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We consider strongly gravitating configurations consisting of coupled real Higgs scalar field and vector
(Proca) field of mass μP. For such a system, we find static regular axially symmetric solutions describing
asymptotically flat configurations which may be referred to as Proca-Higgs miniboson stars, since their
total mass and spatial dimension are of orderM2

Pl=μP and μ−1P , respectively. The system possesses an axially
symmetric dipole field and may be regarded as a Proca dipole.
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I. INTRODUCTION

Compact gravitating configurations supported by various
fundamental fields have been the object of vigorous
investigations over the last decades. This interest is partially
a consequence of the fact that, according to the contem-
porary viewpoint, such fields may play a crucial role both
in describing the large-scale structure of the early and
present Universe and in modeling various clustered dis-
tributions of matter. In the first case, fundamental fields are
employed, for example, in modeling the inflationary stage
in the early Universe and in describing its current accel-
erated expansion (dark energy) [1,2]. In turn, as applied to
clustered distributions of matter, various fields are used
both in modeling phenomena on scales of galaxies and their
clusters (dark matter) and in describing relatively small-
scale configurations (for instance, stars).
In the latter case, there is prolific activity in studying

compact gravitating objects supported by scalar (spin-0)
fields—the so-called boson stars. It is usually assumed that
such configurations consist of different types of complex
fields, but the use of real scalar fields is also possible [3–5].
Depending on the type of the field, dimensions and masses
of such stars may lie in a very wide range, ranging from
Planckian values to the scales comparable with character-
istics that are typical for ordinary stars, or even for larger
objects.
On the other hand, gravitating systems consisting of

matter fields with nonzero spin are also under active study.
In the case of half-integer-spin fields, one may mention the

spherically symmetric Einstein-Dirac systems consisting
of both linear [6,7] and nonlinear spinor fields [8–12]. In
the case of vector (spin-1) fields, considerable effort has
been devoted to studying various Einstein-Yang-Mills
configurations pioneered in Ref. [13] (for a review, see,
e.g., Ref. [14]). In turn, in recent years interest in systems
containing various massive vector (spin-1) fields—the so-
called Proca stars—has increased considerably [7,15–18].
Introduction of such fields is motivated by the fact that if
one regards Proca theory as the generalization of Maxwell’s
theory, it permits one to take into account various effects
related to the possible presence of the rest mass of a photon
[19], to describe the massive Z0 and W� particles in the
Standard Model of particle physics [20], to employ such
fields as applied to dark matter physics [21,22].
Another possible area of research is a consideration

of gravitating systems involving several matter fields.
Investigations of such systems can be arbitrarily divided
into two directions. First, it involves the consideration of
mixed objects, which have one purely field component and
another one is described using a variety of approximation
schemes. As an example, one can mention here (i) systems
consisting of bosonic and fermionic components, which
either interact only through a gravitational field [23] or also
involve extra couplings [24] (in both cases, the fermionic
component is described by some effective equation of
state), and (ii) configurations created by coupled fermion
and scalar fields, when fermions are described using the
Thomas-Fermi approximation [25]. Within the second
direction, purely field systems consisting of several com-
ponents are under investigation. These systems can be
exemplified by (i) spherically symmetric charged boson
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stars consisting of a complex scalar field minimally
coupled to an electric Maxwell field [26], (ii) spherically
symmetric monopole solutions to the Einstein-Yang-Mills-
Higgs equations [27], (iii) axially symmetric monopole
solutions supported by Yang-Mills and dilaton [28] or
Higgs [29,30] scalar fields, (iv) spherically symmetric
systems consisting of complex scalar and Proca fields
[31] or of spinor and electric Maxwell/Proca [11] or Yang-
Mills/Proca [12] fields. Depending on the choice of
concrete numerical values of the system parameters, either
the boson or fermion components can be the dominant part;
this ensures a wide range of physical properties of such
configurations.
Fromwhat has been said above, it is of interest to continue

