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Recent models formulated by Kafri, Taylor, and Milburn and by Tilloy and Diosi describe the
gravitational interaction through a continuous measurement and feedback protocol. In such a way, although
gravity is ultimately treated as classical, they can reconstruct the proper quantum gravitational interaction at
the level of the master equation for the statistical operator. Following this procedure, the price to pay is the
presence of decoherence effects leading to an asymptotic energy divergence. One does not expect the latter
in isolated systems. Here, we propose a dissipative generalization of these models. We show that, in these
generalizations, in the long time limit, the system thermalizes to an effective finite temperature.
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I. INTRODUCTION

The unification of the quantum theory with general
relativity is still an open problem. The two theories well
perform in their respective realms, yet one still needs to
bridge an important gap in order to arrive at a unique
theory. While there are several approaches trying to
quantize gravity [1–3], such as string theory [4], loop
quantum gravity [5] or spin foam quantum gravity [6], a
clear empirical evidence that gravity should be treated
quantum mechanically is still lacking [7–27]. The other
option is to move closer to the realm of general relativity as
we know it, modifying quantum mechanics [28–33]. In the
spirit of this latter approach, some proposed that gravity
should be fundamentally classical and that the quantum
dynamics should accommodate for it [34–38]. The price to
pay in such a framework is the appearance of non-linear
and stochastic terms in the Schrödinger equation, which
lead to decoherence, and thus to the rupture of the energy
conservation of an isolated system [39–43]. While devia-
tions from quantum mechanics are expected when moving
toward the realm of general relativity, energy conservation
is something one would want to maintain also in an
hybrid model.
Here we analyze two models which develop a continuous

measurement and feedback protocol to include classical
Newtonian gravity in the quantum framework. Those
models are the Kafri, Taylor and Milburn (KTM) model
[41] and the Tilloy-Diosi (TD) model [42]. Both feature a
violation of energy conservation due to this protocol, which

is unexpected from the dynamics of isolated systems. Here,
we delve into the possibility of constructing a dissipative
generalization of these two models. Under this perspective,
the gravitationally induced stochastic noise acts in an
isolated system as a dissipative medium, similarly to what
a thermal bath does in a typical open quantum system. In
particular as we will see the energy of the system will reach
an asymptotic finite value.
The paper is structured as follows. In Sec. II, we briefly

introduce the KTM model underling its violation of the
energy conservation principle. In Sec. III, we propose
a dissipative extension of the KTM model, explicitly
showing that it provides a finite asymptotic energy. In
Sec. IV, we review the TD model, which also does not
conserve the total energy; then, we propose its dissipative
extension. In Sec. V, we compare the dissipative TD
model to the dissipative KTM model in the appropriate
linear limit.

II. THE KTM MODEL

To set the contest of the problem, we briefly introduce the
KTM model highlighting the relevant features. The model
consists of a one-dimensional system composed of two
masses m1 and m2, which are harmonically trapped at
frequencies ω1 and ω2 at a distance d, and interact gravi-
tationally. Assuming that the quantum fluctuations in posi-
tion jx̂1 − x̂2j, with x̂i the position operator of the ith particle,
are small compared tod, one can approximate theNewtonian
potential to the second order in x̂1 − x̂2. With a suitable
choice of the coordinates [41], the Hamiltonian reads

Ĥ ¼ Ĥ0 þ Ĥgrav, where Ĥ0 ¼
P

2
k¼1ð p̂2

k
2mk

þ 1
2
mkΩ2

kx̂
2
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Ĥgrav ¼ Kx̂1x̂2; ð1Þ

with Ω2
k ¼ ω2

k − K=mk and we have defined K ¼
2Gm1m2=d3 where G is the gravitational constant.
The key idea of the model is that the quantum interaction

Ĥgrav between the two masses is replaced by a classical
protocol. The latter consists of the continuous weak
measurement of the positions x̂k of each particle and the
broadcast of the corresponding measurement record rk to
the other particle through a classical channel. The gravi-
tational interaction is realized through a feedback dynam-
ics, which is implemented by replacing Ĥgrav with the
feedback Hamiltonian

Ĥfb ¼ χ1r1x̂2 þ χ2r2x̂1; ð2Þ

where the position operator of one mass is coupled to the
classical stochastic measurement record of the position of
the other mass. In particular, the measurement record is
defined as

rk ¼ hx̂kit þ
ℏffiffiffiffiffi
γk

p dWk;t

dt
; ð3Þ

where γk are the measurement information gain rates and
Wk;t are the standard Wiener processes, whose correlations
read E½dWk;tdWl;t� ¼ δk;ldt. Following the calculations
reported in detail in Appendix A, one arrives at the
following non-linear and stochastic equation for the state
vector jψ ti

djψ ti¼
�
−
X2
k;j¼1
j≠k

i
2ℏ

χkx̂jðx̂k−hx̂kitÞdt

þ
X2
k¼1

�
−

γk
8ℏ2

ðx̂k−hx̂kitÞ2dtþ
ffiffiffiffiffi
γk

p
2ℏ

ðx̂k−hx̂kitÞdWk;t

�

−
X2
k;j¼1
j≠k

��
iχkhx̂kitx̂j

ℏ
þχ2kx̂

2
j

2γk

�
dt−

iχkx̂jffiffiffiffiffi
γk

p dWk;t

��
jψ ti:

