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We discuss the uniqueness of asymptotically flat and static spacetimes in the n-dimensional Einstein-
conformal scalar system. This theory potentially has a singular point in the field equations where the
effective Newton constant diverges. We will show that the static spacetime with the conformal scalar field
outside a certain surface Sp associated with the singular point is unique.
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I. INTRODUCTION

The Einstein-conformal system is regarded as a toy
model of a low-energy effective theory of string theory. It is
known that there is a static, spherically symmetric, and
asymptotically flat exact solution in the n-dimensional
Einstein-conformal scalar system [1,2]. For n ¼ 4, the
curvature is finite at the Killing horizon and it is a black
hole solution which is known as the Bocharova-Bronnikov-
Melnikov-Bekenstein (BBMB) black hole [1], whereas for
n > 4, the solution is not a black hole because the curvature
diverges at the Killing horizon [2]. The field equation has a
singular point where the effective Newton constant
diverges. It appears in the exact solutions (the correspond-
ing surface will be denoted by Sp later) but all the physical
quantities such as the curvature and the scalar field are
regular there. For n ¼ 4, it is natural to ask if the unique-
ness of the black hole solution holds. The current authors
addressed this issue and then proved the uniqueness of the
static spacetime outside Sp [3–5]. Since the proof in
Refs. [3,5] relies on the Gauss-Bonnet theorem, as black
hole cases [6,7], it works only for four dimensions. By
contrast, the proof based on the conformal transformation
and positive mass theorem in Ref. [4] may be able to work
in higher dimensions too as black hole cases [8–10].
In this paper, we will address the uniqueness of the static,

asymptotically flat exact solution in the Einstein-conformal
scalar system. The exact solution for n > 4 has the
curvature singularity on the Killing horizon, but it does
not appear in the region between Sp and the spatial infinity.
Therefore, the uniqueness of the solution outside Sp would
be worth investigating. As a consequence, following
Refs. [9,10], we shall prove the uniqueness of static
spacetime outside Sp.
The rest of this paper is organized as follows. In Sec. II,

we will present the setup, describe the basic features
of static spacetime, and discuss the boundary conditions.

In Sec. III, we show that a certain relation between the lapse
function and scalar field holds. The proof will be shown in
Sec. IV. Finally, we will give the summary and discussion
in Sec. V.

II. SETUP

In this section, we describe the Einstein-conformal scalar
system in n dimensions and discuss some feature of the
static cases. We suppose that n is larger than four. The case
for n ¼ 4 has been investigated in Refs. [3,4].
We begin with the action for the Einstein-conformal

scalar system in n dimensions,

S ¼
Z �

1

2κ
R −

1

2
ð∇ϕÞ2 − ξ

2
Rϕ2

� ffiffiffiffiffiffi
−g

p
dnx; ð1Þ

where

ξ ≔
1

4

n − 2

n − 1
: ð2Þ

One can then obtain the field equations,

ð1 − κξϕ2ÞGμν

¼ κ

�
∇μϕ∇νϕ −

1

2
gμνð∇ϕÞ2 þ ξðgμν∇2 −∇μ∇νÞϕ2

�
;

ð3Þ

where Gμν is the n-dimensional Einstein tensor, and

ð∇2 − ξRÞϕ ¼ 0: ð4Þ

The trace of Eqs. (3) and (4) show us

R ¼ 0: ð5Þ
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This simplifies the field equations as

ð1 − κξϕ2ÞRμν

¼ κ

�
∇μϕ∇νϕ −

1

2
gμνð∇ϕÞ2 þ ξðgμν∇2 −∇μ∇νÞϕ2

�

ð6Þ

and

∇2ϕ ¼ 0: ð7Þ

Note that the front factor of the left-hand side in Eq. (6) tells
us that the equation is singular at ϕ ¼ ϕp ≔ �1=

ffiffiffiffiffi
κξ

p
. In

the exact solutions found in Ref. [2], however, the space-
time is regular at Sp which denotes surface(s) satisfying
ϕ ¼ ϕp, although it is singular on the Killing horizon for
higher dimensions than four, which is different from the
case of four dimensions [1].
From now on, we will focus on static and asymptotically

flat spacetimes. The metric can be written as

ds2 ¼ −V2ðxiÞdt2 þ gijðxkÞdxidxj: ð8Þ

The Einstein equation (6) give us

ð1 − κξϕ2ÞD2V ¼ κ

��
1

2
− 2ξ

�
VðDϕÞ2 þ 2ξϕDiVDiϕ

�

ð9Þ

and

ð1−κξϕ2Þ
�

ðn−1ÞRij−
1

V
DiDjV

�

¼ κ

�
ð1−2ξÞDiϕDjϕ−

�
1

2
−2ξ

�
ðDϕÞ2gij−2ξϕDiDjϕ

�
;

