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Extreme mass-ratio inspirals (EMRIs) detectable by the Laser Interferometer Space Antenna are unique
probes of the nature of supermassive compact objects. We compute the gravitational-wave signal emitted
by a stellar-mass compact object in a circular equatorial orbit around a Kerr-like horizonless supermassive
object defined by an effective radius and a reflectivity coefficient. The Teukolsky equations are solved
consistently with suitable (frequency-dependent) boundary conditions, and the modified energy and
angular-momentum fluxes are used to evolve the orbital parameters adiabatically. The gravitational fluxes
have resonances corresponding to the low-frequency quasinormal modes of the central object, which can
contribute significantly to the gravitational-wave phase. Overall, the absence of a classical event horizon
in the central object can affect the gravitational-wave signal dramatically, with deviations even larger than
those previously estimated by a model-independent analysis of the tidal heating. We estimate that EMRIs
could potentially place the most stringent constraint on the reflectivity of supermassive compact objects at
the remarkable level ofOð10−6Þ% and would allow one to constrain various models which are not ruled out
by the ergoregion instability. In particular, an EMRI detection could allow one to rule out (or provide
evidence for) signatures of quantum black-hole horizons with Boltzmann reflectivity. Our results provide
motivation for performing rigorous parameter estimation to assess the detectability of these effects.
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I. INTRODUCTION

The defining feature of a classical black hole (BH) is its
function as a perfect absorber since its event horizon is a
one-way, null hypersurface. Thus, any evidence of some
partial reflectivity near a dark compact object would
indicate a departure from the classical BH picture, while
an upper bound on the reflectivity could help quantify the
“BH-ness” of a dark compact source [1].
Gravitational-wave (GW) astronomy naturally provides

the ideal setting to constrain the reflectivity of compact
sources. In fact, one might argue that imperfect GW
absorption should be the rule rather than the exception
since event horizons are very special and all known forms
of matter interact very weakly with GWs, even in extreme
conditions [2–5]. On the contrary, owing to their horizon,
BHs are dissipative systems that behave like a Newtonian
viscous fluid [6–9]. A spinning Kerr BH absorbs radiation
of frequency ω > mΩH (where m is the azimuthal number
of the wave and ΩH is the BH angular velocity) but
amplifies radiation of smaller frequency due to super-
radiance (see [10] for a review).

In the last few years, several studies have explored the
possibility of constraining the reflectivity of compact
GW sources (see Refs. [1,11] for some reviews), mostly
modeling the postmerger “echo” signal from exotic com-
pact objects (ECOs) [12–22] or deriving projected bounds
on the so-called tidal heating—namely, the dissipative1

backreaction on the orbital motion from the tides that were
raised during the coalescence [23–25]. In a comparable-
mass binary, tidal heating enters the GW phase at high post-
Newtonian order [26] and is therefore hard to measure [27].
On the other hand, tidal heating in extreme mass-ratio
inspirals (EMRIs) can produce thousands of radians of the
accumulated orbital phase [28–32] while in the sensitivity
band of the future space-based Laser Interferometer Space
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1This dissipative effect should not be confused with the effect
of the tidal deformability of a compact object, encoded in its tidal
Love numbers, which also affects the conservative part of the
dynamics. Tidal heating is associated with the energy and
angular-momentum absorption by the compact object and results
in an increase of the mass and angular momentum of the latter,
unless superradiance [10] occurs, in which case the energy and
angular-momentum fluxes have opposite signs (as discussed in
detail below). See Ref. [23] for an introduction on tidal effects
in a binary system and Ref. [1] for their different roles in tests
of ECOs.
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Antenna (LISA) [33]. Recently, this effect was studied to
develop a test that can place very stringent and model-
independent constraints on the reflectivity of supermassive
objects [32,34], which adds to other unparalleled EMRI-
based tests of fundamental physics, such as no-hair theorem
tests based on measurements of the multipolar structure
of the central object [32,35–39], constraints on extra
degrees of freedom arising in modified gravity [40–44],
and null-hypothesis tests based on the absence of tidal
Love numbers [45]. Together, these tests suggest that
EMRIs will be unique probes of the nature of supermassive
objects (for recent reviews on these and other tests, see
Refs. [1,46–48]).
The phenomenological approach of Ref. [32] was to

study a standard BH EMRI dynamics and to parametrize a
certain amount of reflectivity at the object surface in terms
of a constant reflectivity coefficient jRj2, assuming that
a fraction ð1 − jRj2Þ of the radiation is absorbed. Clearly,
the BH limit is recovered as R → 0, whereas jRj2 ¼ 1
corresponds to a perfectly reflective object. According to
the analysis in [32], EMRIs could provide an unparalleled
constraint at the level of jRj2 ≲ 10−4, much more stringent
than current and future echo searches [1,19–21].
The main goal of our paper is to improve the analysis

of Ref. [32] by studying a consistent model of a compact
horizonless object, defined by a certain compactness and
(possibly frequency-dependent) reflectivity coefficient,
which in turn modify the boundary conditions for radi-
ation at the surface. In our model, tidal heating and partial
reflection are not imposed by hand, but rather arise
automatically from the boundary conditions. The latter
also generically affect the dynamics as well as the
quasinormal modes (QNMs) of the central object
[22,49–51]. The QNM spectrum typically contains low-
frequency modes arising from long-lived, quasibound
states, which might be resonantly excited during the
inspiral [52–55]. The role of these resonances in the
EMRI dynamics was studied in Ref. [54] for a per-
fectly reflecting, nonspinning, quasi-Schwarzschild hori-
zonless object, for which an analytical treatment of the
problem is possible (see also Ref. [55] for a more recent
study). Our framework allows one to extend the analysis
of Ref. [54] to the case of a generic (and possibly
frequency-dependent) reflectivity coefficient and generic
spin. As we shall show, at variance with the case studied
in Ref. [54], in more generic situations the presence of
resonances can provide an important contribution to the
EMRI dynamics. We shall also show that, by taking a
consistent model into account, the already very stringent
potential bounds derived by Datta et al. [32] can be fur-
ther improved by some orders of magnitude. Finally, we
show that EMRI detections have the potential to rule out
(or provide observational hints of) models of quantum-
gravity BH horizons featuring a (frequency-dependent)
Boltzmann reflectivity [56].

The rest of this paper is organized as follows. In Sec. II
we present our analytical and numerical framework, which
relies on solving the EMRI dynamics around an ECO to
leading order in an adiabatic expansion. We present our
results in Sec. III and conclude in Sec. IV. Through this
work, we use G ¼ c ¼ 1 units.