ð4Þ

Here, the second line is given by the continuous measure-
ment process, the last line is the feedback contribution,
while the first one arises from the combined effect of the
two processes. We stress again that at this level gravity
enters in a semiclassical, nonlinear and stochastic manner,
with no apparent resemblance with the (linearized)
Newtonian potential usually entering the Schrödinger
equation. By setting χ1 ¼ χ2 ¼ K, we find the correspond-
ing KTM master equation [41]:

dρ̂t
dt

¼ −
i
ℏ
½Ĥ0 þ Kx̂1x̂2; ρ̂t�

−
X2
k;j¼1
j≠k

�
γk
8ℏ2

þ K2

2γj

�
½x̂k; ½x̂k; ρ̂t��; ð5Þ

where ρ̂t ¼ E½jψ tihψ tj� and we added the free evolution
described by Ĥ0. Equation (5) comprises two terms: the
first is a von Neumann term, where the usual gravitational
interaction of nonrelativistic quantum mechanics is repro-
duced, while the second is a decoherence term which
originates from the stochastic dynamics induced by the
continuous measurement and feedback mechanism. Now, if
we set mk ¼ m, it is then reasonable to consider γk ¼ γ.
The parameter γ is free, but it can be suitably fixed to
minimize the corresponding decoherence effects. After
such a minimization, corresponding to γ ¼ γKTM with

γKTM ¼ 2ℏK; ð6Þ

we obtain the following master equation [41]:

d
dt

ρ̂t ¼ −
i
ℏ
½Ĥ0 þ Kx̂1x̂2; ρ̂t� −

K
2ℏ

X2
k¼1

½x̂k; ½x̂k; ρ̂t��: ð7Þ

The second term quantifies the minimum decoherence
effect induced by the protocol, which is not zero.
Among the predictions of Eq. (7), and Eq. (5) as well,
one has that the mean energy of the system increases
linearly in time, eventually diverging in the long-time
limit. Indeed, independently from the details of the poten-
tial in Ĥ0, the contribution of the second term of
Eq. (7) to the single-particle kinetic energy 1

2m hp̂2
ki gives

Trf− K
2ℏ ½x̂; ½x̂; 1

2m p̂
2�ρ̂g ¼ Kℏ=2m. Consequently, for a sys-

tem of two identical harmonically trapped masses m, the
expectation value of the Hamiltonian Ĥ reads

hĤit ¼
ℏK
m

t; ð8Þ

which grows linearly in time.
In this work we show how it is possible to modify the

measurement and feedback protocol keeping the energy
bounded, while reproducing the correct quantum gravita-
tional interaction in the von Neumann term of the master
equation.

III. THE DISSIPATIVE KTM MODEL

To avoid the asymptotic divergence of the average
energy arising in the KTM model, we propose a dissipative
generalization in analogy to the quantum Brownian model
[44–52]. The latter describes the motion of a massive
harmonic oscillator under the influence of a thermal
environment. When extending the quantum Brownian
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model to two particles having mass mk and frequency ωk,
the master equation reads [44,53]

d
dt

ρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂� −

X2
k¼1

iλk
ℏ

½x̂k; fp̂k; ρ̂g�

−
X2
k¼1

2λkmkkBT
ℏ2

½x̂k; ½x̂k; ρ̂��

−
X2
k¼1

λk
8mkkBT

½p̂k; ½p̂k; ρ̂��; ð9Þ

where λk are the dissipative constants and T is the temper-
ature of the bath, and we used the standard notation for
anticommutator fÂ; B̂g ¼ Â B̂þB̂ Â. In the high temper-
ature limit the last term of Eq. (9) becomes negligible, and
the asymptotic average energy of the system reads

hĤi∞ ¼ 2kBT: ð10Þ

The system thermalizes to a finite energy, which is in
agreement with the equipartition theorem in the canonical
statistical ensemble [54]. We underline that T in the
canonical ensemble is a universal temperature, namely it
does not depend on the specific properties of the system but
only on those of the bath. Thus, when generalizing the
KTMmodel to include dissipative features, it is desirable to
have an asymptotic energy which is independent from the
specific properties of the system. Conversely, such asymp-
totic value should be analogue to the temperature in the
quantum Brownian motion.
We include dissipative effects in the KTM model by

modifying the measurement and feedback protocol so that
the corresponding master equation is similar to Eq. (9).
Clearly, in this modification, we have to preserve the main
properties of the original model, namely we need to recover
the linearized gravitational interaction. This can be done by
substituting the continuous measurement of x̂k with that of
the following operator

Âk ¼ x̂k þ
iαk
ℏ

p̂k; ð11Þ

where αk are real parameters to be determined. Conversely,
we do not modify the form of the feedback Hamiltonian,
which will continue to read as in Eq. (2), where now the
measurement record reads

rk ¼
1

2
hÂk þ Â†

kit þ
ℏffiffiffiffiffi
γk

p dWk;t

dt
: ð12Þ

This choice is twofold: we obtain the same dissipative term
as that in Eq. (9), which depends on both the position
and momentum operators, and we mimic the gravitational
Hamiltonian Ĥgrav. The latter result is determined by the

fact that 1
2
ðÂk þ Â†

kÞ ¼ x̂k—consequently the feedback
Hamiltonian and the measurement record are the same
as in the KTM model—and thus the gravitational inter-
action is correctly reproduced at the linear order. The
former result instead is possible due to the different choice
of the measured operator in Eq. (11), which drives the
continuous measurement and allows to introduce the
desired dissipative effects. Now, by taking χ1 ¼ χ2 ¼ K,
we straightforwardly arrive at the following master equa-
tion [cf. Appendix A]:

d
dt
ρ̂t¼−

i
ℏ
½Ĥ0

0þKx̂1x̂2; ρ̂t�−
X2
k¼1

iγkαk
4ℏ3

½x̂k;fp̂k; ρ̂tg�

−
X2
k;j¼1
j≠k

�
γk
8ℏ2

þK2

2γj

�
½x̂k; ½x̂k; ρ̂t��−

X2
k¼1

γkα
2
k

8ℏ4
½p̂k; ½p̂k; ρ̂t��

þ
X2
k;j¼1
j≠k

αjK

2ℏ2
½x̂k; ½p̂j; ρ̂t��; ð13Þ

where Ĥ0
0 ¼ Ĥ0 þ ΔĤ0, with ΔĤ0 ¼ −

P
2
k¼1

γkαk
8ℏ2 fx̂k; p̂kg

being an addition to the Hamiltonian deriving from the
continuous measurement.
We now compare Eqs. (13) and (9). First, we notice that

the effective Hamiltonian in the first term of Eq. (13)
comprises the quantum gravitational interaction as in the
KTM master equation (7). Moreover, Eq. (13) displays
three terms analogous to those in Eq. (9), and which
implement dissipation, diffusion in momentum and in
position respectively. Conversely to Eq. (9), Eq. (13)
contains also a new term, the last, which derives from
the feedback mechanism and also produces diffusion in
position and momentum.

