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In this work, taking the QED effect into account, we investigate the shadows of the Kerr black holes
immersed in uniform magnetic fields through the numerical backward ray-tracing method. We introduce a
dimensionless parameterΛ to characterize the strength of magnetic fields and study the influence of magnetic
fields on the Kerr black hole shadows for various spins of the black holes and inclination angles of the
observers. In particular, we find that the photon “hairs” appear near the left edge of the shadow in the presence
of magnetic fields. The photon hairs may be served as a signature of the magnetic fields. We notice that the
photon hairs become more evident when the strength of magnetic fields or the spin of the black hole becomes
larger. In addition, we study the deformation of the shadows by bringing in quantitative parameters that can
describe the position and shape of the shadow edge.
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I. INTRODUCTION

Black holes play a very important role in understanding
the nature of gravity and spacetimes. As technology
improves, people are now able to hear black holes through
LIGO and Virgo [1], and to see black holes with the help of
the Event Horizon Telescope (EHT) [2]. In particular, the
image of the supermassive black hole at the center of M87
galaxy has the up-down asymmetry, that is, a prominent
rotationally-symmetric mode, which suggests that the black
hole has to be spinning. Up to now, the best model
mimicking a real rotating black hole in our Universe is
generally considered to be the Kerr spacetime. With the
confidence and motivation given by the observational
images of black holes, theoretical research has been widely
carried out in recently years. Inspired by the pioneer works
[3,4], people have studied the observational signatures of
supermassive objects on many aspects including the shad-
ows [5–17], the images of companion stars [18–21], the
photon rings [22–29], etc., [30–42].
Recently, almost two years after the first picture was

released in 2019, the EHT Collaboration published the
polarized image of M87�, from which we can clearly see
that there is an extra twisting polarization pattern for the
bright ring compared to the first image [43]. Since in

magnetic fields the polarization of photons would rotate
as in Faraday effects, it has been argued that the polarized
image should be caused by the synchrotron radiation of
innermost charged particles of the accretion disk moving in a
magnetic field. Thus the polarized image of M87� indicates
that, around the black hole, there must exist a strong
magnetic field [44] and the polarization structure depends
on both the spacetime and the magnetic fields around a
black hole.
As we know, classically the magnetic fields do not affect

the trajectories of photons, so that black hole shadows
formed by countless light traces are only directly determined
by the spacetime structure. However, in practice there are a
few indirect ways through which the magnetic fields can
affect the motion of the photons. One obvious way is that
if the magnetic field is strong enough, its reaction to the
spacetime should be taken seriously such that the back-
ground metric would be changed. Consequently the motions
of the photons get modified as well. Along this line, in
[45,46], the authors have investigated the Schwarzschild
and the Kerr black hole shadows in the Melvin magnetic
field. The advantage of this analysis is that the influence of
the magnetic field on the black hole shadows can be easily
studied, whereas, the spacetime in a Melvin magnetic field is
not asymptotically flat any more.
In this paper, we study the influence of themagnetic fields

on the Kerr black hole shadow in an alternative way, which
has been discussed in our previous paper [47] in the context
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of a static black hole. As we know, astronomical black holes
in realityarealwaysexpected toberotatingandtheKerrblack
hole solution has been considered as the most competitive
model to mimic a real black hole in the Universe. Thus, it is
necessary to generalize our previous work [47] to the Kerr
black holes. In addition, compared to the Schwarzschild
black holes, the shadows of the Kerr black holes have much
richer structures. Therefore, it is also interesting to see how
magnetic fields affect the shadows when the spin of a black
holebecomessignificant.Moreover, asmentionedabove,we
focus our attention on the situationwhere themagnetic fields
are not strong enough tomodify the geometry of background
spacetime; instead, our strategy is to take the quantum
electrodynamics (QED) effect on the photons into account.
In this case, by including the birefringence [48,49] induced
by the QED effect, the motions of massless particles would
deviate from the geodesics if the black hole is immersed in a
magnetic field, and nowwe are able to investigate the effects
of magnetic fields on the Kerr black hole shadows. In this
work, we pay attention to the Kerr black holewith a uniform
magnetic field outside the horizon. Using the numerical
backward ray-tracing method, we investigate the Kerr black
hole shadows under the influence of the magnetic field. In
particular, we show that with increasing magnetic fields
or increasing spin, the photon hairs appearing near the left
edge of the shadow, which could be taken as a signature of
the magnetic field, become more evident. Furthermore, we
introduce six parameters to characterize the edges of the
shadows, and quantitatively calculate the deformations of
the shadow edges affected by the uniform magnetic field.
The remaining parts of this paper is organized as follows.