II. SETUP

A. A model for a Kerr-like horizonless object

We analyze a spinning compact horizonless object
whose exterior spacetime is described by the Kerr metric
[14,50,57]. It is worth remarking that, even within general
relativity, the vacuum region outside a spinning object is
not necessarily described by the Kerr geometry due to the
absence of Birkhoff’s theorem beyond spherical symmetry.
However, in the BH limit, any deviation from the multi-
polar structure of a Kerr BH dies off sufficiently fast [58]
within general relativity or in modified theories of gravity
whose effects are confined near the radius of the com-
pact object.2 Explicit examples of this “hair-conditioner
theorem” [58] within general relativity are given in
Refs. [61–66].
Therefore, within our framework a spinning horizonless

object with compactness close to the BH one can be
approximated by the Kerr metric in the exterior spacetime
and the properties of the interior can be modeled in terms of
a reflectivity coefficient.
In Boyer-Lindquist coordinates, the line element outside

the compact object reads

ds2 ¼−
�
1−

2Mr
Σ

�
dt2þ Σ

Δ
dr2−

4Mr
Σ

asin2θdϕdt

þΣdθ2þ
�
ðr2þa2Þsin2θþ 2Mr

Σ
a2sin4θ

�
dϕ2; ð1Þ

where Σ ¼ r2 þ a2 cos2 θ and Δ ¼ r2 þ a2 − 2Mr, withM
and J ≡ aM the total mass and angular momentum of the
object, respectively. We shall consider a horizonless com-
pact object whose radius is located at

r0 ¼ rþð1þ ϵÞ; ð2Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the location of the would-be

horizon. Let us notice that the parameter ϵ is related to the
compactness of the object—namely, M=r0 ≈M=rþð1 − ϵÞ
when ϵ ≪ 1. Motivated by models of microscopic correc-
tions at the horizon scale, we shall focus mostly on the case

2For EMRIs, assuming that the central object is described by
the Kerr metric is also justified for gravity theories with higher-
curvature/high-energy corrections to general relativity [59]. In
that case, the corrections to the metric are suppressed by powers
of lP=r0 ≪ 1, where r0 is the radius of the central object and lP is
the Planck length or the length scale of new physics [44,60].
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in which ϵ ≪ 1. For example, if r0 ∼ rþ þ lP (where lP is
the Planck length, as suggested by some quantum-gravity
inspired models [67]), then ϵ ∼ 10−44 for a compact object
with M ∼ 106 M⊙ and spin a=M ¼ 0.9.
The properties of the interior are parametrized in terms of

a complex and frequency-dependent reflectivity coefficient
R. The R ¼ 0 case describes a totally absorbing compact
object (which reduces to the standard BH case when
ϵ → 0), whereas the jRj2 ¼ 1 case describes a perfectly
reflecting compact object. Intermediate values of R
describe partially absorbing compact objects due to vis-
cosity or dissipation within the object [15,20,22,50,51,56].

B. Linear perturbations from a point particle

Let us consider the case of a pointlike source orbiting
around a central object (either a Kerr BH or a Kerr-like
ECO) in a circular equatorial orbit. In line with the previous
discussion, we assume that in the exterior of the object
general relativity is valid, at least approximately (this does
not prevent beyond-general-relativity corrections in the
object interior and at the horizon scale, which can be
parametrized by the reflectivity coefficient). Therefore,
gravitational perturbations in the exterior can be described
as in the Kerr BH case. We analyze the gravitational
perturbation in the Newman-Penrose formalism.3 The
Weyl scalar Ψ4 can be expanded as

Ψ4 ¼ ρ̂4
X
l;m

Z
∞

−∞
dωRlmωðrÞ−2SlmωðθÞeiðmϕ−ωtÞ; ð3Þ

where ρ̂ ¼ ðr − ia cos θÞ−1 and the sum runs over l ≥ 2
and −l ≤ m ≤ l. The radial wave function RlmωðrÞ and
the spin-weighted spheroidal harmonics −2SlmωðθÞeimϕ

obey the Teukolsky master equations [70–72]

Δ2
d
dr

�
1

Δ
dRlmω

dr

�
− VðrÞRlmω ¼ T lmω; ð4Þ

�
1

sin θ
d
dθ

�
sin θ

d
dθ

�
þ a2ω2cos2θ −

�
m − 2 cos θ

sin θ

�
2

þ 4aω cos θ − 4þ −2Almω

�
−2Slmω ¼ 0; ð5Þ

where the effective potential reads

VðrÞ ¼ −
K2 þ 4iðr −MÞK

Δ
þ 8iωrþ λ; ð6Þ

where K ¼ ðr2 þ a2Þω − am and the separation constants
λ and −2Almω are related by λ≡−2Alm−2amωþa2ω2−2.
The polar part of the spin-weighted spheroidal harmonics is
normalized such thatZ

1

−1
j−2Slmωðcos θÞj2d cos θ ¼ 1: ð7Þ

The source term T lmω is constructed by projecting the
stress-energy tensor Tαβ of a pointlike source with respect
to the Newman-Penrose tetrad, where [73]

Tαβ ¼ μ
uαuβ

Σ sin θut
δðr − rðtÞÞδðθ − θðtÞÞδðϕ − ϕðtÞÞ; ð8Þ

where μ is the mass of the small orbiting body,
uα ¼ dzα=dτ, zα ¼ ðt; rðtÞ; θðtÞ;ϕðtÞÞ is the geodesic tra-
jectory, and τ is the particle’s proper time. We define the
mass ratio of the system as q ¼ μ=M. In the case of circular
equatorial orbits, θðtÞ ¼ π=2 and, for corotating orbits, the
orbital radius is related to the orbital angular frequency by

Ω ¼
ffiffiffiffiffi
M

p
=ða

ffiffiffiffiffi
M

p
þ r3=2Þ: ð9Þ

Equation (4) can be solved through the standard Green’s
function method using the solutions of the homogeneous
Teukolsky equation.

1. BH case

Let us first review the standard BH case. Owing to the
presence of a horizon, the two independent homogeneous
solutions have the following asymptotic behavior:

Rin
lmω ∼

(
Btrans
lmωΔ2e−ikr� as r� → −∞;

r3Bref
lmωe

iωr� þ r−1Binc
lmωe

−iωr� as r� → þ∞;

ð10Þ

Rup
lmω ∼

(
Cup
lmωe

ikr� þ Δ2Cref
lmωe

−ikr� as r� → −∞;

r3Ctrans
lmωe

iωr� as r� → þ∞;

ð11Þ

where k ¼ ω −mΩH, ΩH ¼ a=ð2MrþÞ is the angular
velocity at the horizon of the Kerr BH and the tortoise
coordinate is defined such that dr�=dr ¼ ðr2 þ a2Þ=Δ. The
inhomogeneous solution of the Teukolsky equation (4) is
constructed as [73]

