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Black hole formation in a core-collapse supernova is expected to lead to a distinctive, abrupt drop in
neutrino luminosity due to the engulfment of the main neutrino-producing regions as well as the strong
gravitational redshift of those remaining neutrinos which do escape. Previous analyses of the shape of the
cutoff have focused on specific trajectories or simplified models of bulk neutrino transport. In this article,
we integrate over simple null geodesics to investigate potential effects on the cutoff profile of including all
neutrino emission angles from a collapsing surface in the Schwarzschild metric, and from a contracting
equatorial mass ring in the Kerr metric. We find that the nonradial geodesics contribute to a softening of the
cutoff in both cases. In addition, extreme rotation introduces significant changes to the shape of the tail
which may be observable in future neutrino detectors, or combinations of detectors.
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I. INTRODUCTION

The conventional picture of a core-collapse supernova
(CCSN) begins with a large stellar progenitor, with a zero-
age main sequence (ZAMS) mass greater than approxi-
mately 10 solar massesM⊙, collapsing to a neutron star. In
the process, the vast majority of the energy is released in a
burst of neutrinos which escapes the conflagration well
before any electromagnetic radiation. It is expected that
neutrino and dark matter detectors will record an abnor-
mally high rate of neutrino events hours before the super-
nova becomes visible in the sky; this lead time is the
motivation behind the Supernova Neutrino Early Warning
System (SNEWS) [1], which should play a key role in
observing the next galactic CCSN through its neutrino,
gravitational, and electromagnetic “messengers.”
For some stellar progenitors (though the question of which

ones remains debated [2]), the outcomemay be very different,
as the proto-neutron star (PNS)may itself collapse into a black
hole. In such cases, the neutrino (and gravitational wave)
signal may not be followed by a traditional, visible electro-
magnetic signal. One distinctive indication of such an end
result is an abrupt cutoff in the neutrino luminosity. This cutoff
is the result of the black hole engulfing the neutrino-producing
regions of the PNS, and the gravitational redshift of those
which just manage to escape.

The shape of the cutoff was estimated first based on
photons emitted from a free falling, nonrotating mass shell.
A conventional treatment of radial trajectories gives an
exponential decline with a time constant of 4M, where M
is the mass of the black hole [3]. However, late-time behavior
is expected to be dominated by neutrinos trapped for an
extended period around unstable circular orbits near a critical
radius 3M, resulting in a time constant of 3

ffiffiffi
3

p
M [4,5]. In a

CCSN, of course, the photons will be absorbed well before
they escape. Instead, the cutoff would only be evident in the
neutrinos escaping from near the growing black hole [6,7].
Because of uncertainties in the structure of the PNS, it is

unclear how much of the PNS is involved in the creation of
the black hole. It is likely, however, that the event horizon is
formed initially below the surface of the PNS, leaving the
most fertile neutrino production layers outside. If this is the
case, those outside layers will still be emitting neutrinos in
all directions, rather than radially, before they themselves
fall behind the event horizon. Indeed, it was suggested in
[8] that the radial estimate is expected to be an under-
estimate, and that a full treatment would require detailed
ray-tracing through a highly curved spacetime.
Nonetheless, the neutrino cutoff is a compelling feature

of black hole formation within a CCSN because of its
simplicity, distinctiveness, and the fact that it could reflect
events occurring deep within one of the most turbulent and
violent phenomena known in the universe. It can also add
statistical power to triangulating the direction of the CCSN
if observed in several detectors [9–11]. Models of this
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phenomenon are usually the domain of computationally
intensive hydrodynamic simulations which of necessity
simplify neutrino transport to varying degrees, and approxi-
mate or incorporate full general relativity (see, for example,
[12,13]). In many cases, however, black hole formation
heralds the end of validity of such simulations.
In this article, we investigate effects of nonradial geo-

desics on the neutrino cutoff for both nonrotating and
rotating black holes. These idealized trajectories are clearly
a drastic simplification within a complex domain, but as a
toy model can highlight broad features and be a useful check
of more detailed simulations. Null geodesics from collapsing
stars have been investigated in [5,14,15] for photons, as well
as in [16,17] for neutrinos, though in contexts somewhat
different from modern models of a CCSN.
This article is organized as follows: we consider the

appropriateness of these simple trajectories to the core
collapse scenario in Sec. II. Section III concerns time
delays in the nonrotating Schwarzschild metric. The Kerr
metric, for a rotating black hole, is considered in Sec. IV.
The results are summarized and discussed in Sec. V.