In Sec. II we give a brief review on the dispersion relations
induced by the QED effect and derive the equations of
motion. In Sec. III we study the shadows of Kerr black
holes immersed in the uniform magnetic fields in detail. In
Sec. IV we summarize our results. In this work, we have set
the fundamental constants c, G, the vacuum permittivity ε0,
and the mass of the black holeM to unity, and we will work
in the convention ð−;þ;þ;þÞ.

II. DISPERSION RELATIONS AND EQUATIONS
OF MOTION

As shown in our previous paper [47], the action
involving the electromagnetic gauge potential minimally
coupled to gravity takes the form

I ¼
Z

d4
ffiffiffiffiffiffi
−g

p �
1

16π
Rþ Leff

�
; ð2:1Þ

where Leff is the Euler-Heisenberg effective Lagrangian for
the electromagnetic field which can describe the one-loop
vacuum polarization and reads

Leff ¼ −
1

4
FμνFμν

−
μ

2

�
5

4
ðFμνFμνÞ2 − 7

2
FμνFστFμσFντ

�
; ð2:2Þ

and the coupling constant is defined as

μ ¼ ℏe4

360π2m4
e
; ð2:3Þ

where me is the electron mass and e denotes the charge of
the electron. After straightforward and standard calculations,
one can obtain the dispersion relation and the effective
metric given as follows:

0 ¼ pαpβðgαβ þ XαβÞ; ð2:4Þ

Gαβ ¼ gαβ þ Xαβ; ð2:5Þ

where pα is the momentum of the photon, and a new tensor
Xαβ ≡ λFμ

αFμβ was introduced for simplicity with λ ¼ −8μ
or −14μ giving two different polarizations of the photons.
With the above effective metric, one can define the dual

vector qμ as Gμνpν. Then the conjugate variables ðxμ; qμÞ
would satisfy the canonical equations as follows:

_qμ ¼ −
∂H
∂xμ ; _xμ ¼ ∂H

∂qμ ; ð2:6Þ

H ¼ Hðqμ; xμÞ ¼ GμνðxÞqμqν: ð2:7Þ
Wewant to stress that here we useGμν to denote the inverse
matrix of Gμν, other than GμνðxÞ ¼ gμρgνσGρσ. That is, we
have GμνGνσ ≡ δμσ.

III. SHADOW OF KERR BLACK HOLES IN THE
UNIFORM MAGNETIC FIELD

In this section we focus on a specific case that the Kerr
black hole is immersed in the uniform magnetic field. The
uniform magnetic field we are interested in is assumed to be
not very strong, so that we are allowed to ignore the back-
reaction from the magnetic field to the Kerr metric. The Kerr
metric in the Boyer-Lindquist coordinate takes the form

gμνdxμdxν ¼ −
�
1 −

2r
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ 1

Σ
½ðr2 þ a2Þ2 − Δa2 sin2 θ� sin2 θdϕ2

−
4ar
Σ

sin2 θdtdϕ; ð3:1Þ

where

Δ ¼ r2 − 2rþ a2; Σ ¼ r2 þ a2cos2θ: ð3:2Þ
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We consider a stationary uniform magnetic field, which is
independent of the coordinates t and ϕ. The gauge field Aμ

can be solved from the source-free Maxwell equations, that
is, ∇μFμν ¼ 0. An elegant procedure to find the solutions
was first presented in [50]. And, the nonzero components of
the gauge field Aμ read

At ¼ −
aBr
Σ

sin2 θ − 2aB

�
1

2
−
r
Σ

�
;

Aϕ ¼ B
Σ
½ðr2 þ a2Þ2 − Δa2 sin2 θ� sin2 θ − 2a2Br

Σ
sin2 θ:

ð3:3Þ

Here in our notation we have set the mass of the black hole
to be unity, hence a can be directly treated as the angular
momentum of the Kerr black hole.
Then from Eq. (2.5), we can obtain the effective metric.