A. Asymptotic energy of the KTM model

To verify that our modification can actually solve the
energy divergence problem, we start by computing the
asymptotic value of the average energy in the simple case
of γk ¼ γKTM, mk ¼ m and αk ¼ α. For the sake of sim-
plicity, we will assume Ĥ0

0 ¼ Ĥ0 in Eq. (13), since no sub-
stantial change in the mechanism causing the thermalization
of the system is expected. To simplify the calculations,
we move to center-of-mass and relative displacement
coordinates, which are defined as x̂cm ¼ 1

2
ðx̂1 þ x̂2Þ,

p̂cm ¼ p̂1 þ p̂2, x̂rel ¼ x̂1 − x̂2 and p̂rel ¼ 1
2
ðp̂1 − p̂2Þ.

Then, the Hamiltonian in Eq. (13) can be rewritten as Ĥ ¼
Ĥcm þ Ĥrel, where

Ĥcm ¼ p̂2
cm

4m
þmω2x̂2cm and Ĥrel ¼

p̂2
rel

m
þm

4
Ω̃2x̂2rel; ð14Þ

are respectively theHamiltonian center-of-mass ofmass 2m,
and that of the relative displacement with mass m=2 and

GRAVITY AS A CLASSICAL CHANNEL AND ITS … PHYS. REV. D 104, 104027 (2021)

104027-3



frequency Ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − K=m

p
. Consequently, by assuming

that γk takes the expression in Eq. (6), we find that Eq. (13)
can be divided in two independent master equations. The
one for the center-of-mass reads

d
dt

ρ̂cm ¼ −
i
ℏ
½Ĥcm; ρ̂cm� −

K
ℏ
½x̂cm; ½x̂cm; ρ̂cm��

−
iKα
2ℏ2

½x̂cm; fp̂cm; ρ̂cmg� −
Kα2

8ℏ3
½p̂cm; ½p̂cm; ρ̂cm��

þ αK
2ℏ2

½x̂cm; ½p̂cm; ρ̂cm��; ð15Þ

while that for the relative displacement is given by

d
dt

ρ̂rel ¼ −
i
ℏ
½Ĥrel; ρ̂rel� −

K
4ℏ

½x̂rel; ½x̂rel; ρ̂rel��

−
iKα
2ℏ2

½x̂rel; fp̂rel; ρ̂relg� −
Kα2

2ℏ3
½p̂rel; ½p̂rel; ρ̂rel��

−
αK
2ℏ2

½x̂rel; ½p̂rel; ρ̂rel��: ð16Þ

Bydefining T̂cm ¼ p̂2
cm=4m, V̂cm ¼ mω2x̂2cm, T̂rel ¼ p̂2

rel=m
and V̂rel ¼ mΩ̃2x̂2rel=4, we obtain, through Eqs. (15) and
(16), two systems of three coupled differential equations of
the first order. The system for the center-of-mass reads

d
dt
hV̂cmit ¼

ω2

2
hfp̂cm; x̂cmgit þ

Kα2mω2

4ℏ
;

d
dt
hT̂cmit ¼ −

2Kα

ℏ
hT̂cmit −

ω2

2
hfp̂cm; x̂cmgit þ

ℏK
2m

;

d
dt
hfp̂cm; x̂cmgit ¼ −

Kα
ℏ

hfp̂cm; x̂cmgit þ 4hT̂cmit
− 4hV̂cmit þ αK; ð17Þ

while that for the relative degrees of freedom is

d
dt

hV̂relit ¼
1

2
Ω̃2hfp̂12; x̂relgit þ

Kα2m
4ℏ

Ω̃2;

d
dt

hT̂relit ¼ −
2Kα

ℏ
hT̂relit −

1

2
Ω̃2hfp̂rel; x̂relgit þ

ℏK
2m

;

d
dt

hfp̂12; x̂relgit ¼ −Kα

�
1þ hfp̂rel; x̂relgit

ℏ

�

þ 4hT̂rel − V̂relit: ð18Þ

Finally, we can obtain the asymptotic energy of the system
by setting the above derivatives to zero. Thus, once summing
the four contribution to Ĥ ¼ T̂cm þ V̂cm þ T̂rel þ V̂rel we
find

hĤi∞ ¼ ℏ2

mα
þ αmΩ2

2
þ K2α3m

4ℏ2
: ð19Þ

By making explicit all the constants and parameters of the
model we have

hĤi∞ ¼ ℏ2

mα
þ αmω2

2
−
αm2G
d3

þ G2α3m5

ℏ2d6
: ð20Þ

We notice that Eq. (20) depends on the parameters of the
system, namely themassm, the distance d and the frequency
ω, and on the free parameter α of themodel. On the contrary,
in order to associate a universal temperature to the system,
one would expect an expression free of such dependencies,
as that in Eq. (10). A way to approximately remove such
dependence is to assume that α is suitably small in such a
way to retain only the first term of Eq. (20). Then, by
defining

α ¼ m0

m
α0; ð21Þ

wherem0 is a reference mass and α0 is a free parameter, the
asymptotic average energy becomes

hĤi∞ ¼ ℏ2

m0α0
; ð22Þ

which is system independent. By comparing such an
expressionwith that in Eq. (10), we can define a temperature
at which the system will eventually thermalize. This reads

Teff ¼
ℏ2

2m0α0kB

: ð23Þ

Thus, in light of the analogy with the quantum Brownian
model, we can interpret the dynamics described by the
dissipative KTMmodel as that of a system in contact with a
thermal bath of temperature Teff . Here the bath is associated
to the measurement process and feedback protocol.
We now inquire what changes without making the choice

γ ¼ γKTM. In this case the expression in Eq. (20) without
such an assumption, becomes

hĤi∞ ¼ ℏ2

2mα
þ8ℏ4G2m3

γ2αd6
þαmω2

2
−
αm2G
d3

þmα3γ2

16ℏ4
: ð24Þ

By choosing α ¼ m0

m α0, we remove the dependence on the
mass in the first and third term of Eq. (24). Thus, in order to
remove the dependence on the mass and on the distance of
the second term, we can choose for example γ ¼ m2

m2
0
d3 γ0.