II. NEUTRINOS IN AN EVOLVING SPACETIME

The main source of neutrinos in a CCSN is its hot, dense
core. In the initial stages of the core collapse, the core
undergoes rapid neutronization, leading to a burst of νe.
Later stages see the thermal production of all neutrino
flavors within the coalescing PNS as it continues to accrete
matter from the collapsing star. Two scenarios are envis-
aged which result in the formation of black hole [18]: in the
first, the accretion compresses the PNS further until enough
matter is compressed into a small enough radius that the
geodesics of massless particles curve back on themselves,
i.e., an event horizon is formed. In the second, a part of the
PNS undergoes a nuclear phase transition, leading again to
higher densities which form an event horizon.
In either case, it is worth noting that the formation of the

event horizon, and therefore of the black hole itself, is in a
sense a global observable irrelevant to a neutrino travelling
nearby. Assuming that the neutrino can pass through the
environment (a transition which is expected to occur at
some point during PNS cooling), the neutrino is only
sensitive to the local curvature, which is determined by how
mass is distributed around it. As mass is redistributed
around it, generally “inward” in a global sense, its geodesic
bends accordingly. The only indication that a black hole has
formed is that some (but by no means all) paths bend back
on themselves so that they cannot escape.
Moreover, the timescale on which geodesics bend further

is not altogether sudden. It is expected that mass accretion
onto the PNS will be on the order of 1 M⊙=s by the time a
black hole forms [13]. If we take this also as an estimate of
how quickly the black hole grows, then its outermost
circular orbit radius grows at around 3 M⊙=s (using units in
which G ¼ c ¼ 1), or perhaps more intuitively, on the

order of kilometers per second. On the other hand, the
speed of the neutrinos is nearly the speed of light, more
than 105 greater. From this perspective, the slow increase in
the size of the black hole should not significantly affect the
neutrino path.

III. TIME DELAYS IN THE SCHWARZSCHILD
GEOMETRY

We first consider neutrinos being emitted (or undergoing
their last scatter before escaping) from a shell of matter
free-falling radially inward toward a nonrotating black
hole. We start from the Schwarzschild metric in the
standard coordinates ðt; r; θ;ϕÞ,

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2dθ2 þ r2 sin2 θdϕ2; ð1Þ

where M is the mass of the black hole. The geodesic
solutions are well known, but we summarize them here.
Since the metric is spherically symmetric, the geodesics

lie in an equatorial plane, for which we choose θ ¼ π
2
.

The conserved quantities associated with the metric’s two
Killing vectors are

E ¼ −gαβ
� ∂
∂t
�

α
� ∂
∂τ
�

β

¼ CðrÞ dt
dτ

ð2Þ

L ¼ gαβ

� ∂
∂ϕ

�
α
� ∂
∂τ
�

β

¼ r2
dϕ
dτ

ð3Þ

where τ is the proper time of the neutrino, and

CðrÞ ¼
�
1 −

2M
r

�
: ð4Þ

For massive particles, E and L can be interpreted as energy
and angular momentum per unit mass.

A. Neutrino propagation time

The emitting matter starts from rest at an initial radius r0,
from which it free-falls. In this case, L ¼ 0 and we have�

dr
dt

�
2

¼
�
1 −

C
C0

�
C2; ð5Þ

where C0 ≡ Cðr0Þ. For the paths of the nearly massless
neutrinos, we use null geodesics (in which case τ is
technically the affine parameter rather than the proper
time). The geodesics are solutions of the equation

