-
necting a pair of 4-holed spheres S0, Sn. Let s be the
framing flag for l and s0;n, s00;n be the framing flags for a
pair of other cusps connecting S0;n. Then, the complex FN
twist is defined by (see e.g., [27])

τl ¼ −
hs0 ∧ s00i

hs0 ∧ sihs00 ∧ si
hsn ∧ sihs0n ∧ si

hsn ∧ s0ni
; ð158Þ

where hs ∧ s0i are evaluated at a common point after
parallel transportation. Without loss of generality, we eva-
luate the first ratio with factors hs0 ∧ s00i; hs0 ∧ si; hs00 ∧ si
at a point p0 ∈ S0, and we evaluate the second ratio with
factors hsn ∧ si; hs0n ∧ si; hsn ∧ s0ni at a point pn ∈ Sn.
The evaluation involves both sðp0Þ and sðpnÞ at two ends of
l, while the parallel transportation between sðp0Þ and sðpnÞ
depends on a choice of contour γτ connecting p0, pn
(Fig. 8). Different γτ may transform sðpnÞ → λlsðpnÞ but
keep sðp0Þ invariant. Moreover, by definition, τl also
depends on the choice of two other auxiliary cusps for
each of S0, Sn. The choices of γτ and the auxiliary cusps are

part of the definition for τl. The choices in defining τl do not
affect our later result. The Atiyah-Bott symplectic form
implies that logðτlÞ is the conjugate variable of the FN length
variable Ll ¼ logðλlÞ associated to the same annulus l:

fLl; logðτl0 ÞgΩ ¼ δl;l0 : ð159Þ

Applying the above definition to S3nΓ5, we set S0 ¼ Sb,
p0 ≡ pb and Sn ¼ Sa, pn ≡ pa. Framing flags associated to
holes in Sa (or Sb) evaluated at pa (or pb) are fξacgc≠a (or
fξbcgc≠b). In particular, sðpaÞ ¼ ξab and sðpbÞ ¼ ξba. We
denote byGab the flat connection holonomy along γτ starting
at pa and ending at pb. Note that Gab satisfies [13,19,24]

Gabξab ¼ e−
1
2
νsgnðV4ÞΘabþiθabξba; ν ¼ sgnðΛÞ: ð160Þ

By the geometrical correspondence of the flat connection,
Θab is the hyperdihedral (boost) angle hinged by the face fab
shared by the tetrahedra a, b on the boundary of the
4-simplex. Note that sgnðV4Þ ¼ �1 is the orientation of
the 4-simplex, and θab ∈ ½0; 2πÞ is an angle relating to the
phase convention of the ξ’s. Inserting (160) in the definition
of τl, we obtain

τlab ≡ τab ¼ e−νsgnðV4ÞΘabþ2iθabχabðξÞ;

χabðξÞ ¼
hξbd ∧ ξbhi

hξbd ∧ ξbaihξbh ∧ ξbai
hξac ∧ ξabihξae ∧ ξabi

hξac ∧ ξaei
ð161Þ

FIG. 9. Setting αX ¼ αY ¼ αZ ¼ α, βX ¼ βY ¼ βZ ¼ β, and
Q ¼ 1=2,PðoctÞ is restricted to the gray open triangle in the plot.

FIG. 8. Contour γτ used to define the complex FN twist τl, and
the meridian cycle γλ used to define the complex FN length λl.

12Critical points at infinity give z, z0 or z00 → ∞ of certain
Δ ⊂ S3nΓ5. They either correspond to degenerate 4-simplex
or to special 4-simplices which become close to degenerate if
jΛaj ≪ 1; i.e., scales of 4-simplices are small (see [19] and
Appendix E therein).
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where we have set s0ðpbÞ ¼ ξbd, s00ðpbÞ ¼ ξbh and
snðpaÞ ¼ ξac, s0nðpaÞ ¼ ξae. Here, χðξÞ is a function only
depending on the boundary condition on fSag5a¼1.
Theorem IV.3. Given a PSLð2;CÞ flat connection A

on S3nΓ5 corresponding to a nondegenerate convex con-
stant curvature 4-simplex, there exists a unique flat con-
nection Ã ≠ A sharing the same boundary condition.
Here, A, Ã correspond to the same constant curvature
4-simplex geometry but opposite orientations: sgnðV4ÞjA ¼
−sgnðV4ÞjÃ.
The detailed proof is again given in [13]. The boundary

condition corresponding to the boundary tetrahedra of the
nondegenerate 4-simplex gives exactly two critical points
A, Ã, which are called the parity pair, as an analog of a
similar situation in the EPRL amplitude [22]. That A, Ã
correspond to the same geometry means that they endow
the same edge lengths, areas, angles, etc. to the 4-simplex.
Implied by this result, e2Lab , eXa , eYa have the same value at
A, Ã since they are determined by the geometry, whereas
τab are different,