studying the properties of configurations supported by
several coupled fields that are of different nature. In
particular, this refers to gravitating systems created by
non-Abelian fields coupled to scalar fields. Here we consider
a system consisting of a massive vector (Proca) field and a
real Higgs field. The use of the Proca field is interesting in
the sense that its presence changes substantially the structure
of the magnetic field compared with, for example, that of the
long-range magnetic field of the monopole solutions within
Einstein-Yang-Mills-Higgs theory [27,29,30].
As a starting configuration, we will use a nongravitating

non-Abelian SU(2) Proca-Higgs system considered by us
recently in Ref. [32] (see also the related Refs. [33–36] where
various solutions for systems with coupled scalar, spinor,
and vector fields have been studied). At the microscopic
level, such a system can be used in modeling localized
field structures—particles/quasiparticles or tubes connecting
them. In the absence of gravity, the system is in equilibrium
due to the force balance: the non-Abelian field is purely
repulsive, whereas the Higgs scalar field is purely attractive.
In turn, once the number of particles becomes large, it may
already become necessary to take into account the gravita-
tional interaction between the particles, and this leads to the
appearance of the additional attractive forces. Our task here is
to examine the properties of such a system containing a large
number of particles minimally coupled to gravity.
In the absence of gravity, the system of Ref. [32] can

contain both electric and magnetic fields simultaneously.
However, when a gravitational field is involved, in SU(2)
theory, four-dimensional configurations with an asymptoti-
cally flat spacetime can be only purely magnetic [37].
Consistent with this, we will consider here a case where
only amagnetic field is present. In this case, the SU(2) system
of Ref. [32] reduces to an embedded Abelian U(1) system
with minimally coupled magnetic and scalar fields. Our
purpose will be to study the dependence of the properties
of such a system on the value of the coupling constant.
The paper is organized as follows. In Sec. II, we write

down the general field equations for the non-Abelian
Einstein-Proca-Higgs theory. In Sec. III, we solve these
equations numerically and obtain axially symmetric

solutions describing compact gravitating configurations
consisting of a magnetic Proca field coupled to a Higgs
scalar field. Finally, Sec. IV summarizes the results
obtained in the paper.

II. EINSTEIN-PROCA-HIGGS THEORY

Consistent with the purpose of the study given in the
Introduction, let us generalize the system considered in
Refs. [32,34,36] to the case of the presence of a strong
gravitational field. In this case, the Lagrangian describing a
system consisting of a non-Abelian SU(3) Proca field Aa

μ

interacting with nonlinear scalar field ϕ can be taken in the
form [hereafter, we work in units such that c ¼ ℏ ¼ 1 and
the metric signature is ðþ;−;−;−Þ]

L ¼ −
R

16πG
−
1

4
Fa
μνFaμν −

1

2
mab;μ

νAa
μAbν þ 1

2
∂μϕ∂μϕ

þ λ

2
ϕ2Aa

μAaμ −
Λ
4
ðϕ2 −M2Þ2: ð1Þ

Here G is the Newtonian gravitational constant, R is the
scalar curvature, Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν is the
field strength tensor for the Proca field, where fabc are
the SU(3) structure constants, g is the coupling constant,
a; b; c ¼ 1; 2;…; 8 are color indices, and μ, ν ¼ 0, 1, 2, 3
are spacetime indices. The Lagrangian (1) also contains the
arbitrary constants M, λ, and Λ and the Proca field mass
matrix mab;μ

ν .
Making use of the Lagrangian (1), the corresponding

field equations can be written in the form

Rν
μ −

1

2
δνμR ¼ 8πGTν

μ; ð2Þ

1ffiffiffiffiffiffiffi
−G

p ∂
∂xν ð

ffiffiffiffiffiffiffi
−G

p
FaμνÞ þ gfabcAb

νFcμν

¼ λϕ2Aaμ −mab;μ
νAbν; ð3Þ

1ffiffiffiffiffiffiffi
−G

p ∂
∂xμ

� ffiffiffiffiffiffiffi
−G

p
Gμν ∂ϕ

∂xν
�

¼ λAa
μAaμϕþ ΛϕðM2 − ϕ2Þ;