�
dr
dt

�
2

¼
�
1 −

2M
r

�
2
�
1 −

b2

r2

�
1 −

2M
r

��
; ð6Þ
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where b≡ L=E is the impact parameter as observed by a
distant observer.
In our model, neutrinos are emitted isotropically in the

frame comoving with the emitter, which we will refer to as
the “free-falling” (FF) frame. The emission direction in the
free-falling frame is directly related to the impact parameter
defined above via the frame of an observer static at the
radius at which the emission occurs. We denote this “static”
frame as S.
In the S frame, the (inward) speed of the emitting

surface is

βS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

C
C0

s
: ð7Þ

The radial velocity of the neutrino upon emission is

�
dr
dt

�
S
¼ cosψS ¼ σr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2

�
1 −

2M
r

�s
; ð8Þ

where ψS is the angle relative to the radial outward
direction as measured in the static frame; and σr is þ1
for an outward trajectory, and −1 for an inward trajectory,
again as measured in the static frame. The radial velocity
can be identified simply as cosψS, since for null geodesics
the total velocity is always c ¼ 1. This identification also
applies to all other frames.
The corresponding emission angle ψFF in the FF frame

is then related to ψS through velocity addition,

�
dr
dt

�
FF

¼ cosψFF ¼ cosψS þ βS
1þ βS cosψS

: ð9Þ

In this way, a value of b can be calculated given an emission
angle ψFF. From Eqs. (8) and (9), one can clearly see that
radial emission corresponds to b ¼ 0.
Integrating Eq. (6) results in the following expression for

the travel time along the geodesic:

Tðb; r�; rEÞ ¼
Z

rE

r�

r5=2dr

ðr − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − b2ðr − 2MÞ

p ; ð10Þ

where r� is the emission radius, and rE is the distance to the
Earth. This expression can be simplified for the case of
radial emission

Tðb ¼ 0; r�; rEÞ ¼
Z

rE

r�

rdr
r − 2M

¼ ðrE − r�Þ þ 2M ln

�
rE − 2M
r� − 2M

�
: ð11Þ

Figure 1 shows two cases to consider when calculating
the time delay of a neutrino. For a neutrino emitted in an

outward direction (in the static frame S), the time delay
relative to the travel time of radial emission from the initial
radius is

ΔTþðb; r�Þ ¼ Tðb; r�; rEÞ − Tð0; r0; rEÞ: ð12Þ

If, on the other hand, the neutrino is emitted in an inward
direction, it first acquires a Shapiro-like time delay as it
passes the periapsis. The travel time is then

ΔT−ðb; r�Þ ¼ 2Tðb; rp; r�Þ þ ΔTþðb; r�Þ; ð13Þ

where rp is the periapsis distance

rp ¼ 2bffiffiffi
3

p cos

�
1

3
arccos

�
−

ffiffiffiffiffi
27

p
M

b

��
: ð14Þ

The observation time tE of a neutrino emitted at time t�
from the shell at radius r� can then be written as

tE ¼ t� þ ΔT�ðb; r�Þ: ð15Þ

It is evident from the integrand in Eq. (10) that not all
neutrinos escape to large distances. There are two con-
ditions in which the integrand diverges: r ¼ 2M and
r3 ¼ b2ðr − 2MÞ. The first condition gives the event
horizon, while the second condition defines the so-called
“photon sphere” at r ¼ 3M, for which paths with the
“critical impact parameter” bcrit ≡ 3

ffiffiffi
3

p
M follow an unsta-

ble circular orbit. Outside the photon sphere, all outward
geodesics, along with inward geodesics with impact
parameters satisfying

bcrit < b ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3

r − 2M

r
; ð16Þ

are able to reach infinity. Between the photon sphere and
the event horizon, only outward geodesics with b < bcrit
reach infinity. Figure 2 shows these “escape cones” (the
opposite of Chandrasekhar’s “cones of avoidance” [19]).

Emission
position

r* r*

Inward

Outward

Periapsis

FIG. 1. Inward and outward trajectories for neutrinos emitted
outside the photon sphere. Outward trajectories escape directly,
while inward trajectories reach periapsis before joining the
outward trajectory.
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The dependence of the time delay on emission angle is
shown in Fig. 3, for a surface initially at rest at radius 10M
and falling toward a black hole of massM ¼ 2.5 M⊙. Since
ψFF ¼ 0 is defined as the outward radial direction, its time
delay is zero by definition. The delay increases with devia-
tion from the radial direction, and diverges as the periapsis
radius approaches the photon sphere radius.Moreover, as the
emitting shell of matter falls, its velocity increases and soon
reaches speeds which are sizable fractions of c; in the given
configuration, the emitters reach a free-fall speed of 0.31c at
radius 4.3M, and pass the photon sphere in 0.55 ms.