However, in this way, one still has the dependence on the
frequency in the third term and that on the mass and on the
distance in the fourth and fifth term. If the values of α and γ
are both suitably small we can neglect the last three terms in
Eq. (24) and find
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hĤi∞ ¼ ℏ2

2m0α0
þ 4ℏ4G2m3

0

γ20α0
: ð25Þ

In such a way the effective temperature reads

Teff ¼
ℏ2

4m0α0kB

þ 2ℏ2G2m3
0

γ20α0kB

: ð26Þ

We notice that Eq. (26) depends explicitly on the gravi-
tational constant G unlike Eq. (23). The first term of
Eq. (26) is due to the measurement process, while the
second term is due to the feedback mechanism. Thus, by
comparing Eq. (26) with Eq. (23) is clear that the effect of
the choice γ ¼ γKTM is to make the contributions of the
measurement and of the feedback indistinguishable.

IV. THE TD MODEL AND ITS DISSIPATIVE
GENERALIZATION

The second model we consider is the Tilloy-Diosi (TD)
model [42]. Similarly to the KTM model, also here a weak
continuous measurement is performed with the subsequent
classical broadcast of the corresponding measurement
record, which modifies the system dynamics through a
feedback Hamiltonian. The conceptual difference lies in the
way the Newtonian gravitational interaction is imple-
mented [43]. While in the KTM model the gravitational
interaction is approximated to the linear regime, the full
Newtonian potential is

Ĥgrav ¼
1

2

Z
d3x

Z
d3yVðx − yÞμ̂ðxÞμ̂ðyÞ; ð27Þ

where Vðx − yÞ ¼ −G=jx − yj is the Newtonian potential.
In particular, what is measured here is the mass density
μ̂ðxÞ and the corresponding feedback Hamiltonian reads

Ĥfb ¼
Z

d3x
Z

d3yVðx − yÞμ̂ðxÞrðyÞ; ð28Þ

where

rðxÞ¼ hμ̂ðxÞitþℏ
Z

d3yγ−1ðx−yÞdWtðyÞ
dt

; ð29Þ

is the measurement record of the mass density, where
γðx − yÞ is a spatial correlation function, γ−1ðx − yÞ its
inverse function and WtðxÞ is a standard Wiener process
with zero average and correlations E½dWtðxÞdWtðyÞ� ¼
γðx − yÞdt. By following the procedure highlighted in
Appendix A, one can derive the nonlinear and stochastic
equation for the state vector jψ ti of the system, which will
take a form analogous to that in Eq. (4). Then, one derives
the corresponding master equation, which reads [42]

d
dt

ρ̂t ¼ −
i
ℏ
½Ĥ0 þ Ĥgrav; ρ̂t�

þ 1

2ℏ

Z
d3x

Z
d3yVðx − yÞ½μ̂ðxÞ; ½μ̂ðyÞ; ρ̂t��; ð30Þ

where we chose γðx − yÞ ¼ −2ℏVðx − yÞ and Ĥ0 is the
free Hamiltonian. As in KTM model, also in TD model the
gravitational interaction Ĥgrav is reproduced in the von
Neumann term, although one pays the price of having an
additional gravitational decoherence term.
We notice that due to the form of the Newtonian

gravitational potential, the integrals in Eq. (30) are in
general divergent. However, they can be regularized by
using a suitable smearing function gðxÞ. Here, we will
consider a normalized Gaussian smearing of the form

gðx − yÞ ¼ e
−jx−yj2

2R2
0

ð2πR2
0Þ3=2

; ð31Þ

where R0 sets its variance. The latter can be interpret as
the minimum gravitational interaction distance [28,29],
and thus becomes an extra parameter of the model.
As for the KTM model, also for the TD model the

asymptotic energy in general is divergent. For example, if
we consider a system of N pointlike particles, whose mass,
position operator and mass density respectively read mk,
x̂k and

μ̂ðxÞ ¼
XN
k¼1

mkδðx − x̂kÞ; ð32Þ

we find that Eq. (30) gives

hĤit ¼
ℏG

P
kmk

4
ffiffiffi
π

p
R3
0

t; ð33Þ

which, again, grows linearly in time.
To solve this issue, we aim at modifying the TD model

by adding dissipative terms although still reproducing
the quantum gravitational interaction. This can be done
through a specific choice of the operators to be measured.
Two options are possible. The first one is to choose a
suitable smearing of the mass density μ̂ðxÞ to include a
momentum operator. This is the approach that was used to
construct the dissipative generalization of the continuous
spontaneous localization model [55]. Following these lines,
we consider

ÂðxÞ¼
XN
k¼1

mk

ð2πℏÞ3
Z

d3qe−
i
ℏq·ðx−x̂kÞ−

R2
0

2ℏ2
½ð1þαkÞqþ2αkp̂k�2 ; ð34Þ

where αk are real parameters. With this measurement
operator, we find that the measurement process provides
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the expected dissipative terms. However, with such a choice
one cannot reconstruct the potential in Eq. (27); the
resulting potential is

ĤI ¼
1

2

Z
d3xd3yVðx − yÞðμ̂ðxÞÂðyÞ þ Â†ðyÞμ̂ðxÞÞ ð35Þ

which contains the momentum operators as well.
Correspondingly, the equations of motion for x̂k and p̂k
change, making the dynamics different from the one
described by the Newtonian gravitational potential. To
avoid this, we need to consider another form of the
measurement operator.
The second choice is to modify the measured operator by

adding to the density operator a non-Hermitian part,
similarly as we did with the position operator when
constructing the dissipative KTM model in Sec. III.
Following this idea, we consider the following operator