ð4Þ

where Gμν is the spacetime metric. In turn, the right-hand
side of Eq. (2) contains the energy-momentum tensor

Tν
μ ¼ Gνσ∂σϕ∂μϕ − δνμ

�
1

2
Gλσ∂σϕ∂λϕ −

Λ
4
ðϕ2 −M2Þ2

�

− FaνρFa
μρ þ

1

4
δνμFa

αβF
aαβ −mab;α

μAa
αAbν

þ 1

2
δνμmab;α

βA
a
αAbβ þ λϕ2

�
AaνAaμ −

1

2
δνμAaαAaα

�
:

ð5Þ
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III. AXIALLY SYMMETRIC SOLUTIONS

As pointed out in the Introduction, we will consider a
particular case where the system contains only a magnetic
Proca field and a scalar field. In doing so, as in Ref. [32],
we assume for simplicity that there is only one nonzero
component of the vector potential, A7

φ ≠ 0, describing the
magnetic field. This, in turn, implies that we will deal with
an axially symmetric problem.

A. The ansatz and equations

We will study static axially symmetric configurations,
for which it is convenient to choose the spacetime metric in
the Lewis-Papapetrou form

ds2 ¼ fdt2 −
m
f
ðdr2 þ r2dθ2Þ − l

f
r2 sin2 θdφ2; ð6Þ

where the metric functions f, l, and m depend on r and θ
only. The z axis (θ ¼ 0) represents the symmetry axis of
the system. Asymptotically (as r → ∞), the functions
f;m; l → 1; i.e., the spacetime approaches a flat,
Minkowski spacetime.
For the Proca field, we take here a purely magnetic

ansatz (cf. Ref. [32])

A7
φ ¼ r sin θ

wðr; θÞ
g

: ð7Þ

In this case, the general system (1) reduces, in essence, to
an embedded Abelian U(1) system, where Uð1Þ ⊂ SUð3Þ.
For the above ansatz, there are the following nonzero

physical components of the magnetic field:

H7
r ¼ −

fffiffiffiffiffiffi
lm

p w;θ þ w cot θ
gr

; H7
θ ¼

fffiffiffiffiffiffi
lm

p wþ rw;r

gr
: ð8Þ

(Henceforth a comma in lower indices denotes differ-
entiation with respect to the corresponding coordinate.)
Since we consider here only one component of the vector

field (7), the Proca field mass matrix contains only the
component μ2P ≡m77;φ

φ. Then, introducing the dimension-
less variables

x ¼ μPr; ϕ̄; w̄; M̄ ¼
ffiffiffiffiffiffiffiffiffi
8πG

p
fϕ; w;Mg; λ̄; Λ̄ ¼ fλ;Λg

8πGμ2P
;