B. Luminosity profile

The cutoff profile of the luminosity as a function of
observation time tE is governed by the number of neutrinos
reaching the observer as well as by their redshift [5]

ζðb; r�; σrÞ ¼
νE
ν�

¼
ffiffiffiffi
C

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2S

p
1þ βS cosψS

; ð17Þ

where ν� and νE are the neutrino energies at emission and
upon observation at the Earth. The first factor of Eq. (17)

is the gravitational redshift, assuming rE ≫ r�, and the
second factor the Doppler shift. Figure 4(a) shows the
redshift factor for outward radial emissions (b ¼ 0) and
“critical emissions” (those with b ¼ bcrit) as a function of
their observation times, relative to the arrival of the first
neutrino from the shell’s initial radius. The profiles take the
form of exponentials with a possible offset,

Ae−t=τðtÞ þ B: ð18Þ
We refer to τðtÞ as the “decay parameter” at time t, or as
the “(decay) time constant” when it is indeed constant. The
decay parameter is shown in Fig. 4(b). At late times, the
radial redshift curve approaches a decay parameter value of
4M, consistent with the standard result [3]. The redshift
curve for critical emissions, on the other hand, flattens out
as the shell approaches the circular orbit at radius 3M; this
feature is analogous to the “photon cloud” of [5]. If we
subtract off the asymptotic offset, we are left with an
exponential-like attenuation with a decay parameter which
approaches 3

ffiffiffi
3

p
M, which is the result of [4,5]. Inside

radius 3M, the critical emissions fall outside the escape
cone and do not reach a distant observer.
The energy contribution at observation time tE of

neutrinos emitted at other angles from radius r and time
t, with impact parameter b, can be written as

dϵðtEÞ ¼ ζðb; r; σrÞ ×
L0 · dt
4πr2

× r2dΩ; ð19Þ

where dΩ is the solid angle element of the emitting
shell, and L0 is the total luminosity of the surface. It is

2M

r

3M

FIG. 2. Schematic view of the escape cones (unshaded region)
for null geodesics in Schwarzschild spacetime. At r� ¼ 2M, only
radial geodesics can escape. For 2M < r� ≤ 3M, only outward-
oriented geodesics are able to escape. Beyond r� ¼ 3M, some of
the inward-oriented geodesics can also escape to infinity.
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p
M, dashed/green line) plotted against

observation time for a 2.5 M⊙ Schwarzschild black hole. The
curves are calculated for a shell falling from 10M to 2.1M (for
b ¼ 0) or 3M (for b ¼ bcrit). The observation time is taken
relative to the observation of the first neutrino received from the
shell when it was at 10M. The dashed black line in (a) is the
redshift at the unstable circular orbit at r ¼ 3M.
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assumed that the total luminosity is constant throughout
the collapse.
We evaluate the luminosity as a function of observed

time using a simple ray-tracing Monte Carlo model. At
each step in coordinate time t, we simulate a fixed number
of isotropic neutrino emissions from the collapsing shell.
The emission angle is used to calculate the impact
parameter b, the corresponding observation time tE (if
finite), and the redshift factor ζ. Moreover, we simplify the
simulation further in light of its spherical symmetry by
simulating emissions from only one point on the shell, and
counting neutrinos at radius rE, regardless of where the
neutrino intersects the outer sphere. The results are shown
in Fig. 5 for initial radii r0 ¼ 10M and 5M: there is a slow
drop in the luminosity for several tenths of ms, followed by
a steepening which rapidly approaches a decay parameter
of 3

ffiffiffi
3

p
M. The 3

ffiffiffi
3

p
M decay parameter thus characterizes

much of the cutoff rather than only the very end, where
dominance by critical emissions near r ¼ 3M has long
been expected [8]. Moreover, it is evident that consider-
ation of all emission directions softens the overall cutoff:
Fig. 6, for example, shows that at all times, the decay
parameter of the full emissions curve exceeds even that of
critical emissions.
It should be noted that Fig. 5 shows the result of all the

neutrinos emitted from the collapsing shell and escaping to
large distances, i.e., the surrounding medium is transparent
to the neutrinos. If, on the other hand, the inner medium is
assumed to be completely opaque to neutrinos, then only
those neutrinos emitted outwards in the free-falling frame
FF will escape. The cutoff profiles of this “opaque shell”
scenario are shown in Fig. 7. The difference between the
opaque shell scenario and that of allowing only outward
emissions in the static (S) frame is the effect of neutrinos

which appear in S to be directed inward, but actually lag
behind the collapsing shell and the opaque medium beneath
it. In the end, the opaque shell scenario is a small
modification on that of full emission, and only introduces
minor changes to the decay timescale.