Rlmω ¼ 1

Wlmω

�
Rup
lmωðrÞ

Z
r

rþ
dr0

T lmωðr0ÞRin
lmωðr0Þ

Δ2ðr0Þ

þ Rin
lmωðrÞ

Z
∞

r
dr0

T lmωðr0ÞRup
lmωðr0Þ

Δ2ðr0Þ
�
; ð12Þ

3Very recently, using the Sasaki-Nakamura perturbations, a
similar formalism was used to study a point particle plunging
onto a spinning compact horizonless object in the context of
developing accurate echo waveforms [68] (see also Ref. [69]).
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where Wlmω is the Wronskian given by

Wlmω ¼ Δ−1
�
Rin
lmω

dRup
lmω

dr
− Rup

lmω

dRin
lmω

dr

�
¼ 2iωCtrans

lmωB
inc
lmω: ð13Þ

The inhomogeneous solution in Eq. (12) has the following
asymptotic behavior:

Rlmω ∼

(
ZH
lmωΔ2e−ikr� as r� → −∞;

Z∞
lmωr

3eiωr� as r� → þ∞;
ð14Þ

where

ZH
lmω ¼ CH

lmω

Z
∞

rþ
dr0

T lmωðr0ÞRup
lmωðr0Þ

Δ2ðr0Þ ; ð15Þ

Z∞
lmω ¼ C∞

lmω

Z
∞

rþ
dr0

T lmωðr0ÞRin
lmωðr0Þ

Δ2ðr0Þ ; ð16Þ

and

CH
lmω ¼ Btrans

lmω

2iωCtrans
lmωB

inc
lmω

; C∞
lmω ¼ 1

2iωBinc
lmω

: ð17Þ

The amplitudes ZH
lmω and Z∞

lmω determine the gravita-
tional energy fluxes emitted at infinity and through the
horizon [28,72]:

_E∞ ¼
X
lm

jZ∞
lmωj2

4πðmΩÞ2 ; ð18Þ

_EH ¼
X
lm

αlmjZH
lmωj2

4πðmΩÞ2 ; ð19Þ

where

αlm¼256ð2MrþÞ5kðk2þ4ϖ2Þðk2þ16ϖ2ÞðmΩÞ3
jclmj2

; ð20Þ

with ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=ð4MrþÞ and

jclmj2 ¼ ½ðλþ 2Þ2 þ 4maðmΩÞ − 4a2ðmΩÞ2�
× ½λ2 þ 36maðmΩÞ − 36a2ðmΩÞ2�
þ ð2λþ 3Þ½96a2ðmΩÞ2 − 48maðmΩÞ�
þ 144ðmΩÞ2ðM2 − a2Þ: ð21Þ

For circular equatorial orbits, the angular-momentum
fluxes are related to the energy fluxes at infinity and at
the horizon by _J∞;H ¼ _E∞;H=Ω.
In the BH case, the total energy flux emitted by a point

particle in a circular equatorial orbit with orbital angular
frequency Ω is

_EðΩÞ ¼ _E∞ðΩÞ þ _EHðΩÞ; ð22Þ

where _E∞ðΩÞ and _EHðΩÞ are as defined in Eqs. (18)
and (19), respectively.

2. Horizonless case

As discussed above, we assume that, at least in the
exterior of the central object, general relativity is a valid
approximation. Therefore, for r > r0 the perturbations
equations are the same as in the Kerr BH case, and possible
corrections can be incorporated into the boundary con-
ditions for the gravitational radiation at the effective radius.
The physical interpretation of the inner boundary

condition is more evident by adopting the Detweiler
function [74]

Xlmω¼
ðr2þa2Þ1=2

Δ

�
αðrÞRlmωþβðrÞΔ−1dRlmω

dr

�
; ð23Þ

where αðrÞ and βðrÞ are certain radial functions [51,74].
Indeed, since any signal is totally absorbed, in the BH case
the physical solution is a purely ingoing wave near the
horizon,

Xlmω ∼ e−ikr� as r� → −∞: ð24Þ

In the case of an ECO, the solution near the surface
(r ∼ r0) is more involved and also depends on the value of ϵ
[22]. If we assume that ϵ ≪ 1, the effective potential in the
Detweiler equation is constant near the surface, V ≈ −k2
[51,74], so the perturbation is a superposition of ingoing
and outgoing waves at the ECO radius,

Xlmω ∼ Aine−ikr� þ Aouteikr� as r� → r0�; ð25Þ

where r0� ≡ r�ðr0Þ. One can therefore define the surface
reflectivity of the ECO as [51]

RðωÞ ¼ Aout

Ain
e2ikr

0� : ð26Þ

Perfectly reflecting objects have jRðωÞj2 ¼ 1, i.e.,
RðωÞ ¼ eiψðωÞ for an arbitrary (real) frequency-dependent
phase ψ . Two notable examples of perfectly reflecting
boundary conditions are

�
Xlmωðr0Þ ¼ 0; Dirichlet; R ¼ −1;
dXlmωðr0Þ=dr� ¼ 0; Neumann; R ¼ 1;

ð27Þ

corresponding to ψ ¼ π and ψ ¼ 0, respectively. In gen-
eral, a partially absorbing compact object is described by
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dXlmω=dr�
Xlmω

				
r0

¼ −ik
1 −RðωÞ
1þRðωÞ ; ð28Þ

which reduces to the BH boundary condition whenR ¼ 0.
In the ECO case, the solutions of the homogeneous

Teukolsky equation are such that the “up” modes have the
same asymptotics as Eq. (11), whereas the “in”modes have
the following asymptotics:

Rin
lmω ∼

(
B0trans

lmωΔ2e−ikr� þ C0up
lmωe

ikr� as r� → r0�;

r3B0ref
lmωe

iωr� þ r−1B0inc
lmωe

−iωr� as r� → þ∞;

ð29Þ

where

B0trans
lmω ¼ Btrans

lmω þ c1Cref
lmω; ð30Þ

C0up
lmω ¼ c1C

up
lmω; ð31Þ

B0ref
lmω ¼ Bref

lmω þ c1Ctrans
lmω; ð32Þ

B0inc
lmω ¼ Binc

lmω; ð33Þ

and the coefficient c1 is determined by imposing the
boundary condition in Eq. (28) with

Rlmω ¼ Rin
lmω þ c1R

up
lmω: ð34Þ

The inhomogeneous solution of the Teukolsky function is
derived as in Eq. (12), with Rin

lmω as in Eq. (29) and Rup
lmω as

in Eq. (11), and it has the following asymptotic behavior:

Rlmω ∼
�
ZHþ
lmωΔ2e−ikr� þ ZH−

lmωe
ikr� as r� → r0�;