However, the explicit forms of the components of Gμν are
too complicated to be written down here, and we leave
them to Appendix. Based on the effective metric, we
would like to determine the motions of the photons using
the Hamilton-Jacobi equation

GμνðxÞ ∂S∂xμ
∂S
∂xν ¼ 0: ð3:4Þ

After some calculations, one can easily see that the system is
nonintegrable due to the lack of the symmetry associated
with the Carter constant. Thus in order to figure out the
shadow structure of the effective black hole, we have to turn
to the numerical backward ray-tracing method which has
been introduced in detail in the paper [47]. In the present
work, we would not like to bore the readers with the details
of the numerical backward ray-tracing method. Instead, let
us review the essential points of the method.
Roughly speaking, we use spherical illumination to obtain

the image of the black hole in the backward ray-tracing
method. We place a ball-like extended source at infinity to
illuminate the system and the black hole and the camera are
inside the ball-like source. Furthermore, we divide the ball
into grids with a network made of latitudinal and longi-
tudinal lines. Each grid is assigned a color standing for four
symmetric parts of the celestial sphere. In addition, we
employ the fish-eye camera model to photograph the Kerr
black hole. The local rest frame of the camera we use is the
usual zero-angular-momentum-observer (ZAMO) tetrad
which takes the following form,

e0 ¼
gϕϕ∂t − gϕt∂ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðg2ϕt − gϕϕgttÞ

q ; ð3:5Þ

e1 ¼ −
∂rffiffiffiffiffiffi
grr

p ; ð3:6Þ

e2 ¼
∂θffiffiffiffiffiffi
gθθ

p ; ð3:7Þ

e3 ¼ −
∂ϕffiffiffiffiffiffiffigϕϕ

p : ð3:8Þ

In the ZAMO frame, the electromagnetic field in the
background can be written as

XðaÞðbÞ ¼ Xμνe
μ
ðaÞe

ν
ðbÞ: ð3:9Þ

On the other hand, we use the stereographic projection
to build a connection between the celestial sphere to the
screen of our camera, and the celestial coordinates Θ and
Φ can be understood from Fig. 1. Thus, in the ZAMO
frame, the 4-momentum of a photon can be expressed as

p ¼ −κeð0Þ þ jOPjðcosΘeð1Þ þ sinΘ cosΨeð2Þ
þ sinΘ sinΨeð3ÞÞ: ð3:10Þ

Note that the photons travel along the null geodesics
with respect to the effective metric. That is, from Eq. (2.4)
one has

−κ2 þ jOPj2 þ κ2c1 þ κjOPjc2 þ jOPj2c3 ¼ 0; ð3:11Þ

where combining with Eqs. (3.9) and (3.10), the factors
ci (i ¼ 1, 2, 3) read

FIG. 1. The ZAMO tetrad of the camera and the celestial
coordinates Θ and Φ based on the stereographic projection. This
diagram has been shown in Fig. 11 of our previous work [47].
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c1 ¼ γ

�
Xtt þ

g2tϕ
g2ϕϕ

Xϕϕ − 2
gtϕ
gϕϕ

Xtϕ

�
; ð3:12Þ

c2 ¼ 2
ffiffiffi
γ

p �
cosΘffiffiffiffiffiffi
grr

p ζr −
sinΘ cosΨffiffiffiffiffiffi

gθθ
p ζθ þ

sinΘ sinΨffiffiffiffiffiffiffigϕϕ
p ζϕ

�
;

ð3:13Þ

c3 ¼
Xrr

grr
cos2Θ −

2Xrθffiffiffiffiffiffiffiffiffiffiffiffi
grrgθθ

p cosΘ sinΘ cosΨ

þ Xθθ

gθθ
sin2Θ cos2 Ψþ 2Xrϕffiffiffiffiffiffiffiffiffiffiffiffiffigrrgϕϕ

p cosΘ sinΘ sinΨ

−
2Xθϕffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ

p sin2Θ sinΨ cosΨþ Xϕϕ

gϕϕ
sin2Θ sin2Ψ;

ð3:14Þ

in which we have also introduced several new parameters,
including

γ ¼ gϕϕ
gtϕ − gttgϕϕ

> 0; ð3:15Þ

outside the horizon of the Kerr black hole, and

ζi ¼ Xti −
gtϕ
gϕϕ

Xiϕ; i ¼ r; θ;ϕ; ð3:16Þ

which appeared in the expression of c2. Then by solving
the quadratic equation (3.11), the factor κ can be deter-
mined to be