τabjA ¼ e−νΘabþ2iθabχabðξÞ; τabjÃ ¼ eνΘabþ2iθabχabðξÞ;

since τab relates to the orientation. Here θab, χabðξÞ are the
same at A, Ã since they are determined only by the
boundary condition.
Lemma IV.4. At each annulus lab, τab ¼ τlab is related

to T ab by T ab ¼ 1
2
logðτabÞ þ fðfLabg; fXa;YagÞ, where

f is a linear function of fLabg; fXa;Yag.
Proof: Each τab is a product of z�1, z0�1, z00�1 of some

ideal tetrahedra in the triangulation of S3nΓ5 (see
Appendix A.3.3 in [27]). When expressing this in terms
of octahedron phase space coordinates, each logðτabÞ is a
linear function of Xa, PXa

, Ya, PYa
, Za, PZa

(a ¼ 1;…; 5)
when we impose Ca ¼ 2πi; see [19] for explicit examples
of logðτabÞ. Using the symplectic transformation (53), we
express logðτabÞ ¼

P
c<dðαðabÞ;ðcdÞT cd þ βðabÞ;ðcdÞLcdÞ þP

5
c¼1ðρcX c þ σcYcÞ þ iπZ. Using fLl; logðτl0 ÞgΩ ¼

δl;l0 , we determine αðabÞ;ðcdÞ ¼ 2δðabÞ;ðcdÞ and define f¼
−1

2
½Pc<dβðabÞ;ðcdÞLcdþ

P
5
c¼1ðρcX cþσcYcÞþiπZ�. ▪

As a result, T ab are given by

T abjA ¼ −
1

2
νΘab þ iθab þ

1

2
log χabðξÞ

þ fðfLabg; fXa;YagÞ þ πiNðAÞ
ab ; ð162Þ

T abjÃ ¼ 1

2
νΘab þ iθab þ

1

2
log χabðξÞ

þ fðfLabg; fXa;YagÞ þ πiNðÃÞ
ab ; ð163Þ

where NðAÞ
ab , N

ðÃÞ
ab ∈ Z label the lifts of logarithms.

C. Asymptotics of the vertex amplitude

The vertex amplitude Av has precisely two critical points
A, Ã when the boundary condition corresponds to five
tetrahedra that can be glued to form the close boundary of a
nondegenerate constant curvature 4-simplex. Using (148),
the vertex amplitude has the following large-k asymptotics:

Avðj⃗; ξ⃗Þ ¼ ½N αe
SðαÞ
p⃗0

ðQ;Q̃Þ þN α̃e
Sðα̃Þ
p⃗0

ðQ;Q̃Þ�; ½1þOð1=kÞ�
ð164Þ

N α ¼
N 0e

ik
4π

P
5

a¼1
½4ReðzaÞImðzaÞ−xaya�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−Hα=2πÞ
p ; ð165Þ

where SðαÞp⃗0
is given in (147). The nondegeneracy of the

Hessian matrix Hα ¼ ∂2I p⃗0;0⃗
is supported by many

numerical experiments. Note that QI , Q̃I are the same at
the critical points A, Ã, and α, α̃ are branches of the
Lagrangian submanifold LS3nΓ5

containing A, Ã, respec-
tively. The asymptotics (164) of Av reduces to the same
form as the one studied in [23,24]. In the following we
sketch the computation of (164) and refer to [23,24] for the
details.
We rewrite (164) in Av ≃ eiηðN þeS þN −e−SÞwhere we

factor out the overall phase eiη, and we are interested in the
phase difference e2S between two exponentials in (164). To
extract the phase difference, we consider a small variation
δQI, δQ̃I . The consequent variation of δS is given by

2δS ¼ −
ik

2πð1þ b2Þ ðP⃗
ðαÞ − P⃗ðα̃ÞÞ · δQ⃗ − c:c:

¼ −
kΛ

6πð1þ b2Þ
X
a<b

ðΘab þ 2πiNabÞδaab − c:c:

¼ −
iΛ
6π

ImðtÞ
X
a<b

Θabδaab −
iΛ
3
ReðtÞ

X
a<b

Nabδaab;

where Nab ¼ sgnðΛÞðNðAÞ
ab − NðÃÞ

ab Þ ∈ Z. Only Θab and

NðAÞ
ab , NðÃÞ

ab in T ab give nonvanishing contributions to
2δS because each of fLab;Xa;Ya; χabðξÞ; θabg gives the
same value at A and Ã (see [23,24] for details). By the
Schläfli identity