Z∞
lmωr

3eiωr� as r� → þ∞;
ð35Þ

where

ZHþ
lmω ¼ ZH

lmω; ZH−

lmω ¼ C0up
lmω

B0trans
lmω

ZH
lmω: ð36Þ

To determine the energy emitted by the particle in the
ECO case, we note that—by assumption—the gravitational
perturbations in the neighborhood of the particle are exactly
those of a Kerr background, albeit with unusual boundary
conditions. We can therefore determine the emitted energy
by appealing to the energy balance law in the Kerr
background. The energy flux to infinity is formally given
by the same formula as the BH case, Eq. (18). The energy
flux to the ECO side is determined by analytically
extending Rlmω to the horizon of the Kerr background
and measuring the flux there. Thus, the internal energy flux
on the ECO side _Eint is given by

_Eint ¼ _EHþ
− _EH−

; ð37Þ

where _EHþ
and _EH−

are the energy fluxes across the future
and past horizon, respectively. The flux across the future
horizon is as in the BH case given by Eq. (19), while the
energy flux coming in across the past horizon is [72]4

_EH− ¼
X
lm

ω

4πkð2MrþÞ3ðk2 þ 4ϖ2Þ jZ
H−

lmωj2: ð38Þ

In the case ofR ¼ 0, Eq. (37) reduces to _Eint ¼ _EHþ
. When

jRðωÞj2 ¼ 1, the outgoing flux is equal to the ingoing flux
at the ECO radius and _Eint ¼ 0, as expected from fully
reflecting boundary conditions.
In the ECO case, the total energy flux emitted by a point

particle in a circular equatorial orbit is

_EðΩÞ ¼ _E∞ðΩÞ þ _EintðΩÞ; ð39Þ

where _E∞ðΩÞ and _EintðΩÞ are as defined in Eqs. (18)
and (37), respectively.

C. Adiabatic evolution and waveform

In an EMRI, the radiation-reaction timescale is much
longer than the orbital period so—at the first order in the
mass ratio—the orbital parameters can be evolved using
an adiabatic expansion [75]. For a particle in a circular
equatorial and corotating orbit, the evolution of the
orbital angular frequency Ω and the orbital phase ϕ are
governed by

_Ω ¼ −
�
dEb

dΩ

�
−1

_EðΩÞ; ð40Þ

_ϕ ¼ Ω; ð41Þ

where Eb is the binding energy of the system,

Eb ¼ μ
1 − 2v2 þ χv3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3v2 þ 2χv3

p ; ð42Þ

where χ ¼ a=M, v≡ ffiffiffiffiffiffiffiffiffi
M=r

p
, r is the orbital radius which

is related to the orbital angular frequency via Eq. (9), and
_EðΩÞ is the total energy flux defined in Eqs. (22) and (39)
in the BH and in the ECO case, respectively.
Equations (40) and (41) can be solved with some initial

conditions Ωðt ¼ 0Þ ¼ Ω0 and (without loss of generality)
ϕðt ¼ 0Þ ¼ 0. The GW phase of the dominant mode is
related to the orbital phase by ϕGW ¼ 2ϕ. The GW

4Note that while [72] calculates only the flux across the future
horizon, the flux across the past horizon can be obtained trivially
by switching the roles of the ingoing and outgoing principal null
vectors, which has the effect of reversing the roles of ψ0 and ψ4.

EXTREME MASS-RATIO INSPIRALS AROUND A SPINNING … PHYS. REV. D 104, 104026 (2021)

104026-5



dephasing accumulated up to a certain time between the BH
case and ECO case is computed as [32]

ΔϕðtÞ ¼ ϕBH
GWðtÞ − ϕECO

GW ðtÞ: ð43Þ

The emitted waveform is computed from the Weyl scalar
at infinity and reads [28,60]

hþ − ih× ¼ −
2ffiffiffiffiffiffi
2π

p μ

D

X
lm

Z∞
lmωðtÞ

½mΩðtÞ�2 e
imðΩðtÞrD� −ϕðtÞÞ

× −2Slmωðϑ; tÞeimφ; ð44Þ

where D is the source luminosity distance from the
detector, rD� ≡ r�ðDÞ, and ðϑ;φÞ identify the direction,
in Boyer-Lindquist coordinates, of the detector in a
reference frame centered at the source. Since the initial
phase is degenerate with the azimuthal direction, we simply
rescale the initial phase as φ≡ ϕðt ¼ 0Þ.
Note that, regardless of its reflectivity, an ultracompact

object can efficiently trap radiation within its photon sphere
[12,13,76]. If radiation is trapped for enough time, it can
contribute to the energy balance used to evolve the orbit
adiabatically, thus mimicking the effect of a horizon even in
the absence of dissipation within the object. However, this
energy trapping at the photon sphere is not effective for a
particle in circular orbit if [27,32]

ϵ ≫ exp

�
−

5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
64qð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ

�
: ð45Þ

Owing to the mass-ratio dependence, this condition is
always satisfied in the EMRI limit (q≲ 10−5) for any
realistic value of ϵ and χ. Therefore, for an EMRI the only
way to absorb radiation near the central ECO is by
dissipating in its interior, i.e., when jRj2 < 1.
Spinning horizonless Kerr-like objects are affected by

the so-called ergoregion instability [77,78] when spinning
sufficiently fast [50,51,79–81]. In this case, the central
object would spin down, reaching a stable configuration.
The instability timescale can be shorter than the orbital
period and would affect the dynamics of the point particle.
Since unstable solutions should not form in the first place
and, in any case, do not live long enough to form an EMRI,
we shall focus our analysis on stable Kerr-like horizonless
objects only. Stability is reached by assuming partially
absorbing compact objects (R < 1) [51] or specific models
for the frequency-dependent reflectivity RðωÞ [56], so the
net absorption of the relevant frequencies is higher than the
superradiant amplification that leads to the ergoregion
instability [50,51].
Finally, note that horizonless compact objects contain

low-frequency modes in their spectrum, which are asso-
ciated with long-lived quasibound states efficiently con-
fined within the object photon sphere [22,50,51,76]. Unlike

the BH case, these low-frequency modes can be excited
during a quasicircular inspiral when the orbital frequency
equals the QNM frequency, leading to resonances in the
fluxes [52–55]. As discussed in Sec. III, these resonances
can be very narrow and require very high resolution in order
to resolve them.