κ ¼ c2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c22 þ 4c3 − 4c1ð1þ c3Þ

p
2ð1 − c1Þ

jOPj: ð3:17Þ

Here we have excluded the negative root of Eq. (3.11), since
we need κ > 0 to ensure that the 4-momentum of the photon
is a past-directed vector to employ the backward ray-tracing
method. Moreover, using the stereographic projection, we
can build a map from the celestial sphere to the screen of our
camera. In addition, note that, the momentum vector can be
also expressed in the coordinate bases, that is, pμ ¼ dxμ

dτ .
Thus, compared with Eq. (3.10), one can have the values of
qμ for the given pixels on the screen of the camera. Then,
combining with the coordinates of the camera, one can find
sets of ðxμ; qμÞ. Putting these sets as initial values, we can do
the numerical geodesic evolutions using Eqs. (2.6) and (2.7),
and then identify the photons that will not fall into the
black hole.

A. Deformation of Kerr black hole shadow

From Appendix, we can see that in the effective metric,
among the three parameters a, λ, and B, the latter two always
show up together. More precisely, λ is always partnered

with B2 in the effective metric and the geodesic equations.
Hence, we can define a dimensionless parameter Λ standing
for the field strength as

Λ ¼ λB2: ð3:18Þ

In addition, when performing the calculations of black
hole shadow, we should guarantee the validness of the
causality of the effective metric. In the case at hand, we
should always make sure Gθθ; Gϕϕ > 0 outside the horizon
and Gtt < 0 outside the ergoregion. Unfortunately, from
the expressions of the components of the effective metric,
we cannot find an analytical bound for Λ. Therefore, we
numerically check these inequalities and find that at least
in the range −0.2 ≤ Λ ≤ 0, the effective metric works well.
Thus, in the following, we would like to focus our attention
to the allowed range −0.2 ≤ Λ ≤ 0.
Before we get into the analysis of shadows, we would

like to discuss how large the magnetic field is in the
International System of Units (SI for short); if we say
−0.2 ≤ Λ ≤ 0 in our convention c ¼ G ¼ ϵ0 ¼ M ¼ 1.
From Eq. (2.3), we can find

μ ¼ 3.7 × 1068

M2
BH

; ð3:19Þ

after some dimensional analysis, where μ is the value of the
coupling constant in our convention andMBH is the value of
the black hole mass in SI. For example, μ ¼ 0.1 corresponds
to MBH ≃ 6 × 1034 kg ¼ 3 × 104 M⊙ with M⊙ being the
mass of sun. On the other hand, for the magnetic fields,
Gauss units rather than SI is customarily used. Similarly, we
can find

B ¼ 6 × 10−51 BGSMBH; ð3:20Þ

where B is the value of magnetic field intensity in our
convention, MBH is the value in SI, and BGS is the value of
the magnetic field intensity in Gauss units. Then, we have

Λ ¼ λB2 ≃ −B2
GS × 1030: ð3:21Þ

From this relation, we can see that −0.2 ≤ Λ ≤ 0 means
the magnetic field intensity is approximately 0 ≤ BGS ≤
4.5 × 1014 Gauss.
Now we are ready to explore the shadows of the Kerr

black holes bathed in the uniform magnetic fields in various
cases. First, let us focus on the variations of the shadows
with respect to the spin a of the Kerr black hole with fixed
Λ and θo, where θo is the inclination angle of the observer.
In Fig. 2, we setΛ ¼ −0.01 and θo ¼ π

2
, and let the spin of

the Kerr black hole, a, go from 0.2 to 0.999. Obviously,
when a is small, the deformation of the shadow is very small,
and the shadow looks very similar to the corresponding
original Kerr black hole shadow. As the spin a goes up, the
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left part of the shadow curve slowly shrinks, around the
boundary and some photon “hairs” arise. In Fig. 3, we zoom
into part of (f) with photon hairs in Fig. 2. In particular, when
the spin is very near extremality, the photon hair becomes
apparent. In addition, one can obviously find a region of
discontinuity at the top-left corner of the shadow curve, and

symmetrically a similar region in the right corner. These
observations are significantly different with the shadow of
the Kerr black hole without the magnetic field, in which the
left boundary looks like a vertical line when the Kerr black
hole is near extremality. These new features provide a
potential way to verify whether the magnetic fields exist
outside the horizon of a Kerr black hole if the EHT has
enough capabilities to get a clear enough image of the
black hole.
Next, let us move to the situation where the spin a and the

observational angle θo are fixed at 0.5 and π
2
, respectively.