ÂðxÞ ¼ μ̂ðxÞ þ iμ̂IðxÞ; ð36Þ

in place of the mass density of the system μ̂ðxÞ alone. Here,
μ̂IðxÞ is an arbitrary Hermitian operator yet to be deter-
mined. The corresponding measurement can be computed
through

rðxÞ ¼ 1

2
hÂðxÞ þ Â†ðxÞit

þ ℏ
Z

d3yγ−1ðx − yÞ dWtðyÞ
dt

; ð37Þ

and is equal to that in Eq. (29). Correspondingly, also the
feedback Hamiltonian does not change with respect to that
of the TD model, and thus the quantum gravitational
interaction is correctly reproduced. Finally, by following
the calculations reported in Appendix A, one derives the
master equation of the dissipative generalization of the TD
model, which reads

d
dt
ρ̂t¼−

i
ℏ
½Ĥ0

0þ Ĥgrav; ρ̂t�

þ 1

2ℏ

Z
d3x

Z
d3yVðx−yÞ½μ̂ðxÞ; ½μ̂ðyÞ; ρ̂t��

þ i
2ℏ

Z
d3x

Z
d3yVðx−yÞ½μ̂ðxÞ;fμ̂IðyÞ; ρ̂tg�

þ 1

4ℏ

Z
d3x

Z
d3yVðx−yÞ½μ̂IðxÞ; ½μ̂IðyÞ; ρ̂t��

þ 1

2ℏ

Z
d3x

Z
d3yVðx−yÞ½μ̂ðxÞ; ½μ̂IðyÞ; ρ̂t��; ð38Þ

where we set γðx − yÞ ¼ −2ℏVðx − yÞ and we defined
Ĥ0

0 ¼ Ĥ0 þ ΔĤ0, where

ΔĤ0 ¼ −
1

4ℏ

Z
d3x

Z
d3yVðx − yÞfμ̂ðxÞ; μ̂IðyÞg; ð39Þ

is an additional term due to the continuous measurement
process. We stress that the structure of Eq. (38) is analogous
to that of the dissipative KTM model in Eq. (13). In the
following, for the sake of simplicity, we approximate Ĥ0

0 to
Ĥ0, since we expect that this does not substantially change
the mechanism that causes the asymptotic mean energy of
the system to be finite.

V. LINEAR LIMIT OF THE TD MODEL

At this point of the discussion, we need to fix the form of
μ̂IðxÞ to properly derive the desired dissipative dynamics.
We start by considering a N point-particle system, whose
mass density is given in Eq. (32). We rewrite the position
and momentum operators as

x̂k ¼ xð0Þ
k þ Δx̂k and p̂k ¼ pð0Þ

k þ Δp̂k; ð40Þ

where Δx̂k and Δp̂k are the quantum fluctuations with

respect to the classical position xð0Þ
k and momentum pð0Þ

k
respectively. Then, we choose the following form for μ̂IðxÞ:

μ̂IðxÞ ¼
XN
k¼1

mkδ

�
x − xð0Þ

k −
αk
ℏ
Δp̂k

�
; ð41Þ

where αk are real free parameters yet to be determined. The
drive for the choice in Eq. (41) is that the resulting dynamics
satisfies translational invariance. Indeed, it is straightfor-
ward to check that other choices for μ̂IðxÞ of the formP

k mkδðx − vk −
αk
ℏ Δp̂kÞwould lead to the violation of the

translational invariance for any choice of vk different from

xð0Þ
k . On the other hand, the dynamics is not boost invariant.

This is however a common feature of the dissipativemodels,
such as the quantum Brownian motion [47], the dissipative
continuous spontaneous localization model [55] and the
dissipative KTM model introduced in Sec. III.
Being pointlike, these choices for μ̂ðxÞ and μ̂IðxÞ lead

to divergences in the master equation (38), which are
expected, similarly as those present in the TD model (see
also the discussion after Eq. (30) and in Ref. [43]). We
proceed then with a regularization of the gravitational
potential Vðx − yÞ, namely we implement the following
substitution: Vðx − yÞ → ðg∘V∘gÞðx − yÞ, where gðxÞ is
the smearing function in Eq. (31).
To guarantee that Eq. (41) represents a good choice for

μ̂IðxÞ, we make a comparison with the dissipative KTM
model in the appropriate limit. In particular, we substitute
Eq. (32) and Eq. (41) in Eq. (38), and we rewrite the
position operator as in Eq. (40). In the assumption of small
quantum fluctuations, we can take the linear limit of the
dissipative TD master equation (38), which reads
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d
dt

ρ̂t ¼ −
i
ℏ
½Ĥ0 þ Ĥgrav; ρ̂t�

−
XN
k;j¼1

X3
l;n¼1

Gmkmjηkjln
2ℏ

½x̂kl; ½x̂jn; ρ̂t��

−
XN
k;j¼1

X3
l;n¼1

Gmkmjαkαjηkjln
4ℏ3

½p̂kl; ½p̂jn; ρ̂t��

−
XN
k;j¼1

X3
l;n¼1

iGmkmjαjηkjln
2ℏ2

½x̂kl; fp̂jn; ρ̂tg�

−
XN
k;j¼1

X3
l;n¼1

Gmkmjαjηkjln
2ℏ2

½x̂kl; ½p̂jn; ρ̂t��; ð42Þ

where x̂kl and p̂kl are the components in the lth direction of
Δx̂k and Δp̂k respectively, and