C. Shells not in free fall

The opaque shell is one starting point for introducing
more realism into this toy model. For instance, we can
reduce the shell’s proper acceleration by a constant factor f
to mimic residual pressure support. The proper velocity
will be

dr
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðC0 − CÞ

p
; ð20Þ
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radial (dotted) emissions for initial radii r0 ¼ 10M (black) and
5M (orange). The profiles are normalized to 1 at tE ¼ 0. The late
time behaviors approach falling exponentials with time constant
3
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3

p
M, which are indicated with black dotted-dashed lines.
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and the velocity observed in the static frame S will be

βS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C0 − C
C0 þ ðf−1 − 1ÞC

s
: ð21Þ

The resulting luminosity profile for f ¼ 1=4, correspond-
ing to a doubling of the collapse time relative to the free fall
case, is shown in Fig. 8. The slower velocity profile results
in the extension of the slow drop by approximately 0.8 ms
before the onset of the rapid decay. In order to compare the
rapid decays, we shift the times so that the luminosity
profiles meet where they have decreased to 1% of their
starting value; the result is shown in Fig. 8. The quarter free
fall decay parameter profile starts from a higher value and
decreases more gradually throughout (the hump near the
beginning of the free fall profile is due to the increasing
contribution of inward trajectories). Once the rapid decay
begins, however, it approaches a decay parameter 3

ffiffiffi
3

p
M in

a manner very similar to the free-fall case.
Another variation of the opaque shell model is to allow

the shell radius to fall at a speed different from that of the
emitters themselves. In this case, the shell is defined by
the radius below which the material is dense enough
that the emitted neutrino is expected to scatter or be
absorbed. The emitters, on the other hand, fall through
this radius as they emit. The values of shell radii and emitter
velocities as a function of time come from outside the
present toy model, and here we use values from a GR1D
[20] general relativistic hydrodynamic simulation, with
modern neutrino transport and interaction rates, of a
40 M⊙ progenitor model [21] (with the Lattimer &
Swesty equation of state with K0 ¼ 220 MeV), collapsing

to a 2.25 M⊙ black hole [12]. The shell is defined by
density ρ ¼ 1011 g=cm3, and simulations have been carried
out until the shell has fallen from roughly 7M to 3.5M,
when the simulation ends; the maximum falling speed the
shell attains is approximately 0.35c. When the simulation
ends, neutrino emission is stopped, though emitted neu-
trinos which can escape are propagated to the observer.
The resulting profiles are shown in Fig. 9. The luminosity
profile remains flatter for longer when compared with the
free fall case, but in the end the decay parameter still
approaches 3

ffiffiffi
3

p
M, the result of neutrinos emitted inwards

(though not absorbed by the receding opaque shell) and
subsequently trapped near radius 3M.

IV. TIME DELAYS IN THE KERR GEOMETRY

In this section, we examine time delays in the Kerr
geometry starting from the formulation of [22], which is
summarized here. The metric in Boyer-Lindquist coordi-
nates ðt; r; θ;ϕÞ is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4aMr sin2 θ
Σ

dtdϕþ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Mra2 sin2 θ

Σ

�
sin2 θdϕ2;

ð22Þ

where J is the angular momentum of the black hole and

a≡ J
M

ð23Þ

Δ≡ r2 þ a2 − 2Mr ð24Þ
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Σ≡ r2 þ a2 cos2 θ: ð25Þ

The Kerr metric is axially symmetric, and, unlike in the
Schwarzschild case, its geodesics do not in general lie in a
plane. Geodesics are characterized by three constants: E
and L of Eqs. (2) and (3), which are shared with the
Schwarzschild case; andQ, the Carter constant [23], which
can be said to characterize nonplanar motion. The equa-
tions of motion in these coordinates are