In Fig. 4, we can see the changes of the shadows as the
parameter Λ vary from −0.01 to −0.20. The main feature is
that the shadow curve is apparently stretched along the
horizontal direction and squeezed along the vertical direction
as the absolute value jΛj gets larger. In other words, when the
strength of the magnetic field gets stronger, the Kerr black
hole shadow becomes more flattened. This is reminiscent of
the similar characteristic in the shadow of the Schwarzschild
black hole bathed in a uniformmagnetic field. In fact, when a
is small, the frame dragging effect is negligible, so that many
discussions on static black hole situations apply equally to the
Kerr case—even though a little more complicated structures
appear in the Kerr case—like the photon hairs in the
neighborhood of the shadow curve.
Now, let us look at a near-extremal Kerr black hole with

a ¼ 0.999. We again fix the inclination angle of the observer
at θo ¼ π=2 and let the parameter Λ go from −0.01 to
−0.20. From Fig. 5, we can clearly see that the photon hairs

FIG. 2. The images of the Kerr black hole in uniform magnetic fields with parameter Λ ¼ −0.01. The inclination angle of the observer
is fixed at θo ¼ π=2.

FIG. 3. The fine structure of the photon hairs of (f) in Fig. 2.
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become very obvious at a ¼ 0.999 and, in addition to that,
the shape of the shadow curve becomes more flattened as the
parameter jΛj gets bigger. As shown in [8,11,12,45,46,51],
for nonintegrable geodesic equations, the photons may travel

in chaotic motions. In particular, in [45,46], the authors
investigated the shadows of the black hole immersed in the
Melvin magnetic field, and observed the chaotic motions of
the photons. Furthermore, in [46], the authors found the

FIG. 4. The images of the Kerr black hole in uniform magnetic fields. The inclination angle of the observer is fixed at θo ¼ π=2 and the
spin is fixed at a ¼ 0.5.

FIG. 5. The images of the Kerr black hole in uniform magnetic fields. The inclination angle of the observer is fixed at θo ¼ π=2 and the
spin is fixed at a ¼ 0.999.
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photon hairs appearing at the left of the shadow curve as
well, which is very similar to our findings. However the
photon hairs found in our work have a bit more complicated
structure; they extend two small hairs like a claw into the
shadow region in a strange way, around the positions where
the shadow curve is discontinuous. The appearance of the
photon hairs is certainly an important feature that happens
in a rotational black hole spacetime with a magnetic field,
and different features in the photon hairs may help us to
distinguish a uniform magnetic field from a Melvin mag-
netic field.
Moreover, it is also interesting to photograph the Kerr

black hole from different inclination angles. Note that as
the effective metric still has Z2 symmetry, we just have to
consider 0 ≤ θo ≤ π=2. Three examples are shown in
Fig. 6. We can see that the shadow is almost a perfect
circle when θo is small, say 0.1π, because of the existence
of a Killing vector field ∂ϕ. As θo increases, it produces
some irregular structures. In the picture (b), the upper small
hair is separated and appears in the interior of the shadow.
Finally, the irregular structure becomes symmetric along
the horizontal line at θo ¼ π=2 due to the Z2 symmetry of
the system.

B. Quantitative description of the deformation

In this subsection we would like to use characteristic
parameters to quantify the deformation of the shadow of a
Kerr black hole, due to a uniform magnetic field and its
induced QED effect. Following [5,24], we introduce six
parameters, fDc;Dx;Dy; r̄; σr; σKerrg to study the deviation
driven by the QED effect quantitatively. To better interpret
the meaning of these parameters, we present a diagram in
Fig. 7, in which we place the shadow curve in the Cartesian
coordinates ðx; yÞ with the origin being the crosspoint of the
boundary of four parts with different colors in the celestial
sphere—xmin and xmax are the smallest and the largest values
that can be taken from the points of the shadow’s edge on
the horizontal axis. Similarly, we get ymin and ymax, on the
vertical axis. Note the Z2 symmetry of the effective metric,
we have ymin þ ymax ¼ 0 for the cameras sitting on the
equatorial plane.