P
a<b δΘabaab ¼ ΛjV4j of the constant

curvature 4-simplex [52], δS can be integrated as

2S ¼ −
iΛkγ
6π

�X
a<b

aabΘab − ΛjV4j
�

−
iΛk
3

X
a<b

Nabaab þ 2C; ð166Þ

where jV4j is the 4-simplex volume. 2C is a geometry-
independent integration constant. Equations (157) and (97)
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imply jΛj
3
aab ¼ 4π

k jab; thus, iΛk
3

P
a<b Nabaab ∈ 2πiZ is

negligible in e2S. As a result, we obtain the leading
asymptotics of Av as

Av ¼ eiηðN þeiSReggeþC þN −e−iSRegge−CÞ½1þOð1=kÞ�;
ð167Þ

N þ;− ¼ N 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−Hα;α̃=2πÞ

p ð168Þ

where in the exponents

SRegge ¼
Λkγ
12π

�X
a<b

aabΘab − ΛjV4j
�

ð169Þ

is the Regge action of the constant curvature 4-simplex.
The coefficient jΛjkγ

12π is identified to be the inverse gravi-
tational coupling 1=l2

P. This identification is consistent
with (16).

V. CONCLUSION AND OUTLOOK

In this work, we propose an improved formulation of 4d
spinfoam quantum gravity with a cosmological constant Λ.
This formulation is featured with the finite spinfoam
amplitudes on simplicial complexes and the correct semi-
classical behavior of the vertex amplitude.
Despite the above promising aspects, this formulation

still has several open issues, which are expected to be
addressed in future work: First, it is conjectured in
Sec. III D that the boundary Hilbert space of the spinfoam
amplitude A is the Hilbert space of q-deformed spin-
network states with q root of unity. To prove this con-
jecture, we need to define and study coherent intertwiners
of q-deformed spin networks and clarify if there is a
canonical bijection between these coherent intertwiners
and the boundary data of A. The expected coherent
intertwiner should be a q deformation of the Livine-
Speciale coherent intertwiner [40].
We need to construct a geometrical operator on the

boundary Hilbert space to understand the quantum geo-
metrical interpretation of boundary states. The construction
may be based on the combinatorial quantization of SU(2)
CS theory [53,54]. It is interesting to define coherent states
that are coherent in both spins (areas) and intertwiners
(shapes of curved tetrahedra). The coherent state may be a q
deformation of the complexifier coherent states in [55]. In
addition, we need to direct the sum over all graphs to define
the entire q-deformed LQG kinematical Hilbert space and
check the cylindrical consistency of operators. This should
generalize the work [12] from the real q to q root of unity.
In Sec. III E, we discuss that the spinfoam amplitude A

has ambiguities in which the freedom of choosing coherent
states is due to imposing a semiclassical simplicity

constraint on coherent state labels. It may be useful to
develop an operator formalism or other ways to impose the
simplicity constraint (such as the master constraint, Gupta-
Bleuler, etc.) at the quantum level for reducing the freedom
of the amplitude. Another possible drawback of our
implementation of the simplicity constraint is that spins
such that dimðM̃j⃗Þ < 2 (M̃j⃗ only contains degenerate
4-gons) have to be excluded from our formalism.
In the present work, we only study the semiclassical

behavior of the vertex amplitude. The semiclassical analy-
sis should generalize to the spinfoam amplitude with Λ on
an arbitrary simplicial complex, as well as taking into
account the sum over j.
Note that Λ in this spinfoammodel should be understood

as the ultraviolet value of the cosmological constant. It
would be interesting to apply the Wilson renormalization to
the spinfoam model with Λ (see e.g., [56] for some earlier
results). The spinfoam renormalization is expected to result
in a flow of Λ from the ultraviolet to infrared, where the
infrared value of Λ should relate to the observation.
It would also be interesting to develop a group field

theory (GFT) based on the spinfoam formulation with Λ.
The notion of group fields might be suitably generalized to
include Λ. The “group fields” might actually be fields on
the moduli space of flat connections. The GFT is expected
to reproduce spinfoam amplitudes A, which are finite order
by order in the perturbative expansion.
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APPENDIX A: A PLOT FOR THE
POLYTOPE PðoctÞ

The open polytope PðoctÞ is defined by the following
inequalities:

αX; αY; ;αZ > 0; αX þ αY þ αZ < Q;

αX þ βX <
Q
2
; αY þ βY <

Q
2
; αZ þ βZ <

Q
2
;

αX þ αY þ αZ þ βX >
Q
2
; αX þ αY þ αZ þ βY >

Q
2
;

αX þ αY þ αZ þ βZ >
Q
2
:

Figure 9 plots the intersection between PðoctÞ and the
plane of αX ¼ αY ¼ αZ, βX ¼ βY ¼ βZ.
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APPENDIX B: DARBOUX COORDINATES OF P∂ðS3nΓ5Þ
Darboux coordinates QI ¼ ð2Lab;XaÞ, PI ¼ ðT ab;YaÞ expressed in terms of ðXa; PXa

Þ,ðYa; PYa
Þ,ðZa; PZa

Þ,ðCa;ΓaÞ
are listed below:

2L12 ¼ −C3 − C4 − C5 þ PY3
þ PY4

þ PY5
þ X3 þ X4 þ X5 þ Y3 þ Y4 þ Y5 þ 3iπ; ðB1Þ

2L13 ¼ −C2 − C5 þ PY2
þ PY4

− PZ4
þ PZ5

þ X2 þ X5 þ Y2 þ Y5 þ 2Z5 þ iπ; ðB2Þ

2L14 ¼ −C3 þ PY2
þ PY5

− PZ2
þ PZ3

− PZ5
þ X3 þ Y3 þ 2Z3; ðB3Þ

2L15 ¼ −C2 − C4 þ PY3
þ PZ2

− PZ3
þ PZ4

þ X2 þ X4 þ Y2 þ Y4 þ 2Z2 þ 2Z4; ðB4Þ

2L23 ¼ −PX1
þ PX4

− PX5
− PY4

þ X4 − Y4; ðB5Þ

2L24 ¼ −PX3
þ PX5

− PY1
− PY5

− X1 þ X5 − Y1 − Y5 þ iπ; ðB6Þ

2L25 ¼ PX1
þ PX3

− PX4
− PY1

− PY3
þ X1 þ X3 − Y1 − Y3; ðB7Þ

2L34 ¼ C1 − C5 þ PX2
þ PX5

− PY2
− PZ1

− PZ5
− X1 þ X2 þ X5 − Y1 − Y2 þ Y5 − 2Z1 þ iπ; ðB8Þ

2L35 ¼ −C1 þ PX1
− PX2

− PX4
− PZ1

þ PZ4
þ X1 − X4 þ Y1 − Y4 þ 2iπ; ðB9Þ

2L45 ¼ −C3 − PX2
þ PX3 þ PY1

− PZ1
þ PZ2

− PZ3
− X2 þ X3 − Y2 þ Y3 þ 2iπ: ðB10Þ

X1 ¼ χð1Þ25 ¼ PY2
− PZ2

− Z2 þ Z5 þ iπ; ðB11Þ

TABLE I. Edge coordinates χðaÞmn of 4-holed spheres. Recall in Fig. 3 that the octahedra are glued through the
triangles labeled by a; b; c; d; e; f; g; h; i; j. For example, a02 labels the triangles symmetric to the triangle a with
respect to the equator of Oct(2). The “primed triangles” with primed labels triangulate the geodesic boundary of
S3nΓ5. Here Xa, Ya, Za, Wa (a ¼ 1;…; 5) are the tetrahedron edge coordinates from the four tetrahedra
triangulating Oct(a).

S1: h02 ∩ h03∶ χð1Þ23 ¼ Z2 þ Z3 h03 ∩ e04∶ χð1Þ34 ¼ Y 00
3 þ Z0

3 þ Z00
4 þW0

4

h02 ∩ e04∶ χð1Þ24 ¼ Z00
2 þW0

2 þ Z4 h03 ∩ c05∶ χð1Þ35 ¼ Z00
3 þW0

3 þ Y 00
5 þ Z0

5

h02 ∩ c05∶ χð1Þ25 ¼ Y 00
2 þ Z0

2 þ Z5 e04 ∩ c05∶ χð1Þ45 ¼ Y 00
4 þ Z0

4 þ Z00
5 þW0

5

S2: f01 ∩ i03∶ χð2Þ13 ¼ X00
1 þ Y 0

1 þ X3 i03 ∩ f04∶ χð2Þ34 ¼ X00
3 þ Y 0

3 þW00
4 þ X0

4

f01 ∩ f04∶ χð2Þ14 ¼ X1 þ X4 i03 ∩ b05∶ χð2Þ35 ¼ W00
3 þ X0

3 þ X00
5 þ Y 0

5

f01 ∩ b05∶ χð2Þ15 ¼ W00
1 þ X0

1 þ X5 f04 ∩ b05∶ χð2Þ45 ¼ X00
4 þ Y 0

4 þW00
5 þ X0

5

S3: b01 ∩ a02∶ χð3Þ12 ¼ Z0
1 þW00

1 þ X2 a02 ∩ d04∶ χð3Þ24 ¼ W00
2 þ X0

2 þ Y 0
4 þ Z00

4

b01 ∩ d04∶ χð3Þ14 ¼ W0
1 þ X00

1 þ X0
4 þ Y 00

4 a02 ∩ d05∶ χð3Þ25 ¼ X00
2 þ Y 0

2 þ Z0
5 þW00

5

b01 ∩ d05∶ χð3Þ15 ¼ W1 þW0
5 þ X00

5 d04 ∩ d05∶ χð3Þ45 ¼ Y4 þW5

S4: a01 ∩ c02∶ χð4Þ12 ¼ Z1 þ X0
2 þ Y 00

2 c02 ∩ j03∶ χð4Þ23 ¼ Y 0
2 þ Z00

2 þ Z0
3 þW00

3

a01 ∩ j03∶ χð4Þ13 ¼ Y 00
1 þ Z0

1 þW0
3 þ X00

3 c02 ∩ j05∶ χð4Þ25 ¼ Y2 þ Y 0
5 þ Z00

5

a01 ∩ j05∶ χð4Þ15 ¼ Z00
1 þW0

1 þ X0
5 þ Y 00

5 j03 ∩ j05∶ χð4Þ35 ¼ W3 þ Y5

S5: i01 ∩ e02∶ χð5Þ12 ¼ Y 0
1 þ Z00

1 þW0
2 þ X00

2 e02 ∩ g03∶ χð5Þ23 ¼ Z0
2 þW00

2 þ Y 0
3 þ Z00

3

i01 ∩ g03∶ χð5Þ13 ¼ Y1 þ X0
3 þ Y 00

3 e02 ∩ g04∶ χð5Þ24 ¼ W2 þ Z0
4 þW00

4

i01 ∩ g04∶ χð5Þ14 ¼ X0
1 þ Y 00

1 þW0
4 þ X00

4 g03 ∩ g04∶ χð5Þ34 ¼ Y3 þW4
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X2 ¼ χð2Þ15 ¼ −PX1
− X1 þ X5 þ iπ; ðB12Þ