ð10Þ
where Di is the covariant derivative with respect to gij and
ðn−1ÞRij is the (n − 1)-dimensional Ricci tensor. The equa-
tion for the scalar field becomes

DiðVDiϕÞ ¼ 0: ð11Þ
We impose the asymptotic boundary conditions at spatial
infinity (r → ∞),

V ¼ 1 −
m
rn−3

þOð1=rn−2Þ; ð12Þ

gij ¼
�
1þ 2

n − 3

m
rn−3

�
δij þOð1=rn−2Þ: ð13Þ

For the scalar field, an asymptotic condition ϕ ¼
Oð1=rn−3Þ is assumed because Eq. (11) with vanishing

boundary condition of ϕ implies it.1 Equation (11) tells us
that ϕ is a monotonic function, and thus ϕ is regular in the
region whose boundaries are composed of the surface Sp
and the spatial infinity, while the Einstein equation is
singular at Sp. Therefore, we shall consider only the region
Σ enclosed by Sp and the spatial infinity. Here, we consider
the case where ϕ has the same sign everywhere on Sp, i.e.,
ϕp ¼ 1=

ffiffiffiffiffi
κξ

p
. Note that our current argument can work for

ϕp ¼ −1=
ffiffiffiffiffi
κξ

p
too, but does not for the cases that Sp is

composed of the multicomponents with both values (see
Ref. [4] for details in four dimensions).

III. ϕ−V RELATION AND FOLIATION ON Σ

In this section, we will show the relation between the
conformal scalar field ϕ and V. The relation gives us a
harmonic function v on Σ and the foliation on Σ is taken by
v. We derive some formulas for geometrical quantities
expressed with the (n − 2)-dimensional ones, which are
useful for the proof of the uniqueness of static spacetime
outside the surface Sp.
The combination of Eqs. (9) and (11) gives

Di½ð1 − φÞð1þ φÞn−4n−2Difð1þ φÞ 2
n−2Vg� ¼ 0; ð14Þ

where φ ≔
ffiffiffiffiffi
κξ

p
ϕ. The integration over Σ gives us

0 ¼
Z
Σ
Di½ð1 − φÞð1þ φÞn−4n−2Difð1þ φÞ 2

n−2Vg�dΣ

¼
Z
S∞

Difð1þ φÞ 2
n−2VgdSi: ð15Þ

In the second equality, we used the Gauss theorem and the
fact that the boundary term from Sp vanishes because of

φjSp ¼ 1. Next, we multiply ð1þ φÞ 2
n−2V to Eq. (14) and

then take its integration over Σ. Finally, under the current
boundary conditions, we have

0¼
Z
Σ
fð1þφÞ 2

n−2VgDiðð1−φÞð1þφÞn−4n−2

× ½Difð1þφÞ 2
n−2Vg�ÞdΣ

¼
Z
S∞

fð1þφÞ 2
n−2Vgð1−φÞð1þφÞn−4n−2½Difð1þφÞ 2

n−2Vg�dSi

−
Z
Σ
ð1−φÞð1þφÞn−4n−2½Dfð1þφÞ 2

n−2Vg�2dΣ; ð16Þ

where we arranged the integration in the same manner as
Eq. (15). The surface intergal term over S∞ in Eq. (16) has

1As discussed in Ref. [4], the cases with nonvanishing
boundary condition may be related to the current case. Therefore,
for simplicity, we impose the vanishing boundary condition for
the scalar field in this paper.
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the same value as that in Eq. (15) because of V → 1 and
φ → 0 at infinity. This means that it is zero, and then the
volume integral term over Σ in the last line of Eq. (16)
vanishes. It occurs only if Difð1þ φÞ 2

n−2Vg ¼ 0 holds, i.e.,
ð1þ φÞ 2

n−2V is constant. The constant value can be fixed
by checking its behavior at infinity and we can see
ð1þ φÞ 2

n−2V ¼ 1. For convenience, we rearrange the re-
lation as2

φ ¼ V−n−2
2 − 1: ð17Þ

This relation significantly makes the analysis simple. Using
this relation, Eq. (9) and the trace of Eq. (10) imply