ð9Þ

the field equations (2)–(4), when the expression (5) is
inserted, yield

f;xx þ
f;θθ
x2

þ 2f;x
x

þ cot θf;θ
x2

−
1

f

�
f2;x þ

f2;θ
x2

�
þ 1

2l

�
f;xl;x þ

f;θl;θ
x2

�

−
f2

g2x2l
½2wðcot θw;θ þ xw;xÞ þ w2

;θ þ x2w2
;x þ csc2 θw2� þ Λ

2
mðϕ2 −M2Þ2 ¼ 0; ð10Þ

l;xx þ
l;θθ
x2

þ 3l;x
x

þ 2 cot θl;θ
x2

−
1

2l

�
l2;x þ

l2;θ
x2

�
þ Λ

lm
f
ðϕ2 −M2Þ2 þ 2m

g2
ðλϕ2 − 1Þw2 ¼ 0; ð11Þ

m;xx þ
m;θθ

x2
þm;x

x
þ m
2f2

�
f2;x þ

f2;θ
x2

�
−

1

m

�
m2

;x þ
m2

;θ

x2

�
þm

�
ϕ2
;x þ

ϕ2
;θ

x2

�
þ Λ

2

m2

f
ðϕ2 −M2Þ2

−
m

g2x2l
f½csc2 θf þ x2mðλϕ2 − 1Þ�w2 þ f½w2

;θ þ x2w2
;x þ 2wðcot θw;θ þ xw;xÞ�g ¼ 0; ð12Þ

ϕ;xx þ
ϕ;θθ

x2
þ
�
2

x
þ l;x

2l

�
ϕ;x þ

�
cot θ þ l;θ

2l

�
ϕ;θ

x2
þ
�
Λ
m
f
ðM2 − ϕ2Þ − λ

g2
m
l
w2

�
ϕ ¼ 0; ð13Þ

w;xx þ
w;θθ

x2
þ
�
2

x
þ f;x

f
−
l;x
2l

�
w;x þ

cot θw;θ

x2
−

1

2x2fl
ðfl;θ − 2lf;θÞw;θ

þ 1

x2

�
cot θf;θ þ xf;x

f
−
2 csc2 θlþ cot θl;θ þ xl;x

2l

�
wþm

f
ð1 − λϕ2Þw ¼ 0: ð14Þ

Here Eqs. (10)–(12) are combinations of the components of the Einstein equations Et
t − Er

r − Eθ
θ − Eφ

φ ¼ 0, Er
r þ Eθ

θ ¼ 0,
and Eφ

φ ¼ 0, respectively. To make the notation simpler, we have omitted in these equations the bar sign over the
dimensionless variables.
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B. Boundary conditions

We will seek globally regular, asymptotically flat sol-
utions possessing a finite mass. For such solutions, we
impose appropriate boundary conditions for the Proca/
scalar fields and metric functions at the origin (x ¼ 0), at
infinity (x → ∞), on the positive z axis (θ ¼ 0), and,
making use of the reflection symmetry with respect to
θ → π − θ, in the equatorial plane (θ ¼ π=2). So we require

∂f
∂x

����
x¼0

¼∂m
∂x

����
x¼0

¼ ∂l
∂x

����
x¼0

¼∂ϕ
∂x

����
x¼0

¼0;wjx¼0¼0;

fjx¼∞¼mjx¼∞¼ ljx¼∞¼1;wjx¼∞¼0;ϕjx¼∞¼M;

∂f
∂θ

����
θ¼0;π

¼∂m
∂θ

����
θ¼0;π

¼ ∂l
∂θ

����
θ¼0;π

¼∂ϕ
∂θ

����
θ¼0;π

¼0;wjθ¼0;π¼0;

∂f
∂θ

����
θ¼π=2

¼∂m
∂θ

����
θ¼π=2

¼ ∂l
∂θ

����
θ¼π=2

¼∂w
∂θ

����
θ¼π=2

¼∂ϕ
∂θ

����
θ¼π=2

¼0:

In turn, the condition of the absence of a conical singularity
requires that the solutions should satisfy the constraint
mjθ¼0;π ¼ ljθ¼0;π (we have been checking the fulfilment of
these conditions in performing calculations).

C. Asymptotic behavior

Before proceeding to the discussion of the solutions, let
us write down the expressions describing an asymptotic
behavior of the matter fields. It is assumed that, as x → ∞,
the spacetime approaches Minkowski spacetime; i.e., the
metric functions f, m, and l approach unity. In this case,
since we seek here asymptotically decaying solutions for
which w → 0 exponentially fast, one can neglect the
nonlinear term in Eq. (13) containing w2. In turn, asymp-
totically, the field ϕ ≈M − η → M, and the function η
decays exponentially; this permits us to replace the term ϕ2

byM2 in Eq. (14). As a result, from Eqs. (13) and (14), one
can derive the following asymptotic equations:

△x;θw −
w

x2 sin2 θ
þ ð1 − λM2Þw ¼ 0;

△x;θη − 2ΛM2η ¼ 0;

where △x;θ is the Laplacian operator in flat space. These
equations have obvious solutions of the form

w ≈ CwFðθÞ
e−x

ffiffiffiffiffiffiffiffiffiffi
λM2−1

p

x
; ð15Þ

η ≈ CηðYÞ0lη
e−x

ffiffiffiffiffiffiffiffiffi
2ΛM2

p

x
; ð16Þ

where ðYÞ0lη is a spherical function and Cw;η are constants.