D. Overlap

Although the dephasing Δϕ between two different
waveforms [h1ðtÞ and h2ðtÞ] is a useful and quick measure
to estimate the impact of different effects, a somewhat more
reliable and robust measure for assessing the measurability
of any deviation from a standard reference signal is given
by the overlap:

Oðh1jh2Þ ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð46Þ

where the inner product hh1jh2i is defined by

hh1jh2i ¼ 4ℜ
Z

∞

0

h̃1h̃
�
2

SnðfÞ
df; ð47Þ

and SnðfÞ is the GW detector noise power spectral
density, and the quantities with tildes and the star stand
for the Fourier transform and complex conjugation,
respectively. For the power spectral density, we adopted
the LISA curve of Ref. [82] adding the contribution
of the confusion noise from the unresolved Galactic
binaries for a one-year mission lifetime. Since the
waveforms are defined up to an arbitrary time and phase
shift, it is also necessary to maximize the overlap in
Eq. (46) over these quantities. In practice, this can be
done by computing [83]

Oðh1jh2Þ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p max
t0

				F−1
�
h̃1h̃

�
2

SnðfÞ
�
ðt0Þ

				; ð48Þ

where F−1½gðfÞ�ðtÞ ¼ Rþ∞
−∞ gðfÞe−2πiftdf is the inverse

Fourier transform. The overlap is defined such that
O ¼ 1 indicates perfect agreement between two wave-
forms. It is also customary to define the mismatch
M≡ 1 −O.

E. Numerical procedure

We have studied the dynamics of a point particle in a
circular equatorial orbit around a Kerr-like ECO by adapt-
ing the frequency-domain Teukolsky code originally devel-
oped in Refs. [84–87]. In particular, the solutions to the
homogeneous Teukolsky equation are calculated via the
numerical Mano-Suzuki-Takasugi method [73,88–90].
Use of this method gives full analytical control over the
boundary conditions, making it perfectly suited for our
purpose. We have modified the (frequency-dependent)
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boundary conditions at r ¼ r0 in terms of R and ϵ, as
discussed in Sec. II B, computed the energy and angular-
momentum fluxes at infinity and through the object’s
surface, and finally evolved the quasicircular orbit adia-
batically by integrating Eqs. (40) and (41).
Our algorithm is as follows:
(1) Choose the intrinsic parameters of the binary—

namely, the central mass M, the mass ratio q ≪ 1,
the primary spin χ, the reflectivity RðωÞ, and the
compactness of the central object and the initial
orbital radius.

(2) For a given l ¼ m mode, produce the data for a
bound orbit with orbital radius r and compute the
energy fluxes in the cases of a central BH and a
central ECO, respectively.

(3) Loop on the orbital radii with an equally spaced
(radial) grid startingwith the ISCOradius to r ¼ 10M.

(4) Find the local maxima and minima in the energy
fluxes at infinity for a central ECO. If present, these
extrema bracket resonances in the flux, which
should be resolved by increasing the grid resolution.
Note that the initial equally spaced grid in the orbital
radii needs to be dense enough to find local maxima
and minima. For this reason, we set the initial
discretization in the orbital radii at 0.003M.

(5) Refine the grid on the orbital radii around local
maxima and minima through bisection until a
target accuracy is reached. The refinement of the
grid stops either when the difference between two
subsequent orbital radii is < 10−5M or when the
difference in the energy fluxes of two subsequent
points is < 10−5q2.

(6) For a given l and each m ¼ l − 1;…; 1 loop on the
orbital radii with an equally spaced grid from the
ISCO radius. The loop on the orbital radii stops
when the total energy flux in the case of a central BH
[defined in Eq. (22)] in the given l; m mode is 10−6

times smaller than the total energy flux in the
dominant mode with l ¼ m.

(7) For a given l and each m ¼ l − 1;…; 1 repeat
steps 4 and 5.

(8) For the harmonic index l ¼ 2;…;lmax ¼ 12 repeat
the steps 2 to 7.

(9) For each l; mmode, interpolate the total energy flux
as a function of the orbital angular frequency.

(10) Sum over the modes and integrate Eqs. (40)
and (41) to compute the orbital phase in both the
BH and ECO cases. The initial condition on the
orbital angular frequency is Ω0 ¼ Ωðr ¼ 10MÞ and
the integration stops at the inspiral-plunge transition
frequency [91] ΩðtmaxÞ ¼ Ωðr ¼ rISCO þ 4q2=3Þ.

The gravitational waveform is computed via Eq. (44),
where for the modes with negative m we make use of the
following symmetries:

Z∞
l−mω ¼ ð−1ÞlðZ∞

lmωÞ�; ð49Þ

−2Sl−mωðϑÞ ¼ð−1Þl−2Slmωðπ − ϑÞ: ð50Þ

For each l; m mode the asymptotic amplitudes at infinity
and the spin-weighted spheroidal harmonics are interpo-
lated functions of the time-dependent orbital angular
frequency. The waveform is constructed by summing over
the modes with l ≤ 4 and −l ≤ m ≤ l. In the cases of
small reflectivity (jRj2 ≤ 10−6) the waveform is con-
structed by summing over the l; m modes until l ¼ 5
since one needs higher accuracy to keep the truncation
errors smaller than the ECO corrections. We checked to see
that the mismatch between the BH and ECO waveforms
does not change quantitatively by including modes with
higher l in the waveforms.
We tested our code by reproducing standard results for

the Kerr BH case [28–31]. Furthermore, we reproduced
the results of Ref. [32] for a Kerr-like ECO using the
same assumptions; i.e., we considered the Kerr BH case
and artificially impose the requirement that only a fraction
ð1 − jRj2Þ of the radiation is absorbed at the surface.
The fractional truncation error of the code is estimated

in the dephasing as Δtr ¼ 1 − Δϕlmaxþ1ðtfÞ=Δϕlmax
ðtfÞ,

where the energy fluxes are truncated at lmax ¼ 12
and tf is the time at which the orbital radius is
r ¼ rISCO þ 4q2=3. For a reference compact object with
χ ¼ 0.9, jRj2 ¼ 0.9, ϵ ¼ 10−10, and q ¼ 3 × 10−5, we find
that Δtr ¼ 2 × 10−5.

III. RESULTS

In this section, we present our main results. In Secs. III A–
III C we consider an agnostic model with generic values of ϵ
and R. In Sec. III D, we specialize to the Boltzmann
reflectivity model of Ref. [56].