X3 ¼ χð3Þ15 ¼ C1 − C5 þ PX5
− X1 þ X5 − Y1 þ Y5 − Z1 þ Z5 þ iπ; ðB13Þ

X4 ¼ χð4Þ15 ¼ −C1 − PX5
þ PY5

þ PZ1
þ X1 − X5 þ Y1 þ Z1 þ 2iπ; ðB14Þ

X 5 ¼ χð5Þ14 ¼ −C4 − PX1
þ PX4

þ PY1
− X1 þ X4 þ Y4 þ Z4 þ 2iπ: ðB15Þ

T 12 ¼
1

2
ðX2 − X3 − X4 þ Y1 þ Y2 − Y3 − Y4 þ Z2Þ; ðB16Þ

T 13 ¼
1

2
ð−X2 þ X3 − Y2 þ Y3 − Y5 þ Z1 − Z2 − Z5Þ; ðB17Þ

T 14 ¼
1

2
ð−Y2 − Z2 − Z3 þ Z5Þ; ðB18Þ

T 15 ¼
1

2
ð−X2 − Y2 − Z2 − Z4Þ; ðB19Þ

T 23 ¼
1

2
ð−X4 þ Y1 þ Y4 − Y5 þ Z1 − Z5Þ; ðB20Þ

T 24 ¼
1

2
ðX2 þ X3 − X4 þ Y1 þ Y3 − Y4 þ Z3 þ Z5Þ; ðB21Þ

T 25 ¼
1

2
ð−X3 − X4 þ Y1 þ Y3 − Y4 − Z4Þ; ðB22Þ

T 34 ¼
1

2
ð−X2 þ X3 þ Y3 − Y5 þ Z1 þ Z3Þ; ðB23Þ

T 35 ¼
1

2
ðX3 þ Y3 − Y5 þ Z1 − Z4 − Z5Þ; ðB24Þ

T 45 ¼
1

2
ðX2 þ Z3 þ Z4 þ Z5Þ: ðB25Þ

Y1 ¼ χð1Þ23 ¼ Z2 þ Z3; ðB26Þ

Y2 ¼ χð2Þ14 ¼ X1 þ X4; ðB27Þ

Y3 ¼ χð3Þ45 − 2πi ¼ −X5 þ Y4 − Y5 − Z5; ðB28Þ

Y4 ¼ −χð4Þ35 þ 2πi ¼ X3 þ Y3 − Y5 þ Z3; ðB29Þ

Y5 ¼ χð5Þ34 − 2πi ¼ −X4 þ Y3 − Y4 − Z4: ðB30Þ

We impose Ca ¼ 2πi on all 2Lab and Xa. We check that (45) implies

fQI;PJgΩ ¼ δIJ; fQI;QJgΩ ¼ fPI;PJgΩ ¼ 0: I; J ¼ ðlab;SaÞ: ðB31Þ
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APPENDIX C: SYMPLECTIC TRANSFORMATION

The linear symplectic transformation from Φ⃗≡ ðXa; Ya; ZaÞ5a¼1 and Π⃗≡ ðPXa
; PYa

; PZa
Þ5a¼1 to Q⃗, P⃗ is given by

�
Q⃗

P⃗

�
¼
�
A B

−ðBTÞ−1 0

��
Φ⃗
Π⃗

�
þ iπ

�
⃗t

0⃗

�
: ðC1Þ

Explicitly, A, B, ⃗t are given below:

A ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 1 1 0 1 1 0 1 1 0

0 0 0 1 1 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 1 1 2 0 0 0 0 0 0

0 0 0 1 1 2 0 0 0 1 1 2 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

−1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 0

1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0

−1 −1 −2 1 −1 0 0 0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 −1 −1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

−1 −1 −1 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 −1 0 0

−1 0 0 0 0 0 0 0 0 1 1 1 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðC2Þ

B ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 0 1 −1 0 0 1

0 0 0 0 1 −1 0 0 1 0 0 0 0 1 −1
0 0 0 0 0 1 0 1 −1 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0 1 −1 0 −1 0 0