D2V ¼ n − 2

2

ðDVÞ2
V

ð18Þ
and

ðn−1ÞR ¼ ðn − 2Þ ðDVÞ2
V2

: ð19Þ

For n ≥ 5, we define v as v ≔ V−n−4
2 , and then Eq. (18)

becomes a simple harmonic equation for v,

D2v ¼ 0: ð20Þ

This leads to the fact that v is a monotonically decreasing
function toward the spatial infinity.3 Bearing this in mind,
we introduce the unit normal vector to v ¼ constant surface
Sv in Σ as

ni ¼ −ρDiv; ð21Þ

where ρ ≔ ðDivDivÞ−1=2. The extrinsic curvature, kij of
Sv, is defined by kij ¼ hkiDknj, where hij ≔ gij − ninj is
the induced metric of Sv. For later discussions, we present
the trace of the extrinsic curvature

k ¼ Dini ¼ −DiðρDivÞ ¼ −DiρDiv ¼ 1

ρ
niDiρ ð22Þ

and the second derivative of v

DiDjv ¼ −
1

ρ
kij þ

1

ρ2
ðniDjρþ njDiρÞ þ

k
ρ
ninj; ð23Þ

where Di is the covariant derivative with respect to hij.
Let us check the regularity of the curvature invariant at

Sp. We express the curvature invariant by the (n − 2)-
dimensional geometrical quantities,

RμνRμν ¼ R00R00 þ RijRij

¼ 4ðn − 2Þ2
ðn − 4Þ4

1

v4ρ4
þ 4ðn − 2Þ2

ðn − 4Þ4
1

v4ρ4
1

ð2v−n−2
n−4 − 1Þ2 ½fðn − 3Þ þ 2v−

n−2
n−4 − ðn − 4Þvð1 − v−

n−2
n−4Þρkg2

þ fðn − 4Þvð1 − v−
n−2
n−4Þρkij − hijg2 þ 2ðn − 4Þ2v2ð1 − v−

n−2
n−4Þ2ðDρÞ2�: ð24Þ

Equation (17) shows that V and v have the following values
at Sp:

V ¼ Vp ≔ 2−
2

n−2 and v ¼ vp ≔ 2
n−4
n−2: ð25Þ

The second one of the above indicates that the curvature
invariant has a vanishing factor in a denominator, which
naively leads to a curvature singularity. This singularity can
be avoided only if

kijjSp ¼
2

2
n−2

n − 4

1

ρp
hijjSp ; ð26Þ

where ρp ≔ ρjSp and

DiρjSp ¼ 0 ð27Þ

hold. They mean that Sp is totally umbilic and that ρ is
constant on Sp. We should also check the behavior of the
Kretschmann invariant, which is decomposed as

RμνρσRμνρσ ¼ 4R0i0jR0i0j þ RijklRijkl: ð28Þ

The first term on the right-hand side becomes

R0i0jR0i0j¼ 4

V2
DiDjVDiDjV¼ 4

ðn−4Þ2V
n−4

�
1

ρ2
kijkijþ

2

ρ4
ðDρÞ2þ 1

ρ2

�
k−

n−2

n−4

1

ρv

�
2
�
: ð29Þ

3For the n ¼ 4 case, v is defined by v ≔ lnV. See Refs. [3,4].

2When Sp has the multicomponents with φ ¼ �1 both, this argument dose not work.
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The second term in the right-hand side of Eq. (28) is
composed of the (n − 1)-dimensional Weyl tensor square
and Ricci tensor square. The Ricci tensor square has the
same singular behavior as Eq. (24). As will be seen in the
next section, Eqs. (26) and (27) are sufficient for the proof
of the spherical symmetry and the uniqueness. After the
spherical symmetry is shown, we know that theWeyl tensor
vanishes. Therefore, the form of Weyl tensor square is not
important in our proof and we do not show it explicitly.
Note that, at the Killing horizon (V ¼ 0 or v → ∞), the

curvature invariant does not imply the constraint on the
geometry.