Ĥgrav¼
G
4

XN
k;j¼1

X3
l;n¼1

mkmjηkjlnðx̂kl− x̂jlÞðx̂kn− x̂jnÞ; ð43Þ

is the gravitational interaction in the linear limit. Here, we
defined

ηkjln ¼
Z

d3q
2π2ℏ3

g̃2ðqÞ
q2

qlqne
i
ℏq·ðxð0Þk −xð0Þj Þ; ð44Þ

where we made explicit the Fourier transform of the
Newtonian gravitational potential ṼðqÞ ¼ −4πGℏ2=q2.
Now, we reduce the problem to that of only two

harmonic oscillators at frequency ω in one dimension,
with mk ¼ m and αk ¼ α. Thus, Eq. (42) becomes

d
dt
ρ̂t¼−

i
ℏ
½Ĥ; ρ̂t�−

X2
k;j¼1

iGm2αηkj
2ℏ2

½x̂k;fp̂j; ρ̂tg�

−
X2
k;j¼1

Gm2ηkj
2ℏ

½x̂k; ½x̂j; ρ̂t��−
X2
k;j¼1

Gm2αηkj
2ℏ2

½x̂k; ½p̂j; ρ̂t��

−
X2
k;j¼1

Gm2α2ηkj
4ℏ3

½p̂k; ½p̂j; ρ̂t��; ð45Þ

where ηkj ¼ ηkj11 are explicitly computed in Appendix B,
and

Ĥ ¼
X2
k¼1

�
p̂2
k

2m
þmΩ2

2
x̂2k

�
−Gm2η12x̂1x̂2; ð46Þ

includes also the linearized quantum gravitational inter-
action Ĥgrav and we defined

Ω2 ¼ ω2 þ Gmη12: ð47Þ

We notice that Eq. (45) has a structure similar to that of
the dissipative KTM master equation (13), although there
are some differences. In particular, additional terms in the
commutators and anticommutators mixing the position and
momentum operators of different particles appear, and the
coefficients ηkj differ.
By inserting the explicit expressions of ηkj [cf. Eq. (B2)]

in Eq. (45), we can decouple the center-of-mass and relative
dynamics. Correspondingly, Eq. (45) can be divided in two
independent master equations. That for the center-of-mass
reads

d
dt

ρ̂cm ¼ −
i
ℏ
½Ĥcm; ρ̂cm� −

Gm2

ℏ
ηþ½x̂cm; ½x̂cm; ρ̂cm��

−
Gm2α2

8ℏ3
ηþ½p̂cm; ½p̂cm; ρ̂cm��

−
iGm2α

2ℏ2
ηþ½x̂cm; fp̂cm; ρ̂cmg�

−
Gm2α

2ℏ2
ηþ½x̂cm; ½p̂cm; ρ̂cm��; ð48Þ

where ηþ ¼ ηþ η12 with η ¼ ð6 ffiffiffi
π

p
R3
0Þ−1 and we defined

Ĥcm ¼ p̂2
cm

4m
þmΩ2

cmx̂2cm; ð49Þ

with Ω2
cm ¼ Ω2 −Gmη12 ¼ ω2. On the other hand, the

relative dynamics is described by the following master
equation

d
dt

ρ̂rel ¼ −
i
ℏ
½Ĥrel; ρ̂rel� −

Gm2

4ℏ
η−½x̂rel; ½x̂rel; ρ̂rel��

−
Gm2α2

2ℏ3
η−½p̂rel; ½p̂rel; ρ̂rel��

−
iGm2α

2ℏ2
η−½x̂rel; fp̂rel; ρ̂relg�

−
Gm2α

2ℏ2
η−½x̂rel; ½p̂rel; ρ̂rel��; ð50Þ

where η− ¼ η − η12 and

Ĥrel ¼
p̂2
rel

m
þm

4
Ω2

relx̂
2
rel; ð51Þ

is the relative Hamiltonian with Ω2
rel ¼ Ω2 þGmη12 ¼

ω2 þ 2Gmη12. The coefficients η� explicitly read

η� ¼ 1

2
ffiffiffi
π

p
R3
0

�
1

3
� e

− d2

4R2
0

d2
ð4R2

0 þ d2Þ
�
∓ 2erfð d

2R0
Þ

d3
: ð52Þ

Then, by moving along the lines drawn in Sec. III, we can
analyze the behavior of the asymptotic energy described by
Eq. (45). After lengthly calculations, which are reported in
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Appendix C, we obtain the asymptotic energy of the
system, which reads

hĤi∞ ¼ ℏ2

mα
þ αmω2

2
−
αm2G
2

η−

þ G2α3m5

4ℏ2
ðη2 þ η212Þ: ð53Þ

Since R0 is the spread of the smearing function regulating
the Newtonian potential, we can assume that R0 is small
with respect to the distance d. Thus, in the limit of R0 being
small, one finds that η12 → −2=d3 and η� → ∓2=d3.
Correspondingly, one has η2 þ η212 → 4=d6. By substituting
these values, Eq. (46) becomes equal to the Hamiltonian of
the KTM model, and Eq. (53) equates the asymptotic
energy of the dissipative KTM model in Eq. (20). Finally,
applying the limit α → 0, one finds that the system
thermalizes at the temperature expressed in Eq. (23),
namely Teff ¼ ℏ2=2m0α0kB, where we employed Eq. (21).

VI. CONCLUSIONS

The protocol based on the continuous measurement and
feedback mechanism in the KTM and TD model well
reconstructs the quantum gravitational interaction from a
fundamentally classical description [43]. The correspond-
ing appearance of decoherence terms which lead to an
indefinite energy increase is, however, a problem. Here, we
suggested a way to account for this feature by suitably
modifying the protocol. We derived the dissipative gener-
alizations of the two models, and showed that—in the
appropriate limits—the system under such a protocol
thermalizes to an effective temperature [cf. Eq. (23)].
With our generalization, the energy of the system

remains finite also asymptotically. Yet, energy conservation
at each time is still lacking. A possible step forward in such
a direction could be to upgrade the stochastic noises of the
protocol to physical dynamical fields [56,57]. Then, one
could in principle be able to conserve the total energy of the
system plus the stochastic field. This is subject for future
research.
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APPENDIX A: CONTINUOUS QUANTUM
MEASUREMENT AND FEEDBACK

FRAMEWORK

By following the approach in Refs. [39,40], we briefly
review the dynamics due to a continuous quantum meas-
urement and due to the feedback. For the sake of simplicity
we consider only the discrete case of a one-dimensional
system made of two particles and then the case of a generic
continuous system in three dimensions.