0 −1 0 0 0 0 −1 0 0 0 0 0 1 −1 0

1 −1 0 0 0 0 1 −1 0 −1 0 0 0 0 0

0 0 −1 1 −1 0 0 0 0 0 0 0 1 0 −1
1 0 −1 −1 0 0 0 0 0 −1 0 1 0 0 0

0 1 −1 −1 0 1 1 0 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 −1 1 0

−1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðC3Þ

⃗t ¼ ð−3;−3;−2;−4; 0; 1; 0; 1; 0; 0; 1; 1; 1; 0; 0ÞT: ðC4Þ
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APPENDIX D: PROOF OF LEMMA III.1

Lemma D.1. Hi¼1;…;4 ∈ SUð2Þ satisfyH4H3H2H1 ¼ 1,
which exist if and only if j0i¼1;…;4 satisfy the triangle
inequality, i.e., there exists J such that

jj01 − j02j ≤ J ≤ min ðj01 þ j02; k − j01 − j02Þ; ðD1Þ

jj03 − j04j ≤ J ≤ min ðj03 þ j04; k − j03 − j04Þ: ðD2Þ

Proof: We denote 4π
k j

0
i ¼ ri ∈ ½0; 2πÞ. Here, Hi ¼

cosðri=2Þ þ in⃗0i · σ⃗ sinðri=2Þ, where n⃗0 is a unit vector in
R3.Note that n⃗0 ¼ −n⃗when there is aminus sign in (100) and
n⃗0 ¼ n⃗ when there is a plus sign. We denote H2H1 ¼
cosðR=2Þ þ iN⃗ · σ⃗ sinðR=2Þ with R ¼ 4π

k J ∈ ½0; 2πÞ; then
H4H3 ¼ cosðR=2Þ − iN⃗ · σ⃗ sinðR=2Þ. Taking the trace gives

cos

�
R
2

�
¼ cos

�
r1
2

�
cos

�
r2
2

�
− n⃗01 · n⃗

0
2 sin

�
r1
2

�
sin

�
r2
2

�
;

ðD3Þ

cos

�
R
2

�
¼ cos

�
r3
2

�
cos

�
r4
2

�
− n⃗03 · n⃗

0
4 sin

�
r3
2

�
sin

�
r4
2

�
:

ðD4Þ

Since sinðri
2
Þ ≥ 0, unit vectors n⃗0i¼1;…;4 exist if and only if

cos

�
r1 þ r2

2

�
≤ cos

�
R
2

�
≤ cos

�
r1 − r2

2

�
; ðD5Þ

cos

�
r3 þ r4

2

�
≤ cos

�
R
2

�
≤ cos

�
r3 − r4

2

�
; ðD6Þ

which is equivalent to

jr1 − r2j ≤ R ≤ min ðr1 þ r2; 4π − r1 − r2Þ; ðD7Þ

jr3 − r4j ≤ R ≤ min ðr3 þ r4; 4π − r3 − r4Þ: ðD8Þ

Conversely, Eqs. (D5) and (D6) or Eqs. (D7) and (D8)
imply the existence of two spherical triangles in S3 sharing
a common edge. The spherical triangles form a 4-gon
whose edges are geodesics in S3 with length ri=2
(i ¼ 1;…; 4). The diagonal of the 4-gon is a geodesic
whose length is R=2. The 4-gon in S3 implies the existence
ofHi¼1;…;4 ∈ SUð2Þ, which satisfyH4H3H2H1 ¼ 1 by the
argument in Sec. III B. ▪

APPENDIX E: DETERMINING ξi’s
FROM θ AND ϕ

It is useful to consider cosðθ24Þ ¼ − 1
2
½TrðH1H−1

4 Þ−
TrðH1ÞTrðH4Þ� ¼ 1

2
TrðH4H1Þ ¼ 1

2
TrðH2H3Þ. The follow-

ing relation holds between ϕ and θ24 [37]:

2 cosðθ24Þ ¼
ðeiϕ þ e−iϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c12ðAÞc34ðAÞ
p

− 2ðm2m3 þm1m4Þ þ Aðm1m3 þm2m4Þ
A2 − 4

; ðE1Þ

where mi ¼ TrðHiÞ and
A ¼ eiθ þ e−iθ; cijðAÞ ¼ A2 þm2

i þm2
j − Amimj − 4: ðE2Þ

For SU(2) flat connections satisfying H4H3H2H1 ¼ 1, we make a partial gauge fixing that H4 ¼ diagðeia4 ; e−ia4Þ,
a4 ∈ ½0; πÞ.13 Thus, as a unit vector in Euclidean R4, vj ¼ ðv0j ; v1j ; v2j ; v3jÞ,

v4 ¼ ðcosða4Þ; 0; 0;− sinða4ÞÞ ðE3Þ

representing H−1
4 . For the triangle ðv1; v3; v4Þ, we use v1 ¼ ð1; 0; 0; 0Þ, hv1; v3i ¼ cosðθ13Þ (θ13 ¼ θ), hv3; v4i ¼ cosða3Þ,

and hv4; v4i ¼ 1 to determine v3,

v3 ¼ ðcosðθ13Þ; 0; v23; v33Þ;
v23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðcsc2ða4Þðcos2ða3Þ þ cos2ðθ13ÞÞÞ þ 2 cosða3Þ cotða4Þ cscða4Þ cosðθ13Þ þ 1

q
;

v33 ¼ cscða4Þðcosða4Þ cosðθ13Þ − cosða3ÞÞ; ðE4Þ

where we use the remaining rotational symmetry (of the 1-2 plane) to fix v13 ¼ 0 and v23 > 0. Then we use
hv1; v2i ¼ cosða1Þ, hv2; v3i ¼ cosða2Þ, hv2; v4i ¼ cosðθ24Þ, and hv2; v2i ¼ 1 to determine v2,