IV. PROOF FOR UNIQUENESS

Now we are ready to prove the uniqueness of static
spacetime outside Sp in the n-dimensional Einstein-
conformal scalar system. The procedure for the proof
follows Refs. [9,10].
Let us consider the following two conformal trans-

formations for gij:

g̃�ij ¼ Ω2
�gij; ð30Þ

where

Ωþ ¼ V
1

n−3; ð31Þ

Ω− ¼ 1

V
ð1 − V

n−2
2 Þ 2

n−3: ð32Þ

Then we have two manifolds ðΣ̃�; g̃�ijÞ.
It is easy to see that the Ricci scalar for g̃�ij vanishes,

Ω2
�
ðn−1ÞR̃� ¼ ðn−1ÞR − 2ðn − 2ÞD2 lnΩ�

− ðn − 3Þðn − 2ÞðD lnΩ�Þ2
¼ 0: ð33Þ

The metrics g̃�ij on Sp coincide with each other,

g̃þijjSp ¼ g̃−ijjSp ¼ 2
− 4
ðn−2Þðn−3ÞgijjSp : ð34Þ

The extrinsic curvature of v ¼ constant surface in Σ̃� is
related to that in Σ as

k̃�ij ¼ Ω�kij þ
2

n − 4
v−

n−2
n−4

1

ρ

dΩ�
dV

hij: ð35Þ

Substituting Eqs. (26), (31), and (32) into Eq. (35), we can
see

k̃þijjSp ¼ −k̃−ijjSp ¼
n − 2

ðn − 3Þðn − 4Þ 2
2ðn−4Þ

ðn−2Þðn−3Þ
1

ρp
hijjSp ; ð36Þ

where ρp ≔ ρjSp . The coincidence of the metric and the

relation of the extrinsic curvature at Sp allow us to glue Σ̃þ

and Σ̃− without discontinuity of the extrinsic curvature. The
glued manifold Σ̃þ ∪ Σ̃− is denoted by ðΣ̃; g̃ijÞ.
Here we examine the asymptotic behavior of g̃�ij. After a

short calculation, we have

g̃þij ¼ δij þOð1=rn−2Þ: ð37Þ

This implies that the mass vanishes. For g̃−ij, by introducing
the new radial coordinate χ as

χ ≔
�
n − 2

2
m

� 2
n−3
r−1; ð38Þ

the neighborhood of r → ∞ (χ ¼ 0) can be approxi-
mated by

g̃−ijdx
idxj ≃ dχ2 þ χ2dΩ2

n−2; ð39Þ

where dΩ2
n−2 is the metric of the (n − 2)-dimensional round

sphere. This means that the spatial infinity in Σ corresponds
to a point in Σ̃. Therefore, adding one point fqg corre-
sponding to χ ¼ 0, we have a complete manifold Σ̃ ∪ q,
which is asymptotically flat space with the zero mass and
zero Ricci scalar. Now we can apply the positive mass
theorem for ðΣ̃; g̃ijÞ and then ðΣ̃; g̃ijÞ is flat space, that is,
g̃ij ¼ δij. This shows us that Eq. (18) is rewritten as

ΔδV−n−2
2 ¼ 0; ð40Þ

where Δδ is the flat Laplacian. Since we have already
shown in Eq. (36) that Sp is totally umbilic in Σ̃, Sp in Σ̃ is
spherically symmetric because of the flatness of Σ̃. The fact
that the solution to Eq. (40) with the spherically symmetric
boundary condition is spherically symmetric leads to the
result that every v ¼ constant surface fSvg in Σ̃þ is also
spherically symmetric. Thus, ðΣ; gijÞ is spherically sym-
metric because the conformal factorΩ� depends only on V.
Then the results in Ref. [2] show us that the solution is
unique outside Sp.

V. SUMMARY AND DISCUSSION

In this paper, we proved the uniqueness of static
spacetime outside the surface Sp, where the field equations
are singular, in the n-dimensional Einstein-conformal
scalar system. Therefore, as the event horizon in the
vacuum Einstein, the regularity on the surface Sp could
constrain the geometry. This is the crucial first step to prove
the uniqueness. In the end, we could prove it.
Our uniqueness theorem says nothing for whole space-

time. In contrast to the four-dimensional cases, the exact
solution of static, spherically symmetric spacetime is
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singular at the Killing horizon [2]. It would be difficult to
resolve the singularities and obtain any constraints for the
geometry of the Killing horizon. Yet, even if some
geometrical quantities such as the extrinsic curvature
diverge at the Killing horizon, the curvature invariant
may be finite. This is rather impressive because all
geometrical quantities at the Killing horizon are finite in
four dimensions.
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