Σ
E

�
dt
dτ

�
¼ 1

Δ
ðA − 2MrabÞ

Σ
E

�
dϕ
dτ

�
¼ b

sin2 θ
þ a
Δ
ð2Mr − abÞ

Σ
E

�
dθ
dτ

�
¼ σθ

ffiffiffiffi
Θ

p

Σ
E

�
dr
dτ

�
¼ σr

ffiffiffiffi
R

p
; ð26Þ

with the useful shorthands

Θ≡ q − cos2θ

�
b2

sin2θ
þ a2

�
μ

E2
− 1

��

R≡ ððr2 þ a2Þ − abÞ2 − Δ
�
μ

E2
r2 þ qþ ða − bÞ2

�
A≡ ðr2 þ a2Þ2 − a2Δsin2θ; ð27Þ

where μ ¼ 0 gives null and μ ¼ 1 timelike geodesics, and
σr and σθ indicate the direction of motion relative to the r
and θ axes. We define impact parameters b≡ L=E, as
before, and q≡Q=E2. Radial directions coincide with
b ¼ q ¼ 0. We also identify corotating geodesics with
b > 0, and counter-rotating with b < 0.

A. Neutrino propagation time

As with the nonrotating case, we model a thin shell of
emitting matter falling freely from rest from an initial radius
r0. Instead of the frame of a static observer, we use the
locally nonrotating frame (LNRF) [24]. An observer static
in the LNRF is known as a zero angular momentum
observer (ZAMO), as its four-velocity gives L ¼ 0.
The free-falling emitter in the Kerr geometry coincides

with the ZAMO at r ¼ r0, at which location the emitter is
initially at rest. Since, in the LNRF,

�
dt
dτ

�
LNRF

¼
ffiffiffiffiffiffiffi
A
ΣΔ

r
; ð28Þ

one finds the constants of motion

Q ¼ a2ð1 − E2Þ cos2 θ ð29Þ

and

E ¼
ffiffiffiffiffiffiffiffiffiffiffi
Σ0Δ0

A0

s
; ð30Þ

where Σ0 ¼ Σðr0Þ, Δ0 ¼ Δðr0Þ and A0 ¼ Aðr0Þ. In the
coordinates of the distant observer,

dr
dt

¼ Δffiffiffiffi
A

p ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ΣΔ=A
Σ0Δ0=A0

s
ð31Þ

which in the LNRF becomes

�
dr
dt

�
LNRF

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ΣΔ=A
Σ0Δ0=A0

s
: ð32Þ

These correspond to the velocities in Eqs. (5) and (7). For
convenience in this section, we repurpose the subscript S to
represent the quantities observed in the LNRF. The velocity
in Eq. (32) will therefore be denoted as βS.
As before, we relate the emission angles in the free-

falling frame FF to constants of the neutrino’s subsequent
geodesic. The angle ψS is defined relative to the outward
radial direction in the LNRF,

�
dr
dt

�
LNRF

¼ cosψS ¼
σr

ffiffiffiffiffiffiffi
RA

p

A − 2Mrab
: ð33Þ

The corresponding angle ψFF in the FF frame can then be
written in the same form as Eq. (9).
In the Kerr case, however, geodesics are not necessarily

planar, and we define an out-of-plane angle η as the
azimuthal angle around the outward radial direction as
the axis, with η ¼ 0 denoting the positive θ direction. In
this way, η ∈ ½0; πÞ indicates a trajectory corotating with
the black hole, and η ∈ ½π; 2πÞ counterrotating. In the
LNRF, this definition gives

�
r
dθ
dt

�
LNRF

¼ sinψS cos ηS ¼
σθ

ffiffiffiffiffiffiffiffiffiffi
ΘΔA

p

A − 2Mrab
; ð34Þ

whereas in the FF frame,

�
r
dθ
dt

�
FF

¼ sinψFF cos ηFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2S

p
sinψS cos ηS

1þ βS cosψS
:

ð35Þ

Hence, for a given direction ðψFF; ηFFÞ in the FF frame,
we calculate the quantities
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B≡ a2 −
Δ

sin2 θ
κ2 ≡ ðυrÞ2S þ ðυθÞ2S ¼ cos2 ψS þ sin2 ψS cos2 ηS

ðυrÞS ¼ cosψS ¼
cosψFF − βS
1 − βS cosψFF

ðυθÞS ¼ sinψS cos ηS

¼ sinψFF cos ηFFð1þ βS cosψFFÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2S

p ; ð36Þ

from which we calculate the constants of the neutrino path

b ¼ Að2Mrað1 − κ2Þ − σb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − κ2Þð4M2r2a2 − ABÞ

p
Þ

AB − 4M2r2a2κ2
;

ð37Þ

where σb ≡ b=jbj is the rotating direction relative to the
rotation of the black hole, and

q ¼ cos2 θ

�
b2

sin2 θ
− a2

�
þ sin2 ψS cos2 ηS

ðA − 2MrabÞ2
ΔA

:

ð38Þ

We can now calculate the travel time in a manner similar
to Eq. (10) using the integral

Tðb; q; r�; a; rEÞ ¼
Z

rE

r�

A − 2Mrab

σr
ffiffiffiffi
R

p
Δ

dr: ð39Þ

Since the integrand has an implicit dependence on θ via A,
we propagate both r and θ along the geodesic by equating
integrals of the last two equations of Eq. (26):

Z
r

r�

dr

σr
ffiffiffiffi
R

p ¼
Z

θ

θ�

dθ

σθ
ffiffiffiffi
Θ

p : ð40Þ

For null geodesics, the θ integral is evaluated with

Z
θ

θ�

dθffiffiffiffi
Θ

p ¼
Z

cos θ

cos θ�

−d cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ ða2 − q − b2Þcos2θ − a2cos4θ

p :

ð41Þ

The time delays are calculated in the same fashion as
Eqs. (12) and (13), albeit with an extra dependence on q.
For the inward case, the periapsis is the largest real root of
R at some given b and q.
The escape conditions for the Kerr metric are more

complicated than those for the Schwarzschild metric and
entail a number of cases which are tabulated in [25] for a
full Kerr space and [22] for a disc model.

B. Luminosity profile

Following the same procedure for deriving the gravita-
tional redshift in the Schwarzschild case, we find the
gravitational redshift to be

νE
νS

¼
ffiffiffiffiffiffiffi
ΣΔ
A

r
; ð42Þ

where νE and νS are the energies observed on Earth and in
the LNRF at the emission position. The total redshift factor
is then

ζðb; q; r�; θ�; σrÞ ¼
νE
ν�

¼
ffiffiffiffiffiffiffi
ΣΔ
A

r
×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2S

p
1þ βS cosψS

; ð43Þ

where ν� is the neutrino energy in the FF frame of the
emitter.
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FIG. 10. Time delays (color or gray scale, in units of milli-
seconds), relative to that of the radial direction, as a function
of the emission direction in the FF frame, at different emission
radii for a collapsing ring around a rotating black hole. The
white region at large ψFF indicates nonescaping directions; in
some areas the black region, which always borders on a white
region, is too narrow to show up in the figure. The black hole
mass is M ¼ 2.5 M⊙, and the ring starts from rest at r0 ¼ 10M.
Top row: subextremal rotation a ¼ 0.5M. Bottom row: extremal
rotation a ¼ M.
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We use the same ray-tracing Monte Carlo approach as
before. In order to reduce the simulation time, however, we
only calculate results for emissions from a contracting ring
of matter in the equatorial plane. Figure 10 shows the time
delays (relative to that of radial emission from the given
radius) as a function of ψFF and ηFF, for rotation param-
eters a ¼ 0.5M and a ¼ M. The rotation in each case is in
the direction of increasing azimuthal angle ϕ. Rotation
introduces an asymmetry in ηFF: at a given ψFF, counter-
rotating geodesics, with ηS ∈ ðπ; 2πÞ, tend to undergo
longer delays (note that the white regions in Fig. 10 indicate
trajectories with above-critical impact parameters, i.e.,
diverging escape times). The delay is especially long
for initially counter-rotating geodesics reversing direction

before escaping, as illustrated in one example in Fig. 11.
A further example of the effect of such geodesics is shown
in Fig. 12, which shows the redshift curve and decay
parameter, as a function of observation time, for emissions
with b ¼ 2M and q ¼ 3M2 originating near the horizon at
r ¼ M of an extremal Kerr black hole. As seen in the decay
parameter curve, such geodesics “leak” out very slowly
compared to the usual cutoff timescale of Oð0.1Þ ms in a
manner similar to the leakage from the Schwarzschild black
hole’s “photon sphere” at r ¼ 3M.
The resulting cutoff profile is shown in Figs. 13 and 14.