Then, we can easily introduce the definitions of other
parameters. The center of the shadow is defined as

xc ≡ xmax þ xmin

2
ð3:22Þ

on the horizontal axis. And yc is defined similarly which is
exactly zero due to the Z2 symmetry. Thus the first parameter
Dc ≡ jxcj measures the distance from the center of the
shadow to the coordinate origin. And Dx ≡ xmax − xmin and
Dy ≡ ymax − ymin are the width and the height of the shadow
respectively.
From another perspective, we can define the polar

coordinates ðr; θÞ with the origin at the center of the shadow,
which means r ¼ ½ðx − xcÞ2 þ y2�. Then the average radius
is defined as

r̄≡
Z

2π

0

rðθÞdθ=2π; ð3:23Þ

FIG. 6. The images of the Kerr black hole in uniform magnetic fields with a ¼ 0.999 and Λ ¼ −0.1.

FIG. 7. A diagram of the Kerr black hole shadow curve,
deformed by the QED effect from a uniform magnetic field around
a black hole. The camera is located on the equatorial plane.
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and the deviation from the sphericity is defined to be

σr ≡
�Z

2π

0

½rðθÞ − r̄�2dθ=2π
�

1=2
: ð3:24Þ

At last, the deviation from a comparable Kerr BH (Λ ¼ 0) is

σK ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

�
rðθÞ − rKerrðθÞ

rKerrðθÞ
�

2

dθ

s
: ð3:25Þ

In Table I, we show these parameters describing the
shadow when the spin a ¼ 0.999 and the observational
angle θ0 ¼ π=2. In Fig. (8) we illustrate the variations of

FIG. 8. The variations of different parameters with respect to Λ. Here we fix a ¼ 0.999 and θ0 ¼ π=2.

TABLE I. Quantitative parameters characterizing shadows, with a ¼ 0.999 and θ0 ¼ π=2.

Parameters Λ Dc Dx Dy r̄ σr σr=r̄ σK

Values −0.01 82.5 306 342 163.6 8.69 0.0531 0.0075
−0.03 83.5 314 336 163.8 6.95 0.0424 0.0210
−0.05 84.5 322 330 164.2 5.35 0.0326 0.0368
−0.07 86.0 333 324 164.8 4.85 0.0294 0.0546
−0.09 87.0 345 316 165.7 5.89 0.0355 0.0756
−0.11 89.5 360 310 166.9 8.69 0.0521 0.0992
−0.13 91.5 378 304 168.5 12.42 0.0737 0.1282
−0.15 94.5 400 296 170.7 17.20 0.1007 0.1631
−0.16 96.5 414 292 172.1 20.06 0.1166 0.1838
−0.17 99.0 431 288 173.6 23.97 0.1380 0.2098
−0.18 102.0 449 284 175.5 27.06 0.1542 0.2340
−0.19 105.0 471 280 177.6 31.47 0.1772 0.2659
−0.20 109.5 498 274 180.0 20.06 0.2039 0.3033
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Dy=Dx, r̄, σ=r̄ and σK with respect to Λ. Apparently, a
stronger magnetic field leads to the increase of Dx and the
decrease ofDy, which can be seen easily in Table I. Thus, in
Fig. 8, we can see that the quantity Dy=Dx, which can
somehow be regarded as oblateness, is an increasing
function for −0.2 ≤ Λ ≤ −0.01. A similar observation also
appears in the static black hole case which has been
discussed in detail in [47]. An interesting thing is that
when a ≥ 0, we find that the deviation Dc becomes larger
as the strength of the magnetic field increases. However, we
are not sure if this finding has some useful implications in
astronomical observations.
In addition, from the data of the average radius and the

deviation from the sphericity in Table I, we can see that
both of them go up when jΛj goes from 0.01 to 0.20, which
means that an increasing uniform magnetic field would
enlarge the circumference of the shadow. However, from
Table I, as well as Fig. 8, we find that the deviation from the
sphericity σr and the deviation per average radius σr=r̄ are
not monotonic functions of Λ; instead, they start to go
down and then go up when the strength of magnetic field
grows from weak to strong.
Finally, let us turn to the deviation from a comparable Kerr

BH (Λ ¼ 0), that is, σK . Both from Table I and Fig. 8, the
derivation is found to increase with the strength of uniform
magnetic fields. Furthermore, the rate of increase of the
deviation also gets larger and larger as the magnetic field
increases. These facts reveal that, for the Kerr black holes
immersed in a uniform magnetic field with considerable
strength, the shape of the shadow would be significantly
different from that of the vacuum case, due to the QED
effect. This result provides a potential way to measure the
magnetic field outside a real black hole in our Universe.