1. One dimensional two-particle system

a. Continuous measurement

The stochastic Schrödinger equation of two particles due
to a continuous quantum measurement of arbitrary oper-
ators Âk is given by

djψ tim ¼ −
X2
k¼1

γk
8ℏ2

ðÂ†
kÂk þ hÂ†

kitðhÂkit − 2ÂkÞÞjψ tidt

þ
X2
k¼1

ffiffiffiffiffi
γk

p
2ℏ

ðÂk − hÂkitÞjψ tidWk;t; ðA1Þ

where hÂkit ¼ hψ tjÂkjψ ti. The constants γk represent the
information rate of the measurement and dWk;t are standard
independent Wiener process such that E½dWk;t� ¼ 0 and
E½dWk;tdWj;t� ¼ δkjdt. The measurement record corre-
sponding to the measurement of Âk is defined as in
Eq. (12). This is a stochastic quantity centered at the
average value 1

2
hÂk þ Â†

kit and with a variance defined by
γk and dWk;t.

b. Feedback dynamics

After performing the measurement of the operators Âk,
we can send the corresponding measurement result to the
complementary subsystem. This operation can be per-
formed by employing the following feedback Hamiltonian

Ĥfb ¼ χ1r1B̂2 þ χ2r2B̂1; ðA2Þ

where χk are real constants and B̂k are suitable operators.
The corresponding feedback equation is computed by

unitarily evolve the state jψ tiwith respect to Ĥfb. Then, the
infinitesimal increment of the state is given by

djψ tifb ¼ −
X2
k;j¼1
j≠k

��
iχk
2ℏ

hÂk þ Â†
kitB̂j þ

χ2k
2γk

B̂2
j

�
dt

−
iχkffiffiffiffiffi
γk

p B̂jdWk;t

�
jψ ti: ðA3Þ
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c. Combined evolution

Finally, the stochastic Schrödinger equation comprising
the combined effects of the continuous measurement and
feedback is given by

djψ ti ¼ djψ tim þ djψ tifb þ djψ tiItô; ðA4Þ

where the third term comes from the stochastic Itô calculus:

djψ tiItô ¼ −
X2
k;j¼1
j≠k

i
2ℏ

χkB̂jðÂk − hÂkitÞjψ tidt: ðA5Þ

By fixing Âk ¼ x̂k and B̂j ¼ x̂j, the latter expression
gives Eq. (4).
The master equation for the density matrix correspond-

ing to Eq. (A4) is found by performing the stochastic
average over the noise, and is given by

d
dt

ρ̂t ¼ −
i
ℏ
½Ĥ0; ρ̂t� −

X2
k;j¼1
j≠k

χ2k
2γk

½B̂j; ½B̂j; ρ̂t��

−
X2
k;j¼1
j≠k

i
2ℏ

χk½B̂j; Âkρ̂t þ ρ̂tÂ
†
k�

þ
X2
k¼1

γk
4ℏ2

�
Âkρ̂tÂ

†
k −

1

2
fÂ†

kÂk; ρ̂tg
�
; ðA6Þ

where we added the unitary evolution described by the
Hamiltonian Ĥ0. The second and third terms of Eq. (A6)
come from the feedback dynamics, while the last one
comes from continuous measurement of Âk. Moreover, by
suitably rearranging the third term as

½B̂jÂk þ Â†
kB̂j; ρ̂t� þ ½B̂jρ̂t; Â

†
k� þ ½ρ̂tB̂j; Âk�; ðA7Þ

one can single out an effective correction to the
Hamiltonian. Such a correction reads

ĤI ¼
X2
k;j¼1
j≠k

χk
2
ðB̂jÂk þ Â†

kB̂jÞ; ðA8Þ

and it can be interpreted as a quantum interaction
Hamiltonian between the two particles. We underline that
such a term comes from the combined action of the
continuous measurement and feedback dynamics.

2. Continuous system in three dimensions

a. Continuous measurement

The stochastic Schrödinger equation resulting from the
continuous measurement of an arbitrary operator ÂðxÞ is

djψ tim ¼ −
Z

d3xd3y
8ℏ2

γðx − yÞ½Â†ðxÞÂðyÞ

þhÂ†ðxÞitðhÂðyÞit − 2ÂðyÞÞ�jψ tidt

þ
Z

d3x
2ℏ

ðÂðxÞ − hÂðxÞitÞjψ tidWtðxÞ; ðA9Þ

where the noise is now described by E½dWtðxÞ� ¼ 0 and
E½dWtðxÞdWtðyÞ� ¼ γðx − yÞdt, where γðx − yÞ is an
arbitrary spatial correlator. The measurement record reads
as in Eq. (37), where γ−1ðx − yÞ is the inverse function of
γðx − yÞ. The following expression

ðγ∘γ−1Þðx − yÞ ¼
Z

d3rγðx − rÞγ−1ðr − yÞ

¼ δðx − yÞ; ðA10Þ

relates these two functions.

b. Feedback dynamics

The measurement record is broadcasted to the system by
using the following feedback Hamiltonian

Ĥfb ¼
Z

d3xd3yVðx − yÞB̂ðxÞrðyÞ; ðA11Þ

where B̂ðxÞ is an Hermitian operator and Vðx − yÞ is a
generic function. The corresponding infinitesimal state
evolution reads

djψ tifb ¼ −
Z

d3xd3y

�
i
2ℏ

Vðx − yÞhÂðxÞ þ Â†ðxÞitdt

þ 1

2
ðV∘γ−1∘VÞðx − yÞB̂ðyÞdt

þ iðV∘γ−1Þðx − yÞdWtðyÞ
�
B̂ðxÞjψ ti: ðA12Þ

c. Combined evolution

The stochastic Schrödinger equation of the combined
dynamics is given by Eq. (A4), where

djψ tiItô ¼ −i
Z

d3xd3y
2ℏ

Vðx − yÞB̂ðxÞ

× ðÂðyÞ − hÂðyÞitÞjψ tidt: ðA13Þ

Correspondingly, the master equation reads
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d
dt