In turn, the angular part of Eq. (15) is expressed in terms of
special functions collected in FðθÞ (we do not show this

expression here to avoid overburdening the text). It follows
from Eq. (15) that there is a lower limit on the combination
of the parameters M and λ ensuring the exponential
asymptotic decay of the solution: λM2 > 1.

D. Numerical solutions

The set of five coupled nonlinear elliptic partial differ-
ential equations (10)–(14) has been solved numerically
subject to the above boundary conditions. For numerical
calculations, it is convenient to introduce a new compacti-
fied radial coordinate

x̄ ¼ x
1þ x

; ð17Þ

the use of which permits one to map the infinite region
½0;∞Þ to the finite interval [0, 1]. Calculations have been
carried out using the package FIDISOL [38] with typical
errors on the order of 10−4. In turn, in plotting graphs, we
have used compactified coordinates

ρ̄ ¼ x̄ sin θ
1 − x̄ð1 − sin θÞ ; z̄ ¼ x̄ cos θ

1 − x̄ð1 − cos θÞ ; ð18Þ

where x̄ is given by Eq. (17); these coordinates cover all
space of the solutions.
As an example of localized solution, Fig. 1 shows the

distributions of the matter fields ϕ; w and the metric function
f for fixed values of M and Λ and three different values of
the coupling constant λ. For the values of M and Λ given in
the caption of the figure, the value λ ¼ 0.6 is close to the
minimum permissible value λmin for which the asymptoti-
cally decaying solutions (15) and (16) are still valid; for the
solutions given in Fig. 1, the value λmin ¼ 1=M2 ≈ 0.592.
Technically, in order to obtain solutions with different λ,

we have used the following step-by-step procedure: First,
we find a solution at the step n for some λn > λmin to an
accuracy of the order of 10−4. Then this solution is used as
an initial guess for finding a solution at the step nþ 1,
where λnþ1 ¼ λn þ δλ with δλ ≪ λn. Proceeding in this
manner, we are eventually able to find a solution for some
value λ ¼ λmax for which a further increase of λ requires a
considerable decrease of δλ to keep the required accuracy.
Consistent with this, we have been terminating the calcu-
lations for some judicious values of δλ → 0. The resulting
solutions correspond to the case of λ ¼ λmax, and they are
exemplified in the right column of Fig. 1 for the case of
Λ ¼ 0.2. A similar situation occurs for other values of the
parameter Λ as well (see below).
It is seen from the structure of the magnetic field strength

depicted in the lower row of Fig. 1 that the system
possesses an axially symmetric dipole field sourced by
the current associated with the scalar field and given by the
first term on the right-hand side of Eq. (3). This current is
located in the equatorial plane of the configuration; its
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FIG. 1. Distributions of the dimensionless fields ϕ (upper row) and w (second row), the metric function f (third row), and the strength
of the magnetic field H⃗7 (expressed in units μP=

ffiffiffiffiffiffiffiffiffi
8πG

p
) from Eq. (8) (lower row) for different values of λ and fixed values of the

parameters M ¼ 1.3, Λ ¼ 0.2, and g ¼ 1. The plots for the magnetic field strength are made in a meridional plane φ ¼ const: spanned
by the coordinates (18). Since the system is mirror symmetric with respect to the equatorial plane z̄ ¼ 0, we show only the solutions
lying in the upper hemisphere z̄ > 0.
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location along the radius and the magnitude of the magnetic
field are determined by the value of the parameter λ: as λ
increases, the location of the current shifts to the central
region and the field strength grows. In turn, with decreasing
λ, the distributions of all the fields become more uniform,
and for λ ≈ λmin the configuration already possesses a
sufficiently weak gravitational field (the metric function
f is rather close to unity) and a practically uniformly
distributed weak magnetic field (see the leftmost panel in
the lower row of Fig. 1). In this connection, one may expect
that, as λ → λmin, the system will tend to its vacuum state
with ϕ ¼ M and w ¼ 0.
This may be more clearly demonstrated by considering