A. Energy fluxes and resonances

Let us start by discussing the modified energy flux in
the case of a spinning horizonless compact object. As a
representative example, Fig. 1 shows the l ¼ m ¼ 2 com-
ponent of the total energy flux as a function of the orbital
frequency for ϵ ¼ 10−10, χ ¼ 0.9, and two choices
(Dirichlet and Neumann) of perfectly reflecting boundary
conditions. As expected, the flux is resonantly excited when
the frequency matches the low-frequency QNMs of the
central ECO, i.e., Ω ¼ ωR=m, where ωR and ωI are the real
and the imaginary part of the QNMs, respectively. This is a
striking differencewith respect to the BH case since the Kerr
QNMs have higher frequencies and cannot be resonantly
excited by quasicircular inspirals. In the small-ϵ limit, the
Dirichlet and Neumann modes are described by [51]
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ωR ∼ −
πðpþ 1Þ
2jr0�j

þmΩH; ð51Þ

ωI ∼ −
βl
jr0�j

�
2Mrþ
rþ − r−

�
½ωRðrþ − r−Þ�2lþ1ðωR −mΩHÞ;

ð52Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
,

ffiffiffiffiffi
βl

p ¼ ðlþ2Þ!ðl−2Þ!
ð2lÞ!ð2lþ1Þ!!, and p is

an odd (even) integer for Neumann (Dirichlet) modes. As
shown in Fig. 1, for fixed χ and ϵ the modes are equispaced
with ΔωR ¼ π=jr0�j, whereas consecutive Dirichlet and
Neumannmode frequencies are separated by half this width.
The difference between consecutive resonances scales as
ΔωR ∼ jlog ϵj−1, and therefore the resonances are denser in
the ϵ → 0 limit.
Interestingly, the resonances appear at the same frequen-

cies in all the individual fluxes: _E∞, _EHþ
, and _EH−

. This is
due to the fact that the QNMs are associated with the poles
of the Wronskian appearing in each solution of Teukolsky’s
equation. However, when jRj2 ¼ 1 the fluxes _EHþ

and _EH−

are exactly equal to each other since in this case _Eint ¼ 0.
Therefore, for the perfectly reflecting case resonances
appear only in the flux at infinity.
Equation (52) shows that ωI ≪ ωR, which implies that

the resonances are typically very narrow and hard to resolve
[52,54,55]. The energy flux across a single resonance is
very well fitted by a forced harmonic oscillator model [92]

_EECO

_EBH ¼ ½ð1 − bÞðmΩÞ2 − ω2
R − ω2

I �2 þ ð2mΩωIÞ2
½ðmΩÞ2 − ω2

R − ω2
I �2 þ ð2mΩωIÞ2

; ð53Þ

where _E is the total energy flux as computed in Eqs. (22)
and (39), respectively, for the BH and ECO cases,
b ¼ 1 − ðΩmax=ΩminÞ2, and Ωmax and Ωmin are the orbital
angular frequencies of the maximum and the minimum of
each resonance. The width of each resonance in the orbital
frequency scales as δΩ ∼ ωI [54], where ωI ∼ ω2lþ2

R from
Eq. (52). It follows that the width of the resonances
increases with the orbital angular frequency as shown in
Fig. 1. In the nonspinning and perfectly reflecting case,
we recover the results of Ref. [54]—namely, that low-
frequency resonances do not contribute significantly to the
GW phase (see Appendix A). However, as discussed below,
for highly spinning compact objects, the ISCO frequency
occurs at higher frequencies with respect to the nonspin-
ning case and higher-frequency resonances can be effi-
ciently excited, contributing a significant dephasing with
respect to the BH case.
The system shown in Fig. 1 is purely indicative since for

this choice of the parameters the central ECO is unstable
and would tend to spin down on short timescales [50,51].
This is also shown by the fact that ωI in Eq. (52) is positive
(ωR < mΩH), as expected due to the ergoregion instability.
Stable solutions require either smaller values of the spin or
partial absorption [50,51]. In all these cases the resonances
are less evident, as shown in Fig. 2, where we considered a
model with jRj2 ¼ 0.9, a value that guarantees stability for
χ ¼ 0.9 [51].
Several comments are in order. First, also for a smaller

reflectivity we observe resonances in _E∞ as in the perfectly
reflecting case of Fig. 1: in this case, they are less peaked
but, as shown below, could still have a sufficiently large
width to be efficiently excited. Second, the same resonant
frequencies appear also in _Eint. This is due to the fact
that for jRj < 1 the fluxes _EHþ

and _EH−
do not exactly

compensate for each other, leaving a net flux at the ECO

FIG. 1. Total energy flux of the l ¼ m ¼ 2 mode as a function
of the orbital angular frequency for a point particle in quasicir-
cular equatorial orbit from r ¼ 10M to r ¼ rISCO. We compare
the case of a central Kerr BH with spin χ ¼ 0.9 to the case of a
central ECO with a perfectly reflecting surface (jRj2 ¼ 1),
χ ¼ 0.9, and ϵ ¼ 10−10. In the latter case, the flux is resonantly
excited when the orbital frequency matches the low-frequency
QNMs of the ECO.

FIG. 2. Energy fluxes that are emitted at the radius and at
infinity by a point particle around a central ECO with χ ¼ 0.9,
ϵ ¼ 10−10, and R ¼ ffiffiffiffiffiffi

0.9
p

for the l ¼ m ¼ 2 mode. The fluxes
are compared to those of Ref. [32] in which the effect of the ECO
was accounted for by simply removing a fraction (jRj2) of the
tidal heating (TH) from a standard Kerr EMRI flux.
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radius that can be resonantly excited. Near the resonances
and at high frequencies, this flux is comparable to _E∞ and
contributes significantly to the GW phase.
Finally, in Fig. 2 we also show the fluxes at infinity and

at the ECO radius computed with the simplified model of
Ref. [32], i.e., by artificially removing a fraction ðjRj2Þ of
the tidal heating from a standard EMRI flux around a
central Kerr BH. We observe that the energy flux at infinity
in this case is similar to the exact result, except for the
presence of the resonances (which are absent in the model
of Ref. [32]). On the other hand, the energy flux at the
radius can change significantly. Owing to the presence
of the resonances, _Eint computed in Ref. [32] is, roughly
speaking, a sort of averaged value of the exact result. The
latter is modulated by the presence of resonances, which
can be as high as the flux at infinity.
In Fig. 3, we show the differences between the total

energy flux of the l ¼ m ¼ 2 mode in the horizonless case
with respect to the BH case. In particular, the left panel
shows the absolute value of this quantity on a logarithmic
scale in order to appreciate the relatively small numbers
involved. In the right panel grid, we instead show the same
quantity on a linear scale and without the absolute value to
appreciate the change of sign during the oscillations.
For jRj2 ≈ 1 the differences between the consistent

model and the model of Ref. [32] are due to two factors:
the excitation of resonances and the (subleading) fact that
the flux computation in the consistent model is more
accurate since it accounts for the fraction of the GWs that
are reflected by the object and make their way to infinity
rather than being reabsorbed by the particle, as implicitly
assumed in [32]. Furthermore, for smaller values of the
reflectivity, the difference between our consistent model
and the simplified one is even more important. In this case,
the resonances are suppressed in amplitude but still appear

in the total energy flux with a larger width, as shown in the
left panel of Fig. 3. The right panel grid in Fig. 3 shows the
oscillatory trend of the total energy flux in the horizonless
case compared to the energy flux in Ref. [32] for small
reflectivities. The amplitude of the oscillations increases
with the orbital angular frequency and decreases with the
reflectivity. These oscillations are related to the resonances
and, as we shall see in Sec. III B, they can also contribute
significantly to the GW phase for small values of R.
Interestingly, when the superradiance condition,Ω<ΩH,

is met, the flux at the radius can be negative due to
superradiant energy and angular-momentum extraction
from the central object [10]. Since _Eint and _E∞ have opposite
signs, it will be interesting to determine whether they can
exactly compensate for each other at some given frequency,
giving rise to a total zero flux and hence to “floating” orbits
[93,94]. As clear from Fig. 2, limited to the case of the
l ¼ m ¼ 2 mode only such orbits would exist. However,
they exist only near high-frequency resonances, where _Eint

(which is typically subdominant) can be as large (in absolute
value) as _E∞. When including the contribution of l > 2
multipoles, we find that the total flux at infinity is larger than
the flux at the radius becausemodeswith different ðl; mÞ are
resonantly excited at different frequencies. The net result is
that the total flux, _E∞ þ _Eint, is positive overall and the orbit
shrinks during the adiabatic evolution.