IV. SUMMARY

In this paper we studied the QED effects on the shadows
of the Kerr black holes immersed in magnetic fields. This
generalized our previous study on static black holes [47] to
stationary rotating black holes. In the Kerr black hole case,
the effective metric involving the QED effects of the photons
become much more complicated (see Appendix). Thus, we
only focused on the uniform magnetic fields outside a Kerr
black hole in this work. We mainly investigated the influence
of the uniform magnetic fields on the shadows of Kerr black
holes by employing the numerical backward ray-tracing

method. We introduced a new dimensionless parameter
Λ ¼ λB2 to characterize the strength of the magnetic field.
To guarantee the causality of the effective metric, we
confined the parameter Λ to ½−0.20; 0�. And when Λ ¼ 0,
it would reduce to the vacuum Kerr black hole case.
First, we paid our attention to Λ ¼ −0.01 with the

observer being located on the equatorial plane. We found
that the deformation of the shadows became significant
when the spin a is big enough. In particular, as a goes up,
the left part of the shadow edge would shrink with some
photon hairs appearing around the left edge. Moreover, we
found that when the spin a goes to extremality, the hair
structure would be very evident. A similar hair structure
was also found in [46], where the Kerr Black hole shadows
in Melvin magnetic field had been studied. It seems to us
that the appearance of the hair structure in the shadow
could be a common feature for the black hole in a magnetic
field. The photon hairs may be taken as the signatures of
the magnetic fields outside the black holes. Remarkably,
the structure of the photon hairs may encode more detailed
information on the magnetic field.
Then, we moved on to the study of the influences of

magnetic fields with various strengths on the shadow while
keeping the observer unchanged and fixing the spin a ¼ 0.5.
An interesting feature is that the Kerr black hole shadow
becomes more flattened as the strength of magnetic field
increases. The similar behavior has been found for the static
black hole case [47]. Next, we discussed the influences of the
magnetic fields on the near extremal Kerr black hole with
a ¼ 0.999. In addition to the hair structure that we just
mentioned, we noticed the chaotic motions of the photons,
due to the nonintegrability of the null geodesics in the
effective spacetime. Moreover, we examined the shadows
photographed by nonequatorial observers and discussed the
features.
Furthermore, in Sec. III B, we made a quantitative

analysis of the deformation of the Kerr black hole shadow
due to the QED effects, by introducing six characteristic
parameters to describe the shadow. Some interesting quan-
titative results are presented in Table I and Fig. 8.
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APPENDIX: EXPLICIT EXPRESSIONS OF THE EFFECTIVE METRIC FUNCTIONS

Gtt ¼ gtt þ
a2B2λ½ða2 þ r2 − 2rÞðcos 2θ þ 3Þ2ða2 cos 2θ þ a2 − 2r2Þ2 − 8ðr3 − a2rÞ2ðcos 4θ − 1Þ�

16ða2cos2θ þ r2Þ5 ; ðA1Þ
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Gtϕ ¼ gtϕ þ
aB2λ

16ða2cos2θ þ r2Þ5
�
16rða2 − r2Þða2cos2θ þ r2Þ2

�
8r3ða2 þ r2Þ

ð2a2cos2θ þ 2r2Þ2 þ a2 þ r2 − 2r

�
sin22θ

þ ða4ðr − 1Þ cos 4θ þ 3a4ðr − 1Þ þ 4a2ða2r − a2 þ 2r3 þ r2Þ cos 2θ þ 4a2ð2rþ 1Þr2 þ 8r5Þ