13We use the conjugation εdiagðλ; λ−1Þε−1 ¼ diagðλ−1; λÞ, where εαβ ¼ −εβα and detðεÞ ¼ 1, to fix a4 ∈ ½0; πÞ in λ ¼ eia4 .
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v2 ¼ ðcosða1Þ; v12; v22; cscða4Þðcosða1Þ cosða4Þ − cosðθ24ÞÞÞ;
v12 ¼ �ð2 cosða2Þ cscða4Þðcotða4Þðcosða1Þ cosða3Þ þ cosðθ13Þ cosðθ24ÞÞ − cscða4Þðcosða1Þ cosðθ13Þ

þ cosða3Þ cosðθ24ÞÞÞ þ cscða4Þð−2 cosða1Þ cotða4Þ cosðθ24Þ þ cscða4Þðcos2ðθ13Þ þ sin2ðθ13Þcos2ðθ24ÞÞ
−2 cosða3Þ cosðθ13Þðcotða4Þ − cosða1Þ cscða4Þ cosðθ24ÞÞ þ cos2ða3Þ cscða4Þ þ sin2ða3Þcos2ða1Þ cscða4ÞÞ
þ cos2ða2Þ − 1Þ12ðcsc2ða4Þðcos2ða3Þ þ cos2ðθ13ÞÞ − 2 cosða3Þ cotða4Þ cscða4Þ cosðθ13Þ − 1Þ−1

2;

v22 ¼ 2ðcosða1Þðcosðθ13Þ − cosða3Þ cosða4ÞÞ þ cosðθ24Þðcosða3Þ − cosða4Þ cosðθ13ÞÞ þ sin2ða4Þð− cosða2ÞÞÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðcsc2ða4Þðcos2ða3Þ þ cos2ðθ13ÞÞÞ þ 2 cosða3Þ cotða4Þ cscða4Þ cosðθ13Þ þ 1

q
× ð−4 cosða3Þ cosða4Þ cosðθ13Þ þ cos ð2a3Þ þ cos ð2a4Þ þ cos ð2θ13Þ þ 1Þ−1; ðE5Þ

where � of v12 corresponds to the parity symmetry with respect to the plane of F134 (spanned by the x0, x2, x3 directions in
R4) where v1, v3, v4 leave. Choosing þ or − of v12 is equivalent to fixing the orientation of n123 ∧ n134 since v12 → −v12
transforms as

n123 ∧ n134 → −n123 ∧ n134; where ndijkknijkk ¼ ϵabcdvai v
b
j v

c
k: ðE6Þ

Now all fHig4i¼1 are fixed by

H1 ¼ v2; H4 ¼ v−14 ; H3 ¼ v4v−13 ; H2 ¼ v3v−12 ; ðE7Þ

where vj ¼ v0j I þ i
X3
a¼1

vajσa: ðE8Þ

EveryHi is uniquely determined by ðai; θ13; θ24Þ, where θ24 relates to ϕ by (E1); then ξi is determined up to a scaling as the
eigenvector of Hi for the eigenvalue whose square is e2Lab .

APPENDIX F: CRITICAL EQUATIONS

Derivatives of Sp⃗ are given by

−
2πð1þ b2Þ

ik
∂P⃗S0 ¼ ABT · P⃗ þ Q⃗þ k

ð1þ b2ÞABT · ðP⃗ − b2 ⃗P̃Þ; ðF1Þ

−
2πð1þ b−2Þ

ik
∂ ⃗P̃

S0 ¼ ABT · ⃗P̃ þ ⃗Q̃ −
k

ð1þ b2ÞABT · ðP⃗ − b2 ⃗P̃Þ; ðF2Þ

−
2πð1þ b2Þ

ik
∂P⃗S1 ¼ −B · ðPXa¼1;…;5

; PYa¼1;…;5
; PZa¼1;…;5

ÞT; ðF3Þ

e:g: PZa
≡ log ð1 − e−ZaÞ − log ð1 − eXaþYaþZaÞ; ðF4Þ

−
2πð1þ b−2Þ

ik
∂ ⃗P̃

S̃1 ¼ −B · ðP̃Xa¼1;…;5
; P̃Ya¼1;…;5

; P̃Za¼1;…;5
ÞT; ðF5Þ

e:g: P̃Xa
¼ log ð1 − e−Z̃aÞ − log ð1 − eX̃aþỸaþZ̃aÞ; ðF6Þ

P⃗ ¼ −ðBTÞ−1 · ðXa¼1;…;5; Ya¼1;…;5; Za¼1;…;5ÞT; ðF7Þ

⃗P̃ ¼ −ðBTÞ−1 · ðX̃a¼1;…;5; Ỹa¼1;…;5; Z̃a¼1;…;5ÞT; ðF8Þ

where the branches of the logarithms are the same as the canonical lift in (13).
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We define