the behavior of the total mass of the objects under
investigation for different values of the system parameters.
The static configurations under consideration are topologi-
cally trivial and globally regular (without an event horizon
or conical singularities). Bearing in mind that the spacetime
of such systems is asymptotically flat, one can calculate
their total mass using a definition of the mass via the Komar
integral [39]

Mtot ¼ 2

Z
Σ

�
Tμν −

1

2
GμνT

�
nμξνdV;

where nμ is a normal to Σ and ξν is a timelike Killing vector.
Making use of the dimensionless variables (9), themetric (6),
and the energy-momentum tensor (5), one can find

Mtot ¼
1

4g2
M2

Pl

μP

Z
∞

0

dx
Z

π

0

dθ
sin θ

f
ffiffi
l

p
�
f2½w2

;θ þ x2w2
;x

þ 2wðcot θw;θ þ xw;xÞ þ csc2θw2�

−
Λ
2
g2x2lmðϕ2 −M2Þ2

	
; ð19Þ

where MPl is the Planck mass. Alternatively, the total mass
of the configuration can be read off from the asymptotic
expansion of the metric function fjr→∞ ≈ 1–2GMtot=r. Both
theseways of calculating themass can be employed to control
the correctness of computations.
The results of calculations for the total mass are given in

Fig. 2. These graphs are plotted for all the range of values of
λ for which we have succeeded in obtaining numerical
solutions to the required accuracy. It is seen from the figure
that, as λ approaches λmin, the total mass becomes an
increasingly rapidly decaying function of λ for all Λ, and
one may expect that as λ → λmin, the mass Mtot will
approach zero. On the other hand, with increasing λ, the
total mass grows, reaching the value Mtot ≈ 0.61–0.62 for
all Λ for some λmax ¼ λmaxðΛÞ. However, it is seen from the
behavior of the graphs that, at this limiting point, Mtot still
does not approach saturation, and if only the numerical
technique could permit us to find a solution for λ > λmax,
one might expect that the total mass would continue its

growth as λ increases. This is also indirectly confirmed
by the fact that the metric function f, as well as two
other metric functions m and l, remain finite and differ
substantially from zero for the configurations with maxi-
mum values of λ for which we have succeeded in perform-
ing calculations (cf. Fig. 1, which shows the distribution
of the function f in the case of Λ ¼ 0.2 for which
λmax ¼ 0.67945).

IV. CONCLUSIONS

The purpose of the present paper is to study axisym-
metric strongly gravitating configurations supported by
interacting real Proca and Higgs fields. In studying Proca
fields, both in gravity and in a flat spacetime, a natural
question arises as to the existence of such fields in nature.
As we pointed out in Ref. [32], there could be two possible
answers to this question. The first one suggests that Proca
fields are fundamental, and they do exist in nature. This
implies the violation of the concept that all fundamental
integer-spin fields must be gauge invariant. The second
point of view is that Proca fields are phenomenological, and
they arise as a result of some approximate description of
other fundamental fields. For example, this can happen in
quantizing some fundamental field when the corresponding
quanta of such field acquire an effective mass; here one
may draw an analogy to spontaneous symmetry breaking
when some quanta of a gauge field acquire a mass.
Unlike the nongravitating configurations in SU(2) theory

studied by us in Ref. [32], the presence of a gravitational
field does not permit one to obtain localized, asymptoti-
cally flat systems involving both electric and magnetic
fields. For this reason, we have considered here the case
with a magnetic field only, limiting ourselves for simplicity
to static systems containing only one component of the