B. Dephasing

With the total flux at hand until lmax ¼ 12, we now study
the dephasing between a horizonless compact object and
the standard Kerr case. This is shown in Fig. 4 for a fiducial
binary with M ¼ 106 M⊙, μ ¼ 30 M⊙, χ ¼ 0.8, and
ϵ ¼ 10−10. We analyze different values of the reflectivity
jRj2, and for each of them we compare our exact result to

FIG. 3. Difference between the total energy flux of the l ¼ m ¼ 2 mode in the ECO case with respect to the BH case. Left panel:
absolute value of the difference for χ ¼ 0.8, ϵ ¼ 10−10, and several values of the reflectivity. The dotted lines are the estimated
differences in the total energy flux due to the absence of tidal heating relative to the BH case as described in Ref. [32]. Right panels: same
as the left panel but without the absolute value and in a linear scale, to appreciate the change of sign during the oscillations associated
with the resonances.
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that of the model adopted in Ref. [32]. As expected, the
dephasing increases monotonically in time (except possibly
when a resonance is crossed, in which case the dephasing
can have an antispike and decreases near the resonant
frequency; see Appendix B), and also as a function of the
reflectivity. When jRj2 ≈ 1, the difference with respect to
the model adopted in Ref. [32] is small until the inspiral
moves across a resonance. In particular, for jRj2 ¼ 0.9, the
dephasing with respect to our exact results deviates
from the dephasing due to the absence of tidal heating
at t ¼ 9.47 months (marked in Fig. 4 as a dashed vertical
line) due to the presence of a l ¼ m ¼ 2 resonance at
MΩ ¼ 0.0473 withMωI ¼ −4.22 × 10−5. Subsequent res-
onances are excited at later times.
The simplified model of Ref. [32] and the exact result

differ significantly for small reflectivities even if the
resonances are less evident. This is due to several factors:
the energy fluxes at the ECO radius and at infinity display
some differences in the two models since a fraction of
energy is reflected by the object and leaves the system;
moreover, both fluxes (at the radius and at infinity) can be
resonantly excited only in our consistent model, and these
resonances contribute significantly to the GW phase for
intermediate values of R. The dephasing in the consistent
model is always larger than the dephasing with tidal heating
only (for very small values ofR, the two models differ, but
both produce a tiny dephasing, as expected). The dephasing
depends mildly on the compactness of the object; see
Appendix B for an analysis of this contribution.

C. Overlap

In Fig. 5 we show the mismatch M≡ 1 −O between
the waveforms in the ECO case and in the Kerr case with

the same mass and spin for various values of R and two
choices of ϵ. As is clear from the plot, the value of ϵ does
not affect the mismatch significantly as long as ϵ ≪ 1. As
with the dephasing presented above, the mismatch is larger
for the consistent model, especially at small reflectivity,
as can be appreciated by comparing Fig. 5 to the corre-
sponding plot in Ref. [32]. As a useful rule of thumb,
two waveforms can be considered indistinguishable for
parameter-estimation purposes if M≲ 1=ð2ρ2Þ, where ρ
is the signal-to-noise ratio of the true signal [95,97].
For an EMRI with ρ ≈ 20 (ρ ≈ 100) one has M≲ 10−3

(M≲ 5 × 10−5). In Fig. 5 the more conservative threshold
M ¼ 10−3 is denoted with a dashed horizontal line.
Exceeding this threshold is a necessary but not sufficient
condition for a deviation to be detectable. This level of
mismatch is quickly exceeded after less than one year of
data, even for small values of the reflectivity. For example,
for the fiducial case considered in Fig. 5 (χ ¼ 0.8, M ¼
106 M⊙, and μ ¼ 30 M⊙), and assuming that ρ ¼ 20, the
threshold is exceeded after roughly one year unless

jRj2 ≲ 10−8: ð54Þ

Note, however, that the above bound is based solely on the
mismatch calculation and does not take into account, e.g.,
correlations with other waveform parameters. Rigorous
parameter estimation is necessary to derive an accurate
projected upper bound (in the case of no detection). This
interesting analysis goes beyond our scope and is left for
future work.

D. A case study: EMRI constraints on
Boltzmann reflectivity

Although thus far we have considered only the case in
which jRj2 ¼ const, an advantage of our framework is
hat the reflectivity coefficient can be a generic complex

FIG. 4. GW dephasing between the BH and the ECO case as a
function of time for χ ¼ 0.8, q ¼ 3 × 10−5, ϵ ¼ 10−10, and
several values of reflectivity. The dotted lines show the dephasing
due to the absence of tidal heating relative to the BH case as in
Ref. [32]. The vertical dashed line denotes the time corresponding
to a resonant orbital frequency. The horizontal line is a reference
value Δϕ ¼ 0.1 rad [95,96].

FIG. 5. Mismatch between the plus polarization of the wave-
forms with a central ECO and a central BH as a function of time,
for χ ¼ 0.8, q ¼ 3 × 10−5, and several values of the reflectivity.
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function of the model’s parameters and the frequency. We
now consider a specific model for the ECO reflectivity.
In particular, we shall assume a model recently proposed
to describe quantum BH horizons that gives rise to
“Boltzmann” reflectivity [56,98],

RðωÞ ¼ e−
jkj
2TH ; ð55Þ

where TH ¼ rþ−r−
4πðr2þþa2Þ is the Hawking temperature of a Kerr

BH. In this model, the reflectivity depends explicitly on the
spin and the frequency. Furthermore, it provides sufficient
absorption to quench the ergoregion instability [56].
Note that Eq. (55) can also contain a phase term that
depends on the specific model and the perturbation
function on which the corresponding boundary condition
is imposed [56,68,98]. For simplicity, here we shall neglect
such a phase term, which does not affect our analysis
anyway.5

Figure 6 shows the dephasing (left panel) and the overlap
(right panel) obtained in the Boltzmann reflectivity model
compared to the classical BH case. An interesting feature of
this model is that there is no free parameter that contin-
uously connects it to the classical Kerr case, so there is a
concrete chance to rule it out with observations or to
provide evidence for it. Interestingly, owing to its spin
dependence, the Boltzmann reflectivity is much smaller at
the relevant orbital frequencies when the central object
is highly spinning. Therefore, as shown in Fig. 6, the
dephasing and the mismatch with respect to the standard

Kerr BH case are very small when χ ≳ 0.8. The oscillatory
trend in the dephasing is due to the contribution of high-
frequency resonances appearing at late times.