The long tail is not very evident in the subextremal case of
a ¼ 0.5M, but in the extremal case of a ¼ M, the modi-
fication of the cutoff is more significant. It is also evident
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FIG. 11. An example geodesic for a particle emitted close to the
event horizon of a rotating black hole. This geodesic is classified
as “counterrotating” due to strong local frame dragging near the
horizon, i.e., the trajectory is opposite the direction of rotation in
its LNRF, though not in the coordinate system of a distant
observer.
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(a ¼ M) Kerr black hole.
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from Fig. 14 that the modification is mostly due to those
geodesics which are emitted inwards in the LNRF, but are
outward in the FF frame. Unlike in the nonrotating case,
the decay parameter of the tail does not approach a limiting
value, but rather continues to increase in a manner which
may be noticeable even before the time the neutrinos are
redshifted below detectable energies.

V. SUMMARY AND DISCUSSION

We have investigated the contribution of nonradial
neutrino emissions to the shape of the neutrino cutoff
expected upon the formation of a black hole within a core-
collapse supernova. Our toy calculations, based on ray-
tracing null geodesics from contracting matter shells or
rings, show for the Schwarzschild case the cutoff starting
with a slow decrease in luminosity over several tenths of
milliseconds, depending on the model of the shell and
emitters’ velocities, followed by a rapid decrease which
approaches an exponential decay with time constant
3

ffiffiffi
3

p
M, a value calculated in the 1960s by Podurets [4]

and Ames and Thorne [5]. The 3
ffiffiffi
3

p
M time constant

features in the luminosity profiles across different mod-
ifications to the model, indicating that all such models end
up with neutrinos slowly leaking from near the radius 3M.
If this part of the cutoff can be resolved in time, it would
represent an independent handle on the mass of the newly
formed black hole.
We estimate how many neutrino events may be available

for resolving the time constant by integrating a simple
exponential tail, as if the cutoff begins abruptly rather
than turning over a “knee” as seen in Fig. 7 and elsewhere.
We use the 40 M⊙ model from Sec. III C, observed
at a distance of 10 kpc. Event rates for several neutrino
detectors can be found in Fig. 3 of [26]. Super-Kamiokande
[27] and JUNO [28] may be expected to see an event rate of
around 15 per ms before the cutoff, followed by a tail of
approximately 0.7 events. This yield is unlikely to result in
a measurement but is large enough that it introduces a
systematic uncertainty in how well the cutoff can be

localized in time; this uncertainty would then feed into
applications such as using the observed cutoff in several
detectors to triangulate the direction to the CCSN. On the
other hand, the estimated event rate for Hyper-Kamiokande
[29] before the cutoff is around 100 events per ms, followed
by a tail of 5 events, which may indeed give a crude value
even after taking into account the uncertainty in when the
exponential cutoff begins. It should be noted, however, that
these events likely will be mixed with those of other effects,
among them an “echo” of neutrinos scattering off infalling
material which is explored in a companion work [26].
In the Kerr case, we see that even for rotations as large as

a ¼ 0.5M, the nonradial geodesics appear to introduce a
small delay to the cutoff, but do not otherwise noticeably
modify the tail or its time constant. For extreme rotation,
however, the neutrino leakage from near the horizon
extends the tail significantly, and doubles the number of
events expected to be observed. Even though the extreme
rotation case is usually considered to be unlikely, it high-
lights the desirability of resolving the shape of the cutoff,
not just to measure rotation, but also to gauge the validity of
using the time constant as a mass measurement.
Even though this study is very simplistic, it suggests that

if there is an abrupt drop in the neutrino emission from a
CCSN, signaling the formation of a black hole, it is worth
examining the shape of the cutoff in more detail from both
theoretical and observational perspectives. The advent of
the next generation’s larger detectors, as well as the
combination of detectors via SNEWS, puts such measure-
ments tantalizingly within reach.
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