ρ̂t ¼ −
i
ℏ
½Ĥ0; ρ̂t�

− i
Z

d3xd3y
2ℏ

Vðx − yÞ½B̂ðxÞ; ÂðyÞρ̂t þ ρ̂tÂ
†ðyÞ�

−
Z

d3xd3y
2

ðV∘γ−1∘VÞðx − yÞ½B̂ðxÞ; ½B̂ðyÞ; ρ̂t��

þ
Z

d3xd3y
4ℏ2

γðx − yÞ

×

�
ÂðxÞρ̂tÂ†ðyÞ − 1

2
fÂ†ðxÞÂðyÞ; ρ̂tg

�
ðA14Þ

We notice that Eq. (A14) has the same form of Eq. (A6).
The second and third terms come from the feedback
dynamics, while the last term comes from continuous
measurement. Similarly as done previously, we can extract
an interaction Hamiltonian reading

ĤI¼
1

2

Z
d3xd3yVðx−yÞðB̂ðxÞÂðyÞþÂ†ðyÞB̂ðxÞÞ; ðA15Þ

by suitably rearrange the second term of the master
equation. Thus, also in the case of a continuous system,
one obtains an interaction Hamiltonian term from the
combined action of continuous measurement and feedback
dynamics.

APPENDIX B: CALCULATION OF THE ηkj
COEFFICIENTS IN THE LINEARIZED
DISSIPATIVE TD MASTER EQUATION

Here, we compute the coefficients ηkj appearing in
Eq. (45). In particular, they are derived from Eq. (44) by
restricting the problem to the one dimensional case.
Correspondingly, we find

ηkj ¼
Z

d3q
2π2ℏ3

g̃2ðqÞ
q2

q21e
i
ℏq1ðxð0Þk −xð0Þj Þ: ðB1Þ

Now, we can compare Eq. (45) with the KTM master
equation (13) once computing the coefficients in Eq. (B1),
which can be done by moving to spherical coordinates and
choosing a suitable form of the smearing function. In
particular, when considering the Gaussian smearing in

Eq. (31), whose Fourier transform reads g̃ðqÞ ¼ e−
q2R2

0

2ℏ2 ,
we find that the coefficients become

ηkk ¼ η; for k ¼ 1; 2;

η12 ¼ η21 ¼
1

2
ffiffiffi
π

p
R3
0

e
− d2

4R2
0

d2
ð4R2

0 þ d2Þ −
2erfð d

2R0
Þ

d3
; ðB2Þ

where η ¼ ð6 ffiffiffi
π

p
R3
0Þ−1 and d ¼ jxð0Þ1 − xð0Þ2 j.

APPENDIX C: CALCULATION OF THE MEAN
ENERGY IN THE DISSIPATIVE TD MODEL

By following the approach used for the dissipative KTM
model, we compute the evolution of T̂cm ¼ p̂2

cm=4m and
V̂cm ¼ mΩ2

cmx̂2cm using Eq. (48). We find the following
system of differential equations

d
dt

hV̂cmit ¼
Ω2

cm

2
hfp̂cm; x̂cmgit þ

Gm3α2Ω2
cmηþ

4ℏ
;

d
dt

hT̂cmit ¼ −
2Gm2αηþ

ℏ
hT̂cmit

−
Ω2

cm

2
hfp̂cm; x̂cmgit þ

ℏGmηþ
2

;

d
dt

hfp̂cm; x̂cmgit ¼ −
Gm2αηþ

ℏ
hfp̂cm; x̂cmgit þ 4hT̂cmit

− 4hV̂cmit −Gm2αηþ: ðC1Þ

Similarly, we compute the evolution of T̂rel ¼ p̂2
rel=m and

V̂rel ¼ m
4
Ω2

relx̂
2
rel using Eq. (50). The energy behavior is

described by

d
dt

hV̂relit ¼
Ω2

rel

2
hfp̂rel; x̂relgit þ

Gm3α2Ω2
relη−

4ℏ
;

d
dt

hT̂relit ¼ −
2Gm2αη−

ℏ
hT̂relit

−
Ω2

rel

2
hfp̂rel; x̂relgit þ

ℏGmη−
2

;

d
dt

hfp̂rel; x̂relgit ¼ −
Gm2αη−

ℏ
hfp̂rel; x̂relgit þ 4hT̂relit

− 4hV̂relit −Gm2αη−: ðC2Þ

By imposing that the time derivatives in Eqs. (C1) and (C2)
vanish, we find

hfp̂cm; x̂cmgi∞ ¼ −
Gm3α2ηþ

2ℏ

hfp̂rel; x̂relgi∞ ¼ −
Gm3α2η−

2ℏ

hT̂cmi∞ ¼ ℏ2

4mα
þ αmΩ2

cm

8
;

hT̂reli∞ ¼ ℏ2

4mα
þ αmΩ2

rel

8
;

hV̂cmi∞ ¼ hT̂cmi∞ þ G2m5α3η2þ
8ℏ2

−
Gm2αηþ

4
;

hV̂reli∞ ¼ hT̂reli∞ þ G2m5α3η2−
8ℏ2

−
Gm2αη−

4
; ðC3Þ

which gives Eq. (53) once considering that Ĥ¼ĤcmþĤrel ¼
T̂cmþV̂cmþT̂relþV̂rel, and Ω2

cm ¼ Ω2 −Gmη ¼ ω2, Ω2
rel ¼

Ω2 þ Gmη12 ¼ ω2 þ 2Gmη12, η� ¼ η� η12.
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