IV. CONCLUSION

EMRIs will be unparalleled probes of fundamental
physics and unique sources for the LISA mission, and
evolved concepts thereof [47]. Developing a consistent
model of a partially absorbing ECO, we studied the signal
emitted by a point particle in a circular motion. The EMRI
dynamics are affected by the modified boundary conditions
at the object’s surface, which give rise to modified tidal
heating, modified fluxes, and resonant QNM excitations in
a consistent fashion. We showed that the GWemission and
orbital dynamics in the consistent model are quite rich: in
addition to some quantitative differences with respect to
the simplified model studied in Ref. [32], there are also
qualitatively new features such as resonances that might
give a relevant contribution to the GW phase in some
regions of the parameter space. In principle, these reso-
nances could also jeopardize detection if not suitably
accounted for in the waveform.
Overall, we found that the already very stringent

potential bounds derived in Ref. [32] can be further
improved by some orders of magnitude by taking into
account a consistent ECO model. These projected con-
straints suggest that EMRI could place the strongest bounds
on the reflectivity of supermassive objects, orders of
magnitude more stringent than those potentially coming
from echo searches in the postmerger phase of comparable
mass coalescences [19,20]. In particular, we showed that an
EMRI detection is potentially sensitive to an effective
reflectivity of the central supermassive object as small as
jRj2 ∼Oð10−8Þ. As a reference, we remind the reader that
in the BH case the reflectivity is exactly zero and that for a

( )

(
)

( )

FIG. 6. Left panel: GW dephasing between the Kerr case and a quantum BH horizon with Boltzmann reflectivity [in Eq. (55)],
ϵ ¼ 10−10, q ¼ 3 × 10−5, and various values of the spin as a function of time. Right panel: mismatch between the plus polarization of the
waveform with a central quantum BH horizon with Boltzmann reflectivity and a central BH as a function of time for several values of the
primary spin.

5Recently, Refs. [68,99] proposed an alternative model for
ECO reflectivity that is related to the tidal response of the ECO to
external curvature perturbations. In this model, the reflectivity
contains extra terms that multiply the Boltzmann factor.
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neutron star it is practically unity,6 even when accounting
for dissipation due to viscosity [2,50,51]. Furthermore, we
showed that this unique sensitivity to small reflectivity
coefficients can be used to constrain specific ECO models,
such as those of quantum BH horizons featuring Boltzmann
reflectivity [56,98]. Our approach is general and the
reflectivity coefficient can be an arbitrarily complex func-
tion of the model parameters and the frequency, so the same
analysis can be applied to other specific ECO models; see,
e.g., [68,99].
However, the above conclusion is based on several

simplifications that should be relaxed in future work. In
particular, we focused on circular, equatorial orbits, while
EMRIs are expected to be eccentric and nonplanar, intro-
ducing two further parameters (the eccentricity and the
Carter constant) to the description of the inspiral. Future
work should also include leading-order self-force effects
[100–102], which are needed for accurate parameter
estimation with EMRIs [75]. Both can be done with minor
adjustments to the code of Refs. [84–87] described here.
Finally, the upper bounds estimated here are based on the
overlap calculation, and therefore neglect possible corre-
lations among the waveform parameters, which is particu-
larly relevant for generic orbits and a relatively small
signal-to-noise ratio. From the parameter-estimation point
of view, it is important to develop modified kludge wave-
forms to include ECO effects in a practical way or, more
ambitiously, to perform accurate data analyses using exact
waveforms (either using the Fisher-information matrix or,
ideally, a Bayesian inference), extending recent work in the
context of standard waveforms [103–105].
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results [106].

APPENDIX A: DEPHASING IN THE
NONSPINNING CASE

For completeness, here we show the dephasing in the
case of a nonspinning, perfectly reflecting ECO relative to
the Schwarzschild BH case for different values of the
compactness parameters ϵ. Figure 7 shows that the dephas-
ing essentially does not depend on ϵ and is not affected by
the resonances, which in the nonspinning case are too
narrow to be efficiently excited.

APPENDIX B: FLUXES AND DEPHASING AS
FUNCTION OF THE COMPACTNESS

In Fig. 8, we show the difference between the ECO and
Kerr BH total energy fluxes for several values of ϵ as a
function of time. We note that, as ϵ decreases, more
resonances appear, and they also appear at lower frequen-
cies. The first low-frequency resonances might give a large
contribution to the phase since the orbital evolution is
slower at low frequency and the particle can spend more
time moving across the resonance. On the other hand, in
our ECO model the width of each resonance is proportional

FIG. 7. Dephasing as a function of time in the case of a
nonspinning, perfectly reflecting the ECO relative to the
Schwarzschild BH case for different values of the compactness
parameters ϵ and q ¼ 3 × 10−5. In this case, the resonances in the
flux at infinity do not contribute to the dephasing, which is well
approximated by the simplified model of Ref. [32].

6Note that this reflectivity refers to the reduced one-
dimensional scattering problem, where jRj2 ¼ 1 simply corre-
sponds to the fact that “everything that goes in eventually comes
out.” This is the case when the absorption of the incoming
radiation is negligible since in that case (from a three-dimensional
perspective) radiation simply passes unperturbed across the
object. In terms of the object’s viscosity, the reflectivity in the
high-frequency or ϵ → 0 limit reads [21,22]

jRj2 ¼ ðη − ηBHÞ2
ðηþ ηBHÞ2

¼ 1 −Oðη=ηBHÞ; ð56Þ

where ηBH ¼ 1=ð16πÞ is the effective viscosity of a BH within
the BH membrane paradigm. Hence, if η ≪ ηBH (an excellent
approximation for GWs interacting with ordinary matter [2]), the
effective reflectivity is practically unity, i.e., GWs are not
absorbed and tidal heating is practically zero.
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to ωI ∼ ω2lþ2
R , and therefore low-frequency resonances are

also more narrow. The two effects are competitive and the
actual contribution of a resonance on the GW phase
depends on the specific parameters of the configuration.

Finally, in Fig. 9 we show the dephasing for some values
of jRj2 and ϵ. The dependence on ϵ is mild, except for
the possible excitation of the resonances, whose impact
depends on the specific values of χ, ϵ, and R.
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