X00
a ≔ log ð1 − e−XaÞ; Y 00

a ≔ log ð1 − e−YaÞ;
Z00
a ≔ log ð1 − e−ZaÞ; W00

a ≔ log ð1 − e−WaÞ; ðF9Þ

X̃00
a ≔ log ð1 − e−X̃aÞ; Ỹ 00

a ≔ log ð1 − e−ỸaÞ;
Z̃00
a ≔ log ð1 − e−Z̃aÞ; W̃00

a ≔ log ð1 − e−W̃aÞ; ðF10Þ

such that e.g., z ¼ eZ and z00 ¼ eZ
00

reproduce
z−1 þ z00 − 1 ¼ 0, i.e., the Lagrangian submanifold LΔ ⊂
P∂Δ of framed flat PSLð2;CÞ connections on the ideal
tetrahedronΔ. Here,Wa, W̃a are given by (133). The above
logarithms are defined with the same canonical lifts as
in (13). We define PXa

, PYa
, PZa

and P̃Xa
, P̃Ya

, P̃Za

(a ¼ 1;…; 5) in the same way as (44). Note that Xa, Ya,
Za, PXa

, PYa
, PZa

with Eqs. (F9), (F10), and (133)
parametrize the moduli space of framed flat PSLð2;CÞ

connections on the ideal octahedron octðaÞ made by gluing
four ideal tetrahedra.
The critical equations ∂XI

Sp⃗ ¼ ∂X̃I
Sp⃗ ¼ 0 can be

written in terms of Φ⃗≡ ðXa; Ya; ZaÞ5a¼1 and Π⃗≡
ðPXa

; PYa
; PZa

Þ5a¼1
:

Q⃗0 ¼ A · Φ⃗þB · Π⃗þ 2πiðn⃗þ p⃗Þ; ðF11Þ

⃗Q̃
0 ¼ A · ⃗Φ̃þ B · ⃗Π̃ − 2πiðn⃗þ p⃗Þ; ðF12Þ

where p⃗ ∈ Z15. Up to 2πiðn⃗þ p⃗Þ, the critical equa-
tions (136) and (137) reproduce theQ part of (53), whereas
here Φ⃗ and Π⃗ are related by (F9), (F10), and (44). Note that
the P part of (53) has been reproduced by the relation
between ðXa; Ya; ZaÞ5a¼1 and P⃗ [see above (133)].
For the vertex amplitude Av, the critical equations

∂QI p⃗;s⃗ ¼ ∂Q̃I p⃗;s⃗ ¼ 0 give

2πð1þ b2Þ
k

∂Qa
I p⃗;s⃗ ¼ −iPa þ

ffiffiffi
2

p
bza −

b2ðQ0
a þ Q̃0

aÞ
1þ b2

þQ0
a − b2Q̃0

a

1þ b2
þ ya þ ixa − 2πsa ¼ 0 ðF13Þ

¼ −iPa þ
ffiffiffi
2

p
bza −

2πb
k

μa −
2πi
k

ma þ ya þ ixa − 2πsa ¼ 0; ðF14Þ

2πð1þ b−2Þ
k

∂Q̃a
I p⃗;s⃗ ¼ −iP̃a þ

ffiffiffi
2

p
b−1za −

ðQ0
a þ Q̃0

aÞ
1þ b2

−
Q0

a − b2Q̃0
a

1þ b2
− ya − ixa þ 2πsa ¼ 0 ðF15Þ

¼ −iP̃a þ
ffiffiffi
2

p
b−1za −

2πb−1

k
μa þ

2πi
k

ma − ya − ixa þ 2πsa ¼ 0; ðF16Þ

where μa and ma relate to Q0
a and Q̃0

a by (69). The above equations are solved as

2π

k
μa ¼

ffiffiffi
2

p
ReðzaÞ;

2π

k
νa ¼

ffiffiffi
2

p
ImðzaÞ;

2π

k
ma ¼ xa;

2π

k
na ¼ ya − 2πsa; ðF17Þ

where νa and na relate to Xa and X̃a by (69). Although μa, νa have nonzero imaginary parts, αa ¼ ImðμaÞ, βa ¼ ImðνaÞ are
fixed and do not scale as k → ∞ [whereas ReðμaÞ, ReðνaÞ are not fixed and need to be determined by the critical equations];
thus, we can view μa, νa as real in (F17) as far as the semiclassical limit is concerned. The domain of na has been restricted
to the single period na ∈ ½−δ; k − δ� by (126) (δ > 0 is arbitrarily small), so the last equation implies

sa ¼ 0 ðF18Þ
when ya ∈ ½0; 2πÞ and ya is not infinitesimally close to 0 or 2π.
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