FIG. 2. The dependence of the total mass (19) of the configu-
rations under consideration on λ for different Λ.
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vector potential A7
φ. For such a case, we have found

localized regular asymptotically flat solutions describing
configurations with the total mass ∼M2

Pl=μP and a spatial
dimension ∼μ−1P . Such objects may be referred to as
“Proca-Higgs miniboson stars,” since their masses and
sizes are comparable to the characteristics of miniboson
stars supported by a complex scalar field [40,41]. An
essential point here is that if in the case of stars with a
complex scalar field their characteristics are determined by
the mass of the scalar field, in our case this is the mass of
the vector field μP.
Notice the following features of the configurations

obtained:
(1) When considering gravitating configurations sup-

ported by real scalar fields only, there are no non-
singular, static solutions with a trivial spacetime
topology [3,41,42]. Aside from this, to the best of
our knowledge, even in considering a complex
Higgs scalar field, there are no regular, starlike
solutions as well. Regular gravitating solutions are
only possible in the case of a nontrivial spacetime
topology when there are topological (kinklike)
solutions for a real ghost Higgs scalar field [43,44].
We have demonstrated here that in the presence of a
coupling between real Higgs and Proca fields the
existence of static localized regular solutions is
possible. In this case, the spacetime topology is
trivial and the solutions for the scalar field are
nontopological.

(2) On comparing the configurations obtained here and
miniboson stars supported by a complex scalar field,
an important difference is that the latter systems
contain a free eigenparameter—the boson frequency,
whose presence permits one to get configurations
possessing different central densities for fixed values
of other field parameters [3,4]. The magnitude of the
central density determines the total mass of the
system and permits one to estimate, for example,
the stability of such objects. On the contrary, in the
case of a real scalar field considered in the present
paper, there is no such a free eigenparameter, and for
fixed values of the scalar-field parameters (Λ andM)
and of the coupling constant λ, there is only one
(eigen)value of the scalar-field central density and,
correspondingly, of the total mass of the system.

(3) The numerical calculations indicate that, depending
on the specific values of the scalar-field parameters
and of the coupling constant λ, the total masses of
the configurations lie in the range from zero to some
finite value, which turns out to be approximately

identical for different values of Λ (see Fig. 2).
Unfortunately, further calculations are limited by
the numerical accuracy.

(4) The system possesses an axially symmetric dipole
field sourced by the current associated with the
Higgs field. In this connection, such a configuration
may be regarded as a “Proca dipole,” whose mag-
netic field strength grows with increasing λ. In turn,
asymptotically, this field decreases exponentially
with distance, in contrast to a monopole magnetic
field (both in the spherically [27] and axially [29,30]
symmetric cases) or a dipole field in Maxwell’s
electrodynamics, which decrease away from the
source according to a power law.

In conclusion, let us briefly address the question of
stability of the systems under investigation. In the case of
an asymptotically flat spacetime, all static, spherically
symmetric and purely magnetic regular or black hole
solutions to the Einstein-Yang-Mills equations for arbitrary
gauge groups are known to be unstable [14]. In turn,
configurations supported only by a real scalar field are also
dynamically unstable, whether they consist of ordinary [42]
or ghost [45] scalar fields (see, however, Ref. [46] where
the stability analysis for the ordinary scalar field was
revisited and the possibility of the existence of stable
solutions was demonstrated). In this connection, one
may naively expect that the mixed Proca-Higgs systems
considered here will also be unstable. Nevertheless, to draw
a definitive conclusion, the question of stability requires
special studies. Keeping in mind that the configurations
considered here are described by nontopological solutions
(no topological charge) and supported by real fields (no
conserved charge or particle number), there are two
possible ways to study the stability. First, one can examine
the stability with respect to axisymmetric perturbations
(both linear and nonlinear). Second, it is possible to study
the stability within catastrophe theory [47]. In any case,
since the stability analysis requires a fair amount of effort,
we plan to do this in a separate work.
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