· sin2θða2 þ r2 − 2rÞðcos 2θ þ 3Þða2 cos 2θ þ a2 − 2r2Þ
�
; ðA2Þ

Grr ¼ grr þ
B2λ

16

�a2ðcos 2θ þ 3Þ2ð 4rða2þr2Þ
ð2r−r2−a2Þða2 cos 2θþa2þ2r2Þ − 1Þða2 cos 2θ þ a2 − 2r2Þ2

ða2cos2θ þ r2Þ4
− ð128a2rsin2θðcos 2θ þ 3Þða4ðr − 1Þ cos 4θ þ 3a4ðr − 1Þ þ 4a2ða2ðr − 1Þ þ r2ð2rþ 1ÞÞ cos 2θ
þ 4a2ð2rþ 1Þr2 þ 8r5Þða2 cos 2θ þ a2 − 2r2Þ − 4ða4ðr − 1Þ sin 5θ þ a2ð3a2r − 3a2 þ 8r3 þ 4r2Þ sin 3θ
þ 2ða4ðr − 1Þ þ 2a2ð2rþ 1Þr2 þ 8r5Þ sin θÞ2ða2 cos 2θ þ a2 þ 2ðr − 2ÞrÞÞ

· ða2 þ r2 − 2rÞ−1ða2 cos 2θ þ a2 þ 2r2Þ−5
�
; ðA3Þ

Grθ ¼ grθ þ 2B2λ sin 2θðr − 1Þ

−
2B2λ

ða2 þ ðr − 2ÞrÞða2 cos 2θ þ a2 þ 2r2Þ5 ½16a
2r2ða − rÞðaþ rÞ sin3 θ cos θ

· ða4ðr − 1Þ cos 4θ þ 3a4ðr − 1Þ þ 4a2ða2r − a2 þ 2r3 þ r2Þ cos 2θ þ 4a2ð2rþ 1Þr2 þ 8r5Þ�

þ 2B2λ sin 2θr
ða2 þ r2 − 2rÞða2 cos 2θ þ a2 þ 2r2Þ5 ½2ðrþ 1Þða2 þ r2 − 2rÞða2 cos 2θ þ a2 þ 2r2Þ4

− 2ð3a4 þ 6a2rð2r − 1Þ þ ðr − 10Þr3Þða2 cos 2θ þ a2 þ 2r2Þ3 þ 64r3ða2 þ r2Þða4 þ 3r4Þ
− 16rð−a6ðr − 1Þ þ a4r2ðrþ 1Þ þ a2r4ð5rþ 3Þ þ r6ð3rþ 11ÞÞða2 cos 2θ þ a2 þ 2r2Þ
þ 4ð−a6 þ 7a4r2 þ a2r3ð13r − 12Þ þ r5ð5rþ 4ÞÞða2 cos 2θ þ a2 þ 2r2Þ2�; ðA4Þ

Gθθ ¼ gθθ þ B2λsin22θ

�a2r2ða2 − r2Þ2ð− 4rða2þr2Þ
ða2þðr−2ÞrÞða2 cos 2θþa2þ2r2Þ − 1Þ

ða2cos2θ þ r2Þ4

þ
csc2θða2 cos 2θ þ a2 þ 2ðr − 2ÞrÞð 8r3ða2þr2Þ

ða2 cos 2θþa2þ2r2Þ2 þ a2 þ ðr − 2ÞrÞ2
ða2 þ ðr − 2ÞrÞða2 cos 2θ þ a2 þ 2r2Þ

þ
32ð8a2r9−8a6r5a2þðr−2Þr − a2r2ða − rÞðaþ rÞða2 cos 2θ þ a2 þ 2r2Þ2Þ

ða2 cos 2θ þ a2 þ 2r2Þ5
�
; ðA5Þ

Gϕϕ ¼ gϕϕ þ
B2λ

16ða2cos2θ þ r2Þ5
�
16sin22θ

�
8r3ða2 þ r2Þ

ða2 cos 2θ þ a2 þ 2r2Þ2 þ a2 þ ðr − 2Þr
�

2

ða2cos2θ þ r2Þ4

þ ða2 þ ðr − 2ÞrÞsin4θða4ðr − 1Þ cos 4θ þ 3a4ðr − 1Þ þ 4a2ða2r − a2 þ r22r3 þ r2Þ cos 2θ

þ 4a2ð2rþ 1Þr2 þ 8r5Þ2
�
: ðA6Þ
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